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Abstract. Inthe dynamical theory of granular matter the so-called table problem consists in study-
ing the evolution of a heap of matter poured continuously onto a bounded démairR?2. The
mathematical description of the table problem, at an equilibrium configuration, can be reduced to a
boundary value problem for a system of partial differential equations. The analysis of such a sys-
tem, also connected with other mathematical models such as the Monge—Kantorovich problem, is
the object of this paper. Our main result is an integral representation formula for the solution, in
terms of the boundary curvature and of the normal distance to the cut lo€us of
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1. Introduction

In recent years, the attention of many authors has been focussed on the system of partial
differential equations

—divwDu) = f inQ,

_ : 1)
|[Dul—1=0 in{v > 0},

in a given domair2 C R”,

For instance, systerp|(1) arises in Monge—Kantorovich theory as necessary conditions
to be satisfied by an optimal mass transfer plan (see [15], [2][and [20]). In a related
framework, systen| (1) characterizes the limit,;as> oo, of the p-Laplace equation
—div(|Du|P~2Du) = f (see [11], [24], [[6] and[[15]). Furthermore, the above system
has been applied to an idealized model for compression molding in [5], and to shape
optimization in [9].
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Another interesting example of application pf (1) stems from granular matter theory
(seell4],[27], 6] and[15]). Recently, Hadeler and Kuttlerl[22] proposed a new model to
study the evolution of a sandpile created by pouring dry matter onto a ‘table’. In such a
model, built on previous work by Boutreux and de Genhes [10], the table is represented
by a bounded domaif c RZ, and the matter source by a functigiir, x) > 0. The
physical description of the growing heap is based on the introduction of the so-called
standingand rolling layers. The former collects the amount of matter that remains at
rest, the latter represents matter moving down along the surface of the standing layer—
eventually falling down when the base of the heap touches the boundary of the table.

As pointed out in[[2R], systenji (1) is related to equilibrium configurations that may
occur in physical models with a constant source. To explain this connection, let us denote
by u(x) andv(x), respectively, the heights of the standing and rolling layers at a point
x € , for an equilibrium configuration. For physical reasons, the slope of the standing
layer cannot exceed a given constant—typical of the matter under consideration—that
we normalize to 1. Consequently, the standing layer must vanish on the boundary of the
table. So|Du| < 1in Q andu = 0 ona2. Also, in the region where is positive, the
standing layer has to be ‘maximal’, for otherwise more matter would roll down there to
rest. On the other hand, the rolling layer results from transporting matter, poured by the
source, along the surface of the standing layer at a speed that is assumed proportional to
the slopeDu, with constant equal to 1. The above considerations lead to the boundary
value problem

—divwDu) = f in Q,

|Dul—1=0 in{v > 0}, o)
|[Dul <1, wu,v>0 inQ,

u=0 onog2.

For the reader who is interested in Monge—Kantorovich theory we note that a connec-
tion of the above system with such a theory could be obtained by looking at the so-called
dual problem of maximizing

/ u(x) f(x)dx €)
Q

over all Lipschitz continuous functions: @ — R, with Lip(x) < 1, vanishing oro 2.
Indeed, as proved in [8], the boundary value problgm (2) turns out to be the system of
necessary conditions satisfied by any maximizef (3), with v equal to the associated
Lagrange multiplier. Such a framework is also related to the optimization problem studied
in [12].

The main purpose of the present work is to provide a full analysis of profjlem (2),
including existence, uniqueness, and representation of the solution. To describe our results
more precisely, let us denote dy: @ — R the distance function from the boundary
of @ and by ¥ the singular set ofl, that is, the set of points € Q at whichd is
not differentiable. The closure of that set is also called the cut locdsoh €. If we
introduce the projectioml(x) of x onto <2 in the usual way, theix is also the set of
pointsx at whichIT(x) is not a singleton. Sinagis Lipschitz continuousy has Lebesgue
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measure zero. In our analysis, a major role will be played by the normal distante to
that is, the function

t(x)=min{t >0:x +tDd(x) e ¥} VxeQ\X.

It is well known that the eikonal equatigdu| = 1 does not have global smooth
solutions in general, and neither does the conservationldiv(vDu) = f. Thus, before
stating our main result, we must explain what we mean by a solutidrj of (2). We say that
a pair(u, v) of continuousfunctions in<2 is a solution of problenf {2) if

e u=00n9Q, || Dullx.o <1, andu is a viscosity solution of
[Dul =1 in{x € Q:v(x) > 0},

e v > 0in 2 and, for every test functio# € C°(Q2),

/Q v(x)(Du(x), Dp(x)) dx = /Q FO$ () dx.

Notice that the maximality of the standing layer, justified above by physical considera-
tions, is now ensured by typical properties of viscosity solutions.
Our main result is the following.

Theorem 1.1. Let 2 ¢ R? be a bounded domain with boundary of cl@gsand f > 0
be a continuous function if2. Then a solution of syste@) is given by the paitd, v/),
wherev/ = 0onE and
: ) 1-d t —
ol (x) = / P4 1Dd() 22 @O TOD )y oS @)
0 1—dx)x(x)
Here,« (x) denotes the curvature 62 at the pointI1(x).
Moreover, the above solution is unique in the following senséz,ib) is another
solution of(2), thenv = v/ in @, andu =d in {x € 2 : v/ > 0}.

In the proof of the above theorem, we will first show that the gdirv/) is indeed a
solution of the boundary value problem. This will also provide an existence resyl for (2).
Incidentally, recalling the connection ¢f| (2) with the maximization problgm (3), we note
that an existence result for the boundary value problem in question, in any space dimen-
sion, could be derived from the results bf [8, 9] (see also [16] ahd [2]). Then we will
show that the solution of [2) is unique. We recall that uniqueness results for system (1),
with Neumann boundary conditions for are known in the literature (s€€ [2] and [20]).
However, to our knowledge, the boundary value problem (2) has never been addressed
explicitly.

As for formula [[4), we note that it extends to dimension 2 the representation formula
obtained in[[22] for the one-dimensional case. The structure of such a formula can be
justified by straightforward heuristic arguments that we will sketch in Section 3. Similar
heuristic arguments were developed|in/[15] (see also [6] @nd [5]) to study a model for
sandpile collapse. For such a model, where the sourcefésmeplaced by an expression
involving the sandpile height and its time derivative, the evolution of the sandpile base is
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described by means of a representation formula containing curvature terms. A rigorous
derivation of such a formula for measurable data is giveh in [18] using a technique that is
completely different from ours—our solution is continuousirand smooth ir2 \ = —

and then adapted to sandpile growth around an obstaclelin [19].

The main technical tools used in this paper are the results of [3].and [1] that describe
the propagation of singularities of semiconcave functions. We also need a Lipschitz regu-
larity result for the normal distance © proved in [23] (see als [25]). In the Appendix,
for the reader’s convenience, we provide a simple proof of this result in the 2-dimensional
case.

As recalled above, a noteworthy aspect of our result is that we do construct a con-
tinuous solutiony”, instead of just a measure or a functionZif(2). So, Theorerh 1|1
could also be viewed as a regularity result. Moreover, fornjyla (4) can be used to derive
further regularity properties. In fact, as we will show in a forthcoming papleis Holder
continuous irR2 if f andd2 are sufficiently smooth. This result turns out to be optimal.

Except for the Appendix, the paper is entirely devoted to the proof of Thejorgm 1.1:
preliminary properties of the distance function are collected in Section 2, the proof that
the pair(d, v/) is a solution of) is given in Section 3, uniqueness is shown in Section 4.

2. Preliminaries

In this section we collect our notations and some properties of the distance function. For
anys € R, we set f];. = max(s, 0} and [s]- = max{—s, 0}. We denote by, -) and| - |
the Euclidean scalar product and normiRiA, respectively. For any € R2 andr > 0,
B,(x) stands for the open ball with centkeand radius-. For any pairx, y € R? we
denote by }, y[ and [x, y], respectively, the open and closed line segment with extreme
pointsx andy.

For any given seK c R? we define diank = sup{ly — x| : x,y € K}. If K C R?
is closed, we set, for any pointe R?,

dg (x) = gneilgly —x|, Hx&x)={yeK dxkx)=]|y—xl}

For any measurable sét c R?, we denote byA| the Lebesgue measure af If
u . A — R is a bounded measurable function, thierj|- 4 stands for the essential
supremum of: in A. If A is open and: is Lipschitz continuous, then, by Rademacher’s
Theoremy is differentiable a.e. im. In this case, we denote ByDu||« 4 the number
sup|Du(x)| : x € A, Du(x) existg, and byD*u(x) the set of limiting gradients af at
x defined as

D*u(x) = {lim Du(x,) : A 3 x, — x, Du(x,) existg.
n
As usual, thesuperdifferentiabf u at a pointx € A is the set

DY u(x) = {p € R" : lim supu(x +h) _|Z|(x) — .1 < 0},
h—0

while the subdifferentiaD~u is given by the formulaD~u(x) = —D¥ (—u)(x).
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Definition 2.1. We say that: is aviscosity solutiorof the eikonal equationDu| = 1in
an open sefR2 C R? if, for anyx € Q@ c R?, we have

peD ulx) = |pl=1,
peDtux) = |p| <1

The results we give below are standard for the eikonal equation. For their proof, we refer
the reader to [7], and precisely to Theorem 5.9 and Remark 5.10 in Chapter Il there, as
well as to Proposition 3.12 in Chapter IV.

Proposition 2.2. Letu be a Lipschitz continuous viscosity solution of the eikonal equa-
tion |Du| = 1in Q. Then

(a) Foreveryx € Q,

= min —x|} = min — x|}
u(x) yem{u(y)+|y x|} yem’lx’y[cg{u(y)ﬂy x[}

(b) Letx € Q and lety € 92 be such that«(x) = u(y) + |x — y|. Then, for any
z € ]x, y[, u is differentiable at and Du(z) = (x — y)/|x — y|.
(c) Letu be differentiable at a point € © and set

t=inf{t > 0:x —tDu(x) ¢ Q).
Theny :=x — tDu(x) € 9Q andu(x) = u(y) + |x — y|.

Remark 2.3. The representation formula in (a) implies, as is well known, thiatocally
semiconcavé £, i.e., for any convex se®’ cc  there is a constarf € R such that
x — u(x) — C|x|% is concave ir2’. Consequently,

DVu(x) = coD*u(x) Vx e (5)

and the set-valued map — D™ u(x) is upper semicontinuous if?, that is, for every
x € Q,

Qox, > x, DV u(x,) > ppn—>p (mn—>00) = pe DT u(x).

Moreover, owing to the structural properties of maximal monotone mappings in Euclidean
spaces (see for instan¢e [28, Corollary 12.66]), the set of points wheiitself fails to
be differentiable is negligible.

Throughout the paper we assume that
Q is a connected bounded open subsékdfvith C2 boundary. (6)

For simplicity, we will writed for dyo andTl for 1. Wheneverr has a unique pro-
jection ontod 2, with a minor abuse of notation, we will identify the dé{x) with its
unique element.
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Remark 2.4. We recall that the distance functidris the unique viscosity solution of the
eikonal equationDu| = 1 in €2, with boundary conditiom = 0 in Q2. Equivalently,d
is the largest function such thgDu || < 1 andu = 0 onas2.

We will denote byX thesingular setof the distance frond 2, or briefly, the singular
set of 2, that is, the set of all points € Q at whichd fails to be differentiable. Equiva-
lently, = is also the set of points at whichTI(x) is not a singleton. Sinc is Lipschitz
continuous X has Lebesgue measure 0.

A standard—yet important—consequence of assumn (6) ig/tisat? in Q \ T.

The result we recall below can be proved using the classical method of characteristics.

Proposition 2.5. Letx € ©\ T and letr > 0 be such thak + sDd(x) ¢ % for every
s €[0, t). Then, for every € [0, t),

(@) d(x +sDd(x)) =d(x) +s,
(b) Dd(x + sDd(x)) = Dd(x),
(©) TI(x +sDd(x)) = I(x).

In view of items (a) or (c) in the above proposition- s Dd (x) € ¥ for somes > 0. So,
the mapr : @ — [0, diam/2] given by

_ 7
0 Vx € X, 0

Imin{t >0:x+tDd(x) eX} VxeQ\X,
T(x) =

is well defined. Such a map measures the distance of a pdimthe set> along the
direction of Dd(x) (which differs from the distance af to X, in general). In this paper,

it will be called thenormal distance ta. In the literaturey is often referred to as the
distance to the cut locus of.

Hereafter, for any € 32, we denote by (x) the curvature o2 at x, with the sign
convention thak > 0 if © is convex. Also, we will label in the same way the extension
of k to Q \ = given by

k(x) =k(T(x)) VxeQ\X. (8)

In the result belowp ® ¢ stands for the tensor product of two vectprs; € R?, defined
as(p ® ¢)(x) = p (g, x), Vx € R2,

Proposition 2.6. For any x € Q and anyy e II(x) we havex(y)d(x) < 1. If, in
addition,x € @\ X, then

K(x)
1—kmdx) !
whereg is any unit vector such that, Dd(x)) = 0.

k(x)dx) <1, D%d(x)=— ®q,

Remark 2.7. Owing to assumptiorj [6), we have

Dd(z) — Dd
sup |Dd(z) 62l P
¥,2€0R, y#z |Z - y|

(9)

So, in view of Propositiof 2|6, we will denote the above supremuriidfy, .
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Proof. Letx € Q andy e TT(x). Then the disk of centre and radiusi(x) is tangent to
Q2 aty. Therefore, we have eithe(y) < 0 or 1/x(y) > d(x). So,x(y)d(x) < 1.

If we assume, next, that ¢ =, theny belongs to the projection of + sDd(x) for
s > 0 sufficiently small. Thug (y)d(x +sDd(x)) < 1. Sinced(x +sDd(x)) = d(x) +s
andx(x) = «(y) by definition, we haver(x)d(x) < 1. For the last assertion see [21,
Lemma 14.17]. O

We will need a more detailed description of the singular3et.et us recall that: =
»1u =2 wherex! (i = 1,2) is the set of pointsc € ¥ with magnitudei, that is,
such that the dimension @™ d(x) is equal tai. Let us also define the sEtof (regular)
conjugate pointas

F={xeQ\X:dx)xkx)=1}.

Notice that a poink € Q \ X belongs td" if and only if

1
IMx) = {x — —Dd(x)}.

K(x)
Proposition 2.8. Under assumptio@), we havex ¢ QandX = X UT.
Proof. Letx € ¥ andy, z be two distinct elements dfl (x). Then
x=y+dx)Dd(y) =z +d(x)Dd(z). (20)
Therefore, recalling Remark 2.7,
ly —zl =d)|Dd(y) — Dd(2)| < d(x)K]|y —z|

for some constank > O independent of. We have thus proved that(x) > 1/K
for everyx € X. S0, C Q. Furthermore, the inclusion C X is a straightforward
consequence of the strict inequality in Proposifion) 2.6.

In order to prove the inclusioR ¢ X UT, let{x,} be a sequence of singular points
converging to a point € Q \ X. We claim thatd(x)x(x) = 1. To see this, let, and
zn be two distinct points ifl(x,). Then both{y,} and{z,} must converge tal(x) as
n — oo. Also, passing to a subsequence,

. —Z
lim yn—n —
n—>00 |y, — Z|

for some unit vecto# e R?. From identity ) applied t®,, y, andz,, we have

— Dd — Dd
_ Yn — Zn +d(x,) n) (Zn)
|Yn — zal |Yn — znl

Hence, taking the limit as — oo we conclude that 8 0+d(x)D?d(I1(x))6. Therefore,
—1/d(x) is a nonzero eigenvalue @?2d(I1(x)), a matrix of the form—« (x)q ® ¢ by
Propositiof 2.6. So--1/d(x) = —k (x), as claimed. o

The following result ensures that segments of minimal length joining a poi®toon-
tain no singular or conjugate points in their interior.
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Proposition 2.9. Letx € Q andy € I1(x). Thenz N ]y, x[ = 0.

Proof. We already know thaEN]y, x[ = @ by Propositiofi 22(b), and thaty)d(x) < 1
by Propositiot 2J6. Since(y)d(z) < 1 for everyz € ]y, x[, we conclude that ¢ I'. O

The following proposition, which will be crucial to our analysis, is an adaptation of some
of the results of[[l1] describing propagation of singularities for semiconcave functions.

Proposition 2.10. Letxg € X, and letpg, go be two distinct limiting gradients aty such
that the segmeritpg, go] is a face ofD+d(xp). Letng be a nonzero vector satisfying

(p.no) < (po.no) = (qo.no) ¥p € D d(xo).
Then there exist a number> 0 and a Lipschitz are : [0, n] — € such that
xz(0) =x9, «(0)=—-ng, x(s)eX Vsel0,n]. (12)
Moreoverx(s,) € £ for some sequencg | 0, and
D¥d(x(sx)) = [pn,qn] Vn =0, (12)
wherep,, — po andg, — go asn — oo.

Proof. The existence of a singular a#e satisfying [11) follows from Lemma 4.5 and
Theorem 4.2 of 1], where a bound of the form di@md(x(s)) > § is also deduced for
somes > 0 and every € [0, n].

To prove the last part of the conclusion, we note that, forasy0, H1(z([0, €])) > 0
because:(0) # 0 andz is Lipschitz continuous. SincE? is at most countable (see, e.g.,
[14]), we conclude that{1(x([0, €]) N 1) > 0 for anye > 0. Consequently, there exists
a sequence, | O such thate(s,) € £ for everyn € N. SetD d(x(s,)) = [pn, qul,
choosingp,, so that(p,, po) > (g, po). Notice that, in particulai,p, — g,| > 5. Now,
consider converging subsequence$sfl and{g,} (labelled like the original sequences)
and denote by* andg™* their respective limits. Applyind |3, Theorem 2.1], we deduce
that

p*.q* earg max (p,no) =[po, qo]-.

peD*d(xg)
Since p* andg¢* belong to D*d(xg), we conclude thap*, g* € {po, qo}. Moreover,
|p* —q*| = 8 and(p*, po) = (¢*, po). This forces(p, ¢) = (po, q0)- 0

Remark 2.11. Elementary geometric arguments show thatd (xg) has a 1-dimensional
exposed face—and so, owing to Proposifion P0is the inital point of a nonconstant
Lipschitz singular arc—if and only iD*d (xo) fails to cover the closed unit baft;. On
the other hand, in view oEkS)lﬁd(xo) = By ifand only if 9D d(xo) = D*d(x0). By
[1l Theorem 6.2], the last identity is necessary and sufficienkEféo be a singleton or,
equivalently, forQ2 to coincide withBg (xg), whereR = d(xp). In fact, the equivalence
betweenz being a singleton and the identi€y = B (xo) follows from a classical result
of Motzkin’s [26].

In conclusion, eithe€2 = Bg(xp) or every singularity propagates along Lipschitz
arcs. Moreover, by the last part of Proposi.Eé,is dense in® in the latter case.
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We conclude this section with a regularity result for the normal distance

Theorem 2.12. LetQ2 be a bounded domain iR? with boundary of clas€?1. Then the
mapt defined in(7) is Lipschitz continuous o8<2.

The first author became aware of the above property ffom [25]. A proof of this result for

C* smooth submanifolds of amrdimensional smooth manifold is given in |23]. In the

Appendix, we provide an independent proof of Theofem|2.12, based on Proppsitipn 2.10.
Hereafter, we will denote by Li@) the Lipschitz seminorm of on 9. Sincex —

x + 7(x)Dd(x) mapsdQ onto =, a straightforward application of Theor.12 is that

the 1-dimensional Hausdorff measurexis finite (see alsd [25]):

Corollary 2.13. Let{ be a bounded domain iR? with boundary of clas€%1. Then
HYT) < kg HHOQ) < oo,

wherekg > 0is a constant depending drip(z) and on the quantityix ||« defined in
Remarl2.4.

For less regular domains the Lipschitz continuity ahay fail, but continuity is preserved
as we show below.

Lemma 2.14. Assume@. Then the map, extended t@ on X, is continuous irf2.

Proof. We only need to show thatis upper semicontinuous @, lower semicontinuity
being a direct consequence Bf being closed. For this purpose, consider a sequence
{x,} in Q@ \ X, converging to some point € Q, and suppose by contradictioh :=

lim, 7(x,) > t(x). In particular, this implies that* is positive. We can also assume,
without loss of generality, thdtDd (x,)} converges, say tp. Let7 € ]t (x), t*[. Thend

is differentiable at, + 1 Dd(x,) by definition. Thus, for large enough,

M(x, + fDd(xn)) = (x,) = {xn — d(xp)Dd(xp)}.

Taking the limit as: — oo, we obtainx — d(x)p € T(x + 1 p). So,x + 7(x)p belongs
to the interior of the segment |- d(x) p, x +p]. Sincex + t(x) p € X, this contradicts
Propositiory 2.. o

We conclude this section with an approximation result. Roughly speaking, we need to
make sure that both the singular set and the normal distance are stable for convergence in
theC? topology. We begin by defining the signed distance finas

dy(x) if x € Q,

d = _
2(x) {—dag(x) if x ¢ R2\ 2.

We say that a sequen¢®,,} of sets satisfying@ converges ta2 in the C2 topology if
the boundary of2,, converges to the boundary 6f for the Hausdorff distance and if
dg,, Ddg, andD?dg, converge talg, Ddg and D?dg, uniformly in a neighbourhood
of 9Q2.
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Proposition 2.15. Let {€2,} be a sequence of sets satisfyi{ély. For anyn € N, denote
by =, andz,, respectively, the singular set ©f, and the normal distance t,,. If {$2,}
converges ta2 in the C? topology, the(X, } converges ta& in the Hausdorff topology,
and{t,} converges ta uniformly on all compact subsets @f

Proof. Let us prove, first, that the upper limit ¢E,} is contained in. For this it suf-
fices to show that if a sequen¢s,} in X, converges to a point € Q, thenx belongs
to X. Indeed, lety, andz, be two distinct projections of, onto 92,. Without loss of
generality we can assume that b¢th} and{z,} converge to points dfl (x), sayy andz
respectively. Ify # z, thenx belongs tox and our claim follows. So, supposes Q\ =
andy =2z SinceYVt + dQn (xn)DdQ” On) = zn + dQn (xn)DdQn (zn), we have

In " _ —dg, (xn)
|Yn — zal

DdSZ,l () — DdQn (zn)

(13)
[Yn — znl

The sequence on the left-hand side above will converge, up to replacement with a sub-
sequence, to some unit vectdre R2. Thus, passing to the limit irms) we obtain
0 = —dq(x)D%dg(y)8. Hence, recalling the structure of the hessian matrxd(y),
we conclude thad (x)« (x) = d(x)k (y) = 1. Thereforex belongs tox.
Now, let us prove that the lower limit of the sequer(&,} containsX. For this,
it suffices to show thak C liminf 3,. Letx € @\ liminf ,. Then there exists a
subsequencgx,, } such that, for some > 0, B.(x) C Q \ Z,,. We claim thatB, >(x)
N X = @. For letz € B;/2(x) and sety, = Iq,, (2). Since

nj

2= Yk
—— € B CB CcQ\ X,
zZ+ 82dan @) 5/2(2) e (X) \ nk

vk is also the unique projection ofte(z — yk)/Zdan (z) ontod€2,, . Now, a subsequence
of {yx} will converge to some poing € 92 belonging to both projectionBl(z) and
[(z + e(z — y)/2dq(z)). Thereforez ¢ = owing to Propositio9, and our claim is
proved together with the convergenceXyf to =.

We omit the proof thafz, } converges ta, because the reasoning has much in com-
mon with the proof of Lemm@a 2.14. O

3. Existence

In this section we shall prove that the péir, v/), where

() _
ol (x) =/ Fa4tDday 2O T v co T qa)
0 1—-dx)x(x)

andv/ = 0onZx, is a solution of systenﬂZ). Before getting down to rigorous arguments,
a formal derivation of such a formula might be in order. Supp@se) is a smooth
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solution of @), withv vanishing onx. Let us compute, for a given pointe 2\ T and
foranyt € (0, t(x)), the derivative

%v(x +tDd(x)) = (Dv(x 4+ tDd(x)), Dd(x))
= —v(x +tDd(x))Ad(x +tDd(x)) — f(x +tDd(x))
(recall thatDd (x + tDd(x)) = Dd(x)). Now, observe that

Kk(x)
1-(dx)+Hrx)

Ad(x +tDd(x)) = —

sincex(x + tDd(x)) = k(x) andd(x + tDd(x)) = d(x) + t. Hence, the function
V(1) := v(x + tDd(x)) satisfies the Cauchy problem

, i (x) B
Vi) — 1= O V() + f(x +tDd(x)) =0,

V(t(x)) =0.

Thus, solving the above problem and noting théat) = V (0), we conclude that must
be given by formula[ (14).

We begin the actual proof with two preliminary results, the first describing continuity
and differentiability properties af/, and the other providing an approximation result for
the characteristic function of a compact set, in the spirit of capacity theory.

Proposition 3.1. LetQ2 c R2bea bounded domain with boundary of cl@éand f > 0
be a continuous function i®. Thenv/ is a locally bounded continuous function $n
Moreover, in any se®, := {x € Q:d(x) > ¢}, ¢ > 0, v/ satisfies the bound
0<v/ (@) < If e[l + llx]-llcoe diame]z(x)  Vx € ., (15)
where||[«] - [lcag) = MaXesalr (x)]-. .
If, in addition, a<2 is of classc_z’1 and f is Lipschitz continuous i, thenv/ is
locally Lipschitz continuous if \ X and satisfies
— div(v/ (x)Dd (x)) = f(x) (16)
at each pointt € Q \ = at whichv/ is differentiable.
Remark 3.2. Sinced isC?in Q\ T, equality ) reads
(Dv/ (x), Dd(x)) + v/ () Ad(x) + f(x) =0. 17

Moreover, a straightforward consequence of Proposition 3.1 is-tiit(v/ Dd) = £ in
the sense of distributions @ \ T as soon ag is Lipschitz and < of classC?.
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Proof. We note, first, that the map3d, r andk are continuous 2 \ ¥ sinceQ2 has a
C? boundary. Hence, whefi is continuous, so is/ in Q \ T.
Let us now prove that/ is continuous orE. Observe that, for any ¢ T, the term

1—(d(x)+t)r(x) _ 1—dx+tDd(x))k(x)

T—dorx) 1 doee 0 0si=t,

is nonnegative by Propositipn 2.6. A simple computation shows that it is also bounded by
1+ |l[«]-llcagy T (x). Indeed, eithek (x) > 0 and so the above fraction is less than 1, or
k(x) < 0 andthen

1—(dx)+0K(x) 1 tr(x)
1—dxk(x) = 1—d@)rk)

<1+ |[«]-llcaaT(x).

This proves[(Ip) if we recall that+ ¢ Dd(x) € Q. whenever € ©, and 0< 7 < 7(x).
The continuity ofv/ on T is an immediate consequence(lS).

Next, letdQ be of clasg’?! and f be Lipschitz. Then Theorem 2]12 ensures that
is Lipschitz ond2. Thereforex = t o I1 — d is locally Lipschitz in© \ ¥, and so also
isv/.

Finally, let us check the validity 06) at every differentiability painof v/ in the
open sef2 \ . We note that, at any such point

(Dv/ (x), Dd(x)) = ivf(x + ADd(x))
d A=0

Butt(x + ADd(x)) = t(x) — A andd(x + ADd(x)) = d(x) + A for A > 0 sufficiently
small. So,

1—(dx)+r+1K(x)
1—(d(x)+ MK (x)

1-(dx)+)K(x)

1-(dx)+A)kx)

. ()=
of (x + ADd(x)) = /0 £+ (t +0)Dd()

T(x)
= / f(x +tDd(x))
A

Therefore,

. 7(x) 1— (d(x) + )i (x)
/ _
(Dv! (x), Dd(x)) = — f(x) +f0 f(x +tDd(x)) T—doe)?

= —f(x) — v/ () Ad(x),

k(x)dt

where we have taken into account the identity

K(x)

T don® Ve Q\ T,

Ad(x) =

which follows from Propositiofi 2]6. We have thus obtairfed (17)—an equivalent version
of (I6)—and completed the proof. O
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Proposition 3.3. Let K be a compact subset & such thatH1(K) < oc. Then there
exists a sequendé;} of functions inw-1(R?) with compact support such that

(8) 0< & < 1foreveryk e N;

(b) dist(spt(&x), K) — 0ask — oo;

(c) K cint{x € R?: & (x) > 1} for everyk € N;

(d) & — 0in LY(R?) ask — oc;

(€) [g2|Déldx < %n(Hl(K) + 1/k) for everyk € N.

The standard notations dist, spt and int stand for distance (between two sets), support (of
a function) and interior (of a set), respectively. We give a proof of the proposition for the
reader’s convenience.

Proof. SinceH1(K) < oo, for any fixedk € N there exists a sequen@lfk)}ieN of
points inK and a sequendel.(k)}ieN of radii such that

e 0<rV <1/kandy; r < 2HNK) + 1/K);
e K Cint(, B (xi(k)))-

Now, define, for any € R2,
1
5900 = [1 — (= x) - r}’“)@ L&) =supsP ),
r; + ieN
and observe that

k - k k - k k
spie) = B, ("), sptDE™) =B w0 (x{)\ B w (x"),

Theng, € LY(R?) since 0< & < 1 and&, has compact support. Moreover, an easy
computation shows thaf, |DEi(k)|dx = 37Trl-(k). So, applyingl[16, Lemma 2, p. 148],
we have

3 1
/ |D$k|dx§/ sup|D§.(k)|dx§Z/ IDEP 1 dx < Zn(HEK) + 2 ).
R2 R2 ! i R2 ! 2 k

Thereforeg, € WH1(R?) and (e) holds true. Properties (b) and (c) are true by construc-
tion. Finally, (d) follows by Lebesgue’s Theorem because & < 1 and&(x) = O for
any pointx ¢ K andk large enough. O

Proof of Theorem 1|1 (existence)Ve will prove that the paitd, v/), with v/ defined
by (I4), is a solution of systeri](2). Let us point out, to begin with, thist a viscosity
solution of the eikonal equation i, and so, a fortiori, in the open sgt € © : v/ (x)

> 0}. Therefore, what actually remains to be shown is that

/f¢dx=/ v/(Dd, Dp)dx V¢ € C(Q). (18)
Q Q
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Assume, first, thay is Lipschitz and has aC?* boundary. Sincé{}(X) < oo by
Propositio, we can apply Proposi 3.3 with= X to construct a sequen¢&,}
enjoying properties (a)—(d). Let € C2°(2) be a test function, and set = ¢ (1 — &).
Notice that, fork large enough, spp;) cc Q\=. This follows from (a), (b) and from the
fact thatz c Q (see Propositio.8). Then Proposi 3.1 and Rademacher’s Theorem
imply that — div(v/ Dd) = f a.e. inQ \ T. So, multiplying this equation by, and
integrating by parts, we obtain

ffqbkdx:/ v/ (1 - &)(Dd, D¢>)dx—/ v/ ¢(Dd, D) dx. (19)
Q Q

Q
We claim that the rightmost term above goes to @ as oco. Indeed,

/Q v/ $(Dd, D&) dx| < ||pllso.llv! lloo.spie) /Q | D&k dx

< Cllglloo,2llv” llo,spier)s

whereC = %n(Hl(K) + 1/k). Now, using property (a) of the proposition and the fact
thatv/ is a continuous function vanishing &, we conclude thatv” || spie,) — O as

k — oo. This proves our claim. The conclusidn [18) immediately follows since, by (a)
and (c),

/f(bkdx—)/fc/)dx and fvf(l—gk)wd, D¢)dx—>/vf(Dd, D¢) dx
Q Q Q Q

ask — oo.
Finally, the extra assumptions th# be of clas€>* and f be Lipschitz inQ can be
easily removed by an approximation argument based on the lemma below. O

Let {©2,} be a sequence of open domains, with! boundary, converging t in the
C? topology, and let f,} be a sequence of Lipschitz functionsgn, converging tof,
uniformly on all compact subsets &f. Denote byz,, andz,, respectively, the singular
set ofQ2,, and the normal distance ®,. Definev, (x) = 0 for everyx € X, and

1—(dg,(x) + t)ku(x)
1-dq, (*)Kn(x)
wherex, (x) stands for the curvature 6£2, at the projection ok.

Lemma 3.4. {v,} converges to/ in Lﬁ)C(Q).

Proof. Since, owing to[(1Ip), the sequen¢e,} is locally uniformly bounded ire2, it
suffices to prove that it converges uniformlyit@n every compact subset ©f For this,
recall that, on account of Propositi.lﬁn} converges t& in the Hausdorff topology
and{r,} converges ta uniformly on all compact subsets 6f. Then our assumptions
imply that {x,} converges tac uniformly on every compact subset 6\ =, and so
does{v,} to v/. To complete the proof it suffices to combine the above local uniform
convergence iR \ T with the estimate

0 < vy (®) = I fulloo.. X+ lllkn]-llcan,) diam,) T, (x)  Vx € Qe,

dt VxeQ,\ T,

Tu(x)
on(x) = /0 fulx + 1Ddg, (x))

which allows estimating, on any neighbourhood G&. O



Table problem for growing sandpiles 449

4. Uniqueness

In this section we will prove that ifu, v) is a solution of systen[kZ), than= v/ (given
by (4)) andu = d in 2, := {x € 2 : v(x) > 0}. We begin by showing the last statement.

Proposition 4.1. If (u, v) is a solution of syster{), thenu = d in €,.

Proof. Since||Dulso.o < 1 andu = 0 ond2, we haveu < d in Q because, in view of
RemarK 244 is the largest function with such properties. Moreover, sinselves the
eikonal equation if2,, Propositiorj 2.R ensures that

= mi — Vx € Q.
u@) = _omin o uO)+ly=xl) Vxe,

We will argue by contradiction, supposingxg) < d(xg) for some pointxg € €,.
Without loss of generalityyp may be assumed to be a point of differentiability of beth
andDu (recall Remark 2]3). Leto € 92, be such that

lxo, yol C ©y,  u(x0) = u(yo) + |yo — xol.

Notice thatyg ¢ 02 because, otherwise, one would hamgo) = 0, and sau(xg) =
|yo — xol|, contrary tou(xg) < d(xo).
Next, setL := || D%u(xg)|| and fixe > 0 such that

v(x0) }
" 16[1+ (1+ L)diam] |

0<8<min{1 (20)

We claim that there exisfs > 0 such that the ballB,, (xo) and B, (yo) are both contained
in 2, and

|p — Du(xo)| <1/2 Vp e DM u(x), Vx € B,(xo), (21)
v(x) > v(xg)/2 Vx € B,(xo), (22)
v(y) <e Yy € B,(y0). (23)

Indeed, [(2[L) follows from the upper semicontinuity®f u (see Remark 2|3), whil (P2)
and [23) can be obtained by a simple continuity argument siteg > 0 andv(yo) = 0.

For brevity, setes = Du(xg) and lete; € R? be such thafes, es} is a positively
oriented orthonormal basis &. Our choice ofg entails that for every sufficiently small
r > 0 there exists a point. € B, (xo) of differentiability ofu such that

(i)  |Du(x;) — Du(xo) — D%u(xo)(x, — xo)| < er,
(i)  (e2,xr —x0) <0, (24)
(iii) (e1, xr — x0) > r/2.

Now, fix y1 € ]xo, yo[ N B, 2(¥0), and letr > O be so small that

Yr =Xy — |x0 — y1|Du(x,) € B,(y0),  CO{xo, X, y1, ¥r} C Q2.
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Such arr exists because, y1] c €, and
lim y, = xo— [xo — y1|Du(xo0) = y1,
rl0

sincex, — xg andDu(x,) — Du(xg) asr | O.

Finally, setxy = Iy, y,1(x,) andC = co{x1, y1, x,, y}. We point out that, because
of (24)(ii), x1 belongs to the open segmenp]y1[. The convex se€ is a quadrilateral
with sides k1, x,1, [x+, y-1, [y, y1] and [y1, x1]. Moreover,u is differentiable at any
pointx € [y1, x1] and Du(x) = Du(xo), as guaranteed by Propositjon]2.2(b). Similarly,
combining properties (c) and (b) of the same proposition showsutisadlifferentiable at
any pointx € [x,, y,] and Du(x) = Du(x;).

Our next step would be to integrate the equatiodiv(vDu) = f overC and apply
the Divergence Theorem. This reasoning needs the following approximation argument to
be made rigorous. For amy > 0, consider the test function

Vo (x) 1= [1— ldc(x)] . x €R?
o +

an element oW 1> (R?) with supportC, := {x € R?: dc(x) < o}. Observe that, fos
sufficiently smally, € W™ (). Also, sptDv,) = C, \ C. Thus,

/ft/fg dx:/ v(Du,Dwa)dxzf v(Du, DV, ) dx. (25)
Q Q Cs\C

On the right-hand side of the above equality, we split the integration domé&inas =
E1(0c) U E>(0) U E3(0) U E4(c), where

E1(0) = {x € E : T¢(x) € ]x1, y1[},
Ez(0) = {x € E 1 Tlg(x) € ]xs, y,[},
E3(o) ={x € E : H¢(x) € [y1, ¥1},
E4(0) = {x € E : Tlg(x) € [x1, x,]},

and proceed to estimate the integrals
& (o) ::/ v(Du, Dys)dx, i=1...,4.
Ei(o)

To find an upper bound faf1 (o), observe thatEy(o)| < o|y1 — x1| and Dy, =
—e1/o on E1(o). Therefore, recalling thabu (xg) = e»,

/ v(Du, e1) dx
Eq(0)

1
~1E1(@)Ivlloo.c, 1D — Du(xo)lloo, £1(0)

1

o

1€1(0)]

o

/ v(Du — Du(xg), e1) dx
Ei(0)

IA

IA

Iy1 = x1| [vllee,c, | Pu — Du(x0)lloo, E1(0)- (26)
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Moreover, since: is continuously differentiable at every pointe ]yo, xo[ and satisfies
Du(x) = Du(xg), we have

w1(0) = |Du — Du(x0)lloc,E;0) = 0 aso | 0.

Similarly,

1E2(0)] < lyr — x| IVlloo,c, w2(0), (27)

wherewz(o) = ||Du — Du(x0) oo, Eo(0) = 0 aso | 0.

Next, to bound€s(o) we note thatEz(c) C B,(yo) for ¢ > 0 small enough. So,
in view of (23), |€3(0)| < €|E3(0)|/o becausdDy;| < 1/o and|Du| < 1. Since
|E3(0)] < 20(]y1 — yr| + 20), we finally get the estimate

|E3(0)| < 2e(]y1 — yr| + 20). (28)

The reasoning we need to estiméj€o ) is just slightly longer than the previous ones.
Let us splitE4(o) in two parts,E, (o) andEj (o), where
Ej(0) = {x € E4(0) : He(x) € Jx1, x.[},
EZ(0) = {x € Ea(0) : Tle(x) € {x1, x-}}.

By choosingoe > 0 so small thatE4(c) C B,(x0), wWe have|Du — ez| < 1/2 a.e. in
E4(o) owing to [2]). Therefore,

1 1
(Du, DY) < (€2, DY) + =— < —z— a.e.inE,(o)
20 20

because, on that sédy, = —e2/0. Now, by [22),

|Ej(0)]
E4(0) < v(Du, D) dx + vlloo,c,
Ej(0) g
1 v(x0)
<- % 2 |EZ(0)] + 270 ||vlleo.c,
v(xo)
<- 7 [x1 — x| + 270 [vlleo,c, - (29)

Now, plugging estimate§ (26)—(29) info {25), we obtain
v(xo)

lx1 — xr|

0< / Fir dx < 26(ly1— y| +20) —
Q
+ [vllso.c, [1y1 — x1lw1(0) + |y, — xr|w2(0) + 270]

Hence, lettings | O,
v(x0)

0 < 2e|y1 — yr| — 2

lx1 — x| (30)
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Since|Du(x,) — Du(xo)| < er + L|x, — xo|, whereL = || D%u(xo)||, we have

Iv1 — el = |xr — |x0 — y1|Du(x,) — (xo — |x0 — y1|Du(x0))|
< |xo — y1l (¢ + L|x; — xol) + |x, — xol.
But |x, — xo| < r and, by [(2#)(iii),|x1 — x| > r/2. So,
er + L|x, — xol < 2(e + L)|x1 — x/|

and
Iyt = yrl = 2[1+ |x0 — yal(e + L)]lx1 — x,|. (31)
Combining [(30) and (31), we obtain

v(x0)
4

0< {48[1+IXO—y1|(8+L)]— }IXl—xrl,
which contradicts| (J0). We have reached the contradiction assuntigy < d(xo). So,
u = d and the proof is complete. O

Our next task is to show thatis given by the representation formu[g (4). We will do
this in the next two propositions: the first one computesvay from the singular set, the
second one oX.

Proposition 4.2. Let (d, v) be a solution of syster@. Then, for any;p € Q\ T and
6 € (0, 7(z0)), we have
1 — (d(z0) + 6)«(z0)

v(z0) — 1 dGox (o) v(zo + 0 Dd(z0))

1— (d(zo) + 1)k (z0)
1— d(z0)k(z0)

o
= /0 f(zo0 + tDd(z0))

Proof. Letzg € Q\X, 6 € (0, t(z0)) and setg = zo+ 6 Dd(z0). Notice that o, xo] C
Q\ T andDd(z) = Dd(zo) for z € [z, x0] by Proposition] 2.p(b).

Let us use—once again—a coordinate system that simplifies the notation: aye-set
Dd(zo) and choose; such thafer, e} is a positively oriented orthonormal basisikA.
Also, fix > 0 so small thak, := xo + re; ¢ = and(Dd(x,), e2) > 0. Let thenf > 0
be such that the point := x, — 7Dd(x,) satisfies(z, — zo, e2) = 0. We note that is
given by
_ (xr — 20, €2) _ |xo — zol . (32)

(Dd(x;), e2)  (Dd(xy), e2)
Finally, let us possibly reduce > 0 to ensure that the domaip, := co{xo, x,, z,, z0}
be contained if2 \ = andd be of clas<’? in a neighbourhood ob,..

Integrating by parts the equatiendiv(vDd) = f on D,, we obtain

~

/ fdx = —/ v(Dd, v) dH*, (33)
D, 3D,
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wherev is the outward unit normal tdD,. The above right-hand side amounts to
f v(Dd, v)dH* = f v(Dd, e2) dHY + / v(Dd, —ex) dHY  (34)
aD; [x0.x/] [z0,2/]

because
/ v(Dd, v)dH* = / v{eo, —e1) dHE =0
[z0,x0]

[z0,x0]
and, similarly,(Dd, v) = 0 on [z,, x,]. Moreover, we have

lzo—xol I
fdx = / dt | f(zo+tez+ser)ds, (35)
D, 0 0

where

t t
Iy = (1— —)Izo—zrl + ————|x0 — x/|.
|zo — xol |zo — xol

Our next step will be to compute lino % fD, f dx. Aiming at this, let us recall that,
in view of Propositior 26,

K (x0)

D2d - ,  Where RN A
(x0) = yole1 ® e1) W= T e (ro)d(x0)

Hence,

1 (Dd(x,),e1) _ 1 (Dd(xo) +rD?d(xp)e1 +0(r), e1) _ yo+€(r)
r (Dd(x;),e2) 1 (Dd(xg) +rD?d(xg)e1 +0(r), e2)  14+€(r)’

wheree(r) — 0 asr | 0. Since

|z0 — 2] 1 (Dd(x;), e1) Yo+ €(r)
B0 o xp—zol 5 2 1 xg — o 36
. |x0 — zol ; (DdGo). ) |xo — zol T1e (36)
we obtain
1 t t
lim < = (1 — —)(l— yolxo — zol) + ————
r—0t r |z0 — xo |zo — xol
= 1— yolxo — zol + tyo.
Therefore, in view of[(35), we conclude that
1 |zo—xol
lim -/ fdx = / f(zo+ te2)(1 — yolxo — zol + tyo) dt. (37)
rl0r Jp, 0

We now turn to the evaluation of limo % faD, v{Dd, v). SinceDd is continuous at
xo andDd (xg) = e, we have

1
lim —/ v(Dd, e2) dH* = v(x0).
0 7 Jlxo,x,]
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A similar continuity argument anfl (B6) show that

1
lim * f v(Dd, —ez) dH* = —v(z0)(L — yolxo — zol).
rior [ZOsZr]

Then, recalling[(383)[(34) anfl (87), we conclude that

. 1
lim ——/ v(Dd, vy dH* = v(z0)(1 — yolxo — zol) — v(x0)
rl0 r Jop

|zo—xol
=/O f(zo+te2)(1 — yolxo — zol + tyo) dt,
whence, sincézg — xo| = 0,

v(x0)
1— 0

v(zo) —

6
_ /O f(zo+te2)<l+ 1iy;09>dt. (38)

Finally, recalling the definition ofp and using the equality(xp) = d(zo) + 6, we have

Kk (x0)0 _ 1—d(zo0)x(x0)

1—yo =1 =
ol = L T Gk ) 1= dro)e (o)

and
Y0 K (x0)

1-yf  1-dRow(xo)
In view of the above identities and of the fact thdko) = «(zo), (38) can be recast as

1 — d(x0)k (z0) o 1— (d(z0) + 1)k (20)
_ - Ty = dt.
v(z0) 1= d(zo)x(zo)v(m) /o f(zo+tez) 1 dGo)x (o) t
This is the conclusion. O

The following result is reminiscent df [16, Proposition 7.1].
Proposition 4.3. If (d, v) is a solution of syster@, thenv =0onx.

Proof. Assume, first, thak is a singleton, sayxg}. Then, by a classical result of Motz-
kin's [26] (see also Remafk 211 is the diskBg(xo) with R = d(xo). Integrating the
equation—div(vDd) = f on B,(xp), for0 < r < R, gives

/ fdx = —/ v(Dd, v) dH",
B, (x0) 9B, (xo)

wherev is the outward unit normal tdB, (xp). Since(Dd, v) = —1, we have

1 1
0=lim = / fdx =lim = / vdH = 27 v(x0).
0 T JB,(x0) 0 1 JyB,(x0)

Thus,v(xg) = 0.
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Suppose, next, that is not a singleton. Then, again by Remprk 2.11, thesseof
singular points with magnitude 1 is denselinSincev is continuous, it suffices to prove
that v vanishes or?l. So, letxg € £ and D d(xp) = [po, 0] With po # go. Then,
by Propositiorj 2.7]0, there exists a Lipschitz arc [0, n] — X such thatx(0) = xo,
x(0) # 0, and

(2(0), po — q0) = 0. (39)
Moreover,z(s,) € X! for some sequencg | 0, and
DY d(x(sx)) = [pn, qu] With  py — po, gn — qo. (40)
SinceX has Lebesgue measure zero, we have, by Fubini’'s Theorem,
Hl([xo — as, po, (sy) —as,p,]NX) =0 fora.ewa e€]l,2],
providedr is sufficiently large. Lety, € [1, 2] be such that
HY([x0 — @n$n P0. T(Sn) — &Sy pa] N T) = 0.
In the same way, leg, < [1, 2] be such that
H*([x0 — Busnqo, T(sn) — Busnga] N T) = 0.
Set, for everyr € N,
1, = ]x0 — ansnpo, T(sn) — ensupal, 15 = 1x0 = Busnqo, T(sn) — BuSnqnl.
Now, forn € N large enough define the domain
D, = co([xo. (sn)] U I}) U co([xo, #(s)] U 1)

(the bar denotes closure) and considergfor 0, the function

Vg (x) = |:1— ldp”(x)] , xeQ.
g +

Notice that, fom large enoughys? Wcl""’(sz). Therefore, usings? as test function for
the equation- div(vDd) = f, we have

fft/f;’dxzf v(Dd, DY) dx.
Q Q

In order to estimate the right-hand side, observe that the suppDrgfis the closure of
the setA" (o) 1= {x € @\ D, : dp,(x) < o}. This set can be represented as the disjoint
unionA;‘,(a) U A;(o) U A" (o), where

AZ(U) ={xe€A(o) :Ip,(x) € I[’}}, AZ(O’) ={xeA(o) :Hp,(x) € I;}.
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Then the gradient ofp, is constant OMJ (o), sayDdp, = vj. Similarly, Ddp, = vy
on Ag(a). Now, observe that

_/ fl/fo dx

Q

:/ Y(Dd. v;;>dx+/ Y (pa, vZ)dx—}—/N o(Dd, Dy"ydx.  (41)
AZ(G) o AZ(O) o Al (o)

We will pass to the limit ag | 0 in the above identity. We have

Li%/ﬂftﬁﬁdx:/l)"fdx.

Moreover, arguing as in the proof of Propositjon|4.1, we find
Iim/N v(Dd, Dy})dx = 0.
al0JAn(0)

In order to estimate the term

1 (e
f E(Dd, v;,’)dx = —/ dHl(y)/ v(y + tv;)(Dd(y + tv;), v;)dt,
A oJi 0

") O

recall thatHl(II’} N ¥) = 0, and soDd is continuous at{*-almost every point of ;.
Therefore,

im [ Zpd.pyax = [ vo)pde). )t
ol0Jan) 0 1

Similarly,

Iim/ 2(Dd, v dx :/In oD (y), VI dHL ().

a0 Al (o) o f

Thus, passing to the limit as | 0 in (41), we conclude that
—[ f=/[n v(y)(Dd(y),v;,’MHl(y)+/[nv(y)(Dd(y),v(';)dﬂl(y) (42)

Our final step will be to divide both sides §f {42) byand to take the limit as — oc.
For this we need two preliminary remarks. The first one is that, for every seqigfice
such thaty, € I[’} andd is differentiable aty,, Dd(y,) converges tgg asn — oo. For
let A, € [0, 1] be such that

Yn = A (X0 — au$p o) + (1 — Ap)(T(sn) — tSpPn)
= An(x0 — 0y, p0) + (1= Xy)(xo + s,x(0) + O(s,) — Qy Sy Pn)
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and suppose, — A* € [0, 1] andw,, — a* € [1, 2] asn — oo (which always holds,
up to subsequences). Then
lim 22720 — Gt po+ (1 — AM)E(0) = 6%,
n—o00 Sn
But min{(p, 6*) : p € D*d(xo)} is attained apyo, since, in view of[(3p){x(0), p) =
(x(0), po) for everyp € [po, qo]- Thus, by [3, Theorem 2.1Pd(y,) — po as claimed.
The second remark we need to proceed with our computation is that

lim v = —P0—90 (43)

Indeed, by definition,
(Vp, T(sn) — cnSupn — (x0 — @nsn o)) = 0,
where
x(sn) — X0 + otnsn(po — pn) = sa(0) + O(sp) (44)
in view of ). Thusyy is nearly orthogonal té:(0), and so

v, = po(po —qo) + e, With  lim ¢, =0 and |po| = ———.
=00 |Po — qol

Moreover,{vy, po) < 0 for n large enough, becausag is an outward normal to the set
co([xo, x(sp)] Uﬁ) at the pointxg — o, s, po andxg belongs to that set. Therefoyg < 0
and [43) follows.

We are now ready for our final step. Dividing both sideq of (42),bgnd taking the
limit asn — oo, we obtain

0= lim i{f/ﬂv(y)(Dd(y),v;’)dHl(y)+f

n—oo Sn n
q

v((DA(y), vi) dH (y) }

SinceHl(I,’}) = |x(sp) — Ay pn — (X0 — apSypo)| = sylx(0)| 4+ 0(s,) on account of
(44), we have

1 . _
lim = f v(y)<Dd(y>,vz>dH1(y>=—v(xo)|w(0)|<po,M>.
n—>0o00 s, I |170 - 610|
By a similar argument,
1 . _
lim = f v()(Dd(y), vy dHL(y) = v(xo)|:c(0)|<qo, M>
n Sy I |po — qol

Thus,

0=u(xo)|¢(0)|{_<po, M>+<qo7 P0 — 40 >}
Po = qol |Po — qol

= —v(x0)|Z(0)| | po — qol.
Sincex(0) # 0 andpg # go, we conclude thai (xg) = 0. O
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We are now ready to complete the proof of our main result.

Proof of Theorerfi 1|1 (uniqueness)et («, v) be a solution of systen@). Thenu = d
in Q, := {x € Q: v(x) > 0} by Propositiof 4]1. In particula(d, v) is also a solution
of (2. So, owing to Propositioh 4.3, = 0 on=. Now, letx € 2\ =. In view of
Propositior 4.2, we have

1-(dx)+0)kx)

0
v(x)— T doe) v(x—i—@Dd(x)):/O f(x+tDd(x))

1-(dx)+1t)k(x)
1—-dx)x(x)

for eachd € (0, T(x)). Sincev is continuous and vanishes @n the left-hand side above
converges ta(x) ast 1 t(x). So,v(x) coincides withv/ (x), given by Q), and the proof
is complete. O

A. Appendix: Proof of Theorem[2.12

We already know that the normal distangealefined inKj?), is continuous @ (see Propo-
sition ). In this section we will prove that § has aC%>! boundary, therr is also
Lipschitz continuous 0A<2 (Theorenj 2.12). The main step of the proof is the following
preliminary result.

Lemma A.1. Let2 be a bounded domain iR? with boundary of clas€?1. Then every
x € 02 has a neighbourhood/, such that

1(y) < 7(x) + K(diamQ)?|y — x| VyedQnU, (45)

where

K = sup max{
X,y€082

Xy
Proof. Letx € 92 be fixed. We will analyse, first, the simpler case )« (x) = 1. Recall-
ing thatt (x) < diam2/2, we havec(x) > 2/diam. Let U be an open neighbourhood
of x such that (y) > 1/diam for everyy € U. Then, for every € 9Q N U,

1 1 k(y) —Kk(x) K . 2
< < < [ —_
W= T e T ke =T g @emy

and [4%) is proved.

Now, suppose (x)x (x) < 1 and definec = x + t(x)Dd(x). We claim thatDd (x)
must be isolated iD*d(x). For supposeDd(x) = lim; p; for some sequencfpy} in
D*d(x) satisfying px # Dd(x) for everyk. Then py = Dd(xy), wherex;y = x —
d(x)pr # x —d(x)Dd(x) = x is a sequence of boundary points converging toVe
can also assume, without loss of generality, that- x) /|x; — x| converges to some unit
vectord. Hence,

lik(y) — k(x)| |Dd(y) — Dd(x) — D%d(x)(y — x)| }
ly—x| ly — x|2 '

. - _ Dd(x) — Dd
6= lim =% _ ) lim 2400 =DAW) o n2gie.
k—o00 |xp — x| k—o0 |xx — x|
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Therefore, recalling that the nonzero eigenvalu®éf (x) is given by—« (x), we obtain
—k(x) = —1/d(x) = —1/t(x), contrary tor (x)x (x) < 1. So, our claim is proved.
Hereafter, we denote l#y the rotation matrix

0-1
m=(57)
and by{e1, e2} the orthonormal basis @2 given by
e1 =R IDd(x), e = Dd(x).

We split the reasoning into several steps.

Step 1: construction of a singular ardMe want to construct a Lipschitz asc: [0, n] —
Q such that

z(0)=x, |20 =1 (x0),e1) >0, x(s)eX Vsel0n] (46)

Suppose, firsti € £2. Sincee; is isolated inD*d (%), there are two distinct vectors
p1. p2 € D*d(%) such that the segmentsy], e2] and [p2, e2] are contained id D*d (x).
Letn; andny be outward unit normals tb*d (x) exposing the facej, ex] and [p2, e2]
respectively, i.e.
max (p,n;) = (pi,n;) = (ez2,n;), i=12.
peDtd(x)

We claim that

ex = An1 + Aonop 47

for suitable numbers;, Ao > 0. Indeed, the normal cone " d (x) ates is generated by
{n1, n2}. Sincee, belongs to this conep = A1ng+ Aonp with A1, A2 > 0. If A1 = 0, then
A2 = 1l andes = na. Therefore{ps, n2) = {(e2, n2) = 1, which impliesps = ny = e5,
contrary to the definition op2. So,A1 > 0. Similarly,A> > 0; our claim is thus proved.

Now, observe that, on account pf{47)=011(n1, e1) +A2(n2, e1). So, eitherns, e1)
< 0or(ny, e1) < 0.Supposény, e1) < 0, and apply Propositign 2.JLO to the faga [e7]
of Dtd(x), with normaln1, to construct a Lipschitz are : [0, n] — € such that

z0) =%, x0)=-n, x(s)eX Vsel0,n].

Since(ny, e1) < 0, we have(i(0), e1) > 0, which proves[(46).
To complete the proof of this step it suffices to note that the gage £ can be
treated by a similar—yet simpler—argument.

Step 2: normals t@<2 do intersect the singular arcWe want to construct a neighbour-
hoodU of x such that, for any boundary pointe 02 N U satisfying(y — x, e1) > 0,
there exist,, p, > 0 with

xz(sy) =y + pyDd(y), (48)
lim s, =0 (49)

(where the limit is taken fop € 32 N U such thaty — x, e1) > 0).
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Let V be an open neighbourhood.ofuch thab2 N V is the trace of a regular curve
h v+ y(h), —r < h < r, with y(0) = x and§(0) = e1. Theny(h) = x + he1 + o(h).
Moreover, for every € 9Q2 NV satisfying(y — x, e1) > 0,

d'hy € (0,r) suchthat y =y(hy). (50)
Now, consider the map : (0, r) x [0, n] — R defined by
¢ (h,s) = (x(s) —y(h), RDA(y(h))) (h€(0,r),sel0,n)],
wherez is the singular arc of Step 1. Sind¥d (x) = —k (x)e1 @ e1, we have
RDd(y(h)) = RDA(x) + RD?d(»)[y(h) — x] + o(ly(h) — xI)
= —e1 — hic(x)ep + 0O(h).
Also,
z(s) —yh) = x +1t(x)ez + sz (0) — (x + hey) + 0(s) + o(h).
Therefore,
¢ (h,s) = (t(x)e2 + sa(0) — he1, —e1 — hk (x)e2) + 0(s) + 0O(h)
= h(1—t(x)k(x)) — s[(x(0), e1) + hx (x)(x(0), e2)] + 0(s) + o(h).  (51)

But 1 — 7(x)x(x) > 0. So,¢(h,0) > 0 for h small enough, say & h < rg. Moreover,
since(x(0), e1) > 0, after possibly reducing, we conclude that, for sonee (0, ] and
all (h, s) € (0, rg) x [0, 5],

$(h. s) < —%<o‘c<0>,el> + (1= T(x)k(x)) + O(h). (52)

So, there existg € (0, ro] such thatp (h, 5) < O for everyh € [0, r]. This proves that,
foranyh € [0, 7], there exists (k) € (0, 5) such that

¢ (h, s(h)) = (x(s(h)) —y(h), RDd(y(h))) = 0. (53)
Furthermore, recalling ($2),

0<s(h) < #[h(l —t(x)k(x)) +0o(h)] Vhe]0,r], (54)
(x(0), e1)
so thats(h) — O ash | O.
Next, observe that, in view df ($0), equalify {53) can be expressed in intrinsic terms by

saying that for any point € 92 of a suitable neighbourhood of sayU c V, satisfying
(y — x,e1) > 0, there exists, := s(hy,) > 0 such thatz(s,) — y, RDd(y)) = O.
Consequentlyx(s,) = y + pyDd(y) for somep, € R, and [48) will be proved if we
showp, > 0. To this end, observe that

hy =1y —x[+0(ly — x|) (55)
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asiQ NU > y — x satisfying(y — x, e1) > 0. Also, in view of the above formula

and [5%),
0<sy<Cly—x| (56)

for some constart’ > 0. So, [(49) is proved. Furthermore,

lim z(sy) =X = x 4+ t(x)Dd (x),

y—Xx

sothatp, — t(x) asy — x. Henceyp, > 0fory sufficiently close toar, which completes
the proof of this step.

Step 3: an estimate far,. We claim that

_ 1-t(x)kx) B B
Sy_—(a‘c(O),el) ly — x| +o(ly —x|) (57)

asdNU >y — x with (y — x, e1) > 0. Indeed,[(5]1) yields
0= —sy(x(0), e1) + hy(1 — T(x)k(x)) + O(hy) + O(sy).

The above identity yields the desired result thank§ i (55)[arjd (56).
Step 4: an upper bound far,. We claim that

1-—1t(x0)kx)
pyST(x)-FmU—ﬂ‘f‘o(b’—xD (58)

asdNU >y — x with (y — x, e1) > 0. Indeed, returning to the parametric represen-
tation of 92 introduced in Step 2, we have, for evénye [0, 7],

Py = lx(s(h)) — y(h)| = {x(s(h)) — y(h), Dd(y(h)))
= (t(x)e2 + s(h)@(0) — he1 + 0(h), e2 + hD?d(x)e1 + o(h))
= 1(x) + s(h)(2(0), e2) + 0(h)

since O< s(h) < Ch. In intrinsic notation,o, = t(x) + s, (x(0), e2) + 0(%,) for every
y € 02N U satisfying(y — x, e1) > 0. Since|(x(0), e2)| < 1, our claim follows in view

of (565) and[(57).

Step 5: a global boundWe will now derive the estimate

1-—1t(x)kx) 5 . 2
—@(0)761) < > (diamQ)~, (59)

which is delicate, since both(0) = —n1 ande; = R~1Dd(x) depend omx. Let p1
andnj be as in Step 1. Then the point:= x — t(x)p1 belongs toll(x). Moreover,
Dd(z) = p1. So,

z—x =—1(x)(Dd(z) — Dd(x)) = t(x)(e2 — p1).



462 Piermarco Cannarsa, Pierre Cardaliaguet

Also,
|Dd(z) — (Dd(x) + D%d(x)(z — x))| < K|z — x|,

Therefore, recalling thab?d (x) = —k (x)e1 ® e1,

K .
I(I — T(x)k(x)e1 ® e1)(p1 — e2)| < Kt2(x)|p1 — ea| < Z(dnammzm — ea?.

Since the matrixx — t(x)x(x)e1 ® e1 is positive definite with eigenvalues 1 and-1
7(x)k(x) > 0, this proves that

L—-1()Kk(x)|p1—e2| < Z(dlamQ) |p1—e2|”.
Now, recall thatp; # e2 to conclude
K 2
1—1(0)K(x) < Z(dlamﬂ) |p1 — e2l. (60)

Next, the identity(a(0), p1 — e2) = 0 implies thatc(0) = AR(p1 — e2) for somer € R
satisfying|A| = 1/|p1 — e2|. Therefore,

I{p1—e2,e2)| 1—(p1, e2)
|p1— ez lp1—e2l

(x(0), e1) = [MR(p1 — e2), e1)| =
Since|p1 — e2]? = 2(1 — (p1, e2)), we have((0), e1) = |p1 — e2|/2. Combining the
last equality and (§0) proves our clain [59).

Step 6: conclusionPossibly reducing the neighbourhoddof x that we found in the
previous steps, the above construction shows that, for eyegy U N 92 satisfying
(y —x,e1) >0,

T(y) < py < T(x) + K (diam®)?|y — x|.

By a similar reasoning, there exists another neighbourtigodf x such that, for every
y € U' N3 satisfying(y — x, e1) <0,

T(y) < 7(x) + K (diamf2)?|y — x|.

Putting these estimates together completes the proof of the lemma. O
We are now ready to prove the Lipschitz continuityrof

Proof of Theorerpn 2.12The conclusion will follow by known results in nonsmooth analy-
sis, once we extend estimalte [(45) to theeighbourhood?® := {x € 2 : 0 < d(x) < ¢}

of 9. In fact, lete > 0 be such thad € C21(Q2¢). We claim that there exists a constant
C > 0 sothat every € Q° has a ballB,(x) C ©° such that

t(y) =t@)+Cly—x| VyeByx). (61)
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To show this, observe that for eveyye Q¢ such thafl1(y) is in the neighbourhood’ of
I1(x) provided by Lemm@ A]1, we have, in view §f {45),

t(y) = t(T(y)) — d(y) (62)
< (I(x)) + K (diam®)?|T1(y) — [1(x)| — d(y)
<t(x)+ K(diamQ)2||Dl'I||oo,Qs|y —x|+dx)—d(@y).

A

Our claim [61) follows withC = K (diam)?|| DIl 0¢ + 1.
Next, we will derive the bound

Ipl <C Vpedpt(x)Vx € Q°, (63)

wheredpt(x) denotes the proximal subgradient ofat x and C is the constant that
appears in(61). Then, by [13, Theorem 7.3, p. 52], such an estimate will imply that
Lipschitz inQ2¢, and so ord2 as well. To checl@?.), recall that a vecjore R? belongs
to dpt(x) if and only if there exist numbeks n > 0 such that

() = T@ +(p,y—x) —oly—x[> VyeB,x),
by [13, Theorem 2.5, p. 33]. Now, combine the above inequality \ith (61) to obtain
(p,y—x) < Cly—xl+oly—x

whenevelly — x| < min{p, n}. This implies[(6B) and completes the proof. O
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