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Abstract. We extend the methods developed in our earlier work to algorithmically compute the
intersection cohomology Betti numbers of reductive varieties. These form a class of highly sym-
metric varieties that includes equivariant compactifications of reductive groups. Thereby, we extend
a well-known algorithm for toric varieties.

1. Introduction

In this paper we extend the methods developed in our previous Wwork [Bgooithmi-
cally compute the local and global intersection cohomology Betti numbers of a large class
of varieties with group action, that includes toric varieties.

Let G be a complex connected reductive algebraic group anf le¢ a Borel sub-
group. A normal complex algebraic varieXy;, equipped with an action a¥, is spherical
if it contains a dense orbit aB. We say thatX is scs(simply-connected spherical) if,
in addition, theB-isotropy group of this dense orbit is connected. Equivalently, Bny
equivariant finite surjective morphism frombBavariety toX is an isomorphism.

For example, the grou@ is an scs variety with respect to the actiondk G by left
and right multiplication; thus, all normaF x G-equivariant embeddings of are scs as
well. In particular, all toric varieties are scs. Other examples include the space of all skew
bilinear forms inn variables for the natural action of Glor SL,,, and its subvarieties
of forms of rank at most. But the space of symmetric bilinear formsrirvariables is
spherical, not scs.

SphericalG-varieties enjoy the following properties:

o they contain only finitely many-orbits, and hence only finitely mary-orbits,
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e eachG-orbit admits aslice (see[ 2. below) which is an affine spherical variety under
a connected reductive subgroup®fand

e the associatetink (see[2.B below) is a projective spherical variety, of strictly smaller
dimension.

Important additional features of scs varieties are

e the connectedness 8t andG-isotropy groups of all points, and
o the fact that all slices and links are scs as well.

This makes scs varieties particularly suited for applying the methods from [BJ]. They
yield two recursive relations, expressing the global intersection cohomology Betti num-
bers of projective scs varieties in terms of the corresponding local numbers, and the latter
in terms of the global numbers of the links. This is the content of our main result.

Theorem 1.1. Let X be a projective sc&-variety; let I Px(r) (resp.I Px (t)) be the
Poincaé polynomial for global intersection cohomology (for the stalks of the intersection
cohomology sheaves ate X, respectively). Then

Pgr (@)
PG, 1. (1)
(sum over representatives 6forbits in X), and

IPxx(t) = I Ps, x(t) = T<q,—1((1 — 13)] Pp(s, (1)) (1.0.2)

HereT is a maximal torus of7, of dimension; T, is a maximal torus of; ., of dimension

ry; Sy is a slice atx to Gx, of dimensioni,; P(S,) = (S — x)/G,, is the corresponding
link for an attractive action of the multiplicative group, and, _1 denotes the truncation
to degrees< d, — 1.

IPx(t)=>) (> =1™" 1 Px (1) (1.0.1)

(In fact, the Poinca polynomial Pg, /7, () divides Pg,7(¢), and the quotient has non-
negative coefficients. See [BP, p. 321].)

To turn these recursive relations into an algorithm for computing the intersection co-
homology Betti numbers, we need a combinatorial description of all isotropy groups,
slices, and links. But such a description is unknown in general; in fact, a classification of
spherical homogeneous spaces is only knowrGfaf type A (seel[Lu]).

Here we obtain such a combinatorial description for the subclassdofctive vari-
etiesintroduced in[[AB1], [AB2]. It contains all normat; x G-equivariant embeddings
of the groupG, and all their invariant subvarieties. Further, both classes of reductive va-
rieties and of group embeddings are stable under taking slices and links. Our main tool is
the classification of reductive varieties in terms of certain toric varieties with additional
symmetries, established in [AB1], [AB2]. The resulting algorithm specializes to the one
in [St1], [DeLd] and [Fi] for toric varieties.

The latter algorithm defines remarkable numerical invariants of rational polytopes,
which in fact make sense for non-rational polytopes as well;[seé [St1], [St2]. This has
been the starting point for several recent investigations, constructing a combinatorial in-
tersection theory for non-rational polytopes (see [BBFK1], [BBFK2], [BBFK3]/[Ka] and
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[BL)). It would be interesting to generalize these constructions to the setting of reductive
varieties.

The outline of the paper is as follows. Section 2 introduces notation and basic defi-
nitions concerning varieties with algebraic group actions, and (equivariant) intersection
cohomology. In Section 3, we obtain a variant of a result of [BJ] that applies to all spheri-
cal varieties, and we study orbits, slices, and links in scs varieties. Thgorem 1.1 is proved
in Section 4, and the combinatorics of reductive varieties are developed in Section 5. The
final Section 6 is devoted to a few examples, including the case of toric varieties.

2. Notation and conventions

2.1. We recall the terminology and conventions from our earlier paper [BJ]. Throughout
this paper, we consider complex algebraic varieties, that is, separated reduced schemes of
finite type overC. Observe that varieties need not be irreducible; however, we assume
them to beequidimensional

We denote bys a complex linear algebraic group, and®$ its connected component
containing the identity. A varietx provided with an algebraic action ¢f is called aG-
variety. If, in addition, X admits an equivariant embedding into the projectivization of
a G-module, we say thaX is G-quasi-projective We only consideiG-varieties where
each orbit admits an opeaf-quasi-projective neighborhood. This assumption holds e.g.
for normal varieties (seé [Su] for connect@dand [Jo] for arbitranG).

2.2. Consider aG-varietyX and a poink € X; let Gx be itsG-orbit andGy its isotropy
group. Asliceto Gx atx is alocally closed subvariety, of X containingx and satisfying
the following conditions:

(i) Sy isinvariant under a maximal tord of G.
(i) The mapG xS, — X, (g, s) — gs, issmoothat the point(e, x), and the dimension
of Sy is the codimension o7 x in X.

Such a slices, always exists, and may be chosen invariant under a maximal reductive
subgroup ofG,. Moreover, by shrinkingS, if necessary, we may assume that the map
G x Sy — X is smooth everywhere, and th&{ is affine.

2.3. Let T denote a torus acting on a varieXywith a fixed pointx. We say thatv is
attractiveif there exists a one-parameter subgroup G,, — T such that, for ally in
a Zariski neighborhood of, we have lim_.gA(t)y = x. Equivalently, all weights of”
acting on the Zariski tangent spacexaire contained in an open half-space.

In the situation of 22, we say th&}, is anattractive sliceif x is an attractive fixed
point for the action off, on S;. (See([BJ, (A.1)] for further details on attractive fixed
points.) In this case, the geometric quotient

]P(Sx) = (Sx - x)/Gm

exists and we call it thénk at x. This is a projective variety, sincg, is assumed to be
affine.
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2.4. Let X be a variety. We denote bi/*(X) the cohomology ring o with rational
coefficients. H*(X) denotes the corresponding intersection cohomology, for the middle
perversity and rational coefficientsl;(X) (resp./ Hf;(X)) denotes the corresponding
equivariant cohomology ring of with rational coefficients (the equivariant intersection
cohomology ofX with rational coefficients, respectively).

For the sake of completeness we briefly recall the definition of the intersection coho-

mology complex (for the middle perversity). L&t be of dimensioni and be provided

with a filtration Up 22 1y 23 - 752 U, 4 "5 U, = X with eachy; open and each

U; — U;—1 smooth. Then thentersection cohomology complexthe complex of sheaves
IC(X) = t<a-1Rjd-1+ - - T<0Rjox(Q)

on X, whereQ denotes the constant sheaf@g
Assume, in addition, thaX is a provided with aG-action and that eacU is G-

invariant; letEG — BG be a universal principali-bundle. TherEG x U; 2 EG x
G
Ui41 provides a filtration ofEG x X. Now the equivariant mtersectlon cohomology
G

complexs
1CY(X) = t<a-1Rj{ 1, - T<0Rj5(Q),
whereQ now denotes the constant sheaf B6G' x Up. The equivariant intersection co-
- G

homology! H},(X) is defined to be the hypercohomology (EG x X; 1C%(X)). These
G

are discussed in more detail in_[BJ, Section 1]. Bath(X) and / H;(X) are graded
modules ovelH*(BG), the equivariant conomology ring of the point.

For any integer, we denote by{" (I C (X)) then-th cohomology sheaf of the inter-
section cohomology complex on. The stalk of the she&f{” (1 C (X)) at a pointx is de-
notedH" (IC (X)), while the local intersection cohomology with supportiis denoted
IH!(X). They are related as follows:H} (X) is the dual space df{"(IC(X)),[2d],
whered denotes the (complex) dimension Xf

3. The key methods

3.1. We begin by recalling one of the main results[ofl[BJ] (Theorem 2).

Theorem 3.1. Let X be aG-variety containing only finitely many orbits, each of which
admits an attractive slice. Then the following hold.

(i) The H*(BG)-module H(X) admits a filtration with subquotientSHaG(X),
where O runs through theG-orbits in X, and IH&G(X) denotes the equivariant
intersection cohomology with supportsdh

(i) For O = Gx, the group of components, /G acts onH*(BG?) and onl H}(X),
and one obtains the isomorphism

THY 6(X) = 1H*+2d'mo( X) = (H*29mO (gG0) @ 1 H*(X))0+/GF. (3.1.1)
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One may interpret statement (i) as saying that the stratification by orlsriect for
equivariant intersection cohomologynder the hypotheses of Theorgm|3.1. However,
these hypotheses are generally not satisfied by spherical varieties. For example, the linear
spaceC” is spherical under the natural action of the gramp= SL, (C), and the fixed

point 0 admits no attractive neighborhood. Likewise, the space efallmatrices of rank

at most 1 is a reductive variety for the same group (acting by left and right multiplication),
but again, the fixed point 0 admits no attractive neighborhood.

For this reason, we will obtain a variant of Theorgm] 3.1 where the existence of at-
tractive slices is replaced by the vanishing of local intersection cohomology groups in all
odd degrees. The latter assumption holds for all spherical varieties by [BJ, Theorem 4];
another proof of that theorem will be given in RemprK 4.3.

Theorem 3.2. Let X denote aG-variety containing only finitely many orbits. Assume, in
addition, that/ H}! (X) = Ofor all x € X and all oddn. Then the conclusions of Theorem
B hold.

Proof. We first prove (ii). Letin : O — X denote the inclusion. Then we obtain
TH} (X) = H*(O; RipICY(X)) = H*(BG; RipICY(X)),

where the last isomorphism follows frorn_[|BJ, (1.6.1)]. Denotingiby. x — X the
inclusion, we also have

Rify1CY%(X) = RiL1CY (X)[2dim(O)]
by [BJ, (1.6.2)]. This yields an isomorphism
TH} 6(X) = H*P29MO(BG.; RiL1CO(X)).
On the other hand, it follows from [BJ, Theorem 1] that the graiyy G2 acts on
H*(BGY, Ri\ 1C% (X)), and that
H*(BG,; RiL1C% (X)) = H*(BGY; Ri' 1C9% (X))0+/CY.

SinceBGS is simply connected, the cohomology sheaves of the comlpi@(CG?(X)
are constant, with stalk§H) (X). By assumption, these stalks vanish in all odd de-

grees; it follows thatRiiICGQ(X) is isomorphic in Db(BGS) to its cohomology,
P, I H! (X)[—n]. This yields an isomorphism
H*(BGY; Ri)!cICGS(X)) =~ H*(BG%) ® IH!(X). (3.1.2)

Thus, G,/ G2 acts on the right-hand side. By [BJ, Lemma 3.6], it follows t6ay G©
acts on/ H}(X) so that the isomorphisrp (3.1.2) is equivariant. This completes the proof
of ().

SinceH*(BGS) vanishes in all odd degrees as well, it also follows thHEO(X)
vanishes in all odd degrees. Now chod3elosed inX; then the long exact sequence

o> THY (X) — THL(X) — THE(X —O) — -

breaks up into short exact sequences. This implies (i) by a straightforward induction.
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3.2. Next we review the local structure of spherical varieties. Gebe a connected
reductive group and a Borel subgroup with unipotent radicél. We denote byX a
sphericalG-variety, and by rkX its rank, that is, the minimal codimension ofta-orbit;
then rkX is the codimension af/ ¢, for any points of the openB-orhit.

Choose a-orbit O C X; thenQ is spherical as well, hence we may choase O
such thatBx is open inGx = O. Now let

Xo={§€X|xeBE ={eX|OCBE). (3.2.1)

ThenXy is an open affing-invariant subset ok, intersectingD alongBx. Let P be the
normalizer ofXg in G. This is a parabolic subgroup 6f containingB; let R, (P) be its
unipotent radical. Now there exists a Levi subgrdupf P and a closed subvariety of
Xo such that:

e X is L-invariant and containgy, and
e the mapR,(P) x ¥ — Xo, (g, &) — g&, is an isomorphism.

Thus, X is an affine spherical.-variety, of rank equal to that of. Moreover,~ N Gx
equalsLx; this is the unique closedi-orbit in X. Finally, the isotropy grougP, equals
L., and contains the derived subgroup []. (See e.g.[IKh].)

It follows that P is the normalizer oBx in G. Further,L, = [L, L]C, whereC is the
connected center df, andB, = (BN [L, L])Cy. As a consequenc@fﬁ is a connected
reductive group, with Borel subgroup N L% = (B N [L, L])C? = BY, of unipotent
radicalU N L = U N[L, L] = U,.

By a corollary of Luna’s slice theorem, there exists a closgdnvariant subvariety
Sy of X, containingx, such that the canonical map

Lxl*8 > %
is an isomorphism. As a consequenS§g|s a slice toBx atx, for the B-action onX.
Lemma 3.3. S, isan affineLg-sphericaI variety, andk S, = rk X — rk Gx.

Proof. SinceLx is the unique closed-orbit in X, the pointx is the unique closed , -
orbit in S;. In particular,S, is connected.

We claim thatS, is normal. To see this, consider the normalization S, — S,.
Then theL ,-action onS, lifts to an action orS, so thatv is equivariant. Thus; extends
to a morphism

Lxlry: LxIv§ - Lx8 =x%.

Moreover, the morphisn x %« v is finite and birational, since is. But £ is normal, so
thatZ xx v is an isomorphism; thus, the same holdsifor

SinceS, is connected and normal, it is irreducible. And sinte= L x £+ S, contains
a dense orbit oB N L, it follows thatS, contains a dense orbit & N L,, and hence of
its subgroup of finite indexs N Lfc’. Thus,S, is a spherica[fc’-variety; the assertion on
ranks follows from the equalities & = rk ¥ and rkGx = dimLx =dimL/L,. O
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Next we obtain a slight refinement of a result of Kndp ([Kn, Corollary 7.9 and Remark,
p. 326)).

Lemma 3.4. There exists an attractivg,,-action onS, that fixest and commutes with
the L,-action. As a consequenck, acts on the linkP(Sy) = (S, — x)/G,,, which is a
sphericang-variety of rank equal tok S, — 1.

Proof. We use the notation of [Kn, Section 7]. Notice that the sources of the sphgrical
variety © are precisely the closefkinvariant subvarieties; in particular, the closed orbit
Lx is a source. Thus, the closure; of a generic twisted flat meetsx. The normal-
ization of Ay, is an affine embedding of a finite quotient of the torus; let C be the
corresponding cone, théhis invariant under the little Weyl group’s . By the argument
of [Knl 7.9], there exists &5 -invariant one-parameter subgroutin the relative interior
of C; then bothvg and —vg identify to L-invariant valuations of the function field(X).
Thus, vg yields aG,,-action onZ commuting with theL-action, that is, ar_-invariant
grading of the algebra of regular functio@$X]. For this G,,-action, lim_.q¢§ exists
and belongs td.x for genericé € X (since this holds for alf in a generic flat, by defi-
nition of vg). It follows that the corresponding grading ©f 2] is non-negative, and that
C[X]o = C[Lx]. Thus, the grading induces a positive gradind$&, ], the quotient of
C[Z] by the ideal generated by the maximal ideakdh C[Lx]; this positive grading is
clearly L -invariant. This proves the first assertion.

From that assertion and Lem@S.B, it follows theas,) is a sphericaLg-variety. To
determine its rank, choogee Sy such thatBQg is open inS,, and let ] be its image
in P(Sx). Then the isotropy groupe) acts on the orbiG,,§ = C* via a character with
kernelBg. This impliesU¢) = Ug, and hence

rkP(Sy) = dimP(S,) — dimU,[¢] =dimS, —1—dimU,& =rkS, — 1. O
We will also need the following preliminary result.

Lemma 3.5. Let& be a point of the opeB N Lg-orbit in S;. Then the orbitB& is open
in X, the isotropy groupB; is contained inB,, and the quotienB, / B; is irreducible.

Proof. By the structure oK, we know thatB¢ is open inX, andBs = BNLg. Moreover,
since there is ai.-equivariant majz — L/L,, and sinceL/L, = (BN L)/(B N Ly),
it follows that B € B N L, = B,. Note also that the homogeneous spB¢¢B: is the
openB,-orbitin S,. But S, is irreducible, so thaB, / Bt is irreducible as well. ]

3.3. We may now establish the properties of scs varieties presented in the Introduction.

Lemma 3.6. Let X be an scsG-variety. Then allG-orbits, slices, and links iX are scs,
and theG-isotropy groups of all points are connected.

Proof. Leté € X be such thaB¢ is open inX. Then the producBG¢ is open inG, so
thatG¢ B/B is open inG/B, and hence is irreducible. BG: B/B = G¢/Bg, and B is
connected by assumption. Th; is connected as well.
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Next consider aG-orbit O in X. Choosex, § as in Lemmd 3J5; the irreducibility
of B,/B: implies thatB, is connected. Hencé, = [L, L]B, is connected as well.
Thus, the orbitGx and the sliceS, are scs. It remains to show that the likS,) is
scs. Lett be as above; then, as noted in the proof of Lerfpmpa 3.4, the isotropy @jgup
of the corresponding point @ (S,) is the kernel of a character &:. This character is
surjective, since dinB[z) = dimB — dimB[£] = dimB — dimB£ + 1 = dim B; + 1.
But Bg is connected, so thdls) is connected. O

Lemma 3.7. Let X be an scsG-variety. Then theB-isotropy groups of all points are
connected.

Proof. Leté € X. By Lemmd 3.5, we may assume tiat= G&. We argue by induction
on the codimension of B¢ in X.

If ¢ = 0, thenB¢ is open inX, so thatB; is connected by assumption.df> 1,
then we may find a minimal parabolic subgroBp> B such thatBé is not P-invariant.
Then B¢ is contained inP¢ as a closed-orbit of codimension 1, an@é contains an
openB-orbit, sayBn, of dimension dimB¢ + 1. Thus,B,, is connected by the induction
assumption. Furthew?,/B, = P,B/B, and P,B is open inP (since By is open in
Pn = P§), so thatP, /B, is irreducible. ThuspP, is connected as well.

On the other hand, the natural m&px? B¢ — P& is finite, sinceP movesBE. In
other words B has finite index inPg. But P; is conjugate taP,, so Bg is connected. O

4. Proof of the main theorem

4.1. We begin by introducing various Poinéaseries. These are formal power series in
a variabler, with integer coefficients.
If G is alinear algebraic group, we put

POty = dimH"(BG)1", (4.1.1)
n
the Poincak series oBG. For example, ifG is a torus of dimension, then

PO(r) = (4.1.2)

A-r2r
More generally, ifG is connected with maximal toruB of dimensionr, then we have
a fibrationBT — BG with fiber G/ T homotopic to the flag manifold af. Hence the
cohomology ofG/ T vanishes in all odd degrees; this implies
1
Q=12 Pg/r(t)
wherePg 7 () is the Poinca polynomial ofG/T.
If X is aG-variety, we put

PC(1) = (4.1.3)

IPG (1) =) dimIHE(X)1". (4.1.4)

n
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In particular, ifG is the trivial group, thed Py (¢) is the intersection cohomology Poinéar
polynomial ofX. If X is projective of dimensiod, then we havé Py (1) = 1?41 Px(1/1),
by Poincaé duality.

If G is connected and is a projectiveG-variety, then we have

1PS (1) = PC(1)I Px (1), (4.1.5)

as follows from the degeneration of the spectral sequence in equivariant intersection co-
homology (see e.g.[BJ, (1.5.2)]).
Returning to an arbitrarg-variety X, we put, for anyx € X,

IPJy(t) =Y dimIH! ; (X)1". (4.1.6)
n

In particular,/ P, x(t) = >, dimIH!(X) " is the Poinca polynomial for local inter-
section cohomology with support in

On the other hand, one also has the Poiacaries for the stalks of the equivariant
intersection cohomology sheaves:

1PE () = 3 dimH" (5 1C% (X)) 1", (4.1.7)

wherei, : x — X denotes the inclusion.
Note that the Poincérpolynomiall Px . (1) = ), dimH" (¥ IC(X)) " satisfies the
Verdier duality

1
IPx (1) = tZdIPx,x<;). (4.1.8)

4.2. We may now formulate a direct consequence of Theofenjs 3.I ahd 3.2 for these
Poincaé series.

Proposition 4.1. (i) Let X be aG-variety satisfying the assumptions of Theof&rd
or@.2 Then _
[P (1) =) 1729mCx [ pGs )
X

(sum over representatives 6forbits in X).
(i) If, in addition, G, is connected, then

1P (1) = PO (1) Py x (1). O

Next let X be a projective scs variety. Then Proposifion 4.1 &nd (4.1-3), [4.[.5),](4.1.8)

imply
_r. Py () 5 1
IP =§ 1— 2y 2 y2derpe (2.
X x( "~ PGX/Tx(t)t X’x(t

Replacing with 1/¢ and using Poincérduality forX, G/T andG, /Ty yields the equal-

ity (£.0.1) in Theorenj T]1. Now the equalify (1.0.2) is a consequence of the following
statement.
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Proposition 4.2. Consider aG-variety X, a pointx € X, and a sliceS, to Gx at x.
Then

1
[P, x(t) =129~ p g (1) =121IPs,, (2) (4.2.1)

whered = dim X andd, = codimGx = dimS,.
If, in addition, S, is attractive with linkP(S,), then

IPs, () = t<q,—1((L— )] Pp(s, ) (1)) (4.2.2)
if dy > 2, andI Ps_,(t) = 1 otherwise.
Proof. One obtains a quasi-isomorphism
Ri} yIC(X) = Riy g IC(S0)[—-2(d — dy)].

wherei, x : x — X andiy s, : x — S, denote the inclusions. This yields the first
equality in [4.2.]L); the second one follows frdm (4]1.8).

For (4:2.2), observe tht" (1C(Sy))x = I H"(Sy) = IH"(S,—x) foralln < d,—1,
while H"(IC(Sy))y = Oforalln > d, — 1 (see, for example, the definition of the
intersection cohomology complex .4). Thifs, (1) = t<¢,—1(I Ps,_.(t)). Now
consider the Wang exact sequence

o= TH'2(P(Sy)) — TH'(P(Sy)) — TH™(Sy — x)
— TH" Y P(S,)) — THPS,)) — -

3

where the first and last maps are multiplication by the class of a hyperplah&Sin

(see e.qg.[IBJ, 3.5]). By the hard Lefschetz theorem in intersection cohomology, these
maps are injective for at < dimP(S,) = dimS, — 1 = d, — 1. Therefore, the Wang
exact sequence breaks up into short exact sequences forsalld, — 1. This yields
T<d,~1(I P(Sy — X)) = =g, ~1((1 = 12)I Pp(s,) (1)) D

Remark 4.3. The results of Sections 3 and 4 yield another proof of the vanishing of
TH"(X) andl H! (X) for all oddn and sphericak ([BJ, Theorem 4]). Indeed, let us argue
by induction on dinX = d. By Lemma 3.4, all links ofX are spherical, of dimension

< d. Thus, by Propositiop 4.2 and the induction assumptidi; (X) for all odd» and

x € X. Now Theorenj 3]2 implies the vanishing bf" (X) for all oddn.

Remark 4.4. For any closed connected subgradpc G, put

PH(1)
PG(t)’

P(;/H(t) = (_1)r—s (423)
wheres is the rank ofH (andr is the rank ofG). Then Pg g (¢) is thevirtual Poincaé
polynomial of G/H, as follows from [[DiLe, Theorem 6.1(ii)] applied to the fibration
BH — BG with fiber G/H. In particular, PG,y (¢) is a polynomial with rational co-
efficients, of degree dind/H, that only depends on the structure of complex algebraic
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variety onG/H. (See [BP] for more on virtual Poindapolynomials of homogeneous
spaces.)
With this notation,[(4.1]3) yields

_r. Pgr(®)
Pgx(t) =P = (2 -1 4.2.4
Gx(t) = PgG, (1) = (t ) P 1.(0) ( )
so that[(T.0]1) translates into
IPx(t) = E Py (2) I Px (1). (4.2.5)

We may regard the terms on the right-hand side as virtual P@nmpzaynomials for inter-
section cohomology with supports in orbits.

5. Reductive varieties

5.1. We first give an overview oéffinereductive varieties, after [AB1]. For this, we
need to introduce notation concerning reductive groups.

Let G be a connected reductive group and BstB~ be opposite Borel subgroups,
i.e., T = BN B~ is amaximal torus of5; let U = R,(B), U~ = R,(B™) be the
unipotent radicals o3, B~. The character group @ is denoted byA, and called the
weight lattice we putAr = A ®7 R. Let W be the Weyl group ofG, T); it acts onA
and onAg. The root system ofG, T) is denoted byd, with the subset®™ of positive
roots (the roots ofB, 7)), andIT of simple roots.

For a subsef C TII, we denote byd; the corresponding subsystem &f and by
W, (resp.P; 2 B and P, © B~) the corresponding parabolic subgroupVéf(resp.
opposite parabolic subgroups@}). We putL; = P; N P, ; this is a Levi subgroup of;
andP,”, with root systemd; and Weyl groupg;. Let£ be the length function oV, and
let W/ be the subset of representatives of minimal lengtfVgfw;. Then the Poincér
polynomial of G/ P; equalsy_, .y 12,

Now consider the connected reductive grawp< G, with Borel subgroupB~ x B
and maximal torug" x T. Let diagT be the diagonal irf’ x T. We say that an affine
G x G-variety X is reductive(for G) if it satisfies the following conditions.

(i) X is normal.
(i) There existst € X, fixed by diagrl’, such that the orbitB~ x B)x is dense inX.
(iii) The isotropy group(G x G), is connected.

Further, we may replace (iii) with the assumption of connectedne&Bofx B),, or of
(T x T),. Thus, affine reductive varieties are s€sx G-varieties. Note also that the set
of all x € X satisfying (ii) is a uniqud” x T-orbit. Any such point is called base point
Also note that di{T x T)x =rk X.

By the Bruhat decomposition, the multiplication 6f yields an open immersion
U™ xT x U — G.Thus, the groufs, regarded as & x G-variety via left and right
multiplication, is an affine reductive variety. More generally, all afithe: G-equivariant
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embeddings of7, or of quotients ofG by connected normal subgroups, are reductive
varieties forG.

Next we summarize results df [AB1] about the classification and orbit structure of
affine reductive varieties. Let’ be the closure irX of the orbit of base points; this is an
affine toric variety forT' (identified withT x {1} C G x G). Thus,X’ is uniquely deter-
mined by the set of weights df in its coordinate ring. Further, this set is the intersection
of A with a uniquely determined rational convex polyhedral cerig Ag.

The assignmenX — o Yyields a bijective correspondence from affine reductive vari-
eties to rational convex polyhedral cones Ay satisfying the following conditions:

(i) The relative interio® meetsa .
(i) The distinctwo® (w € W) are disjoint.

We then say that is a W-admissible coneand putX = X,; then rkX = dimo. The
G x G-orbit closures inX,, are the affine reductive varieties associatetVtadmissible
faces ofo.

For anyW-admissible cone, let Ny (o) (resp.Cw (o)) be its normalizer (resp. cen-
tralizer) in W. Then we haveVy (o) = W; andCy (o) = W, for subsets/ = J(o) C
I = I (o) C II. Further, all roots in the complemekit= K (¢) = I — J are orthogonal
toJ,sothatW; = W; x Wx andL; = LjLg; andJ (resp.K) consists of those simple
roots such that the corresponding waII[o@ containss (resp. meets?).

Let A, be the subgroup oA spanned by all elements of N o; this is a saturated
sublattice ofA, that is, the quotienA /A, is torsion-free. Lefl, C T be the intersection
of the kernels of all characters i, (or, equivalently, inA No); this is a central subtorus
of L, with character groupr /A, . PutG, = [Ly, L;]Ty; this is a connected reductive
subgroup of. ; (denoted by in [JAB1]), with maximal torusT, . Thus,G,, is a normal
subgroup of..;, and the quotient ; /G, is isomorphic taL g / T,,. Now

(G x G)x = (Ry(P1) x Ry(P;))(Go x Go) diag(Lk), (5.1.1)

up to conjugacy by an element 6fx T.

As a consequence, aiy x G-orbit in an affine reductive variety admits a homo-
geneous fibration over a product of two opposite flag manifolds, with fiber a connected
reductive group. Specifically, we haveGax G-equivariant morphism

(G x G)x = G/P; x G/ Py (5.1.2)

with fiber
(L XL[)/(G(7 xG(,)diagLK=L1/G(,=LK/T,,. (513)

Here P; x P, acts on this fiber via its quotiedt; x L; acting onL;/G, by left and
right multiplication. Note thal /T, is a connected reductive group with weight lattice
A, and root systendg .

It follows readily that

dimX, = dim(G x G)x = |® — &,| + dima, (5.1.4)
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and that the virtual Poincampolynomial of(G x G)x (see Remark 4]4) is given by

PiGxG(t) = (tz_l)dima( Z tze(u»)z( Z tzz(w)). (5.1.5)

weWw! weWg

As another consequence pf (5]1.X),s an affine embedding of the quotient Gfby a
connected normal subgroup if and onlyli= I, that is,o is W-invariant. In particular,
affine embeddings off correspond td¥ -invariant cones with non-empty interior.

5.2. Following [AB2, Section 2], we definprojectivereductive varieties and we sketch
how to deduce their main properties from the affine case.

Consider a projective irreduciblé x G-variety X equipped with an ampl€ x G-
linearized line bundle.. Let R = ;2o I'(X, L®"); this is a graded, finitely generated
reduced algebra wher@ x G acts. This defines an affine varieXywhereG,, x G x G
acts. Further, the action &, is attractive, and the corresponding link is nothing Eut
We say that the paitX, L) is alinearized projectives x G-variety.

PutG = G,, x G; this is a connected reductive group with weight lattice= Z x A.
We may regardl as aG x G-variety, whereG,, x G,, acts via its morphisniry, 7o) —
ity 1 to G,,. For anyx € X with representativét € X, we obtain readily an exact
sequence of isotropy groups:

15 Gn— (GxG);— (GxG)y — 1. (5.2.1)

We say thatX is reductive forG if X is reductive forG; then (X, L) is called a
linearized reductive varietyThese may be characterized as those linearized projective
G x G-varieties(X, L) that satisfy the following conditions:

(i) X is normal.
(ii) There existsx € X, fixed by diadl', such that the orbitB~ x B)x is dense inX,
and that diag” fixes the fiber of_ atx.
(iii) The isotropy group(G x G), is connected.

Again, (iii) is equivalent to the assumption of connectivity 8f~ x B),, or of (T x T);
and the set of alt € X satisfying (ii) is a uniqud’ x T-orbit: the orbit of base points, of
dimension equal to rk.

Thus, projective reductive varieties are scs. Again, examples in€lud& -equivari-
ant embeddings of the quotient 6fby a connected normal subgroup.

Letoc € Agr = R x Ap be the cone associated X and puts = o N (1 x AR).
Then§ is a lattice polytope imAg, ando is the cone oves. Sinces is W-admissible,
§ satisfies the following conditions:

(i) The relative interios® meetsAi.

(i) The distinct translatess® (w € W) are disjoint.
A lattice polytopes C A satisfying (i) and (ii) is called & -admissible polytopelrhese
classify polarized reductive varieties; we denote(ly, Ls) the linearized reductive va-
riety with polytopes; then dimXs = rk$. The closure inX of the orbit of base points,
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equipped with the restriction df, is the linearized toric variety with polytope The
G x G-orbit closures inXs are theX,, whereg C § is aW-admissible face.

SinceNwy (o) = Nw(8) andCw (o) = Cw(8), we obtain two subsets = J(§) C
I = 1(8) C TI satisfying the properties of the previous subsection. Now the description
(5.1.7) of the isotropy groupG x G), carries over to this projective setting, witk,
being replaced by the lattick; spanned by thdifferenceof any two elements ok N 6.

As a consequence, the description of orbits as fibered spaces carries over as well;
specifically, the analogues df (5.1L.4), (5]1.8), (3.1.4) and (5.1.5) hold avitkeing re-
placed bys. Further, projective embeddings of a quotient(dby a connected normal
subgroup (resp. of7) correspond td¥ -invariant lattice polytopes (resp. with non-empty
interior).

5.3. We obtain a combinatorial description of slices and links in reductive varieties.
Consider aWw-admissible polytopé < Ag, and aW-admissible facep C §. These
correspond to a linearized reductive vari€s, Ls) together with aG x G-orbit O =

O, the open orbit inX, € Xs. We describe the local structure BfalongO, by making
explicit the objects introduced in 3.2.

Let x be a base point a; then (B~ x B)x is open in(G x G)x = O. Further, it
follows from (5.1.1) that the normalize? of (B~ x B)x in G x G equalsP; x Py,
whereJ = J(¢). Sincex is fixed by diadrl', the Levi subgrougd. of P equalsL; x Lj.
Further, by [AB1, Lemma 2.8], the varie® is an affine reductive variety fak ;; one
readily checks that the correspondiwg -admissible cone is generated by the differences
A — u, Whereix € § andu € ¢.

Now by (5.1.1) again, we have, = G, x G,,. Note thaiG,, is a connected reductive
subgroup ofG, normalized byT'; further, T, is a maximal torus o0&, so that the weight
lattice of G, equalsA, = A/A,. The set of simple roots @¥,, is J = J(¢), with Weyl
groupW; = Cw(¢p); we denote the latter by,,.

By [AB1] Lemma 4.1], the sliceS, is an affine reductive variety fag,,. Denote its
W,-admissible cone by = o, this cone is the image in,, of the cone of. So we may
regardo as the normal cone thalong its facep. Note the equality ri6, = dims—dime.

To describe the link(S,), note first that the closed convex caneontains no line.
Thus, we may find a linear fornf on Agr/A, r that takes positive values at all non-
zero points ofo. We may assume, in addition, thattakes integer values at all points
of A/A,, and is invariant under the normalizer®@fin W,,. Then by [AB1, 3.2, 4.1] f
yields a positiveG, x G,-invariant grading of the algebra of regular functions&n
In other words,f defines an attractiv&,,-action onsS, that commutes with the action
of G, x G,. Now IP(Sy) is the reductive variety foG, associated with the polytope
o N (f = n), wheren is a suitable positive integer. We may regard this polytope as the
link of § along its facep; we have rkP(S,) = dimé§ — dimg — 1.

If X5 is an embedding of a quotient 6f by a connected normal subgroup, theis
W-invariant, so thas,, is invariant undeW,. Thus,S, is an embedding of a quotient of
G, by a connected normal subgroup. So the class of embeddings of connected reductive
groups is stable under taking slices and, likewise, links.
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6. Examples

6.1. We begin with the case @bric varieties where the objects introduced in Section 5
take a very simple form.

Let X be a projective toric variety; Ief' be the corresponding torus, with character
groupA. ThenX corresponds to a fag, consisting of the normal cones to all faces of a
lattice polytopes € Ag. (This polytope is not uniquely determined By but so are the
partially ordered set of its faces, and their directions.)

The T-orbits in X correspond to cones &f, that is, to faces o8. For any such
face, the isotropy group of the corresponding oit= O, is a subtorug,, of T, the
intersection of all characters in the spacgr spanned by the differences— u, where
A, L€ Q.

Moreover,© admits an opeff -invariant neighborhood ixx, isomorphic to the prod-
uct O x S,, whereS, is an affine toric variety fofl,, with a fixed pointx,,. The cone
associated witks,, is dual to the cone,, image inAr/A, r Of the cone generated by
the differences. — u, wherea € §, u € ¢.

It follows thatS,, is an attractive slice at any point 6f, and that the associated link
P(S,) is a projective toric variety with polytope the link @fin §. Thex,, ¢ a face ofs,
form a system of representatives of theorbits in X. (See e.gl[Fu, 1.4, 2.1].)

Now Theorenf T]1 yields the equalities

IPx(t) =) (> =DM 1Py (1) (6.1.1)
@

(sum over all faces of), and
Py x,(t) = IPs, () = T<codimp-1((1 — 12)1 Pp(s,) (1)). (6.1.2)

When expressed in terms of conessaf(6.1.2) and[(6.1]1) give back the main result
of [Ei]; see alsol[DeLDb],[[St1],[[S12].

6.2. Next we describe orbits, slices and linksraductive varieties of ran. Indeed,
the rank, rather than the dimension, measures how complicated a spherical variety is; and
spherical (resp. reductive) varieties of rank 0 are just flag manifG}d? (resp. products
of two opposite flag manifold&/P; x G/P;").
By 5.2, a linearized reductive variefX, L) of rank 1 corresponds to&-admissible
line segmend = [X, u], wherei, u € A. We may assume thatis dominant; then it is
a W-admissible face, corresponding to a cloggc G-orbit O = O,. With the notation
of 5.2, we haveA;, = 0, so thatly, = T. Further,I (1) = J () is the set of simple roots
orthogonal toA, so thatG, = L, is the common Levi subgroup By, and PI‘(M.

Moreover,0, = G/Pjuy X G/P,*(A). The corresponding slice is the affine reductive
variety for L, with cone the ray spanned py— X. SetI(8) = I (1) N I (w); then the
corresponding link is the product

L1oy/Pr@y NV L1y X Ligy/Prs N Lioy = Proy/Prey X Prgy/ P
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If u is also dominant, theiX contains threes x G-orbits: the open orbit, and the
closed orbits corresponding toand . The isotropy group of a base point of the open
orbit Os equals(R, (Prs)) x RM(P,_(S)))(Ga x Gs), whereGs C Ly is the connected
kernel of the character — 1. Thus,O; fibers overG/ P;s) x G/PI‘((S) with fiber G,,,.

But if u is not dominant, then is the uniqueWw-admissible proper face, so that
contains only two orbits. In that caseandu are exchanged by a unique simple reflection
sq, Wherea € I1, so thatu — A is a hon-zero multiple af. Moreover, the isotropy group
of a base point 005 equals(R, (P;) x R, (P, ))(Gsx Gs) diagL,, wherel = I(5)N{a},
andG; C L) is the connected kernel of the charagier A (or of o). Thus,O; fibers

overG/ Py x G/PI‘((S) with fiber L, /ker(e)?, isomorphic to Sk or PGLy.

6.3. Finally, as examples of reductive varieties of rank 2, we considaveddings of
the groupGL(2). Let B, B~ be the opposite Borel subgroups of upper, respectively lower
triangular matrices; thefi = B N B~ is the maximal torus of diagonal matrices. Via the
diagonal coefficients, the weight lattige identifies toZ?; then the unique simple root
isa = (1, —1), the unique non-trivial element of the Weyl group is the reflection with
respect to the diagonal @2, and the positive Weyl chamber consists of all points below
the diagonal.

Thus, projective embeddings of @) correspond to lattice polygons ¢, symmet-
ric with respect to the diagonal. Further, orbit closures in such embeddings correspond to
the following four types oW -admissible faceg:

(i) ¢ is an edge entirely below the diagonal. Then both d&9, K (¢) are empty, so
thatG, = T, = T. The isotropy group of a base point of the oidj is the product
of U x U~ with a torus of dimension 3. The corresponding slice is an affine line,
and the link is just a point.

(i) ¢ is an edge, symmetric with respect to the diagonal. Then = ¢, K (¢) = {a},
andG, = T, is a torus of dimension 1. The isotropy group(@ is the product of
diag GL(2) with T, x 1. Again, the slice is a line, and the link is a point.

(i) ¢ is a vertex below the diagonal. Theity) = K(¢) =¥, G, = T, = T, and the
isotropy group of0,, is B x B~. So this orbit is isomorphic tB1 x PL. The slice is
an affine toric variety of dimension 2, so that the linkfs

(iv) ¢ is a vertex on the diagonal. Thef() = {a}, K(¢) =4, T, = T, andG, =
GL(2). The isotropy group o0, is the whole Gl(2) x GL(2), so that0, is a fixed
point. The slice is the affine embedding of @) associated with the tangent cone
to § at its vertexp. The corresponding link is a projective embedding of the quotient
of GL(2) by a non-trivial central torus, that is, of P@). It follows that this link is
the projective space3, the projectivization of the space of22 matrices.
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