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Abstract. We extend the methods developed in our earlier work to algorithmically compute the
intersection cohomology Betti numbers of reductive varieties. These form a class of highly sym-
metric varieties that includes equivariant compactifications of reductive groups. Thereby, we extend
a well-known algorithm for toric varieties.

1. Introduction

In this paper we extend the methods developed in our previous work [BJ] toalgorithmi-
cally compute the local and global intersection cohomology Betti numbers of a large class
of varieties with group action, that includes toric varieties.

Let G be a complex connected reductive algebraic group and letB be a Borel sub-
group. A normal complex algebraic varietyX, equipped with an action ofG, is spherical
if it contains a dense orbit ofB. We say thatX is scs(simply-connected spherical) if,
in addition, theB-isotropy group of this dense orbit is connected. Equivalently, anyB-
equivariant finite surjective morphism from aB-variety toX is an isomorphism.

For example, the groupG is an scs variety with respect to the action ofG × G by left
and right multiplication; thus, all normalG × G-equivariant embeddings ofG are scs as
well. In particular, all toric varieties are scs. Other examples include the space of all skew
bilinear forms inn variables for the natural action of GLn or SLn, and its subvarieties
of forms of rank at mostr. But the space of symmetric bilinear forms inn variables is
spherical, not scs.

SphericalG-varieties enjoy the following properties:

• they contain only finitely manyB-orbits, and hence only finitely manyG-orbits,
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• eachG-orbit admits aslice (see 2.2 below) which is an affine spherical variety under
a connected reductive subgroup ofG, and

• the associatedlink (see 2.3 below) is a projective spherical variety, of strictly smaller
dimension.

Important additional features of scs varieties are

• the connectedness ofB- andG-isotropy groups of all points, and
• the fact that all slices and links are scs as well.

This makes scs varieties particularly suited for applying the methods from [BJ]. They
yield two recursive relations, expressing the global intersection cohomology Betti num-
bers of projective scs varieties in terms of the corresponding local numbers, and the latter
in terms of the global numbers of the links. This is the content of our main result.

Theorem 1.1. Let X be a projective scsG-variety; let IPX(t) (resp.IPX,x(t)) be the
Poincaŕe polynomial for global intersection cohomology (for the stalks of the intersection
cohomology sheaves atx ∈ X, respectively). Then

IPX(t) =

∑
x

(t2
− 1)r−rx

PG/T (t)

PGx/Tx (t)
IPX,x(t) (1.0.1)

(sum over representatives ofG-orbits inX), and

IPX,x(t) = IPSx ,x(t) = τ≤dx−1((1 − t2)IPP(Sx )(t)). (1.0.2)

HereT is a maximal torus ofG, of dimensionr; Tx is a maximal torus ofGx , of dimension
rx ; Sx is a slice atx to Gx, of dimensiondx ; P(Sx) = (Sx − x)/Gm is the corresponding
link for an attractive action of the multiplicative group, andτ≤dx−1 denotes the truncation
to degrees≤ dx − 1.

(In fact, the Poincaŕe polynomialPGx/Tx (t) dividesPG/T (t), and the quotient has non-
negative coefficients. See [BP, p. 321].)

To turn these recursive relations into an algorithm for computing the intersection co-
homology Betti numbers, we need a combinatorial description of all isotropy groups,
slices, and links. But such a description is unknown in general; in fact, a classification of
spherical homogeneous spaces is only known forG of typeA (see [Lu]).

Here we obtain such a combinatorial description for the subclass ofreductive vari-
etiesintroduced in [AB1], [AB2]. It contains all normal,G × G-equivariant embeddings
of the groupG, and all their invariant subvarieties. Further, both classes of reductive va-
rieties and of group embeddings are stable under taking slices and links. Our main tool is
the classification of reductive varieties in terms of certain toric varieties with additional
symmetries, established in [AB1], [AB2]. The resulting algorithm specializes to the one
in [St1], [DeLo] and [Fi] for toric varieties.

The latter algorithm defines remarkable numerical invariants of rational polytopes,
which in fact make sense for non-rational polytopes as well; see [St1], [St2]. This has
been the starting point for several recent investigations, constructing a combinatorial in-
tersection theory for non-rational polytopes (see [BBFK1], [BBFK2], [BBFK3], [Ka] and
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[BL]). It would be interesting to generalize these constructions to the setting of reductive
varieties.

The outline of the paper is as follows. Section 2 introduces notation and basic defi-
nitions concerning varieties with algebraic group actions, and (equivariant) intersection
cohomology. In Section 3, we obtain a variant of a result of [BJ] that applies to all spheri-
cal varieties, and we study orbits, slices, and links in scs varieties. Theorem 1.1 is proved
in Section 4, and the combinatorics of reductive varieties are developed in Section 5. The
final Section 6 is devoted to a few examples, including the case of toric varieties.

2. Notation and conventions

2.1. We recall the terminology and conventions from our earlier paper [BJ]. Throughout
this paper, we consider complex algebraic varieties, that is, separated reduced schemes of
finite type overC. Observe that varieties need not be irreducible; however, we assume
them to beequidimensional.

We denote byG a complex linear algebraic group, and byG0 its connected component
containing the identity. A varietyX provided with an algebraic action ofG is called aG-
variety. If, in addition,X admits an equivariant embedding into the projectivization of
a G-module, we say thatX is G-quasi-projective. We only considerG-varieties where
each orbit admits an openG-quasi-projective neighborhood. This assumption holds e.g.
for normal varieties (see [Su] for connectedG, and [Jo] for arbitraryG).

2.2. Consider aG-varietyX and a pointx ∈ X; letGx be itsG-orbit andGx its isotropy
group. AslicetoGx atx is a locally closed subvarietySx of X containingx and satisfying
the following conditions:

(i) Sx is invariant under a maximal torusTx of Gx .
(ii) The mapG×Sx → X, (g, s) 7→ gs, is smoothat the point(e, x), and the dimension

of Sx is the codimension ofGx in X.

Such a sliceSx always exists, and may be chosen invariant under a maximal reductive
subgroup ofGx . Moreover, by shrinkingSx if necessary, we may assume that the map
G × Sx → X is smooth everywhere, and thatSx is affine.

2.3. Let T denote a torus acting on a varietyX with a fixed pointx. We say thatx is
attractive if there exists a one-parameter subgroupλ : Gm → T such that, for ally in
a Zariski neighborhood ofx, we have limt→0 λ(t)y = x. Equivalently, all weights ofT
acting on the Zariski tangent space atx are contained in an open half-space.

In the situation of 2.2, we say thatSx is anattractive sliceif x is an attractive fixed
point for the action ofTx on Sx . (See [BJ, (A.1)] for further details on attractive fixed
points.) In this case, the geometric quotient

P(Sx) = (Sx − x)/Gm

exists and we call it thelink at x. This is a projective variety, sinceSx is assumed to be
affine.
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2.4. Let X be a variety. We denote byH ∗(X) the cohomology ring ofX with rational
coefficients.IH ∗(X) denotes the corresponding intersection cohomology, for the middle
perversity and rational coefficients.H ∗

G(X) (resp.IH ∗

G(X)) denotes the corresponding
equivariant cohomology ring ofX with rational coefficients (the equivariant intersection
cohomology ofX with rational coefficients, respectively).

For the sake of completeness we briefly recall the definition of the intersection coho-
mology complex (for the middle perversity). LetX be of dimensiond and be provided

with a filtrationU0
j0
→ U1

j1
→ · · ·

jd−2
→ Ud−1

jd−1
→ Ud = X with eachUi open and each

Ui − Ui−1 smooth. Then theintersection cohomology complexis the complex of sheaves

IC(X) = τ≤d−1Rjd−1∗ · · · τ≤0Rj0∗(Q)

onX, whereQ denotes the constant sheaf onU0.
Assume, in addition, thatX is a provided with aG-action and that eachUi is G-

invariant; letEG → BG be a universal principalG-bundle. ThenEG ×
G

Ui

jG
i

−→ EG ×
G

Ui+1 provides a filtration ofEG ×
G

X. Now the equivariant intersection cohomology

complexis
ICG(X) = τ≤d−1RjG

d−1∗
· · · τ≤0RjG

0∗
(Q),

whereQ now denotes the constant sheaf onEG ×
G

U0. The equivariant intersection co-

homologyIH ∗

G(X) is defined to be the hypercohomologyH∗(EG×
G

X; ICG(X)). These

are discussed in more detail in [BJ, Section 1]. BothH ∗

G(X) and IH ∗

G(X) are graded
modules overH ∗(BG), the equivariant cohomology ring of the point.

For any integern, we denote byHn(IC(X)) then-th cohomology sheaf of the inter-
section cohomology complex onX. The stalk of the sheafHn(IC(X)) at a pointx is de-
notedHn(IC(X))x , while the local intersection cohomology with support inx is denoted
IH n

x (X). They are related as follows:IH n
x (X) is the dual space ofHn(IC(X))x [2d],

whered denotes the (complex) dimension ofX.

3. The key methods

3.1. We begin by recalling one of the main results of [BJ] (Theorem 2).

Theorem 3.1. Let X be aG-variety containing only finitely many orbits, each of which
admits an attractive slice. Then the following hold.

(i) The H ∗(BG)-moduleIH ∗

G(X) admits a filtration with subquotientsIH ∗

O,G
(X),

whereO runs through theG-orbits in X, and IH ∗

O,G
(X) denotes the equivariant

intersection cohomology with supports inO.
(ii) For O = Gx, the group of componentsGx/G0

x acts onH ∗(BG0
x) and onIH ∗

x (X),
and one obtains the isomorphism

IH ∗

O,G(X) ∼= IH ∗+2 dimO
x,Gx

(X) ∼= (H ∗+2 dimO(BG0
x) ⊗ IH ∗

x (X))Gx/G0
x . (3.1.1)
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One may interpret statement (i) as saying that the stratification by orbits isperfect for
equivariant intersection cohomology, under the hypotheses of Theorem 3.1. However,
these hypotheses are generally not satisfied by spherical varieties. For example, the linear
spaceCn is spherical under the natural action of the groupG = SLn(C), and the fixed
point 0 admits no attractive neighborhood. Likewise, the space of alln×n matrices of rank
at most 1 is a reductive variety for the same group (acting by left and right multiplication),
but again, the fixed point 0 admits no attractive neighborhood.

For this reason, we will obtain a variant of Theorem 3.1 where the existence of at-
tractive slices is replaced by the vanishing of local intersection cohomology groups in all
odd degrees. The latter assumption holds for all spherical varieties by [BJ, Theorem 4];
another proof of that theorem will be given in Remark 4.3.

Theorem 3.2. LetX denote aG-variety containing only finitely many orbits. Assume, in
addition, thatIH n

x (X) = 0 for all x ∈ X and all oddn. Then the conclusions of Theorem
3.1hold.

Proof. We first prove (ii). LetiO : O → X denote the inclusion. Then we obtain

IH ∗

O,G(X) ∼= H∗(O; Ri!
OICG(X)) ∼= H∗(BGx; Ri!

OICG(X)),

where the last isomorphism follows from [BJ, (1.6.1)]. Denoting byix : x → X the
inclusion, we also have

Ri!
OICG(X) ∼= Ri!

xICGx (X)[2 dim(O)]

by [BJ, (1.6.2)]. This yields an isomorphism

IH ∗

O,G(X) ∼= H∗+2 dimO(BGx; Ri!
xICGx (X)).

On the other hand, it follows from [BJ, Theorem 1] that the groupGx/G0
x acts on

H∗(BG0
x, Ri!

xICG0
x (X)), and that

H∗(BGx; Ri!
xICGx (X)) ∼= H∗(BG0

x; Ri!
xICG0

x (X))Gx/G0
x .

SinceBG0
x is simply connected, the cohomology sheaves of the complexRi!

xICG0
x (X)

are constant, with stalksIH n
x (X). By assumption, these stalks vanish in all odd de-

grees; it follows thatRi!
xICG0

x (X) is isomorphic inDb(BG0
x) to its cohomology,⊕

n IH n
x (X)[−n]. This yields an isomorphism

H∗(BG0
x; Ri!

xICG0
x (X)) ∼= H ∗(BG0

x) ⊗ IH ∗
x (X). (3.1.2)

Thus,Gx/G0
x acts on the right-hand side. By [BJ, Lemma 3.6], it follows thatGx/G0

x

acts onIH ∗
x (X) so that the isomorphism (3.1.2) is equivariant. This completes the proof

of (ii).
SinceH ∗(BG0

x) vanishes in all odd degrees as well, it also follows thatIH ∗

G,O(X)

vanishes in all odd degrees. Now chooseO closed inX; then the long exact sequence

· · · → IH n
O,G(X) → IH n

G(X) → IH n
G(X −O) → · · ·

breaks up into short exact sequences. This implies (i) by a straightforward induction.ut
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3.2. Next we review the local structure of spherical varieties. LetG be a connected
reductive group andB a Borel subgroup with unipotent radicalU . We denote byX a
sphericalG-variety, and by rkX its rank, that is, the minimal codimension of aU -orbit;
then rkX is the codimension ofUξ , for any pointξ of the openB-orbit.

Choose aG-orbitO ⊆ X; thenO is spherical as well, hence we may choosex ∈ O
such thatBx is open inGx = O. Now let

X0 = {ξ ∈ X | x ∈ Bξ} = {ξ ∈ X | O ⊆ Bξ}. (3.2.1)

ThenX0 is an open affineB-invariant subset ofX, intersectingO alongBx. LetP be the
normalizer ofX0 in G. This is a parabolic subgroup ofG containingB; let Ru(P ) be its
unipotent radical. Now there exists a Levi subgroupL of P and a closed subvariety6 of
X0 such that:

• 6 is L-invariant and containsx0, and
• the mapRu(P ) × 6 → X0, (g, ξ) 7→ gξ , is an isomorphism.

Thus,6 is an affine sphericalL-variety, of rank equal to that ofX. Moreover,6 ∩ Gx

equalsLx; this is the unique closedL-orbit in 6. Finally, the isotropy groupPx equals
Lx , and contains the derived subgroup [L, L]. (See e.g. [Kn].)

It follows thatP is the normalizer ofBx in G. Further,Lx = [L, L]Cx whereC is the
connected center ofL, andBx = (B ∩ [L, L])Cx . As a consequence,L0

x is a connected
reductive group, with Borel subgroupB ∩ L0

x = (B ∩ [L, L])C0
x = B0

x , of unipotent
radicalU ∩ L0

x = U ∩ [L, L] = Ux .
By a corollary of Luna’s slice theorem, there exists a closedLx-invariant subvariety

Sx of 6, containingx, such that the canonical map

L ×
Lx Sx → 6

is an isomorphism. As a consequence,Sx is a slice toBx atx, for theB-action onX.

Lemma 3.3. Sx is an affineL0
x-spherical variety, andrkSx = rk X − rk Gx.

Proof. SinceLx is the unique closedL-orbit in 6, the pointx is the unique closedLx-
orbit in Sx . In particular,Sx is connected.

We claim thatSx is normal. To see this, consider the normalizationν : S̃x → Sx .
Then theLx-action onSx lifts to an action onS̃x so thatν is equivariant. Thus,ν extends
to a morphism

L ×
Lx ν : L ×

Lx S̃x → L ×
Lx Sx = 6.

Moreover, the morphismL ×
Lx ν is finite and birational, sinceν is. But6 is normal, so

thatL ×
Lx ν is an isomorphism; thus, the same holds forν.

SinceSx is connected and normal, it is irreducible. And since6 = L×
Lx Sx contains

a dense orbit ofB ∩ L, it follows thatSx contains a dense orbit ofB ∩ Lx , and hence of
its subgroup of finite indexB ∩ L0

x . Thus,Sx is a sphericalL0
x-variety; the assertion on

ranks follows from the equalities rkX = rk 6 and rkGx = dimLx = dimL/Lx . ut
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Next we obtain a slight refinement of a result of Knop ([Kn, Corollary 7.9 and Remark,
p. 326]).

Lemma 3.4. There exists an attractiveGm-action onSx that fixesx and commutes with
theLx-action. As a consequence,Lx acts on the linkP(Sx) = (Sx − x)/Gm, which is a
sphericalL0

x-variety of rank equal torkSx − 1.

Proof. We use the notation of [Kn, Section 7]. Notice that the sources of the sphericalL-
variety6 are precisely the closedL-invariant subvarieties; in particular, the closed orbit
Lx is a source. Thus, the closurēA6 of a generic twisted flat meetsLx. The normal-
ization of Ā6 is an affine embedding of a finite quotient of the torusA6 ; let C be the
corresponding cone, thenC is invariant under the little Weyl groupW6 . By the argument
of [Kn, 7.9], there exists aW6-invariant one-parameter subgroupv0 in the relative interior
of C; then bothv0 and−v0 identify to L-invariant valuations of the function fieldC(6).
Thus,v0 yields aGm-action on6 commuting with theL-action, that is, anL-invariant
grading of the algebra of regular functionsC[6]. For this Gm-action, limt→0 tξ exists
and belongs toLx for genericξ ∈ 6 (since this holds for allξ in a generic flat, by defi-
nition of v0). It follows that the corresponding grading ofC[6] is non-negative, and that
C[6]0 = C[Lx]. Thus, the grading induces a positive grading ofC[Sx ], the quotient of
C[6] by the ideal generated by the maximal ideal ofx in C[Lx]; this positive grading is
clearlyLx-invariant. This proves the first assertion.

From that assertion and Lemma 3.3, it follows thatP(Sx) is a sphericalL0
x-variety. To

determine its rank, chooseξ ∈ Sx such thatB0
xξ is open inSx , and let [ξ ] be its image

in P(Sx). Then the isotropy groupB[ξ ] acts on the orbitGmξ ∼= C∗ via a character with
kernelBξ . This impliesU[ξ ] = Uξ , and hence

rk P(Sx) = dimP(Sx) − dimUx [ξ ] = dimSx − 1 − dimUxξ = rkSx − 1. ut

We will also need the following preliminary result.

Lemma 3.5. Let ξ be a point of the openB ∩ L0
x-orbit in Sx . Then the orbitBξ is open

in X, the isotropy groupBξ is contained inBx , and the quotientBx/Bξ is irreducible.

Proof. By the structure ofX0, we know thatBξ is open inX, andBξ = B∩Lξ . Moreover,
since there is anL-equivariant map6 → L/Lx , and sinceL/Lx = (B ∩ L)/(B ∩ Lx),
it follows thatBξ ⊆ B ∩ Lx = Bx . Note also that the homogeneous spaceBx/Bξ is the
openBx-orbit in Sx . ButSx is irreducible, so thatBx/Bξ is irreducible as well. ut

3.3. We may now establish the properties of scs varieties presented in the Introduction.

Lemma 3.6. LetX be an scsG-variety. Then allG-orbits, slices, and links inX are scs,
and theG-isotropy groups of all points are connected.

Proof. Let ξ ∈ X be such thatBξ is open inX. Then the productBGξ is open inG, so
thatGξB/B is open inG/B, and hence is irreducible. ButGξB/B ∼= Gξ/Bξ , andBξ is
connected by assumption. Thus,Gξ is connected as well.
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Next consider aG-orbit O in X. Choosex, ξ as in Lemma 3.5; the irreducibility
of Bx/Bξ implies thatBx is connected. HenceLx = [L, L]Bx is connected as well.
Thus, the orbitGx and the sliceSx are scs. It remains to show that the linkP(Sx) is
scs. Letξ be as above; then, as noted in the proof of Lemma 3.4, the isotropy groupB[ξ ]
of the corresponding point ofP(Sx) is the kernel of a character ofBξ . This character is
surjective, since dimB[ξ ] = dimB − dimB[ξ ] = dimB − dimBξ + 1 = dimBξ + 1.
But Bξ is connected, so thatB[ξ ] is connected. ut

Lemma 3.7. Let X be an scsG-variety. Then theB-isotropy groups of all points are
connected.

Proof. Let ξ ∈ X. By Lemma 3.6, we may assume thatX = Gξ . We argue by induction
on the codimensionc of Bξ in X.

If c = 0, thenBξ is open inX, so thatBξ is connected by assumption. Ifc ≥ 1,
then we may find a minimal parabolic subgroupP ⊃ B such thatBξ is notP -invariant.
ThenBξ is contained inPξ as a closedB-orbit of codimension 1, andPξ contains an
openB-orbit, sayBη, of dimension dimBξ + 1. Thus,Bη is connected by the induction
assumption. Further,Pη/Bη

∼= PηB/B, andPηB is open inP (sinceBη is open in
Pη = Pξ), so thatPη/Bη is irreducible. Thus,Pη is connected as well.

On the other hand, the natural mapP ×
B Bξ → Pξ is finite, sinceP movesBξ . In

other words,Bξ has finite index inPξ . But Pξ is conjugate toPη, soBξ is connected. ut

4. Proof of the main theorem

4.1. We begin by introducing various Poincaré series. These are formal power series in
a variablet , with integer coefficients.

If G is a linear algebraic group, we put

P G(t) =

∑
n

dimH n(BG) tn, (4.1.1)

the Poincaŕe series ofBG. For example, ifG is a torus of dimensionr, then

P G(t) =
1

(1 − t2)r
. (4.1.2)

More generally, ifG is connected with maximal torusT of dimensionr, then we have
a fibrationBT → BG with fiber G/T homotopic to the flag manifold ofG. Hence the
cohomology ofG/T vanishes in all odd degrees; this implies

P G(t) =
1

(1 − t2)rPG/T (t)
, (4.1.3)

wherePG/T (t) is the Poincaŕe polynomial ofG/T .
If X is aG-variety, we put

IP G
X (t) =

∑
n

dimIH n
G(X) tn. (4.1.4)
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In particular, ifG is the trivial group, thenIPX(t) is the intersection cohomology Poincaré
polynomial ofX. If X is projective of dimensiond, then we haveIPX(t) = t2dIPX(1/t),

by Poincaŕe duality.
If G is connected andX is a projectiveG-variety, then we have

IP G
X (t) = P G(t)IPX(t), (4.1.5)

as follows from the degeneration of the spectral sequence in equivariant intersection co-
homology (see e.g. [BJ, (1.5.2)]).

Returning to an arbitraryG-varietyX, we put, for anyx ∈ X,

IP
Gx

x,X(t) =

∑
n

dimIH n
x,Gx

(X) tn. (4.1.6)

In particular,IPx,X(t) =
∑

n dimIH n
x (X) tn is the Poincaŕe polynomial for local inter-

section cohomology with support inx.
On the other hand, one also has the Poincaré series for the stalks of the equivariant

intersection cohomology sheaves:

IP
Gx

X,x(t) =

∑
n

dimHn(i∗x ICGx (X)) tn, (4.1.7)

whereix : x → X denotes the inclusion.
Note that the Poincaré polynomialIPX,x(t) =

∑
n dimHn(i∗x IC(X)) tn satisfies the

Verdier duality

IPX,x(t) = t2dIPx,X

(
1

t

)
. (4.1.8)

4.2. We may now formulate a direct consequence of Theorems 3.1 and 3.2 for these
Poincaŕe series.

Proposition 4.1. (i) Let X be aG-variety satisfying the assumptions of Theorem3.1
or 3.2. Then

IP G
X (t) =

∑
x

t−2 dimGx IP
Gx

x,X(t)

(sum over representatives ofG-orbits inX).
(ii) If, in addition,Gx is connected, then

IP
Gx

x,X(t) = P Gx (t)IPx,X(t). ut

Next letX be a projective scs variety. Then Proposition 4.1 and (4.1.3), (4.1.5), (4.1.8)
imply

IPX(t) =

∑
x

(1 − t2)r−rx
PG/T (t)

PGx/Tx (t)
t2dx IPX,x

(
1

t

)
.

Replacingt with 1/t and using Poincaré duality forX, G/T andGx/Tx yields the equal-
ity (1.0.1) in Theorem 1.1. Now the equality (1.0.2) is a consequence of the following
statement.
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Proposition 4.2. Consider aG-variety X, a pointx ∈ X, and a sliceSx to Gx at x.
Then

IPx,X(t) = t2(d−dx )IPx,Sx
(t) = t2dIPSx ,x

(
1

t

)
, (4.2.1)

whered = dimX anddx = codimGx = dimSx .
If, in addition,Sx is attractive with linkP(Sx), then

IPSx ,x(t) = τ≤dx−1((1 − t2)IPP(Sx )(t)) (4.2.2)

if dx ≥ 2, andIPSx ,x(t) = 1 otherwise.

Proof. One obtains a quasi-isomorphism

Ri!
x,XIC(X) ∼= Ri!

x,Sx
IC(Sx)[−2(d − dx)],

whereix,X : x → X and ix,Sx
: x → Sx denote the inclusions. This yields the first

equality in (4.2.1); the second one follows from (4.1.8).
For (4.2.2), observe thatHn(IC(Sx))x ∼= IH n(Sx) ∼= IH n(Sx−x) for all n ≤ dx−1,

while Hn(IC(Sx))x = 0 for all n > dx − 1 (see, for example, the definition of the
intersection cohomology complex in 2.4). Thus,IPSx ,x(t) = τ≤dx−1(IPSx−x(t)). Now
consider the Wang exact sequence

· · · → IH n−2(P(Sx)) → IH n(P(Sx)) → IH n(Sx − x)

→ IH n−1(P(Sx)) → IH n+1(P(Sx)) → · · · ,

where the first and last maps are multiplication by the class of a hyperplane inP(Sx)

(see e.g. [BJ, 3.5]). By the hard Lefschetz theorem in intersection cohomology, these
maps are injective for alln ≤ dimP(Sx) = dimSx − 1 = dx − 1. Therefore, the Wang
exact sequence breaks up into short exact sequences for alln ≤ dx − 1. This yields
τ≤dx−1(IP (Sx − x)) = τ≤dx−1((1 − t2)IPP(Sx )(t)). ut

Remark 4.3. The results of Sections 3 and 4 yield another proof of the vanishing of
IH n(X) andIH n

x (X) for all oddn and sphericalX ([BJ, Theorem 4]). Indeed, let us argue
by induction on dimX = d. By Lemma 3.4, all links ofX are spherical, of dimension
< d. Thus, by Proposition 4.2 and the induction assumption,IH n

x (X) for all oddn and
x ∈ X. Now Theorem 3.2 implies the vanishing ofIH n(X) for all oddn.

Remark 4.4. For any closed connected subgroupH ⊆ G, put

PG/H (t) = (−1)r−s P H (t)

P G(t)
, (4.2.3)

wheres is the rank ofH (andr is the rank ofG). ThenPG/H (t) is thevirtual Poincaŕe
polynomial ofG/H , as follows from [DiLe, Theorem 6.1(ii)] applied to the fibration
BH → BG with fiber G/H . In particular,PG/H (t) is a polynomial with rational co-
efficients, of degree dimG/H , that only depends on the structure of complex algebraic
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variety onG/H . (See [BP] for more on virtual Poincaré polynomials of homogeneous
spaces.)

With this notation, (4.1.3) yields

PGx(t) = PG/Gx (t) = (t2
− 1)r−rx

PG/T (t)

PGx/Tx (t)
, (4.2.4)

so that (1.0.1) translates into

IPX(t) =

∑
x

PGx(t) IPX,x(t). (4.2.5)

We may regard the terms on the right-hand side as virtual Poincaré polynomials for inter-
section cohomology with supports in orbits.

5. Reductive varieties

5.1. We first give an overview ofaffine reductive varieties, after [AB1]. For this, we
need to introduce notation concerning reductive groups.

Let G be a connected reductive group and letB, B− be opposite Borel subgroups,
i.e., T = B ∩ B− is a maximal torus ofG; let U = Ru(B), U−

= Ru(B
−) be the

unipotent radicals ofB, B−. The character group ofT is denoted by3, and called the
weight lattice; we put3R = 3 ⊗Z R. Let W be the Weyl group of(G, T ); it acts on3

and on3R. The root system of(G, T ) is denoted by8, with the subsets8+ of positive
roots (the roots of(B, T )), and5 of simple roots.

For a subsetI ⊆ 5, we denote by8I the corresponding subsystem of8, and by
WI (resp.PI ⊇ B andP −

I ⊇ B−) the corresponding parabolic subgroup ofW (resp.
opposite parabolic subgroups ofG). We putLI = PI ∩P −

I ; this is a Levi subgroup ofPI

andP −

I , with root system8I and Weyl groupWI . Let ` be the length function ofW , and
let W I be the subset of representatives of minimal length ofW/WI . Then the Poincaré
polynomial ofG/PI equals

∑
w∈W I t2`(w).

Now consider the connected reductive groupG × G, with Borel subgroupB−
× B

and maximal torusT × T . Let diagT be the diagonal inT × T . We say that an affine
G × G-varietyX is reductive(for G) if it satisfies the following conditions.

(i) X is normal.
(ii) There existsx ∈ X, fixed by diagT , such that the orbit(B−

× B)x is dense inX.
(iii) The isotropy group(G × G)x is connected.

Further, we may replace (iii) with the assumption of connectedness of(B−
× B)x , or of

(T × T )x . Thus, affine reductive varieties are scsG × G-varieties. Note also that the set
of all x ∈ X satisfying (ii) is a uniqueT × T -orbit. Any such point is called abase point.
Also note that dim(T × T )x = rk X.

By the Bruhat decomposition, the multiplication ofG yields an open immersion
U−

× T × U → G. Thus, the groupG, regarded as aG × G-variety via left and right
multiplication, is an affine reductive variety. More generally, all affineG×G-equivariant
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embeddings ofG, or of quotients ofG by connected normal subgroups, are reductive
varieties forG.

Next we summarize results of [AB1] about the classification and orbit structure of
affine reductive varieties. LetX′ be the closure inX of the orbit of base points; this is an
affine toric variety forT (identified withT × {1} ⊂ G × G). Thus,X′ is uniquely deter-
mined by the set of weights ofT in its coordinate ring. Further, this set is the intersection
of 3 with a uniquely determined rational convex polyhedral coneσ in 3R.

The assignmentX 7→ σ yields a bijective correspondence from affine reductive vari-
eties to rational convex polyhedral conesσ ⊆ 3R satisfying the following conditions:

(i) The relative interiorσ 0 meets3+

R.
(ii) The distinctwσ 0 (w ∈ W ) are disjoint.

We then say thatσ is aW -admissible cone, and putX = Xσ ; then rkX = dimσ . The
G × G-orbit closures inXσ are the affine reductive varieties associated toW -admissible
faces ofσ .

For anyW -admissible coneσ , let NW (σ ) (resp.CW (σ )) be its normalizer (resp. cen-
tralizer) inW . Then we haveNW (σ ) = WI andCW (σ ) = WJ for subsetsJ = J (σ ) ⊆

I = I (σ ) ⊆ 5. Further, all roots in the complementK = K(σ) = I − J are orthogonal
to J , so thatWI = WJ × WK andLI = LJ LK ; andJ (resp.K) consists of those simple
roots such that the corresponding wall of3+

R containsσ (resp. meetsσ 0).
Let 3σ be the subgroup of3 spanned by all elements of3 ∩ σ ; this is a saturated

sublattice of3, that is, the quotient3/3σ is torsion-free. LetTσ ⊆ T be the intersection
of the kernels of all characters in3σ (or, equivalently, in3∩σ ); this is a central subtorus
of LK , with character group3/3σ . PutGσ = [LJ , LJ ]Tσ ; this is a connected reductive
subgroup ofLJ (denoted byHJ in [AB1]), with maximal torusTσ . Thus,Gσ is a normal
subgroup ofLI , and the quotientLI /Gσ is isomorphic toLK/Tσ . Now

(G × G)x = (Ru(PI ) × Ru(P
−

I ))(Gσ × Gσ ) diag(LK), (5.1.1)

up to conjugacy by an element ofT × T .
As a consequence, anyG × G-orbit in an affine reductive variety admits a homo-

geneous fibration over a product of two opposite flag manifolds, with fiber a connected
reductive group. Specifically, we have aG × G-equivariant morphism

(G × G)x → G/PI × G/P −

I (5.1.2)

with fiber
(LI × LI )/(Gσ × Gσ ) diagLK = LI /Gσ = LK/Tσ . (5.1.3)

HerePI × P −

I acts on this fiber via its quotientLI × LI acting onLI /Gσ by left and
right multiplication. Note thatLK/Tσ is a connected reductive group with weight lattice
3σ and root system8K .

It follows readily that

dimXσ = dim(G × G)x = |8 − 8J | + dimσ, (5.1.4)



Intersection cohomology of reductive varieties 477

and that the virtual Poincaré polynomial of(G × G)x (see Remark 4.4) is given by

P(G×G)x(t) = (t2
− 1)dimσ

( ∑
w∈W I

t2`(w)
)2( ∑

w∈WK

t2`(w)
)
. (5.1.5)

As another consequence of (5.1.1),X is an affine embedding of the quotient ofG by a
connected normal subgroup if and only ifI = 5, that is,σ is W -invariant. In particular,
affine embeddings ofG correspond toW -invariant cones with non-empty interior.

5.2. Following [AB2, Section 2], we defineprojectivereductive varieties and we sketch
how to deduce their main properties from the affine case.

Consider a projective irreducibleG × G-varietyX equipped with an ampleG × G-
linearized line bundleL. Let R =

⊕
∞

n=0 0(X, L⊗n); this is a graded, finitely generated
reduced algebra whereG × G acts. This defines an affine varietyX̃ whereGm × G × G

acts. Further, the action ofGm is attractive, and the corresponding link is nothing butX.
We say that the pair(X, L) is a linearized projectiveG × G-variety.

PutG̃ = Gm ×G; this is a connected reductive group with weight lattice3̃ = Z×3.
We may regardX̃ as aG̃ × G̃-variety, whereGm × Gm acts via its morphism(t1, t2) 7→

t1t
−1
2 to Gm. For anyx ∈ X with representativẽx ∈ X̃, we obtain readily an exact

sequence of isotropy groups:

1 → Gm → (G̃ × G̃)x̃ → (G × G)x → 1. (5.2.1)

We say thatX is reductive forG if X̃ is reductive forG̃; then (X, L) is called a
linearized reductive variety. These may be characterized as those linearized projective
G × G-varieties(X, L) that satisfy the following conditions:

(i) X is normal.
(ii) There existsx ∈ X, fixed by diagT , such that the orbit(B−

× B)x is dense inX,
and that diagT fixes the fiber ofL atx.

(iii) The isotropy group(G × G)x is connected.

Again, (iii) is equivalent to the assumption of connectivity of(B−
×B)x , or of (T ×T )x ;

and the set of allx ∈ X satisfying (ii) is a uniqueT × T -orbit: the orbit of base points, of
dimension equal to rkX.

Thus, projective reductive varieties are scs. Again, examples includeG×G-equivari-
ant embeddings of the quotient ofG by a connected normal subgroup.

Let σ ⊆ 3̃R = R × 3R be the cone associated tõX, and putδ = σ ∩ (1 × 3R).
Thenδ is a lattice polytope in3R, andσ is the cone overδ. Sinceσ is W -admissible,
δ satisfies the following conditions:

(i) The relative interiorδ0 meets3+

R.
(ii) The distinct translateswδ0 (w ∈ W ) are disjoint.

A lattice polytopeδ ⊂ 3R satisfying (i) and (ii) is called aW -admissible polytope. These
classify polarized reductive varieties; we denote by(Xδ, Lδ) the linearized reductive va-
riety with polytopeδ; then dimXδ = rk δ. The closure inX of the orbit of base points,
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equipped with the restriction ofL, is the linearized toric variety with polytopeδ. The
G × G-orbit closures inXδ are theXφ , whereφ ⊆ δ is aW -admissible face.

SinceNW (σ ) = NW (δ) andCW (σ ) = CW (δ), we obtain two subsetsJ = J (δ) ⊆

I = I (δ) ⊆ 5 satisfying the properties of the previous subsection. Now the description
(5.1.1) of the isotropy group(G × G)x carries over to this projective setting, with3σ

being replaced by the lattice3δ spanned by thedifferencesof any two elements of3 ∩ δ.
As a consequence, the description of orbits as fibered spaces carries over as well;

specifically, the analogues of (5.1.2), (5.1.3), (5.1.4) and (5.1.5) hold withσ being re-
placed byδ. Further, projective embeddings of a quotient ofG by a connected normal
subgroup (resp. ofG) correspond toW -invariant lattice polytopes (resp. with non-empty
interior).

5.3. We obtain a combinatorial description of slices and links in reductive varieties.
Consider aW -admissible polytopeδ ⊂ 3R, and aW -admissible faceϕ ⊆ δ. These
correspond to a linearized reductive variety(Xδ, Lδ) together with aG × G-orbit O =

Oϕ : the open orbit inXϕ ⊆ Xδ. We describe the local structure ofX alongO, by making
explicit the objects introduced in 3.2.

Let x be a base point ofO; then(B−
× B)x is open in(G × G)x = O. Further, it

follows from (5.1.1) that the normalizerP of (B−
× B)x in G × G equalsP −

J × PJ ,
whereJ = J (ϕ). Sincex is fixed by diagT , the Levi subgroupL of P equalsLJ × LJ .
Further, by [AB1, Lemma 2.8], the variety6 is an affine reductive variety forLJ ; one
readily checks that the correspondingWJ -admissible cone is generated by the differences
λ − µ, whereλ ∈ δ andµ ∈ ϕ.

Now by (5.1.1) again, we haveLx = Gϕ ×Gϕ . Note thatGϕ is a connected reductive
subgroup ofG, normalized byT ; further,Tϕ is a maximal torus ofGϕ , so that the weight
lattice ofGϕ equals3ϕ = 3/3ϕ . The set of simple roots ofGϕ is J = J (ϕ), with Weyl
groupWJ = CW (ϕ); we denote the latter byWϕ .

By [AB1, Lemma 4.1], the sliceSx is an affine reductive variety forGϕ . Denote its
Wϕ-admissible cone byσ = σϕ ; this cone is the image in3ϕ of the cone of6. So we may
regardσ as the normal cone toδ along its faceϕ. Note the equality rkSx = dimδ−dimϕ.

To describe the linkP(Sx), note first that the closed convex coneσ contains no line.
Thus, we may find a linear formf on 3R/3ϕ,R that takes positive values at all non-
zero points ofσ . We may assume, in addition, thatf takes integer values at all points
of 3/3ϕ , and is invariant under the normalizer ofσ in Wϕ . Then by [AB1, 3.2, 4.1],f
yields a positiveGϕ × Gϕ-invariant grading of the algebra of regular functions onSx .
In other words,f defines an attractiveGm-action onSx that commutes with the action
of Gϕ × Gϕ . Now P(Sx) is the reductive variety forGϕ associated with the polytope
σ ∩ (f = n), wheren is a suitable positive integer. We may regard this polytope as the
link of δ along its faceϕ; we have rkP(Sx) = dimδ − dimϕ − 1.

If Xδ is an embedding of a quotient ofG by a connected normal subgroup, thenδ is
W -invariant, so thatσϕ is invariant underWϕ . Thus,Sx is an embedding of a quotient of
Gϕ by a connected normal subgroup. So the class of embeddings of connected reductive
groups is stable under taking slices and, likewise, links.
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6. Examples

6.1. We begin with the case oftoric varieties, where the objects introduced in Section 5
take a very simple form.

Let X be a projective toric variety; letT be the corresponding torus, with character
group3. ThenX corresponds to a fan6, consisting of the normal cones to all faces of a
lattice polytopeδ ∈ 3R. (This polytope is not uniquely determined byX, but so are the
partially ordered set of its faces, and their directions.)

The T -orbits in X correspond to cones of6, that is, to faces ofδ. For any such
faceϕ, the isotropy group of the corresponding orbitO = Oϕ is a subtorusTϕ of T , the
intersection of all characters in the space3ϕ,R spanned by the differencesλ − µ, where
λ, µ ∈ ϕ.

Moreover,O admits an openT -invariant neighborhood inX, isomorphic to the prod-
uctO × Sϕ , whereSϕ is an affine toric variety forTϕ with a fixed pointxϕ . The cone
associated withSϕ is dual to the coneσϕ , image in3R/3ϕ,R of the cone generated by
the differencesλ − µ, whereλ ∈ δ, µ ∈ ϕ.

It follows thatSϕ is an attractive slice at any point ofO, and that the associated link
P(Sϕ) is a projective toric variety with polytope the link ofϕ in δ. Thexϕ , ϕ a face ofδ,
form a system of representatives of theT -orbits inX. (See e.g. [Fu, 1.4, 2.1].)

Now Theorem 1.1 yields the equalities

IPX(t) =

∑
ϕ

(t2
− 1)dimϕIPX,xϕ (t) (6.1.1)

(sum over all faces ofδ), and

IPX,xϕ (t) = IPSϕ ,xϕ
(t) = τ≤codimϕ−1((1 − t2)IPP(Sϕ)(t)). (6.1.2)

When expressed in terms of cones of6, (6.1.2) and (6.1.1) give back the main result
of [Fi]; see also [DeLo], [St1], [St2].

6.2. Next we describe orbits, slices and links inreductive varieties of rank1. Indeed,
the rank, rather than the dimension, measures how complicated a spherical variety is; and
spherical (resp. reductive) varieties of rank 0 are just flag manifoldsG/P (resp. products
of two opposite flag manifoldsG/PI × G/P −

I ).
By 5.2, a linearized reductive variety(X, L) of rank 1 corresponds to aW -admissible

line segmentδ = [λ, µ], whereλ, µ ∈ 3. We may assume thatλ is dominant; then it is
aW -admissible face, corresponding to a closedG × G-orbitO = Oλ. With the notation
of 5.2, we have3λ = 0, so thatTλ = T . Further,I (λ) = J (λ) is the set of simple roots
orthogonal toλ, so thatGλ = LI (λ) is the common Levi subgroup toPI (λ) andP −

I (λ).

Moreover,Oλ = G/PI (λ) × G/P −

I (λ). The corresponding slice is the affine reductive
variety forLI (λ) with cone the ray spanned byµ − λ. SetI (δ) = I (λ) ∩ I (µ); then the
corresponding link is the product

LI (λ)/PI (δ) ∩ LI (λ) × LI (λ)/P
−

I (δ) ∩ LI (λ)
∼= PI (λ)/PI (δ) × P −

I (λ)/P
−

I (δ).
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If µ is also dominant, thenX contains threeG × G-orbits: the open orbit, and the
closed orbits corresponding toλ andµ. The isotropy group of a base point of the open
orbitOδ equals(Ru(PI (δ)) × Ru(P

−

I (δ)))(Gδ × Gδ), whereGδ ⊂ LI (δ) is the connected

kernel of the characterµ − λ. Thus,Oδ fibers overG/PI (δ) × G/P −

I (δ) with fiberGm.
But if µ is not dominant, thenλ is the uniqueW -admissible proper face, so thatX

contains only two orbits. In that case,λ andµ are exchanged by a unique simple reflection
sα, whereα ∈ 5, so thatµ − λ is a non-zero multiple ofα. Moreover, the isotropy group
of a base point ofOδ equals(Ru(PI )×Ru(P

−

I ))(Gδ×Gδ) diagLα, whereI = I (δ)∩{α},
andGδ ⊂ LI (δ) is the connected kernel of the characterµ − λ (or of α). Thus,Oδ fibers
overG/PI (δ) × G/P −

I (δ) with fiberLα/ker(α)0, isomorphic to SL2 or PGL2.

6.3. Finally, as examples of reductive varieties of rank 2, we considerembeddings of
the groupGL(2). Let B, B− be the opposite Borel subgroups of upper, respectively lower
triangular matrices; thenT = B ∩ B− is the maximal torus of diagonal matrices. Via the
diagonal coefficients, the weight lattice3 identifies toZ2; then the unique simple root
is α = (1, −1), the unique non-trivial element of the Weyl group is the reflection with
respect to the diagonal ofR2, and the positive Weyl chamber consists of all points below
the diagonal.

Thus, projective embeddings of GL(2) correspond to lattice polygons inR2, symmet-
ric with respect to the diagonal. Further, orbit closures in such embeddings correspond to
the following four types ofW -admissible facesϕ:

(i) ϕ is an edge entirely below the diagonal. Then both setsJ (ϕ), K(ϕ) are empty, so
thatGϕ = Tϕ = T . The isotropy group of a base point of the orbitOϕ is the product
of U × U− with a torus of dimension 3. The corresponding slice is an affine line,
and the link is just a point.

(ii) ϕ is an edge, symmetric with respect to the diagonal. ThenJ (ϕ) = ∅, K(ϕ) = {α},
andGϕ = Tϕ is a torus of dimension 1. The isotropy group ofOϕ is the product of
diag GL(2) with Tϕ × 1. Again, the slice is a line, and the link is a point.

(iii) ϕ is a vertex below the diagonal. ThenJ (ϕ) = K(ϕ) = ∅, Gϕ = Tϕ = T , and the
isotropy group ofOϕ is B × B−. So this orbit is isomorphic toP1

× P1. The slice is
an affine toric variety of dimension 2, so that the link isP1.

(iv) ϕ is a vertex on the diagonal. ThenJ (ϕ) = {α}, K(ϕ) = ∅, Tϕ = T , andGϕ =

GL(2). The isotropy group ofOϕ is the whole GL(2) × GL(2), so thatOϕ is a fixed
point. The slice is the affine embedding of GL(2) associated with the tangent cone
to δ at its vertexϕ. The corresponding link is a projective embedding of the quotient
of GL(2) by a non-trivial central torus, that is, of PGL(2). It follows that this link is
the projective spaceP3, the projectivization of the space of 2× 2 matrices.
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