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Abstract. Let © be a bounded domain of claé¥ in R and letK be a compact subset 6f2.
Assume tha; > (N + 1)/(N — 1) and denote by/x the maximal solution of-Au + u? = 0

in © which vanishes 0@ \ K. We obtain sharp upper and lower estimatestfgr in terms of
the Bessel capacit¢,/, ., and prove thalU is o-moderate. In addition we describe the precise
asymptotic behavior o/ at pointso € K, which depends on the “density” & ato, measured

in terms of the capacit¢'s/, -

1. Introduction

Let 2 ¢ RY be a bounded domain whose boundary is of ctagand letg > 1. If 1 is
a Radon measure an := 92, the problem

—Au+u?=0 InQ, u=p onxg, 1.1)

has a solution if and only ifc vanishes on sets @/, ,» capacity zero, which is equiv-

alent tou € W;””(E) (see[15]). The solution is unique and will be denoteduhy
Following Dynkin and KuznetsoV [7], a positive solutione C2(2) of the equation

—Au+u?=0 inQ 1.2)

is calledo-moderateif there exists an increasing sequence of positive Radon measures
wn on X such that the sequenge,, } converges tar. Similarly a measurg € (B,(X))+

(B, = space of regular Borel measures, not necessarily bounded) is cattextierataf

it is the limit of an increasing sequence of measures belongiiwg[t%fq"’(z). The space

of o-moderate measures will be denoted&i&(E). fl<qg<g.=WN+1/(N-121

a singleton has positiv€’,/, ,» capacity so that every bounded Borel measure is in

le/q’q(z). If ¢ > g, a singleton ha€,, ., capacity zero. The numbe is called
thecritical value of the exponerior (1.7)).
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A central question in the study df (1.2) is the behavior of solutions in the neighbor-
hood of boundary singularities. Indeed this pertains to the essence of the boundary value
problem [[T:1) which naturally includes singular boundary data. To make the notion of
singularity more precise we introduce the following notation. Let

Kq(0) = {K C 92 : K compactCs/, 4 (K) > O}.

For everyk e K,(92) we denote byUx the maximal solution of (I]2) which vanishes
outsideK . It is known thatUg is not the trivial solution. Let: be a positive solution of
(L.2). If there exists a st € K, (92) such thal/x < u we say that is singularon K.

In the subcritical case, there exists a minimal singularity from which all other sin-
gularities can be constructed, namely, the point singularity. The asymptotic behavior of
solutions at a point singularity on the boundary was investigated by Gmira @mh\Q].
Several years later, these estimates constituted one of the main ingredients in the study of
the general boundary value problgm {1.1) in the subcritical case (see Marcugend V
[12] and [13]). In the later work it was shown that every positive solution has a boundary
trace in(B, (X)), and conversely, for every positive € B,(X) there exists a unique
solution of the equation whose boundary tracg idn the special caseg = N = 2 this
result was previously established by Le Galll[11] by probabilistic methods.

In the supercritical case, such a minimal singularity does not exist, and this makes the
situation enormously more complicated. In order to relate singular solutions to boundary
singular sets, let us consider the c&se- B1(0). We say that two set&, K> € K;(9€2)
areq-relatedif there exists a rotatioff’ such thatl (K1) N K, € K, (9€2). Equivalently,
the singular solution#/x,, Uk, areg-relatedif there exists a rotatioll and a positive
solutionu such thate < min(Ur k), Uk,)-

The characterization of the boundary data and its interpretation, i.e. the sense in which
the boundary data is attained, is another problem whose treatment is more complicated in
the supercritical case. The spad® ). is no longer sufficient in this case. Although it is
still true that problem(Z]1) has a solution for evere (5, (X)) 4+, uniqueness fails. This
fact was observed by Le Gall in 1997. Following this observation Dynkin and Kuznetsov
[7] introduced the class af-moderate solutions and showed that, in this class, problem
(1.3) has a unique solution. In a remarkable paper, Msélati [17] proved that=if2,
all solutions arer-moderate. A related result, applying to arbitragry>- 1, was recently
established by Marcus andevon [16]:For every compact set’ € £, (92) the maximal
solutionUg is o-moderate.

Inthe case = 2 this result was previously established by Mselati, in the paper quoted
above, and played a key role in the derivation of his main result. His proof used mainly
probabilistic techniques and in particular the notion of Brownian snake introduced by Le
Gall. Our proof employs purely analytic methods. (The proof was sketchédlin [16] and
it is given in detail in the present paper.) Following this, Dynkih [3]-[5] announced the
extension of Mselati’'s main result to the range<lg < 2 by employing probabilistic
methods developed in joint work with Kuznetsov (see [8] and references therein) and the
above mentioned result df [16]. He also provided an alternative, probabilistic proof of
the latter result which, however, applies only to the range ¢ < 2. These results are
presented in a forthcoming bodK [6].
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We turn to the description of our main results. The first of these prodteges-
timates, from above and below, for maximal solutidng of (1.3). Besided/x we also
consider the solutionk defined as the supremum of all solutions[of]1.2) whose bound-
ary trace is a bounded measure supportell iThis is in fact the maximakr-moderate
solution vanishing od 2 \ K.

Theorem 1.1. Letg > g. and K € IC;(92). Then there exist positive constanis c»
depending only og, N and<2 such that the following inequalities hold for every Q:

Uk (x) < c1p(x)px (x) 2@y, (K px (1)), (1.3)

o0
Uk() 2 ug () 2 c20@) Y 29V Cop g K@) /). (1.4)
m=—L(2)

wheref(2) is a number which depends only diam<2 and

p(x) :=dist(x, 0Q), pg(x) = dist(x, K),
Kn(x) :={y € K rps1 < Ix —y| < rm}, rm=2" Vm €.
It is easy to see thdt (1.3) implies

o0
Uk() <c3p@) Y 1 9V Cop g (K) /1) (1.5)
m=—0()
Therefore the inequalities are sharp. In the ease2, (1.3) was obtained by Mselali [17]
employing a mixture of analytic and probabilistic techniques which apply only to this
case. Our proof, which is purely analytic, is based mainly on two techniques. The first in-
volves a linear lifting fromC (8Q2) to C%1($2), somewhat similar to the lifting introduced
by the authors in [15]. Using this lifting we obtain awtegral capacitary estimate from
above. The second technique involves an (apparently) new estimate for Poisson kernels
(see Appendix C) and is used in order to pass from this integral estimate to the pointwise
estimate[(1]3). The lower estimate obtained by Mselali [17]g4fes 2, was expressed
in probabilistic terms and it is not directly comparable[to](1.4). In the case of solutions
with interior singularities, i.e. singularities in the domaily capacitary estimates were
obtained by Labutin [10] for aly > N/(N — 2), the latter being the critical value of the
exponent for the equationAu +u? = . Those estimates are sharpfor= N/(N —2),
but not in the critical case. Our proof of the lower estimgie](1.4) is inspired by some of
the techniques of [10].
Next we present several applications of Theofer 1.1. As a first application we derive
the identity
UK =ugK, (1.6)
which shows thal/x is o-moderate.
The second application is an estimatdlgf (x) asx € 2 tends (non-tangentially) to
a pointoe € K. Here the behavior dfx depends on the “capacitary distribution” &fin
the neighborhood of , which we define by

1
Ox(t; o) = Cg/q,q/<;(K N B,(cr))), O<t<1l
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Now, for everya > 1, we have

1
i/ 121D, (1 ) 4 < UKD
cla) Jy

t 7 |x—o]

1
< c(a)/ 17 172/@Dgp (15 0)) ? +01) @.7)

forall x € Qwiths = |x — 0| < ap(x). The constant(a) depends only on, ¢, N, Q.
Evidently these too are sharp estimates. Further we show tKaisi{2/q, ¢’)-thick ato
(for the definition of this term se&][1] or Section 4 below) then

1
dt
/ t—l—2/(q—1)9K(t; O—) T = 00. (18)
0

Therefore at such a point
Uk(x)/|x —o| - oo asx — o non-tangentially.

Itis known thatK is (2/q, q’)-thick everywhere irK , with the possible exception of a set
of Cy/,.4-Capacity zero (or briefly2/q, ¢')-a.e. inK). For everya € [0, 1+ 2/(q — 1))
andog € 92 one can construct a s&t € I, (9€2) such thabk (¢; og) =~ 1*. For suchk,
(1.8) holds abp and we have

Uk (x) ~ |x —0p|*"%4=Y  asx — o¢ non-tangentially

Thus Ux (x) may remain bounded or blow up at any rate not larger t&h¢—1 asx
tends non-tangentially to a point whefe (1.8) holds.

On the other hand, we show that at ev&yq, ¢’)-thick point of K, U blows up in
an integral sense, at the maximal rate. More precisely we prove:

If K is (2/q, ¢)-thick ato then

1
/ Uk (T(1)? Y dt = oo (1.9)
0

for every curvel’ € Lip([0, 1], @ U {o}) such thatl'(0) = o and0 < |[I'(t) — o] <
ap(y(t)) for somea > 1 and every € (0, 1].

Incidentally, this fact and the previous remarks imply thaf|(1.8) may hold at a point
whereK is not(2/q, ¢")-thick.

The plan of the paper is as follows: Section 2 is devoted to the proof of the upper
estimate[(1]3). In Section 3 we present the proof of the lower estifnale (1.4). Section 4
is devoted to the proof of (I].6), (1.7], (1.9) and related results. In Appendix A and B
we derive some elementary estimates involving capacity which are used throughout the
paper. Appendix C is devoted to an estimate of Poisson kernels which is used in Section 2.
This estimate may be of interest in itself.

2. Boundary singularities: estimates from above

We start with some basic notatior&,,, (0 < «, 1 < p < oo) denotes Bessel capacity
in RV—1 or alternatively on a smooth manifold such®s= 9. If A ¢ = thenCy, ,(A)
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denotes the capacity of relative tox and, ify > 0, Cy,,(y A) denotes the capacity of
y A relative toy . Further, for any seE ¢ RN andg > 0, we write

pe(x) :=distx, E), (E)? :={x eR" : pp(x) < B). (2.1)
For any domainD andgs, B2 > 0, we define

. pap(x) fxeD,
= 2.2
fp(x) —pap(x) if x € DY, (22)

and
Dp,p, :={x € RV : B1 < pp(x) < B2}, Dp:=Dog, Dj:=D_pp. (2.3)

SinceX = 9Q is a closed, compact manifold of clags$ there exists a positive number
B'(2) (resppe(2)) such that for every in the closure o2 (resp.Qge) there exists a
unique pointoyg (x) € X for which |x — og(x)| = px (x). Furthermore the mapping

M:Q g g — (= B)x T givenby Mx) = (pa@),o5x) (2.4

is aC? diffeomorphism. We seo(2) := min(8' (), B(2)). For everyx € Q_ge gi,
denote byg(x) the outward unit normal (with respect®) atos (x). Clearlyvg € CL.
To simplify the notation, we drop the subscriptdg andoy.

If EC ¥ anda > 1, put

CS(E)={x € Q:pp(x) <apx)) (2.5)

andC (&) := CX(E) if E = {£} is a singleton.

Throughout this paper denotes a positive constant which depends only aN, Q
and the choice offy. The value of the constant may change from one occurrence to
another. The notatioX ~ Y means(1/c)X < Y < c¢X for some constant. If this
constant depends on an additional parameterasaye write X 2y, Finally, we shall
assume, without further mention, that> ¢. = (N + 1)/(N — 1) andK is a compact
subset ofx.

Our upper estimate is presented in the following theorem.

Theorem 2.1. Letu be a positive solution ¢ff.3)which vanishes o © := ¥\ K. Then
there exists a constanf independent af and K, such that

u(x) < cp()pg (x) AV, (K pk (1)) (2.6)
for everyx € Q.
Remark. Foré € RYN andr > 0 put

K —-¢& K r-1

[K/r]e i=

ClearlyCo/q. o ([K/rle) = C2/q,4/ (K /7).

E.

r



488 Moshe Marcus, Laurent&on

A key element in the proof of the theorem is a lifting franid$2) into C (2)NC%1(Q)
which is a modification of the lifting used ih [15]. It is defined as follows.

Definition 2.2. Letn € C%(X) and letH, be the solution of the initial value problem

oH .
— =AzH inR;xZXx,
H@O,-)=n() inX.
Lety be the solution of the problem
—Ap=1 InQ, ¢=0 onoR.

LetR = R, be the lifting given by

H, 2, Vx € Qg
Ry(x) = n(@(x)%, 0(x)) Vx € Qp, 2.8)
Vy Vx € Q\ Qg
whereV,, is the harmonic function i} such that
Vp(x) = Hn((p(x)z, o(x)) Vx e Xg,.
We observe that the lifting is positive and satisfies
Ri_,=1-R,. (2.9)

If n € CY(Z) thenR, € COL(Q).
The first step in the proof of the theorem is the following integral estimate.

Lemma 2.3. Let K andu be as in the statement of the theorem. Assumedihat X <
B1 = Po(R2)/4 and letxg be a point o2 such thatk C Bg, (xo). Letn e C2(32) be
a function such that

O<n<1l 1= 0 inaneighborhood4, of K, A, C Bg, (xo), (2.10)
-7 1 in 9Q\ Bag, (x0).
Put¢ := goR,?"/. Then
/;Z(qu){—u)RTZ)q’ dx <c|1- )7||3Vz/q)q,(z), (2.11)

wherec depends only og, N, @ and the choice of.
Proof. If F € C(Q) N C?(Q\ Zg,) put
AF =, AF + xoy AF,  VF =y, VF + xg, VF,

e __ i__
F® =xqu F, F —XQ;SOF,
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wherey g denotes the characteristic function of the BeNote thatR; (resp.Rg) can be

extended as a function i6i*(Qg,) (resp.Cl(Q}}O)).
We observe that

/ (—uA¢ +ult)dx = / (;a—“ - ua§ )ds, (2.12)
289 gy

v av

wherev is the unit normal orEg, pointing outward with respect Qg,. This is verified
in the same way as in [15, Thm. 3.3] (see proof of (3.11) there). In addition

/ (—uAg‘+u"§)dx:—f ({%—uai_)dS. (2.13)
Q;SO 250 av av
Hence )
/(—uAg +ul)dx = —/ u(ag_ — ai> ds. (2.14)
Q Zﬂo av av

By a straightforward computation
Af =— R 4+ gARY +2Vy - VRY
=— R¥ +2¢'gR¥ *AR, + 2q'(2q' — D)pR¥ ~2|VR,|?
+4q'R% Vg . VR,
Therefore, by[(2.74),

2’ / 2/ —2 9ce 9¢!
(R u+ul¢)dx =2q uRy " °Gydx — u ——=—)dS (2.15)
Q Q S0

av av
where 5 ~ ~
Gy = ¢R,AR, + (2q' — 1)(p|VR,7|2 +2R,V¢ - VR,.
Further we obtain

S SPL LA L 1 OR;
= _TR% 'gRM 11 > _ T p%4-1 'gR2 11
op ~aptn TAeR) T r =k T e Ry e
and hence 4 )
ace  ag! s oog—1( |98 IRy
— = | <24'gR% —1 4 |=2]).
‘aa v | = 1% P D
Put
M, = @Y7 (VR 2+ |AR,|) + ¢ Y4|Vg - VR 2.16
n==9 n n % 4 nls (2.16)
, (| R dR!
N o= ¥ (|25 (8 2.17
=9 < D a7 (2.17)
Since O< R, < litfollows that
ace  act
Gyl < 2¢' Y M,, — —| <2¢'¢YiN,.
| r)l_ q ¢ n oY EYS <2q¢ n
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Hence

/QMR,ZI‘I/_2|G,,|dx < Zq’/gué‘l/qM,,dx

1/q , 1/q'
< 2q/<f qudx) (/ MY dx) ,
Q Q

ace  act
/ u| & —i)ngzq’/ ucYIN, dS
Zﬁo v ov 2!“0

1/q , 1q’
cai( [ weas)" ([ wias)"
Bo Fo

Next we show that

wie ds < c/ (R2'w + u¢) dx.
250 Q

In view of the Keller—Osserman inequality
/ ult dS < c1(Bo) u¢ds.
EﬁO Eﬁo
Let ¢’ be the solution of
—A¢'=1 inQy, ¢'=0 onZg =03Q.

Put

c2(Bo) = max|oy e,  c3(Bo) = Maxe,
ZﬁO Q}}O

whered,y denotes the derivative in the direction of the outward normatgn

Then

f u+ulepHdx = —/ udye' ds
%, o

c2(Bo)
ds
Z c2(fo) /2,30” = caho) I,

ut ds.

Let w denote the characteristic function Bf\ Bog, (xo) and put
ca(o) = inf R2Y.
2
0

By (2.10),n > w; hence
R¥' > cq(Bo)  Vx € .

Using this inequality and the fact that < ¢ we obtain

/ (w+uleydx < (u+u‘1¢))R$‘1/dx.
Q/

o c4(Bo) @

=99/

(2.18)

(2.19)

(2.20)

(2.21)

Bo*

(2.22)

(2.23)

(2.24)
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Inequalities[(2.21)}£(2.24) imply (2.20). Further (3.15)—(2.20) imply

/(u +ulp)R¥ dx < c(/ M dx + N,;f’ds>. (2.25)
Q Q

2/30
Putn* = 1 — 5 and note that

My =My, N,=Ny.
We turn to the estimate of the terms on the right hand side of|(2.25). By [15, Lemma 1.2],

Y4 | ARy ) + ¢ Y9|Vep - VR (2.26)

*
n*“lL!{/(QﬂO) =<clin ”WZ/‘{*"/(Z)‘

In order to estimate the norm @f/4'(|VR,<|2 in L7 (Q4,) we proceed as in the proof of
[15, Th. 3.3] (see (3.24) and the argument following it). First we obtain

/ @IV R |% dx
Qﬁo

=L

wherepg = sup,cx ©%(Bo, 0), and then, estimating the terms on the right hand side by
employing interpolation inequalities, we obtain

/| O Hy (p o) |?

+ |Vo Hy (p, a)|2¢> dpdo, (2.27)

f OV R dx < c|y* ||W2/M . (2.28)
2,
Inequalities[(2.26) andl (2.28) yield

”Mr]*”Lq’(Qﬁo) =< C||7)*||W2/q,q’(g)- (229)

Next we estimate the norm a@f in L4’ (Q’ ) Recall that, in®?/ o Ryr = Vi (see Defi-
nition[2.2); sinceV,« is harmonic,

My = g4 |V V2 + 7YV - Ve,
< c(VVp P+ [VVie])  in Q. (2.30)
SinceH, is a solution of[(2.]7) it follows that, for every € (0, Bo),
I Hyp«llc2 g, po1xx) = BNl 1o (5:)-
Let v be the function given by
v(x) = H,,*(gp(x)z, o(x)) Vxe 8_2,30.

Then
||v||CZ(QﬁO\Q/3) = C/(,B)||77*||Lq’():)~ (2.31)
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SinceV,- is the Poisson potential of 5, in £2j , it follows that

[ Vip ||c1(§2%0) < BNl o' (5y- (2.32)

Therefore, in view of[(2.30) anfl (Z110),

1Myl oy ) = ™o (z)- (2.33)
By (2.29) and[(2.33),

M1l Lo ) < €l lyzaa z)- (2.34)
Sincev = R!., V;+ = R,., (231) and[(2.32) imply

IINn*IILq/(ZﬂO) <cln®ll e s (2.35)
Finally, (2.34),[(2.3p) and (2.25) implfy (2]11). |

At this point we need some additional notationsVlis an open set iiR? we denote by
C(Xp(K) the C,, ,-capacity of a compact sé&f C V relative toV, i.e., relative to test
functions with compact support ivi. It is known that

Cy ,(K) = rd=ercy’"(K/r) VK CV, K compact (2.36)

Furthermore, for every positive, there exists a constarg such that, for every compact
setK C V which satisfies disik, V) > 0,

Ca.p(K) < C}) ,(K) < cgCo.p(K). (2.37)

If V is arelatively open subset &f, F is a compact subset 6f andC,, , denotes capacity
on X then

cY (K)~rVN=ierc (K /r) YK C F, K compact (2.38)
and [2.3) remains valid. Finally, for every € X, we define
[s(x0) := By(x0) N X, Dy (x0) := 2\ By(xo). (2.39)

Lemma 2.4. Let K andu be as in the statement of the theorem. Assumedihat X <
y < B and letxg € ¥ be a point such thak C I'), (xo). Then there exists a constant
depending only op, N,  and the choice ofp, such that

/ Wlg+uydx < ey Dy, (K/y) (2.40)
D3y(XO)

wherey is as in Definitior2.2

Proof. Letn € C%(3Q) be a function such that

0 inaneighborhood, of K, A, C B, (x0),

. (2.41)
1 indQ\ By (x0).

0<n=<1 nz{

By Lemm4 2.8 inequality (2.11) holds.
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If w,, denotes the characteristic function®f\ I', then
R, > R,,.
In addition there existgy > 0, depending only o& and g, such that

inf R, >c 2.42
D3, (x0) wy 0 ( )

for everyy € (0, Bo/4) and every € . This follows in a straightforward manner from
Definition[2.2. Consequently, if satisfies[(2.41),

R, > ¢ in D3y, (xg). (2.43)
This fact and[(2.111) imply that

ulp+uydx <cl|ll—nle, , . (2.44)
/Q\Bsy (x0) welea (x)
Taking the infimum over all such functiomswe obtain

/ Wi +u)dx < cczr/ZV(x,O)(K).
q.9
D3y (x0)

By (2.37) and[(2.38),

I"2y (x0) ~ ., N=1-2/(qg—1) ~T2(x0) N—1-2/(q—1

Copr 7 (K) o yN T2 D 250 (K fy) < ey V20 0 (K /).
The last two inequalities imply (2.40). O

Lemma 2.5. Let K andu be as in the statement of the theorem. Bickuch thatdiam K
< ¥y < Po/l16. Letxo € X be a point such thak C T'3,/2(xp). Then there exists a
constantc, depending only og, N, Q and the choice 0fp, such that

/ updS < cyN 240y, (K /y). (2.45)
2N Bay (x0)
Proof. Put
1 N-2 .
2(1— i NZ) if N >3,
he(ixg) =N~ g I = ol (2.46)
_ if N =2,
|x — xol
and
Vr(x;x0) = () (x;x0) Vx € Q, (2.47)

whered(Q2) = diam and¢ is the eigenfunction corresponding to the first eigenvalue of
—A in €, normalized so that mak = 1. Assumingr < Bo/4, we get

/ uly, dx = / uAYy dx — / udny dSs, (2.48)
Dz (x0) Dz (x0) QN3 Bz (x0)

whered,, denotes the directional derivative in the direction of the outward unit normal on
D+ (x0). Note that

—n¥e(x) = p()/T = cp(x)/T  Vx € 2N 3B (x0). (2.49)
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N-2 _ \V/
gy + 2 xO’N¢(x)> itN > 2
Ve = bl — 0, V0 (2:50
—Aiph, — 22— I X0 YOV it N =2,
lx — xof® |x — xo0|?
We claim that there exists a consta&if2) > 0 such that
— \Y%
inf £V Lo (2.51)
xeQ  |x — xp|?
X0EX

Since|Ve (x) — Vo (x0)|/|x — xo| is bounded it is sufficient to verify that there exists a
constant such that
(x —x0. Vo(x0)) _

|x — xol?
forall xg € X andx € Q. PutR = /2 and

I(x, xp) := (2.52)

_ X —Xg
|x —xol =r, Xo=x0+v(x0)R, Z=COS<| |,V(xo)>-
X —XxQ

(Recall thatv(xg) denotes the outward unit normal & at xo.) Then the ballBg (xo)
lies outside2 and touched 2 only at the pointx.
For everyx € €,
R? < |x —x0l?=r®+ R? - 2rRz.

Hencez < r/2R. SinceVe (xp) = —| Ve (x0)|v(xp) this implies [2.5R) with

c= iinflV(l)(x )|
~Bo = o

Thus [2.5]) is verified. Using (2.52) we also obtain,fo¢ D- (xo),

Tp(x)  TV(x0) - (x — X0)
lx —xol® lx — xol®

+0) = I(x,x0)+ O0(1) = —cy, (2.53)

wherec; is a constant depending only dhand<.
Note that sup_ (xo) 1= (-5 X0) is bounded by a constant independent of xo. (Recall

that 0< t < Bo/4.) Therefore [(2.50)[ (2.51) and (2153) imply
Ay > —A in D;(xp), (2.54)

whereA is a constant depending only ahand2. By (2.48), (2.4P) and (2.54),

A
f wip+u)ydx > — updsS (2.55)
D+ (xp) T JQN3B; (xo)

for everyz € (0, Bo/4) andxo € X. Finally, (2.40) and (2.55) imply (2.45). o

Remark. The constant in inequality (Z.45) is independenjdfut depends ofe. How-
ever the inequality is invariant with respect to dilation:C¥f and K are replaced by
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QF = k(2 — x0) and K* = «(K — xp) respectively, ther[ (2.45) remains validth
the same constaiat To simplify the notation assume thai = 0. If U is a solution of our
equation in2“ which vanishes 0aQ* \ K* thenu(x) = k%@~ U (xx) is a solution in
Q which vanishes 0d2 \ K. Therefore[(2.45) holds with respectitand we obtain

(2D / Uex)p(x) dS() < ey 24Dy (K /7).
£Nd B, (0)
Puté := kx. Thenpyar (§) = kp(x) and we obtain
/ U (&) pyax (£) dS(E) < cley)N =214V 0y, (KX [(kp)).
Q¥Nd B3y (0)

Lemma 2.6. Let K, u be as in the statement of the theorem. Then there exists
y0(€2) < 10384 such that the following statement holds.

Assume thatliam(K) < y < yo. Then there exists a constantdepending only on
g, N, € and the choice 0Bp, such that

/ updx < cy™™ 24Dy, (K /y) (2.56)
Dgy, /2,5, (x0)

for everys € [0, y/4) andxg € X5 such thatk C I'sy4(xo). Here
D,,(x0) i={x € Q:r < |x —xo| <r'}.
Proof. If z =(z1,0,...,0) with0 < z; < 1 then
{xeRY :17/4 < |x —z| <5} C {x e RY : 4 < |x| < 6).
Therefore, ag2 is bounded of clas6?,
xeQ:9/2<|x—xol <by}C{xeQ: 4y <|x —oxg)| < 7Ty} (2.57)

for everyxg € s, provided that O< § < y < yg andyy is sufficiently small. The value
of ¥ depends only on th€2 “norm” of 3.
By Lemmd 2.5, ifK C I'z,/2(0 (x0)),
| updS = cyNHICy, (K f).
2N9 Bay (o (x0))

The assumptions of the present lemma imply that the above conditigh isrsatisfied.
Hence,

/ upds < cyN V¢, (K /y) (2.58)
QN3 By (o (x0))

for everyr € [4, 7], with ¢ independent of. Integrating over we obtain
/ updx < cy1+N72/(‘171)C2/q,q/(K/y). (2.59)
Day 7y (0 (x0))

This inequality and (2.37) imply (2.56). O
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Proof of Theorem Z]1Let y0(Q2) andm(2) be as in Lemm@ 2|6 and Theor¢m[C.1 re-
spectively. Assume that diaki < 6 := min(yp, Bo/40m) and picky € (diamK, 6). Let
xo € Q be a point such that

paq(x0) = pk (x0) =8 =y /4 (2.60)

ThenK C Bsy4(x0) and Lemma 26 applies, so that inequality (2.56) holds.
Denote byP;° the Poisson kernel db, (xo). Sinceu is subharmonic,

u(x) <v(x) = / Pr(x, y)u(y)dS(y) (2.61)

yeQ:|y—xo|l=t

for everyt > 5y /4. Assume, as we may, that(©2) > 20. Then
7 €[9y/2,57] = t < min(Bo/8m, msf). (2.62)

Assuming thatr satisfies this condition, it follows, by Theorém {.1, that there exists a
constant, independent of andxg, such that

PG, y) < 22D (2.63)
tlx — y|V
in the set

Eq(t,x0) = {(x,y) € 2 x Q |y —xo|l =7, |x — xo| > 4t}. (2.64)

Note that, in this sefx — y| & |x — xg|. Therefore, ifix — xg| > 41,

p(x)
u(@) < e—29__ / () dS(). (2.65)
T|x — xol yeQ: |y—xol=1

This inequality holds for every € [9y/2, 5y] andx € Dy, (xg). Therefore, integrating
overt in this interval yields

(x)
u(x)y < cp—Nf p(Mu(y)dy (2.66)
Ylx — xol Dgy 2,5, (x0)
for everyx € Do, (x0), y € (diamK, 6) andxg satisfying [2.6D). Hence, by (256),
(x) —2/(g—
Uy < ey WN-2aDe, (K y) (2.67)
Y |x — xol
and consequently
u(x) < cp(x)y FHUDC, ) (K /), (2.68)

for everyx € Q andy e (diamK, #) such thatog (x) > 25y. This inequality and
Lemma B.2 imply that

u(€) = cCzq,4(K/0) = cCoq,4(K/Po) V& € pk(§) = fo.

By the maximum principle, applied iD/f’fO ={x € Q: pg(x) > Bo},

u(§) < cCaqq(K/Po) VE € Df,
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and by Lemma B.2,
C2/q.4(K/B0) < cCo/y,4(K/d(RQ)) < cCpq. o (K/a) Va € (0,d(2)),

whered(2) := diam$2. Consequently[(2]6) holds for evefye DIIS‘O.
Next we show that, for every compact gétC X and every integet > d(£2)/209,
(2-9) holds (with a constant depending:@rfor all points¢ € Q such that

diamQ

diamkK < pg (). (2.69)
There is anumbelf,, such that 2 can be covered by, balls of diametePiS‘T;,“lQ diamKk.
Consequentlyk = Uffll K., wherek,, is compact and
diamkK,, <0, m=1 ..., M,.
Furthermore, it satisfies[(2.69),
20diamK,, < pk,, (§), m=1,..., M,.
Hence
Uk, ) < cpE)pk, ) 29D Coy 4 (K /pr, (§)),  m=1,.... M.
Howeveru < an@l Uk, andpg (§) < pk,, (). Therefore
u(®) < cMayp(D)px ) TVCopy 1 (K / pi (€)).

Thus [2.6) holds, with a constantdepending om, for every¢ e Q satisfying [2.6P).
Finally we show thaf(Z]6) holds for evegye Q2 such that

%diamK > pg (&). (2.70)
Let& be such a point and pdt= %pK (&). Let
Fi(§) ={xeK 271 < |x —& < 2/8).
LetJ (&) =maxj e N: Cy/y o (Fj) # 0}. Then

J
K=|JF®. damF <2/*s<4pp ).
j=1

Consequently,

UF; (&) < cp(&)pr; &) DCop 4 (Fj/ p; (£)), (2.71)

with ¢ independent ofi. By [1] (see Remark below), taking into account the fact that
pr,(§) = 2/-15 it follows that

Co/q.q (Fi/pF; () < Cosg.q (Fj/20718) < c27U-DWN=1=2/a= ey (1 /5).
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Therefore, by[(2.11),

J
u(@) <Y Ur ()
s

J

J
<cp(§) Z 2_(‘/_l)(1+2/(q_1))5_1_2/(q_1)2_(‘j_l)(N_1_2/(q_l))Cz/q,q’(K/(S)
=1

&
< cp()s N Cyy (K /8) Y 27 UTIN
j=1

< co®)px &) HOVCy, (K /oK (E)). O

Remark. By the argument employed in the first part of the proof of [1, Thm. 5.2.1] (see
in particular inequality (5.2.3)),

Cog.qg (tE) < AtN712/@"D,,  (E)  Vre(0,1], (2.72)

for everyg > g. = (N + 1)/(N — 1) and every compact sé C 9<2, with the constant
A depending only o, N, Q2. (Recall that, foiy > ¢., 29'/qg = 2/(¢ —1) < N — 1)
In addition, for every positive number,

Ca/g.q(@E) < ACg/y 4(E)  Va € (0, 1], (2.73)

whereA depends only op, N, 92 andz. For the proof of this assertion see Lemma B.2.

3. Boundary singularities: estimates from below
Given a point € RY, a setk ¢ R" and an integen:, put

SuE) = eRY irpp1 <Ix —&l <rn), rm=2"",

(3.1)
Kn() == K NS§u(§).
In addition we define
ug = suplu, :p e WU (D), u(T\ K) =0} (3.2)

Theorem 3.1. Assume thay > ¢. = (N + 1)/(N — 1) and letK be a compact subset
of 3Q2. Then there exists a constant ¢(2, N, g), independent oK, such that

o0
ug (€ = cp® Y rmt P Cop (K () /) (33)
m=—L(2)
for every point € Q. Here¢(Q2) is an integer such that
diam$ < 2!® < 2 diam®.

Proof. Inequality [3.8) is invariant with respect to dilations. Therefore, without loss of
generality, we assume thgg = 1.
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It is sufficient to prove[(3]3) under the following additional conditions:
(i) diamkK < 1/8, (i) px(§) < 1/8. (3.4)

We verify this assertion in two steps.
First, assuming thaff (3.3) holds f& and¢ satisfying [[3.4), we show that it holds for
all & € Q. Put

QK = (x e Q:px(x) > 7). (3.5)

In Qf/s inequality [3-B) is equivalent to
ug (&) = cp(§)Coyq,4'(K). (3.6)

Clearly, forg € Qf/s, the right hand side of (3.3) is bounded aboverp¥)Co/, o (K)
so that[(3.p) implied (3]3). On the other hand,}(3.3) implies that for eéy@;@f/s,

3
ug € 2 cp® .t Vo g (Kin(€) /)

m=—L()
3
> cp(§) Z C2/q.g (Km(§)/1m) = cp(§)C2/q,4'(K). (3.7)
m=—{(Q)
By Theorem 2.]1,
ug (§) < c(0)p(§)Ca/q.q(K) V& € DY (3.8)

Therefore, setting = u?{l, we have
—Aug +nug =0 in QlK/l6’ (3.9

where sugf/ls Inl < c¢. By Hopf’'s lemma,—odhug (x) > O for everyx € 992 such that
pk (x) > 1/16. Therefore iry‘sz/8 ug/p > 0. By (3:1) and our assumption,

ug () ~ p(E)Co/q.q(K)  ONQNIQY 5.

Consequently, there exists a constardepending only orf2, ¢ such that[(3]6) holds
in QK.

1/8

Next we show that if[(3]3) holds fak such that diank < 1/8 then it holds for every
compact seK C 32. There exists a natural numbey such thatc can be covered byg
balls of diameter 116. Therefore every compact sétcan be written as a unier;?il F;
of compact sets, each of which has diameter smaller thi@nSince

1 &
Ug = —Zupl
o3



500 Moshe Marcus, Laurent&on

we conclude that

no o0
uK@)zniop(s)Z S Y Co g (Fdm(©) /1)

i=1m=—(Q)
o0
>p®) Y w9V Co g (K@) 1m) (3.10)
m=—6(R)

for every¢ € Q.
Assume that dianfk < 1/8 and put

Ag = {x € Q: pg(x) <1/8}.
Then
diamAx <3/8, K C Bya(§), Ax C Bys(§) VE € Ag. (3.11)
Pick a pointxg € Agx and letQ = Q(xo) be a subdomain a® of classC? such that
QN Bag(xo) C Q(xo) C N Byya(xo).

By B.11),
Ag C Q(xo) C B7/8(§) V& € Ag. (3.12)

Letu% be defined as if (3.2) witfe replaced byQ (xo). Then

uf Sug,  papx) = ppa(x) Vx € Ag. (3.13)

The first assertion is obvious and the second is easily verified. Indeed, if it does not hold,
there existst’ € Ag such thatoyp(x') < pa(x’). Lety’ € 90 be a point such that
pao(x") = |x" — y'|. Theny’ ¢ 3 and thereforgy” — xo| > 1/2. On the other hand, by

(3:13),|x" — xo| < 3/8, so that
pag(x") = |y" — xol — |x" — xo| = 1/8.
This is impossible becauggq(x') < 1/8.
In the remaining part of the proof we establish the following:
Assertion 1. For every compact sk C Q2 andxg € Ag, if
diamkK < 1/8, (3.14)

then inequality(3-3) is valid in Q(xo) (as previously defined), withk replaced byu%
and with a constant independent&fand Q (xg).

First we verify that the assertion implies the statement of the theorem. Assumption
(3.14) implies thak C Biy/a(x0) andAx C Q. In view of (3.13), the assertion implies
that [3.3) holds im ¢ for every compact sek C 92 satisfying [[3.1#). Therefore, by the
first part of the proof, it implies the statement of the theorem.

Proof of Assertion 1. To simplify the notation we writ@® = Q(xp). By the first part of
the proof it is sufficient to show thdt (3.3) holds fore Ag. Let& be such a point and
denote byM = M (&) an integer such that

rm+1 < px(€) <rum.
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Put
Om@)=0N8u), m=0,....ME¢), Omui1=0NBr,, &)
By @.11). B.1D),

M+1

M
K = L_Jle@), 0= L_Jo O (&).

By translation we may locate the poiétat the origin. Therefore in what follows we
assume tha = 0 and writeQ,,, = 0,,(0), K,,, = K,,,(0), etc.

Letv,, € Wf/‘”’/(aﬂ) be a measure with support i,, and putv = >"¥_, v, and
ve = ev (for e > 0). Consider the problem

—Au+u?=0 inQ, u=v. onag. (3.15)

Letu be the (unique) solution of this problem andddie the harmonic function with the
same boundary data. Then< v so that

—Au+v?>0 inQ, u=v. 0nao.

Hence, by the maximum principle,

q
u(x)zf P(x,y)dve(y)—/ G(LZ)(/ P(z,y)dve(y)) dz, (3.16)
K 0 K

whereP andG denote the Poisson and Green kernel@irSincex vanishes o Q \ K,
u < u% in Q. (3.17)
From [3:16) we obtain

M M q
u(0) zerK P, y)dvm(w—e‘f/QG(o, z)(Z/K P(z,y>dvm<y>) dz

m=1 m=1

=elp —€ll,. (3.18)

Recall that or ¢; denote positive constants which may vary from one formula to another,
and which depend only o, N, Q. (In particular, the constants do not depend:griTo
simplify notation we writep’(x) = pao (x).

First we observe that

Px,y)~p x)|x—y|™ VxeQ, VyeK. (3.19)
Hence,
M M
B=Y [ PO 2 © Y 5 K, (3.20)
m=1 m m=1

In order to estimaté, from above we use the following well-known estimate of the Green
kernel:
p'(x)p'@)x —z|*7N

G(x,2) ~
R P T LR

Vx,z € Q. (3.21)
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As a consequence we find that, for every By, (),
G(0,2) < cp'(O)p' ) ™. (3.22)

Hence

M q
I = / G(o,z,)(Z/ P(z,y)dvm@)) dz
Q m=1 K
M+1 M q
Zf G(o,z)(Z/ P(z,y)dvm(y)> dz
j:() Qj Km

m=1

M+1

M q
<c'© ) " / (Z / P(z,y>dvm(y>) pl@dz.  (3.23)
j=0 Qj \;m=1YKnm

Up to this point the measures, have not been specified; we define them below. Set

1
Dy, = r__l(Q N By, ,(0) = (Q/rm-1) N B2(0), (3.24)
Fo = Kn/rm—1= (K/rm-1) N 51(0), (325)
F,:: = (K/rm—1) N B]_/g(O), m=1...,M. (3.26)

If w, is the capacitary measure &, relative to the capacit¢/, , on dD,, (see [,
Sec. 2.2]) we define,, as follows:

vm(A) =y (A ) (327)
for any Borel sed C K,,. By [, Thm. 2.2.7] ., is a positive measure W ~2/44(3 D,,)
supported inF,, and

C2/q,q’(Fm) = pm(Fm) = ”Mm”({,v_z/q_q(a[)m)‘ (3-28)
By (3.27) and[(3.28),
U (Kp) = r 724D (B = N4 ey (B, (3.29)
By (3.20) and[(3.29),
M
L=z @Y 2V Coy g (F). (3.30)
m=1

In addition we have the following inequality:

M M
—1-2/(g—1 ~1-2/(g-1
§ :rm—l /a )C2/q,q’(Fm) zc § :rm—l o )CZ/q,q’(Fnt)- (3.31)

m=1 m=1
For its proof see Appendix A.
In order to estimaté, we need the following result[15]: Ib is aC? bounded domain
then, for every measune € W~2/44(3 D),

IPp ()l L (D.pyp dx) 2 11l w-2/.0 (5 ) - (3.32)



Semilinear elliptic equations 503

In general, the constants involved in the relatierdepend ory, N and D. However, a
careful examination of the proof of Theorem 2.2[of|[15] shows that, for some families of
domains, the estimate is uniform. In particular we have:

Assertion 2. Leté € Agx and D, '= (Q/rm-1) N B2(§) for 1 < m < M(&). Then there
exists a constant, independent of andm, such that

-1
¢ rllw-21a.a < WPp, (O LDy, o dx) = ClITllw-2/0.0 (3.33)

for any measure ¢ WIZ/q’q(aDm) with suppr C F,,. Herep,, = psp,, -

We continue the proof of Assertion 1, using Assertion 2, whose proof is deferred to
the end of this section.

By 3:23).
M+1 M q
Rz @y iV [ (Y[ Pendnm) i@
j=0 Qi “m=1"Km

M+1 j+1 q
<cp' @) " / > ( / P(z,y>dvm(y>) p'(2)dz
j=0 ’ Qj Km

Jm=j—-1
M+1 Jj—2 q
+cp'(0) Zrﬂ(Zsup P(z,y)dvm(ym’(z)l/q) 151
j=0

m=12€S; JKn

M+1 M q

+cp/<0>Zr;N< > sup P(z,y>dvm<y)p/(z>1/q> M
j=0 m=j+22€Sj / Km

=cp' ()21 + 22+ I23) (3.34)

where we put,, = 0form < 1 orm > M. We proceed to estimate each of the three
terms on the right hand side of this inequality.

Estimateoffz1. Ifl<m<Mandj—1<m < j+1then

Qj/rm—l C D, (335a)
P(z,y) <X NPp,(Z.y) Yze Q, ¥y € Kn, (3.35b)

wherey’ := y/ry,—1,7 := z/rm—1 andc is independent of, m. The first relation follows
directly from the definition of the domains. To verify the second relation observe that

p'(z) = dist(z, §Q) = ryy_1distz’, 7,2 100) < dr_1pm ().
wherep,, = pyp,, . Consequently, for everye Q; andy € K,,,
/|7N

P(z,y) < c1p' @z = 3™V < cori Y pop, (N2 — ¥V < eart NPy, (2, y).
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Using [3.3%) and (3.27) we obtain

q
/ < f P(z,y>dvm<y)> p(2)dz
Q' Km

J

q
N— l 2 1
<c /D ( / rY N pp, &,y >dum(y’)) PN o () d?

- — q
ey 3 [ ([ P,y i) on a2

<erN A De,  (F). (3.36)
By (3.28), [3.3B) and (3.36),

M+1 J+1 q
121—2 /Q (/ P(z,y>dvm(y)> p'(2)dz

Jm=j-1

~1-2/(g-1
ECZ P Copg g (). (3.37)

m=1
Estimate ofl> . Herez € S;, y € K,, andm < j — 2. Thusp’(z) ~ rj, |y — z| & r,, and

P(z,y) =cp'@ly — 2™ < ey Vi

Hence,

M+1 j—2 q
L= Zr.‘N<Zsup P(ay)dvm(y)p/(z)l/‘f) M

J
j=3 m=1%€5j /K

M+1
=c Z (Z sup | P(z,y)dvu(y)p’ (z)l/‘1>

m= ]_ZES/ Km

— q
<c Z rJ.1+q( Z r,;Nvm(Km)) . (3.38)
j=3 m=1
Consequently, by (3.29),
M+1

— q
122<CZ 1+(1<Z ml 2/(q— 1)C2/q,q/(Fm))

M+1 -
1 —-1-2/(g—-1 q
<c)y +f1< Z 12/ >CZ/q,q/(F;;)) . (3.39)
j=3 m=1
Furthermore,
M+1

Z 1+q(z r e, () )) <ch‘1 2@V, J(F).  (3.40)
=
For the proof of this inequality see Appendix B.
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Estimate off> 3. Herez € S;, y € K, andm > j + 2. Thusp/'(z) ~ rj, |y — z| & r; and

Pz, y) <o @ly —zI™ <Crl N
Hence
M-2 M q
3= r,-‘N< > sup P(z,yuvm(y)p’(z)l/q) 11
j=0 m=j+2%€5
M-2 M q
=¢ < > sup P(z,y)dvm(y)p’(z)l/">
j=0 m:/+2Z€S/‘
2
CZ"( Z 1= NVm(Km)>
=O m=j
M721(N1) Y N—1-2/-1) q
<ed (Y T ey ) (3.41)
j=0 m=j+2
Put

2
0(r) = /(; N-2-2/(q— l)CZ/ (;(KﬂB,)) dt

By Lemmag B.]l and B|2 we obtain

M-2 M q
Y plav- 1)( 3 rﬁ_l_z/("_l)cz/q,q/(F;))
j=0 m=j+2
M-2 00
<cy rj.lfqW*l)e(rj)q < c/O =N Doy dr.  (3.42)
j=0

Further, by Hardy’s inequality,

o0 o0
/ t~IN=Dg)iar < c/ t~IN=29/ (1)1 4t
0 0

0 2 q
< c/o t—Zq/“I—l)cz/q,q/(;(K N Bt)) dt. (3.43)

Combining [3.4PR) with[(3.43) and applying once again Lemmap B.f arjd B.2 we obtain

2= N N-1-2/(g-1
Zr - )( D M0, (F ))
j=0 m=j+2

ANy, e < 30 ey, (. (348

m=1 m=1
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For the last inequality we used the fact taat, . (F,;) is bounded (se¢ (3.26)). By (3141)
and [34%),

M
—-1-2/(g—-1
ba<cY 9Py g (F). (3.45)

m=1

Combining [3:3#),[(3:37)[ (3:39], (340) and (3.45) we obtain

M
—1-2/(g—1
L<cY rn 7V, (F. (3.46)
m=1

Finally, by (3.18),[(3.30)[(3.31) an{ (3146),

M+1
u(0) > p'(0)(cre — c2¢?) > 1 12V o o (). (3.47)

m=0

Thus, choosing > 0 sufficiently small we obtain

M
1) = ¢o' 0 Y 1, 1V Cypy g (F). D (3.48)

m=1
Proof of Assertion 2.By translation we locate the origin at By an additional rotation
we locate the point0, ..., 0, p’(0)) ato (0) (= the nearest point to the origin @Q). By
the definition ofM = M (&),

2M71p/(0) < 271 pk (0) < 1/2. (3.49)

Therefore, in view of[(3.24) and the regularity®, if mo € N is sufficiently large (de-
pending only onQ) then, formg < M, the domaing,, with mg < m < M “approach”
the domainB»(0) N {x : xy < 2"~ 1p’(0)}. To make this statement more precise we need
some notation:

0! := B, (0)N{x:xy < 2" 1p'(0)}, (3.50)

Em i= 0Dy N ( ! 8Q>. (3.51)

"m—1

For everya > 0 there existsn, such that for everyd > m, and every integem ¢
[my, M], there exists an open neighborhddg of D,,, aC? diffeomorphisni;,, : U,, —
U,, and a numbed € (1, 1+ «), independent of:, such that

sup N Tulce,, <¢ sup 1T, ez < e (3.52a)
mg<m=<M Mo <m<M

d™ x| < | T ()] < dlxl, (3.52b)

E;,, =Ty(En) C{x:xy =am}, (3.52¢)

where
:O/(O)/d STrm-10m = P/(O)d-
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SinceF,, C E,, N S1(0) we have
F) i=Tn(Fy) C{x:xy =am, 1/4d < |x| <d/2}. (3.53)

Let L,, be the elliptic operator irD;, corresponding to the Laplacian ib,, by the

transformation7;,. Let 7,, denote the mapping induced Iy, on the space of Borel
measure9N (3 D,,) onto M D,,). Then T, maps W —2/2:4(3 D,,) continuously onto

W‘Z/‘M(aD;n) and has a continuous inverse. L@, (resp.Pp; ) denote the Poisson
kernel forA in D, (resp. inD},) and letPL" denote the Poisson kernel fbp, in D,,. If

m

T € W2/44(3D,,) andt := T, (1), then
i =P (3), ty =Pp, (¥) => ty = iim o Ty, (3.54)

and
sz; (%) ~ Ppy (7). (3.55)

The last relation follows from the equivalence of the Poisson kernels,fandA in Dy, .
In view of the uniform bounds off,,, this equivalence relation is uniform with respect to
m andg.
Put
B (0):={x € B.(0):xy <0}, B°:={xe B (0):xy=0}
Swi=(0,0,...,0,a,), A':=B;,(0), A®:=B;(0).

Then, by [(3.5R) and (3.49), assuming that @ < 1071,

Sw+AYc 02 c D), c 0¥ C S, + A2 (3.56)
By (3.53), .
Fl,=Tn(Fp) C Sy +BYC Sy +04", i=12 (3.57)
Hence, by[(3.56),
Pg La1(x,y) < Ppr (x,y) Vx €S+ Al (3.58a)
Pg . a2(x,y) = Pp (x,y) Vx €D, (3.58b)

for everyy € S,, + BY.

If T is a bounded Borel measure with supportip, let 7, := T,,(t) and denote by
7,; the measure omy = 0 given by (B) = 7, (B + S,) for every Borel seiB. Then,

in view of (3.57),

/ P i (x,y)dT(y) = /O Payi(x',y)dt*(y)) Vx e S,+ A, (3.59)
F BY

m

fori = 1,2 andx’ = x + S,. By (3:32), ift € W=2/9:9(3D,;,) and supp C F,,

. i=12 (3.60)
L, (AD)

||f*||w—2/q,q(aAi) ~ H/I;O Pui(-, y)dt*(y)
1
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Here for any open sa® c RY, LZW(O) denotes the weighted Lebesgue spateavith
weight distx, 00).
Combining [[3.58),[(3.59) anfl (3.60) we obtain
cillTliw-2a.4(s,+0a1) = Cl”T*”WfZ/q.q(aAl)

< 1P g oty < P, Dl oy = P2 a2

= 02||T*||W72/q»q(aA2) = c2lTllw-2/.4(s,,+942)- (3.61)

Obviously the constants depend only 4n For measures € W~2/4:4(3 D,,) with sup-
portin F,,

WEllw-2raa (s, 041y ~ 1T w-21a0 (5,189, ~ ITllw-2a(E,)

and, in view of [[3.5P), the equivalence relations hold with constants independent of

or &. Hence[(3.6[1) implieg (3.33). ]

4. A uniqueness result and asymptotic behavior of solutions

The inequalities established in the previous section are fundamental in the study of pos-
itive solutions of the equatiofi (3.2). In this section we present some of the first conse-
guences of these estimates. Further applications, including the full characterization of
such solutions in terms of their boundary trace will be presented in a follow-up paper.

Theorem 4.1. Let © be a bounded domain of clag® and K be a compact subset of
92. As in Sectior8 denote byt the maximab-moderate solution ofI.3) (see(3.2))
and byUg the maximal solution of this equation. ThER = ug.

Proof. By Theorenj 3.]1, for every poitt € ,
o0
ug ) = cp® Yt Vo (Kin(€) /), (4.1)
m=—t(Q)

with K, (§) as in[3:1). The constantdepends only o, N andg.
For every¢ € Q,

M
kK= |J Kn® M=ME =supmeZ: Kn® #0), (42)
m=—£(Q)
and consequently,
Uk(x) < Y Ug,ex) VYxeQ. (4.3)
m=—0()

To verify this inequality, keeg fixed and letV,, denote a relatively open neighborhood
of Ky (&) 0ondQ. PutV = 92\ Up__,q) Vm and

VE=ixeXp:ox)eVul, VP={xeZp:0) eV}
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for B € (0, Bo) and —£(R2) < m < M(&). Denote byv,f, andv? the solutions of the
boundary value problem

—Av+v9=0 inQ:g, v=ugxw ONnXg (4.4)

with W = V£ andw = v# respectively. Clearly lipovf = 0 and there exists a

sequencdp;} decreasing to zero such th{ax,’f{} converges to a solution,, of (I2) in
Q, for every integem e [—£(2), M (§)]. Furthermorey,, vanishes ord<2 \ V,, so that
U S uy, - In addition, for everys € (0, Bo),

so that
Ug< > wm< Y Up.
m=—~0() m=—L(2)
SinceUkg,, = inf,, cr Ur (F compact subsets @12), the last inequality implie$ (4.3).
By Theorenf 2.]1,
Uk,e)(x) < cps@(0)pm () 24D Copy 1 (K () /pm(x)) VX €Q,  (4.5)
wherep,, (x) = pk,, ) (x) andc is a constant depending only 6y N andq. Hence, by

@3,

M

Uk() <c Y poa®pn@) 20 DCo o (Kn(€)/pm(x)) Vx e Q. (4.6)
m=—L(2)

Sincep,, (§) € [rm+1, rm] it follows that (see Lemma B.2)
C2/q.q¢ (Kmn(&)/ om(§)) = C2/4,q' (Kin(§)/m)-
Therefore, by[(4]6)

M
Uk®) < cppa®) Y. ru 29V Copgqr (Kn(®)/1m). (4.7)
m=—L(2)

Recall thaté was an arbitrary point irf2. Inequalities[(4]1) and (4.7) imply that there
exists a constan® depending only og, N, Q such that

Ug(x) < Cug(x) VxeQ. (4.8)
Clearlyug < Ug. If the two solutions are not identical we have
ux) <Ux) VxeQ. (4.9

Leta =1/2C and putv = (1+ @)ug — aUg. Thenaug < v < ug. Asin[13] we find
thatv is a supersolution of (1} 2). Sinee:k is a subsolution it follows that there exists a
solutionw such thatvug < w < ug. If p is a positive bounded Borel measure am
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thenu,,, is the smallest solution which dominates the subsolutiop. Hence, ify is
supported ink, uq,, < w. Therefore

ug = SURugy : € M4(32)} < w.

This contradiction completes the proof. O

Theorem 4.2. For everya > 1 there exists a constantla) > 0, depending also on
g, N, 2, such that, for every € 92,

1 /30 1-2 1 = dt
—1-2/(¢—-1)
t C / K N B (o
c(a) /s 244 <t( 2 ))) t

B _
< c(a) f Oz—1—2/<‘1—1>cz/,,,q/<;1(1( N Bt(cr))) di +0(1) (4.10)

Uk (x)
|x — ol

IA

T
forall x € Qwiths = |x — 0| < ap(x). Note thatifo ¢ K then the integral is bounded.

Proof. The inequality is trivial forx such thato(x) > Bo. Therefore we assumeg(x) <
Bo. Leto € K. Itis sufficient to prove[(4.70) (with a constant depending only oN, 2)
forx = o—sv(0),0 < s < Bo. (Recall that (o) is the outward unit normal at.) Indeed,
once it is proved in this cas¢, (4]10) follows, by Harnack’s inequality, for arbiirary
such that = |x — o| < ap(x).

By (¢1), [4.7) and(3:31), if = 0 —sv(0),0< s < Bo,

M
—1-2/(q—1
Uk@ ~s Y s 9D Copy g (K () 7m)

m=—t(S)
M
—-1-2/(qg—-1 1
ID VR )Cz/q,q/<,,—<l< ﬂBrmﬂoc))), (4.11)
m=—t(Q) m

with M = M (x) as in [4.2). These relations together with Corol[ary] B.3 imply

diam 1 dt
Uk (x) ~ s/ 112@ ey, . <;(K n B,/z(x))> — (4.12)
2s

Finally, sinceB;_s(0) C B;(x) C B3zt—s)(0), a simple computation (using Lemma B.2)
yields [4.10) forx as above. o

Remark. By [1, Sec. 5.2] (see in particular Cor. 5.2.3 and the first part of the proof of
Thm. 5.2.1).

C2/q,q/(VE) ~ CVN_l_Z/(q_l)CZ/q,q/(E) vy > 0, if q > 4c,

. 4.13
C2/g.q (VE) < cyN~124"Vcy, (E) Vye(0,1), ifg=gq.. (4.13)

A setK is said to bg2/q, ¢’)-thickat a pointo € X if

Bo Co (K B (0)) 9-1 dt
. . /9.9 ! _
Jy(o; K) = /0 < N1 2/ D > T = 0. (4.14)
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If J,(0; K) < oo we say tha is (2/q, ¢’)-thin ato (seel[1]). By [[4.1IB),

Po 1 _ “~Lar
Jy(o: K) ~ / CZ/q,q/(;(K N Bt(U))> — fa>qe
0 (4.15)

Bo 1 _ —1ar
Jq(O'; K) < /0 CZ/q,q’(?(K N Bt(“))) T if 4 ={c-

It is well known thatK is (2/q, ¢’)-thick, (2/q, ¢’)-a.e. inK, i.e., everywhere except for
a subset o/, ,-capacity zero.
In the next definition we introduce a related notion:

Definition 4.3. A pointo € X is a(2/q, ¢')-concentration poindf K if

B
J;(O’; K) ::/

o 1 - dt
a -2/ 1>c2/q,q/<;<l< N B,(cr))) — = (4.16)

If the integral is finite we say that is (2/q, ¢’)-sparseato.
The functiordg (- ; o) defined by

1 _
Ok (t;0) = Cz/q’q/(;(]( N Bt(cr))), O<tr<1,

will be called thecapacitary distributionf K ato.

It is clear that ifK is closed (as in our case) then every point at which 2ig;, ¢’)-
thick (resp.(2/g, q’)-concentrated) belongs #. The following blow-up criterion is an
immediate consequence of Theorjerm 4.2.

Corollary 4.4. For everyo € X, either
xli_r)na Uk(x)|x —o| P =00 foreverya > 1,
x€C2(Q)

or

sup Ug(x)|x —o|™ L <oo foreverya > 1.
xeCo ()

The first case occurs iff is a(2/q, ¢’)-concentration point oK .

Our next result provides more detailed information on the rate of blow up at points of
concentration o .

Theorem 4.5. (a) If K is (2/q, q’)-thick ato then
1
/ Uk (C@)? Yt dt = o0 (4.17)
0

for every curvd” € Lip([0, 1], Q U {o}) such thatl’(0) = ¢ and0 < |[I'(t) — 0| <
ap(y(t)) for somea > 1 and every € (0, 1]. Thus(@.17)holds(2/q, ¢’)-a.e. inK.
Obviously the integral is finite everywhere outskle

(b) If K is(2/q, q')-thick ato then itis(2/q, ¢’)-concentrated at .
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(c) Foreveryo € %,

1
ﬂs‘zﬂq_l)gk(s; 0) <Uk(x) VxeC3o), (4.18)
cla
where0 < s == |x —o| < L
(d) The following asymptotic estimate holds:

limsup|x — 0|79 DUk (x) % lim supbx (s; o). (4.19)
x—=0 s—0
xeC2(o)

If, in addition, 0k (- ; o) has a limit ass — 0, which we denote b@ﬁ(o), then
1
——02%(0) < liminf |x — 0|79 DUk (x)
C(a) X—g)zo’
xeCyf (o)

< limsuplx — o|¥4 DUk (x) < c(@)02(0) (4.20)
xexcy?a)

for everya > 1.

Proof. By (4.10), for every € X,
2z dt
= f 20D (1 0) = < Uk ()
c(a) Jg t

for everyx € C2(0), s = |x — | < 1/2. By CorollaryB.3,
Ox(t;0) ~0k(s;0), s<t<2s.

This implies [4.IB). This inequality can be rewritten in the form

L (s o)t < Ug (0412 (4.21)
c(a)
By (@.21) and[(4.15), ity = 0 — sv(0),
B
Jy(0; K) < c(a)/ ’ Uk (x5)97 s ds. (4.22)
0

This proves[(41]7) in the cage= 1. Assertion (a) in the general case follows fr¢m (#.22)
and the Harnack inequality.
If K is(2/q, q')-thick ato then, by [(4.1]), for every > 0,

lim supUgx (x5)s%/ @Y€ = o0.

s—0

By Corollary[4.4 it follows that linUx (x;) /s = oo andK is (2/g, ¢’)-concentrated at.
We turn to the proof of the last assertion. Put

) ! —1-2/(q—-1) dt
V(s) = t Ok (t; 0) -
S
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For everyk > 1,

ks dt
0< V(s)— V(ks) :/ t~172/a"Dg e (1: o) - (4.23)

N

and by Lemma BJ2,

k
O (t;0)~Ok(s;0), s<t <ks.

(The notatior~ indicates that the constants involved in the equivalence relation depend
onk.) Hence

0< V(s) = Viks) ~ s 2@ Dy (5: o). (4.24)
Letk > 1 and putt; = o — sv(o). Then, by[(4.ID),

%SV(S) < Ug(xg) <ces(V(s) + 0)). (4.25)
By (4.24) and[(4.25),
lUK(xs) <V(s)+ 0@
cs

< V(ks) + cxs @ Dop(s:0) + 0(1)
C

< Uk (o) + crs 120Dy (s10) + O(D). (4.26)
Therefore, ,
C
Uk (xs) < — Uk (k) + s~V (s30) + O(s). (4.27)
Applying this inequality withkt%/(@—D = 2¢2 we obtain
limsups? @YUk (x,) < climsupbx (s; o). (4.28)
s—0 s—0

Combining [(4.1B) and (4.28) we obta[n (4.19) in the case 1. In the general case the
inequality follows by an application of Harnack’s inequality. Finalfy, (4.20) is a simple

consequence of (4.]18) arid (4.19). O

The following is an immediate consequence of the theorem.
Corollary 4.6. If

IiEn_)iQf Ok (s;0) > 0, (4.29)
then, for every: > 1,
Ti;)'x — o724 < U (x) < c(@)|x —o|779Y in (o). (4.30)
If
lim 0k (s;0) = 0 (4.31)
then

x — o4 Dyg(x) > 0 asx — o non-tangentially (4.32)
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Remark. Obviously, condition[(4.31) may occur at points whefeis (2/g, ¢’)-thick.
ThereforeUx may blow up at a rate weaker than the maximal rate even at such points.

Appendix A. Proof of inequality (8.37))

Letk € N be a number to be determined later on. Noting that

k-1
= (i Fp ) U @5 Fug ),
j=0
we obtain
k=1
Z C2/q.q' T Fn+tj) = Coq.q'(Fp) — Cosq.q (i Fpp ) (A1)
j=0

By the argument employed in the first part of the proof 6f [1, Thm. 5.2.1] (see in particular
inequality (5.2.3))

Co/g.qg tE) < AtN712/@=D,,  (E) Vi e (0,1], (A2)

for everyg > ¢q. = (N + 1)/(N — 1) and every compact sét C 3 Q, with the constant
A depending only o, N, 3Q. (Recall that, foy > g., 29'/g = 2/(g —1) < N —1))
Consequently, by (A]1),

1-2/(g—1
C2/q, q’(F ) — N /- )C2/q q/(F 1)
-1

<AY THONCy p(Fayy) form=1,.... M. (A3)

=~

j=0
Now choosé sufficiently large so that := Ar,ﬁ"‘l < 1.RecallthatFy ;= Fy , =0
for j > 1. Clearly
-1 2 1
(1—a)2 14Dy o (F)
u 1-2/(g—1) 1-2/(¢g-1)
= Z(rm—l ! C2/q,q (Fyy) — ‘”m+k—1q C2/q,q' (Fop i) (A.4)

Further, by[(A-B) and (Al4),

Z —1- 2/(q 1)C2/q J(F, )<A,Z 1;112/(q 1)2 N-1-2/(q— 1)C2/q,q/(Fm+j)

_ M M
-1-2/(g—-1 -1-2/(g—-1
—A/Zr Z roi oA Y Copgg Fuy ) < kA Y 559V Cy) (). (AB)

=i m=1

whereA’ = A/(1 — a). This proves[(3.31).



Semilinear elliptic equations 515

Appendix B. Proof of inequality (3.40)

We start with the following elementary lemma.

LemmaB.1l. Letgy; : (0,00) — [0,00),i = 1, 2, be measurable functions satisfying
the following conditions. There exists a constdrsuch that, for every < [1/2, 2] and
everyr > 0,

A (1) < pa(at) < Aga(t), (B.1)
and either
AY01(1/2) < pr(an) < Api(20), (B.2a)
or
Ap1(t/2) = g1(at) = A tp1(21), (B.2b)

Then there exists a constant> 0 such that, for every,k € N, i < k, the function
¢ ‘= @192 satisfies either

cflxk:<ﬂ(",/+l) < /ri (p(t)g < ch:go(rj), (B.3a)
=i Feia par
or
- " dt &
c;(ﬂ(l’ﬁrl) > /rkﬂw(t) —zc ]Z:;(p(rj), (B.3b)

according to which of the conditior{8.2) holds.

Proof. By (B.1), (B.2&), and the mean value theorem there exjsts[r;+1, r;] such that

1 Ti dt
m‘l’("j+l) < f @(1) - = riv1p(t) /T < A%p(r). (B.4)
Tj+1
This implies [B.3h). The second case is similarly verified. O

Lemma B.2. For every compact sdt C 9 Q and every positive number
C2/q.q'(@F) < A(T)Co/q o/ (F)  Va € (0, 1], (B.5)

where the constanfi(r) depends only oy, N, dQ andt if ¢ = ¢., and A(r) =
AotV —1-2/=D with Ag independent of, if ¢ > ¢..

Remark. Recall thatC,/, ,/(F) denotes capacity relative tQ while Cy/, . (aF) de-
notes capacity relative ®d Q.
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Proof. Sinced Q can be covered by a finite number of coordinate patches it is sufficient
to prove the inequality in the case thétis contained in a coordinate patch. Thus there
exists aC? diffeomorphism of a relative neighborhodd of F onto an open set/’ in
RN-1, Denote this diffeomorphism b¥ and let7,, denote the induced mapping a®/:

Tolax) =aT(x) VxeUl.
ThusT, (e F) = «T (F) and the Lipschitz constant @, is the same as that f@t. Since
C2q.q4 (F) = C14. ¢ (T(F)), Copqq(@F)~ Coy g (Toy(@F)),

it is sufficient to prove[(BJ5) in the case thatc B; N RV~ and the capacity is relative
to RV 1. If ¢ > ¢. the inequality follows immediately from [1, Cor. 5.2.3].df= ¢. we
first apply [1, Thm. 5.2.1] to obtain

C2/q,q/(TF) = CrCZ/q’q/(F),

whereC, depends only oV andt. Next we observe that the first part of the proof of
[1l, Thm. 5.2.1] and in particular inequality (5.2.3) implies that, for every compact set
E CRN-L,

Co/g.q (VE) < C'yN 172Dy, (E) Yy e(0,1],

whereC’ is a constant depending only gn N. This is valid for 1< ¢ < g.. Combining
the last two inequalities we obtain (B.5). O

Corollary B.3. LetK be a compact subset 82 and put
1 1
¢(t) = Cz/q,q/(;(K N Bt/2)> = Cz/q‘q/(;K N Bl/Z) vt > 0. (B.6)
Theng satisfieqB.2d)and, for everys € Randi, k € N, i < k,

1 k k
o> o < |

" dt
m=i+1 o) t =c Z Tn—1®(rm-1), (B.7)

Tk m=i+1
wherec is a constant depending @n ¢, Q.
Proof. If « € [1/2, 2] then, by Lemm@a BJ2,

1
o (at) > CCZ/q,q’(?(K N Bat/Z))
1 2
> CCZ/q,q’(?(K N Bz/4)) > ch/q,q’(;(K N B,/4)> =cp(t/2), (B.8)
1
¢(at) < CCZ/q,q’(?(K N Bat/Z))

1 1
< cCoyy <;(1< N Bt)> < cCoyy <Z(K n B,)) = co(20). (B.9)

Thus the functior satisfies[(B.2a), and consequently, Lenimg B.1 impfieg (B.7).O
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Proof of (3.:40) Let¢ be defined as irf (B]6). With this notation
¢ (rm-1) = Ca/q.q'(Fpp).
Put
S 12/(g-1 dt
o(r,s) ::/ 2@ Dy ) - O<r<s. (B.10)
r
By Corollary[B.3,
= Z D o g (F Ly < 0 r)
m=i+1
<c Z LA be, J(FH O (B.AD)
m=i+1
for everyi, k € N, i < k. The constanté depends only og, N, Q. Hence
u 1-2/(q—1
0@.r) i=lmee,r) s e 37 n, 570 Co g (B, (B.12)
m=i+1
Sinceg is bounded,
@(r,00) < cr 172/@=D 5 0, (B.13)
Further, by[(B-I]l) and (B.10),
M+1 j—2
1 —1-2/(qg—1 4
Z Ty +q< Z Fn—1 /a )CZ/q,q/(Fr:)>
j=3 m=1
M+1 L dr\4 ML L
<c Z *q( / 12 g (1) —) =Y 0520, (B.14)
rj-3 4 j=3
By LemmdB.1 (since is non-increasing, it satisfigs (B]2b)),
M+1 1 2 dt 2
Y (3,2 <c / 9,21 — =c / (to(t,2)7dt.  (B.15)
j=3 ’ ryM—1 t 0
By (B.13) and[(B.1p),
2 q 2
/ (to(t, 2)1dt = ——/ 1110171y dt
0 q+1Jo
< —c/ ¢ dt =cp(0,2) <c Z —1- 2/(q 1)C2 /q.q'(F, ¥). (B.16)
0 =1
Finally (B.14){B.16) imply[(3.40). O
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Appendix C. Estimates of Poisson kernels

This appendix is devoted to the derivation of the following theorem.

Theorem C.1. Givenxg € RN and0 < r put
Dy(x0) i= @\ B, (x0), X, :={x e R" : pya(x) =r}

and let P, denote the Poisson kernel efA in D,. Then there exists a humber =
m(2) > 2 such that, for every, € (0, Bo/8m), y € I :=[r1/m, r1/2) andxg € ¥, the
Poisson kernel of-A in D,, (xg), to be denoted b?flo, satisfies the inequality

pae(x)pa(y)

PX(x,y) <c
Ry

Vx € Dar (x0), ¥y € 0B, (x0) N2, (C.1)

wherec, m depend only oV and theC? “norm” of 9.

We begin with a related estimate whose proof is based on the Harnack inequality up to
the boundary (seé€|[2]).

Lemma C.2. Let G be a domain inRY with compact boundary of class? and let
BI(G), B¢(G) be as in(2.4). Put o = min(B(G), B¢(G)). For everyy < (0, g¢) and
o € dG put

My(G) = {5 €RY : pp (&) = —v}.  Qy(0) =0 +yv(0). (C2)
Further setG,(Q) := G N B,(Q). Then:
(@) Foreveryo € 3G there existg € (0, Bo/4) and an increasing function
R° : I+ (0,00), I:=(0,p),

such that .
2y <R%(y) <min(B' +vy,B°—y)
and, for everyy € I,

—(x)-(x—=0)=0 VxeGgrop), Q= 0y(~) (C.3)

(Recall thatv(x) denotes the outward unit normal 01tz ato (x).)

(b) There exists a constant, depending only oV, 8¢ and the Lipschitz constant 8t5,
such that, for every € G andy < I, the Poisson kernel 6f A in Gz (Q), where
0=0°(y),2y <R < R°(y), satisfies

€ Pac(N)PaG ()

y  lx—y¥

for everyx € G N Bag/a(Q) andy € G N dBg(Q).

PGro)(x,y) < (C4)
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Proof. To verify statement (a) it is enough to observe that, if

Bi=—(Bo+1/2)+/(Bo+1/22+ Bo, R(y) :=+/2Boy +v2,

then the functionR(-) on I has all the properties mentioned in (a), for everg 9G.
However, in generalR’ need not tend to zero g8 — 0. For instance, ifG is the
complement of a ball of radiugy and = Bo/4 then the function given bR(y) :=
Bo — y satisfies all the conditions stated in (a).

We turn to the proof of (b). We assume (as we may) fas the origin and write
B;, G, for B,(0), G,-(0). The conditions om, y imply thatR/4 < |x—y| < R. Therefore
(C.4) is equivalent to

PGp(x,y) < P3G (x)pac (), (C.5)

y RN
wherey = dist(0, G).
For any bounded? domainD with compactC? boundary and any positive,

Pp(x,y) = aN_lPO,D(otx, ay). (C.6)

Lety € I andR > 2y be given. In order to prove that (€.5) holdsGrk with dist(0, G)
=y, itis sufficient to prove that it holds it G)1 with dist(5G, 0) = y/R:

CR

for everyX e (G) N ByaandY e (£G) N 3B1. Indeed, forx = RX, y = RY,

Pgp(x.y) =RV NP (x/R.y/R)

IA

ERZ‘Npm(x/Rn@ (v/R)
y R R
C
= ;R‘Npac(x)pac(y). (C.8)

Note that if [C.3) holds irGg, relative toQ = 0, then it also holds im%G)l relative to
the origin.

We turn to the proof of (C]5) assuming that= dist(0, G) € (0,1/2), R = 1 and
Bo > 2.

We start with the construction of a certain superhamonic functiati;in= G N By,
vanishing on the boundary, which will be used in our estimate of the Poisson kernel. Let
h,n(-; M, y) be solutions of

—Ah=1 inB;, h=0 o0ndBy, (C.9
and
—An=1 inBy\B,, n=0 ondB,, n=1 o0ndBy, (C.10)

whereM > y. Then bothk andn are radially symmetric, the first decreasing and the
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second increasing with respect to= |x|. Clearly, for everya > 0, n(x; M,y) =
n(ax; aM, ay). In addition, if M’ > M thenn(-; M’, y) < 1 ond By, and consequently

nx; M, y) <nx; M, y).
Therefore, ify € (0, 1),
n(x; M,y) =n(x/y; M/y,1) Vx € Bu\ B, (C.11)

1 1
an(; M, y)lys, = ;8r77(' s M/y, Dlap, < ;3r77(' s M, Dlos,, (C.12)

whered, denotes differentiation in the radial direction on the indicated spherex Fer-,
let ho(r) i= h(x), ny (r) :=n(x; 4, y).
For everyx € G, put

7i(x) :=inf{n(x — P) : P € M,,(G), 6(P) € 3G N By}. (C.13)
Then
—A>1 inGi1=GNBy, n=0 0ndGn By, (C.14)
and
n(x)=nkx—Py) with P.=0ox)+yv(x) Vxe Gy, (C.15)

wherev(x) = vg(x) denotes the outward unit normal 86 at the points (x). The first
statement is obvious since, for everg dG N By, P, € M, (G) andn(y — Py) = 0. The
second statement follows from the fact that- P.| < |x — P| for everyP € M, (G)
such that (P) € 0G N Bj.

Sinceo (-) andv(-) are inCL((8G)P0), the mappingr — P, is in C1(G1). Hence
e CYGy) and

8;7i(x) = n(lx — el g (x = Py)
jn - ?70 pY |x — le /j x
no(|x — Px]) 2
= o py U BalT =m0 = PeDdjlx — Pl (C.16)
By (CI8),|x — Px| = y + psc(x). Hence
Vii(x) = ng(lx — Px[)Vpag(x). (C.17)

If v:=hn,

—Av = —(Ah)ii — hAf — 2Vh - Vi
> 7+ h — 2hg(1x)m, (1x — PeD(x/1x]) - Voo (x). (C.18)

Now iy < O, r;;, > 0 andVp,¢ (x) is in the direction of-v(x). Therefore, by[(C]3),
—Av>0 inGy, v=0 o0ndGy. (C.19)
The vanishing on the boundary follows from (G.14) gnd [C.9).
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We turn to the proof of (C]5) witlR = 1. By the Harnack inequality up to the bound-
ary (seel[2, p. 623]), there exists a const@nthich depends only oV and the Lipschitz
constant ob G N By such that, ifwy, w2 are positive harmonic functions @, vanishing
ondaG N By,

wi(x)/wa(x) < Cwi(§)/wa(8) Vx,& € Gyja. (C.20)

Picka, y € G N By andé € G N dBg4 such thab (a) = o (£). Applying (C.20) with
w1 = Pg,(-, y), w2 := Pg, (-, a) we have

PGl(é:s y)
PG, (&, a)

We estimate each of the factors on the right hand side.
Sincela — &| = 1/4 andBy/4(§) C G it follows that

Pg,(x,y) < CPg,(x,a) Vx € 63/4. (C.22)

PG]_(S’ a) = PB]_/4(07 a— S) = (1, (C22)

wherec; is a positive number depending only 8h
Let T, denote the half space tangentBg at a, which containsB;. ThenG1 C
T, \ B (Q°(r)) =T, ,,r :=min(B¢/2, 2~%), for everyo € 3G N B1. Consequently,

Prg (x,a) > Pgy(x,a) Vx € G1.
By Hopf's lemma, there exists a constaptdepending only oV andg¢ such that
Pro (x,a) < c2lx —o| Vx € GN Bya.

Hence,
PGy(x,a) < Prow (x,a) < c2p3G(x) VX € Bya. (C.23)

For the estimate afg, (€, y), y € GNJ By, we use the superharmonic function previously
constructed. Sinc81 C B4(§) it follows that, for every; € G1 \ {¢},

96,8, 2) <GBy (§,2) =GB, (0,2 = §),
whereGp denotes the Green function efA in D. Fore € (0, 1/8), put

Ac = mgxgm(O, 7)), A= ‘rgr?i_n v(E +0). (C.24)

Since O< v < 1, A, < 1. Leteg := maxe € (0,1/8) : A > 1} and putcz := AEO/A/G()'
Clearlyeg depends only oV and

G6,(6,2) = c3v(z)  Vz € 0Bg(4).

The functioncsv is superharmonic ifG1; therefore, by the maximum principle (recall
thatv = 0 0naG1),

G6,(§,2) =c3v(@  ING1\ Bey(8). (C.25)
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This implies
PGy (&, y) = —0nGg, (8, y) < —c3dnv(y) Vye GNIBy, (C.26)
wheren = y/|y|. Using [C.IT) we obtain
—3nv(y) = —ho(IyDA(Y) — h()ni () (C.27)

= —ho(Wn(y = Py) — h(y)n, (Iy = PyHn - VpyG ()
< —ho(Dn(y — Py).
The last inequality follows from the fact thaa;l;, > 0 and [C.B) which implies that
n-Vpac(y) > 0. Sincen, (y) = 0 andp, is increasing and concave,
ny(ly = Pyl) =y (v 4+ pac(») < 1, (¥)paG (¥)- (C.28)
By (C.26)(C.2B) and (C.12),
Poy(6.) = oG () (C.29)

wherecs depends only oV . Finally, (C:21)4(C.2B) and (C.29) imply (C.4). |

Remark. From the proof of the lemma it is clear that the result is of a local nature. In
addition, if theC? condition on the boundary is satisfied in a relatively open neighbor-
hood of a pointS € 3G, sayI'1(S), then [C:#) holds for all point® € G N B1/2(8)
sufficiently close to the boundary df. In this case the relevant valuesgf and g’ are
those associated with th@? “norm” of I"'3/4(5).

The following is an immediate consequence of the lemma:
Corollary C.3. If G is a bounded convex domain witlt boundary ther{C.4) holds for
everyy € (0, Bo(G)/3) and2y < R < y + Bp and the constant depends only &
and the Lipschitz constant 6f. In particular if G is a ball of radiusgg then the constant
depends only oV. If G is a half space theifC.4) holds for everyy > 0andR > 2y,
the constant depending only oh

Proof. If G is a bounded convex domain witt? boundary thems¢ = oo and condition
(C3) holds for evenyQ ¢ G. This implies the statements of the lemma. O
LemmaC.4. LetQ = {X € RV : X; > 0}, y* > 0and R* > 3y*. Then the Poisson
kernel of the domain
D* = Dp«(Z) = Q\ Br«(Z), Z=(y",0,...,0),

satisfies the inequality

X111
e T—— C.30
y¥IX =YV ( )
foreveryX,Y € QsuchthaiX — Z| > 4R*/3and|Y — Z| = R*, with the constant
depending only oiv.
Proof. Put

Pp«(X,Y) <c

a . R* 0
- Y  R=—1 — (=7,0,,...,0).
Y= RHZ= ()2 "2 =Y )
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By scaling (see[(C]6)) we may assume ti®dt= 1 andy* < 1/3. In this case O<
y < 3/8and 1 < R < 9/8. The inversionT relative to the sphergc| = 1 maps
Br(Q9) onto the exterior of the baB+(Z) and2 onto itself. Consequentlyz(Q9) N

Q is transformed taD*. By Corollary, the Poisson kernel &f = BR(Qg) nQ
satisfies inequality (C]5), which in this case is equivalenfto](C.4). By a straightforward
computation, ifQ is a bounded domain of clagg then

Po(x,y) = x> N Pro)(X,Y), X=x/x% ¥ =y/ly (C.31)

Applying this relation toD = BR(QJ(}) NQandD* = T(D) = Dg+(Z) and using[(C}),
we obtain

v C
Pp:(X,Y) < |X|? N;xm

for everyX, ¥ such thatx — Q9| < 3R/4 and|y — Q9| = 1. Sincex; = X1/|X|* we
obtain

C v-N -2
PD*(XaY)§;|X| Xin|y| .
SinceR* =1,1< R < 9/8andR/y = R*/y*itfollows that 1 < y/y* < 9/8. If
|X —Z| >4/3and|)Y — Z| =1then|X — Y| = |X]|, |Y| ~ 1. Hence
¢ -N
Ppe(X,Y) < — X = Y[V X171, o
14

Lemma C.5. Let R, r1, y1 be given such that
R/rii=m>4, 1/m<y/rn <L
Denote byethe unit vector in the direction of the positivg-axis, putr; := 2R + y; and
Q:={xeRY:|x+Re >R}, D*:=Q\B,(—1e.
Then the Poisson kernel &f* satisfies the inequality

RV-1 Pa(x) paa(y)

poYP— (R + pag(x)) (C.32)

Pp+(x,y) <cm
for everyx, y € Q such that|x + t1€| > 4r1 and|y + 71€| = r1, with the constant
depending only oiv.

Proof. Puta := 1/2R, u := t1/r1 = (2R + y1)/r1 and computeq andrg from the

relations
ro a—y

=T o -_ %7V C.33
T2 YT a—wr-n2 (C.33)
This yields
1 w
- _ , —a— uro. C.34
npi—1) nwi-1 TR0 (€34)
We note that 1
= (C.35)

> = .
0= T6mdr,  16mR2
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Indeed, by[(C.34),

2
1 1 YiT1 — rg

u-y1 2-r2 (n—-y)EZ-rd

and, by assumption/r1 = 2m so thatyy7; > 2r12. Hence
rl2 1 1
Yo = N ;
(t1—yo(f—ry) =L -1)

which implies [C-3p).
Now consider the domain

(C.36)

Do :={X e RN : X1 > —a}\ B,y((—a + y0)©).

Let T denote the inversion relative to the unit sphere centered at the offigini=
X/|X|2. Then

Q if E={XeR"N:X1> —a)},
T(E) =\ By (-116) if E = By((—a+y0)e), (C.37)
By, (—12€) if E = Boyy((—a + y0)e),

where
2rg a—yo

=, Q= —— .
@—y2—42 (a2 4
Thereforel (Dg) = D* and

r2

By,(—126) C B4y (—116€). (C.38)

Indeed, by[(C:34) = (a — y0)/ro and consequently

-1 3rola—y)  3u
r (a—y)2—4rs p2—-4

If X = —t1e+ 4r1h, whereh is a unit vector, it follows that

3
|X + 126] = 4r1 — (12 — 1) = r1<4— 2—“)
uc—4

and, sinceu = 11/r1 > 2m > 8,

r1<4_ - )Zrz: 2 =2r1(“2_1),
u?—4 ro(u? — 4 u?—4
which proves[(C.38).
By Lemmg C.4,
Poy(x. ¥) < (Kt ta) (C.39)

yolX — Y[V
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foreveryX,Y € {X e RN : X1 > —a} with | X + (a — yo0)€| > 2rp and|Y + (a — y0)€]
= ro. The constant depends only &h By (C.31), asT' (Do) = D*,

Pps(x,y) = XN Ppy(X,Y), X =ux/IxI?, ¥ =y/ly (C.40)
From [C.38)-4(C.40) we obtain

Ppr(x,y) =c

X Y
X1+a)Y1+a) 2N (C.41)
yolX — YV

for everyx, y € Q such thatx + t1€| > 4r1 and|y + 11€| = r1. Itis easily verified that

=yl

|Tx —Ty| = .
x| 1yl

(C.42)

Therefore, by[(C41),

(2Rx1 + x|?)(2Ry1 + |y1?)
YoR?|x — y|N|y|>=N

Pp+(x,y) <c¢ , (C.43)

for x, y as before. A simple computation yields the identity
1x|2 4+ 2Rx1 = Sg(X)(2R 4 8g(x)),  Sg(x) := dist(x, d Br(—Re)).

Hence[(C.4B) implies

SrR(X)SR(Y)(2R + 6r(x))(2R + 5r(Y))
YoR?|x — y|N|y|>=N

If |y + t1€| = r1thendg(y) < 2r1 = 2R/m andR < |y| < 3R. Therefore, by[(C.43)

and [C.35),

Pp«(x,y) <c

SR(x)SR(Y)(2R + ,(x))
Pp«
D (6 ¥) = €T RN =y
< emRN12RERD) 5oy, (C.44)
rilx —yl
with the constant depending only omv. O

Proof of the theoremChoosem large enough so that ify € (0, Bo/8m) andxg € ©
satisfiesoyq(x0) = y € [r1/m, r1/8) then

v(x)- (x —x0) >0 Vx € 9B, (x0) NOQ. (C.45)

Such a choice of: exists becausg is bounded of clas§?.
Let r1 andxo be as above and létbe a point ind B, (xg) N 9Q2. PutR = mrq and
& = Rv(&). Define
Bi(60) :={x e RN : |x —&| > R}, D}, (x0: é0) := Bj(£0) \ By, (x0).

Then o
QN Bg(o) = (&},  Dpy(x0) C Dy, (x0, 0)-
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Therefore
Prx,y) < PD;Z (x,¥) Vx € Dy (x0), y € 3By (x0) N Q. (C.46)

A simple computation shows that
. C
y < distxo, 9B} (o)) < v + 2rf =y +en/m,

wherec is a constant depending only éhandgg. Therefore, by choosing sufficiently
large, we guarantee that< dist(xo, 8 By (£0)) < 2y. By Lemmg C.b,

PER(X)pER (V) < C__PE »
rilx —yIV T Trglx — y|N7Y

Ppy (x,y) =C Eg = 3By (o), (C.47)

for everyx, y € Q such thatx—xg| > 4r1, |[y—xo| = r1, with C = cm(1-|-diamSZ),BéV_1.
The second inequality follows from the fact that, for any as above,

PER(X) < ppy (x) + 2r1 < 2|x —y|.
If y € 9B, (x0) N 2 is a point such that

— — inf —
ly — &l nEaBrll(Xo)ﬂf)Q ly —nl
thenpg, (y) = |y — §| = paa(y) and consequently, by (C}46) and (J.47),
P (y)
r ’ S C
Py rilx — y|N-1

for everyx € Q such that 4y < |x — xg|. For everyy € 9B,,(xg) N Q there exists a
nearest poin¢ € 9 B,, (xg) N K2 (althoughé may not be unique). Sing€ is independent
of &, it follows that
pan(y)
rilx —y|N-1
for everyy € aB,, (xo) N 2 and everyr € Q such that 4 < |x — xgl.
By a standard argumenf, (C]48) impli¢s (C.1). Obvioufly](C.1) holds for pairs of
points(x, y) such thatx — y| < 8o (x). Therefore we consider pai¢s’, y') such that

V' €B,(x0) N2, x' € Dayy(x0),  poa(x) < 1/8x" — /|,

Pr(x,y) <C (C.48)

Put
E=xeQ:ilx—oc(x)| <a/2}, a:=x -]
Forx € E’, we havex — y'| < . Therefore

/
PoeY) . 0 vy e B
otN_lrl

The functionP,, (-, y") is harmonic and vanishes @®2. By Hopf’s lemma,

Pnx,y)<C

Pr(x,y) < Appe(x)/a ¥x e Q:lx—o()] < zlx' —yl.
In particular

paa(x)pa(y)

/ /
7)V]_(x ay) S C aer
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