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Abstract. Let � be a bounded domain of classC2 in RN and letK be a compact subset of∂�.
Assume thatq ≥ (N + 1)/(N − 1) and denote byUK the maximal solution of−1u + uq = 0
in � which vanishes on∂� \ K. We obtain sharp upper and lower estimates forUK in terms of
the Bessel capacityC2/q,q ′ and prove thatUK is σ -moderate. In addition we describe the precise
asymptotic behavior ofUK at pointsσ ∈ K, which depends on the “density” ofK atσ , measured
in terms of the capacityC2/q,q ′ .

1. Introduction

Let� ⊂ RN be a bounded domain whose boundary is of classC2 and letq > 1. If µ is
a Radon measure on6 := ∂�, the problem

−1u+ uq = 0 in�, u = µ on6, (1.1)

has a solution if and only ifµ vanishes on sets ofC2/q,q ′ capacity zero, which is equiv-

alent toµ ∈ W
−2/q,q
+ (6) (see [15]). The solution is unique and will be denoted byuµ.

Following Dynkin and Kuznetsov [7], a positive solutionu ∈ C2(�) of the equation

−1u+ uq = 0 in� (1.2)

is calledσ -moderateif there exists an increasing sequence of positive Radon measures
µn on6 such that the sequence{uµn} converges tou. Similarly a measureµ ∈ (Br(6))+
(Br = space of regular Borel measures, not necessarily bounded) is calledσ -moderateif
it is the limit of an increasing sequence of measures belonging toW

−2/q,q
+ (6). The space

of σ -moderate measures will be denoted byBq+(6). If 1 < q < qc = (N + 1)/(N − 1)
a singleton has positiveC2/q,q ′ capacity so that every bounded Borel measure is in

W
−2/q,q
+ (6). If q ≥ qc a singleton hasC2/q,q ′ capacity zero. The numberqc is called

thecritical value of the exponentfor (1.1).
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A central question in the study of (1.2) is the behavior of solutions in the neighbor-
hood of boundary singularities. Indeed this pertains to the essence of the boundary value
problem (1.1) which naturally includes singular boundary data. To make the notion of
singularity more precise we introduce the following notation. Let

Kq(∂�) = {K ⊂ ∂� : K compact,C2/q,q ′(K) > 0}.

For everyK ∈ Kq(∂�) we denote byUK the maximal solution of (1.2) which vanishes
outsideK. It is known thatUK is not the trivial solution. Letu be a positive solution of
(1.2). If there exists a setK ∈ Kq(∂�) such thatUK ≤ u we say thatu is singularonK.

In the subcritical case, there exists a minimal singularity from which all other sin-
gularities can be constructed, namely, the point singularity. The asymptotic behavior of
solutions at a point singularity on the boundary was investigated by Gmira and Véron [9].
Several years later, these estimates constituted one of the main ingredients in the study of
the general boundary value problem (1.1) in the subcritical case (see Marcus and Véron
[12] and [13]). In the later work it was shown that every positive solution has a boundary
trace in(Br(6))+, and conversely, for every positiveµ ∈ Br(6) there exists a unique
solution of the equation whose boundary trace isµ. In the special caseq = N = 2 this
result was previously established by Le Gall [11] by probabilistic methods.

In the supercritical case, such a minimal singularity does not exist, and this makes the
situation enormously more complicated. In order to relate singular solutions to boundary
singular sets, let us consider the case� = B1(0). We say that two setsK1,K2 ∈ Kq(∂�)
areq-relatedif there exists a rotationT such thatT (K1) ∩ K2 ∈ Kq(∂�). Equivalently,
the singular solutionsUK1, UK2 areq-related if there exists a rotationT and a positive
solutionu such thatu ≤ min(UT (K1), UK2).

The characterization of the boundary data and its interpretation, i.e. the sense in which
the boundary data is attained, is another problem whose treatment is more complicated in
the supercritical case. The space(Br)+ is no longer sufficient in this case. Although it is
still true that problem (1.1) has a solution for everyµ ∈ (Br(6))+, uniqueness fails. This
fact was observed by Le Gall in 1997. Following this observation Dynkin and Kuznetsov
[7] introduced the class ofσ -moderate solutions and showed that, in this class, problem
(1.1) has a unique solution. In a remarkable paper, Mselati [17] proved that, ifq = 2,
all solutions areσ -moderate. A related result, applying to arbitraryq > 1, was recently
established by Marcus and Véron [16]:For every compact setK ∈ Kq(∂�) the maximal
solutionUK is σ -moderate.

In the caseq = 2 this result was previously established by Mselati, in the paper quoted
above, and played a key role in the derivation of his main result. His proof used mainly
probabilistic techniques and in particular the notion of Brownian snake introduced by Le
Gall. Our proof employs purely analytic methods. (The proof was sketched in [16] and
it is given in detail in the present paper.) Following this, Dynkin [3]–[5] announced the
extension of Mselati’s main result to the range 1< q ≤ 2 by employing probabilistic
methods developed in joint work with Kuznetsov (see [8] and references therein) and the
above mentioned result of [16]. He also provided an alternative, probabilistic proof of
the latter result which, however, applies only to the range 1< q ≤ 2. These results are
presented in a forthcoming book [6].
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We turn to the description of our main results. The first of these providessharpes-
timates, from above and below, for maximal solutionsUK of (1.2). BesidesUK we also
consider the solutionuK defined as the supremum of all solutions of (1.2) whose bound-
ary trace is a bounded measure supported inK. This is in fact the maximalσ -moderate
solution vanishing on∂� \K.

Theorem 1.1. Let q ≥ qc andK ∈ Kq(∂�). Then there exist positive constantsc1, c2
depending only onq, N and� such that the following inequalities hold for everyx ∈ �:

UK(x) ≤ c1ρ(x)ρK(x)
−1−2/(q−1)C2/q,q ′(K/ρK(x)), (1.3)

UK(x) ≥ uK(x) ≥ c2ρ(x)

∞∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′(Km(x)/rm), (1.4)

where`(�) is a number which depends only ondiam� and

ρ(x) := dist(x, ∂�), ρK(x) := dist(x,K),

Km(x) := {y ∈ K : rm+1 ≤ |x − y| ≤ rm}, rm := 2−m
∀m ∈ Z.

It is easy to see that (1.3) implies

UK(x) ≤ c3ρ(x)

∞∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′(Km(x)/rm). (1.5)

Therefore the inequalities are sharp. In the caseq = 2, (1.3) was obtained by Mselati [17]
employing a mixture of analytic and probabilistic techniques which apply only to this
case. Our proof, which is purely analytic, is based mainly on two techniques. The first in-
volves a linear lifting fromC(∂�) toC0,1(�), somewhat similar to the lifting introduced
by the authors in [15]. Using this lifting we obtain anintegral capacitary estimate from
above. The second technique involves an (apparently) new estimate for Poisson kernels
(see Appendix C) and is used in order to pass from this integral estimate to the pointwise
estimate (1.3). The lower estimate obtained by Mselati [17], forq = 2, was expressed
in probabilistic terms and it is not directly comparable to (1.4). In the case of solutions
with interior singularities, i.e. singularities in the domain�, capacitary estimates were
obtained by Labutin [10] for allq ≥ N/(N − 2), the latter being the critical value of the
exponent for the equation−1u+uq = µ. Those estimates are sharp forq > N/(N−2),
but not in the critical case. Our proof of the lower estimate (1.4) is inspired by some of
the techniques of [10].

Next we present several applications of Theorem 1.1. As a first application we derive
the identity

UK = uK , (1.6)

which shows thatUK is σ -moderate.
The second application is an estimate ofUK(x) asx ∈ � tends (non-tangentially) to

a pointσ ∈ K. Here the behavior ofUK depends on the “capacitary distribution” ofK in
the neighborhood ofσ , which we define by

θK(t; σ) := C2/q,q ′

(
1

t
(K ∩ Bt (σ ))

)
, 0< t < 1.
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Now, for everya ≥ 1, we have

1

c(a)

∫ 1

s

t−1−2/(q−1)θK(t; σ)
dt

t
≤
UK(x)

|x − σ |

≤ c(a)

∫ 1

s

t−1−2/(q−1)θK(t; σ)
) dt
t

+O(1) (1.7)

for all x ∈ � with s = |x − σ | ≤ aρ(x). The constantc(a) depends only ona, q, N, �.
Evidently these too are sharp estimates. Further we show that ifK is (2/q, q ′)-thick atσ
(for the definition of this term see [1] or Section 4 below) then∫ 1

0
t−1−2/(q−1)θK(t; σ)

dt

t
= ∞. (1.8)

Therefore at such a point

UK(x)/|x − σ | → ∞ asx → σ non-tangentially.

It is known thatK is (2/q, q ′)-thick everywhere inK, with the possible exception of a set
of C2/q,q ′ -capacity zero (or briefly(2/q, q ′)-a.e. inK). For everyα ∈ [0,1+ 2/(q − 1))
andσ0 ∈ ∂� one can construct a setK ∈ Kq(∂�) such thatθK(t; σ0) ≈ tα. For suchK,
(1.8) holds atσ0 and we have

UK(x) ≈ |x − σ0|
α−2/(q−1) asx → σ0 non-tangentially.

ThusUK(x) may remain bounded or blow up at any rate not larger thans−2/(q−1) asx
tends non-tangentially to a point where (1.8) holds.

On the other hand, we show that at every(2/q, q ′)-thick point ofK, UK blows up in
an integral sense, at the maximal rate. More precisely we prove:

If K is (2/q, q ′)-thick atσ then∫ 1

0
UK(0(t))

q−1t dt = ∞ (1.9)

for every curve0 ∈ Lip([0,1], � ∪ {σ }) such that0(0) = σ and 0 < |0(t) − σ | ≤

aρ(γ (t)) for somea ≥ 1 and everyt ∈ (0,1].
Incidentally, this fact and the previous remarks imply that (1.8) may hold at a pointσ

whereK is not(2/q, q ′)-thick.
The plan of the paper is as follows: Section 2 is devoted to the proof of the upper

estimate (1.3). In Section 3 we present the proof of the lower estimate (1.4). Section 4
is devoted to the proof of (1.6), (1.7), (1.9) and related results. In Appendix A and B
we derive some elementary estimates involving capacity which are used throughout the
paper. Appendix C is devoted to an estimate of Poisson kernels which is used in Section 2.
This estimate may be of interest in itself.

2. Boundary singularities: estimates from above

We start with some basic notations.Cα,p (0 < α, 1 < p < ∞) denotes Bessel capacity
in RN−1 or alternatively on a smooth manifold such as6 = ∂�. If A ⊂ 6 thenCα,p(A)
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denotes the capacity ofA relative to6 and, ifγ > 0,Cα,p(γA) denotes the capacity of
γA relative toγ6. Further, for any setE ⊂ RN andβ > 0, we write

ρE(x) := dist(x, E), (E)β := {x ∈ RN : ρE(x) < β}. (2.1)

For any domainD andβ1, β2 > 0, we define

ρ̇D(x) :=

{
ρ∂D(x) if x ∈ D,

−ρ∂D(x) if x ∈ Dc,
(2.2)

and

Dβ1,β2 := {x ∈ RN : β1 < ρ̇D(x) < β2}, Dβ := D0,β , D
e
β := D−β,0. (2.3)

Since6 = ∂� is a closed, compact manifold of classC2 there exists a positive number
βi(�) (respβe(�)) such that for everyx in the closure of�βi (resp.�eβe ) there exists a
unique pointσ6(x) ∈ 6 for which |x − σ6(x)| = ρ6(x). Furthermore the mapping

5 : �−βe,βi → (−βe, βi)×6 given by 5(x) = (ρ̇�(x), σ6(x)) (2.4)

is aC2 diffeomorphism. We setβ0(�) := min(βi(�), βe(�)). For everyx ∈ �−βe,βi ,
denote byν�(x) the outward unit normal (with respect to�) atσ6(x). Clearlyν� ∈ C1.
To simplify the notation, we drop the subscript inρ6 andσ6 .

If E ⊂ 6 anda ≥ 1, put

C�a (E) = {x ∈ � : ρE(x) ≤ a ρ(x)} (2.5)

andC�a (ξ) := C�a (E) if E = {ξ} is a singleton.
Throughout this paperc denotes a positive constant which depends only onq,N,�

and the choice ofβ0. The value of the constant may change from one occurrence to
another. The notationX ≈ Y means(1/c)X ≤ Y ≤ cX for some constantc. If this

constant depends on an additional parameter, saya, we writeX
a
≈ Y . Finally, we shall

assume, without further mention, thatq ≥ qc = (N + 1)/(N − 1) andK is a compact
subset of6.

Our upper estimate is presented in the following theorem.

Theorem 2.1. Letu be a positive solution of(1.2)which vanishes onKc := 6 \K. Then
there exists a constantc, independent ofu andK, such that

u(x) ≤ cρ(x)ρK(x)
−1−2/(q−1)C2/q,q ′(K/ρK(x)) (2.6)

for everyx ∈ �.

Remark. For ξ ∈ RN andr > 0 put

[K/r]ξ :=
K − ξ

r
+ ξ =

K

r
+
r − 1

r
ξ.

ClearlyC2/q,q ′([K/r]ξ ) = C2/q,q ′(K/r).
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A key element in the proof of the theorem is a lifting fromC(∂�) intoC(�̄)∩C0,1(�)

which is a modification of the lifting used in [15]. It is defined as follows.

Definition 2.2. Letη ∈ C2(6) and letHη be the solution of the initial value problem

∂H

∂ρ
= 16H in R+ ×6,

H(0, ·) = η(·) in 6.
(2.7)

Letϕ be the solution of the problem

−1ϕ = 1 in �, ϕ = 0 on ∂�.

LetR = Rη be the lifting given by

Rη(x) =

{
Hη(ϕ(x)

2, σ (x)) ∀x ∈ �̄β0,

Vη ∀x ∈ � \�β0,
(2.8)

whereVη is the harmonic function in�′
β0

such that

Vη(x) = Hη(ϕ(x)
2, σ (x)) ∀x ∈ 6β0.

We observe that the lifting is positive and satisfies

R1−η = 1 − Rη. (2.9)

If η ∈ C1(6) thenRη ∈ C0,1(�̄).
The first step in the proof of the theorem is the following integral estimate.

Lemma 2.3. LetK andu be as in the statement of the theorem. Assume thatdiamK <

β1 := β0(�)/4 and letx0 be a point on∂� such thatK ⊂ Bβ1(x0). Letη ∈ C2(∂�) be
a function such that

0 ≤ η ≤ 1, η =

{
0 in a neighborhoodAη ofK, Aη ⊂ Bβ1(x0),

1 in ∂� \ B2β1(x0).
(2.10)

Put ζ := ϕR
2q ′

η . Then∫
�

(uqϕ + u)R2q ′

η dx ≤ c‖1 − η‖
q ′

W2/q,q′ (6)
, (2.11)

wherec depends only onq, N, � and the choice ofβ0.

Proof. If F ∈ C(�) ∩ C2(� \6β0) put

1̃F =χ�β0
1F + χ�′

β0
1F, ∇̃F = χ�β0

∇F + χ�′
β0

∇F,

F e =χ�β0
F, F i = χ�′

β0
F,
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whereχE denotes the characteristic function of the setE. Note thatReη (resp.Riη) can be

extended as a function inC1(�̄β0) (resp.C1(�̄′
β0
)).

We observe that∫
�β0

(−u1ζ + uqζ ) dx =

∫
6β0

(
ζ
∂u

∂ν̄
− u

∂ζ e

∂ν̄

)
dS, (2.12)

whereν̄ is the unit normal on6β0 pointing outward with respect to�β0. This is verified
in the same way as in [15, Thm. 3.3] (see proof of (3.11) there). In addition∫

�′
β0

(−u1ζ + uqζ ) dx = −

∫
6β0

(
ζ
∂u

∂ν̄
− u

∂ζ i

∂ν̄

)
dS. (2.13)

Hence ∫
�

(−u1̃ζ + uqζ ) dx = −

∫
6β0

u

(
∂ζ e

∂ν̄
−
∂ζ i

∂ν̄

)
dS. (2.14)

By a straightforward computation

1̃ζ = − R2q ′

η + ϕ1̃R2q ′

η + 2∇ϕ · ∇̃R2q ′

η

= − R2q ′

η + 2q ′ϕR2q ′
−1

η 1̃Rη + 2q ′(2q ′
− 1)ϕR2q ′

−2
η |∇̃Rη|

2

+ 4q ′R2q ′
−1

η ∇ϕ · ∇̃Rη.

Therefore, by (2.14),∫
�

(R2q ′

η u+ uqζ ) dx = 2q ′

∫
�

uR2q ′
−2

η Gη dx −

∫
6β0

u

(
∂ζ e

∂ν̄
−
∂ζ i

∂ν̄

)
dS (2.15)

where
Gη = ϕRη1̃Rη + (2q ′

− 1)ϕ|∇̃Rη|
2
+ 2Rη∇ϕ · ∇̃Rη.

Further we obtain

∂ζ e

∂ν̄
=
∂ϕ

∂ν̄
R2q ′

−1
η + 2q ′ϕR2q ′

−1
η

∂Reη

∂ν̄
,

∂ζ i

∂ν̄
=
∂ϕ

∂ν̄
R2q ′

−1
η + 2q ′ϕR2q ′

−1
η

∂Riη

∂ν̄
,

and hence ∣∣∣∣∂ζ e∂ν̄ −
∂ζ i

∂ν̄

∣∣∣∣ ≤ 2q ′ϕR2q ′
−1

η

(∣∣∣∣∂Reη∂ν̄
∣∣∣∣ +

∣∣∣∣∂Riη∂ν̄
∣∣∣∣).

Put

Mη = ϕ1/q ′

(|∇̃Rη|
2
+ |1̃Rη|)+ ϕ−1/q

|∇ϕ · ∇̃Rη|, (2.16)

Nη = ϕ1/q ′

(∣∣∣∣∂Reη∂ν̄
∣∣∣∣ +

∣∣∣∣∂Riη∂ν̄
∣∣∣∣). (2.17)

Since 0< Rη ≤ 1 it follows that

|Gη| ≤ 2q ′ϕ1/qMη,

∣∣∣∣∂ζ e∂ν̄ −
∂ζ i

∂ν̄

∣∣∣∣ ≤ 2q ′ζ 1/qNη.
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Hence ∫
�

uR2q ′
−2

η |Gη| dx ≤ 2q ′

∫
�

uζ 1/qMη dx

≤ 2q ′

( ∫
�

uqζ dx

)1/q( ∫
�

Mq ′

η dx

)1/q ′

, (2.18)∫
6β0

u

∣∣∣∂ζ e
∂ν̄

−
∂ζ i

∂ν̄

∣∣∣ dS ≤ 2q ′

∫
6β0

uζ 1/qNη dS

≤ 2q ′

( ∫
6β0

uqζ dS

)1/q( ∫
6β0

Nq ′

η dS

)1/q ′

. (2.19)

Next we show that ∫
6β0

uqζ dS ≤ c

∫
�

(R2q ′

η u+ uqζ ) dx. (2.20)

In view of the Keller–Osserman inequality∫
6β0

uqζ dS ≤ c1(β0)

∫
6β0

uζ dS. (2.21)

Let ϕ′ be the solution of

−1ϕ′
= 1 in�′

β0
, ϕ′

= 0 on6β0 = ∂�′
β0
.

Put
c2(β0) := max

6β0

|∂n′ϕ′
|, c3(β0) := max

�′
β0

ϕ,

where∂n′ denotes the derivative in the direction of the outward normal on6β0 = ∂�′
β0

.
Then ∫

�′
β0

(u+ uqϕ′)dx = −

∫
6β0

u∂n′ϕ′ dS

≥ c2(β0)

∫
6β0

u dS ≥
c2(β0)

c3(β0)

∫
6β0

uζ dS. (2.22)

Letω denote the characteristic function of6 \ B2β1(x0) and put

c4(β0) = inf
�′
β0

R2q ′

ω .

By (2.10),η ≥ ω; hence
R2q ′

η ≥ c4(β0) ∀x ∈ �′
β0
. (2.23)

Using this inequality and the fact thatϕ′ < ϕ we obtain∫
�′
β0

(u+ uqϕ′) dx ≤
1

c4(β0)

∫
�′
β0

(u+ uqϕ)R2q ′

η dx. (2.24)
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Inequalities (2.21)–(2.24) imply (2.20). Further (2.15)–(2.20) imply∫
�

(u+ uqϕ)R2q ′

η dx ≤ c

( ∫
�

Mq ′

η dx +

∫
6β0

Nq ′

η dS

)
. (2.25)

Putη∗
= 1 − η and note that

Mη = Mη∗ , Nη = Nη∗.

We turn to the estimate of the terms on the right hand side of (2.25). By [15, Lemma 1.2],

‖ϕ1/q ′

|1Rη∗ |)+ ϕ−1/q
|∇ϕ · ∇Rη∗ |‖

Lq
′
(�β0)

≤ c‖η∗
‖
W2/q,q′ (6)

. (2.26)

In order to estimate the norm ofϕ1/q ′

(|∇Rη∗ |
2 in Lq

′

(�β0) we proceed as in the proof of
[15, Th. 3.3] (see (3.24) and the argument following it). First we obtain∫

�β0

ϕ(|∇Rη∗ |
2q ′

dx

≤ c

∫
6

∫ ρ0

0

(
ρq

′

∣∣∣∣∂Hη∗(ρ, σ )

∂ρ

∣∣∣∣2q ′

+ |∇σHη∗(ρ, σ )|2q
′

)
dρ dσ, (2.27)

whereρ0 = supσ∈6 ϕ
2(β0, σ ), and then, estimating the terms on the right hand side by

employing interpolation inequalities, we obtain∫
�β0

ϕ(|∇̃Rη∗ |
2q ′

dx ≤ c‖η∗
‖
q ′

W2/q,q′ (6)
. (2.28)

Inequalities (2.26) and (2.28) yield

‖Mη∗‖
Lq

′
(�β0)

≤ c‖η∗
‖
W2/q,q′ (6)

. (2.29)

Next we estimate the norm ofM in Lq
′

(�′
β0
). Recall that, in�′

β0
, Rη∗ = Vη∗ (see Defi-

nition 2.2); sinceVη∗ is harmonic,

Mη∗ = ϕ1/q ′

|∇Vη∗ |
2
+ ϕ−1/q

|∇ϕ · ∇Vη∗ |,

≤ c(|∇Vη∗ |
2
+ |∇Vη∗ |) in �′

β0
. (2.30)

SinceHη is a solution of (2.7) it follows that, for everyβ ∈ (0, β0),

‖Hη∗‖C2([β,β0]×6) ≤ c(β)‖η∗
‖
Lq

′
(6)
.

Let v be the function given by

v(x) := Hη∗(ϕ(x)2, σ (x)) ∀x ∈ �̄β0.

Then
‖v‖C2(�β0\�β )

≤ c′(β)‖η∗
‖
Lq

′
(6)
. (2.31)
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SinceVη∗ is the Poisson potential ofv|6β0
in �′

β0
, it follows that

‖Vη∗‖C1(�̄′
β0
) ≤ c′(β0)‖η

∗
‖
Lq

′
(6)
. (2.32)

Therefore, in view of (2.30) and (2.10),

‖Mη∗‖
Lq

′
(�′

β0
)
≤ c‖η∗

‖
Lq

′
(6)
. (2.33)

By (2.29) and (2.33),
‖Mη∗‖

Lq
′
(�)

≤ c‖η∗
‖
W2/q,q′ (6)

. (2.34)

Sincev = Reη∗ , Vη∗ = Riη∗ , (2.31) and (2.32) imply

‖Nη∗‖
Lq

′
(6β0)

≤ c‖η∗
‖
Lq

′
(6)
. (2.35)

Finally, (2.34), (2.35) and (2.25) imply (2.11). ut

At this point we need some additional notations. IfV is an open set inRd we denote by
CVα,p(K) theCα,p-capacity of a compact setK ⊂ V relative toV , i.e., relative to test
functions with compact support inV . It is known that

CVα,p(K) = rd−αpC
V/r
α,p (K/r) ∀K ⊂ V, K compact. (2.36)

Furthermore, for every positiveθ , there exists a constantcθ such that, for every compact
setK ⊂ V which satisfies dist(K, ∂V ) > θ ,

Cα,p(K) ≤ CVα,p(K) ≤ cθCα,p(K). (2.37)

If V is a relatively open subset of6,F is a compact subset ofV andCα,p denotes capacity
on6 then

CVα,p(K) ≈ rN−1−αpC
V/r
α,p (K/r) ∀K ⊂ F, K compact, (2.38)

and (2.37) remains valid. Finally, for everyx0 ∈ 6, we define

0s(x0) := Bs(x0) ∩6, Ds(x0) := � \ Bs(x0). (2.39)

Lemma 2.4. LetK andu be as in the statement of the theorem. Assume thatdiamK <

γ < β1 and letx0 ∈ 6 be a point such thatK ⊂ 0γ (x0). Then there exists a constantc,
depending only onq, N, � and the choice ofβ0, such that∫

D3γ (x0)

(uqϕ + u) dx ≤ cγN−1−2/(q−1)C2/q,q ′(K/γ ) (2.40)

whereϕ is as in Definition2.2.

Proof. Let η ∈ C2(∂�) be a function such that

0 ≤ η ≤ 1, η =

{
0 in a neighborhoodAη of K, Aη ⊂ Bγ (x0),

1 in ∂� \ B2γ (x0).
(2.41)

By Lemma 2.3 inequality (2.11) holds.
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If ωγ denotes the characteristic function of6 \ 02γ then

Rη ≥ Rωγ .

In addition there existsc0 > 0, depending only on� andβ0, such that

inf
D3γ (x0)

Rωγ > c0 (2.42)

for everyγ ∈ (0, β0/4) and everyx0 ∈ 6. This follows in a straightforward manner from
Definition 2.2. Consequently, ifη satisfies (2.41),

Rη ≥ c in D3γ (x0). (2.43)

This fact and (2.11) imply that∫
�\B3γ (x0)

(uqϕ + u) dx ≤ c‖1 − η‖
q ′

W2/q,q′ (6)
. (2.44)

Taking the infimum over all such functionsη we obtain∫
D3γ (x0)

(uqϕ + u) dx ≤ cC
02γ (x0)

2/q,q ′ (K).

By (2.37) and (2.38),

C
02γ (x0)

2/q,q ′ (K) ≈ γN−1−2/(q−1)C
02(x0)

2/q,q ′ (K/γ ) ≤ cγN−1−2/(q−1)C2/q,q ′(K/γ ).

The last two inequalities imply (2.40). ut

Lemma 2.5. LetK andu be as in the statement of the theorem. Pickγ such thatdiamK
< γ < β0/16. Let x0 ∈ 6 be a point such thatK ⊂ 03γ /2(x0). Then there exists a
constantc, depending only onq, N, � and the choice ofβ0, such that∫

�∩∂B4γ (x0)

uρ dS ≤ cγN−2/(q−1)C2/q,q ′(K/γ ). (2.45)

Proof. Put

hτ (x; x0) =


1

N − 2

(
1 −

τN−2

|x − x0|
N−2

)
if N ≥ 3,

1 −
τ

|x − x0|
if N = 2,

(2.46)

and
ψτ (x; x0) = φ(x)hτ (x; x0) ∀x ∈ �, (2.47)

whered(�) = diam� andφ is the eigenfunction corresponding to the first eigenvalue of
−1 in �, normalized so that maxφ = 1. Assumingτ ≤ β0/4, we get∫

Dτ (x0)

uqψτ dx =

∫
Dτ (x0)

u1ψτ dx −

∫
�∩∂Bτ (x0)

u∂nψτ dS, (2.48)

where∂n denotes the directional derivative in the direction of the outward unit normal on
Dτ (x0). Note that

−∂nψτ (x) = φ(x)/τ ≥ cρ(x)/τ ∀x ∈ � ∩ ∂Bτ (x0). (2.49)
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1ψτ =


−λ1φhτ + 2

τN−2
〈x − x0,∇φ(x)〉

|x − x0|
N

if N > 2,

−λ1φhτ − 2
τφ

|x − x0|
3

+ 2
τ 〈x − x0,∇φ(x)〉

|x − x0|
2

if N = 2.

(2.50)

We claim that there exists a constantb(�) > 0 such that

inf
x∈�
x0∈6

〈x − x0,∇φ〉

|x − x0|
2

≥ −b(�). (2.51)

Since|∇φ(x) − ∇φ(x0)|/|x − x0| is bounded it is sufficient to verify that there exists a
constantc such that

I (x, x0) :=
〈x − x0,∇φ(x0)〉

|x − x0|
2

> −c (2.52)

for all x0 ∈ 6 andx ∈ �. PutR = β0/2 and

|x − x0| = r, x̄0 = x0 + ν(x0)R, z = cos

(
x − x0

|x − x0|
, ν(x0)

)
.

(Recall thatν(x0) denotes the outward unit normal on∂� at x0.) Then the ballBR(x̄0)

lies outside� and touches∂� only at the pointx0.
For everyx ∈ �,

R2
≤ |x − x̄0|

2
= r2

+ R2
− 2rRz.

Hencez ≤ r/2R. Since∇φ(x0) = −|∇φ(x0)|ν(x0) this implies (2.52) with

c =
1

β0
inf
6

|∇φ(x0)|.

Thus (2.51) is verified. Using (2.52) we also obtain, forx ∈ Dτ (x0),

τφ(x)

|x − x0|
3

=
τ∇φ(x0) · (x − x0)

|x − x0|
3

+O(1) ≥ I (x, x0)+O(1) ≥ −c1, (2.53)

wherec1 is a constant depending only onN and�.
Note that supDτ (x0)

hτ (· ; x0) is bounded by a constant independent ofτ or x0. (Recall
that 0< τ < β0/4.) Therefore, (2.50), (2.51) and (2.53) imply

1ψτ ≥ −A in Dτ (x0), (2.54)

whereA is a constant depending only onN and�. By (2.48), (2.49) and (2.54),∫
Dτ (x0)

(uqφ + u) dx ≥
A

τ

∫
�∩∂Bτ (x0)

uρ dS (2.55)

for everyτ ∈ (0, β0/4) andx0 ∈ 6. Finally, (2.40) and (2.55) imply (2.45). ut

Remark. The constant in inequality (2.45) is independent ofγ but depends on�. How-
ever the inequality is invariant with respect to dilation: if� andK are replaced by
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�κ := κ(� − x0) andKκ
= κ(K − x0) respectively, then (2.45) remains validwith

the same constantc. To simplify the notation assume thatx0 = 0. If U is a solution of our
equation in�κ which vanishes on∂�κ \Kκ thenu(x) = κ2/(q−1)U(κx) is a solution in
� which vanishes on∂� \K. Therefore (2.45) holds with respect tou and we obtain

κ2/(q−1)
∫
�∩∂B3γ (0)

U(κx)ρ(x) dS(x) ≤ cγN−2/(q−1)C2/q,q ′(K/γ ).

Putξ := κx. Thenρ∂�κ (ξ) = κρ(x) and we obtain∫
�κ∩∂B3κγ (0)

U(ξ)ρ∂�κ (ξ) dS(ξ) ≤ c(κγ )N−2/(q−1)C2/q,q ′(Kκ/(κγ )).

Lemma 2.6. Let K, u be as in the statement of the theorem. Then there existsγ0 =

γ0(�) < 10−3β0 such that the following statement holds.
Assume thatdiam(K) < γ < γ0. Then there exists a constantc, depending only on

q, N, � and the choice ofβ0, such that∫
D9γ /2,5γ (x0)

uρ dx ≤ cγ 1+N−2/(q−1)C2/q,q ′(K/γ ) (2.56)

for everyδ ∈ [0, γ /4) andx0 ∈ 6δ such thatK ⊂ 05γ /4(x0). Here

Dr,r ′(x0) := {x ∈ � : r < |x − x0| < r ′}.

Proof. If z = (z1,0, . . . ,0) with 0 ≤ z1 < 1 then

{x ∈ RN+ : 17/4< |x − z| < 5} ⊂ {x ∈ RN+ : 4< |x| < 6}.

Therefore, as� is bounded of classC2,

{x ∈ � : 9γ /2< |x − x0| < 5γ } ⊂ {x ∈ � : 4γ < |x − σ(x0)| < 7γ } (2.57)

for everyx0 ∈ 6δ, provided that 0≤ δ < γ < γ0 andγ0 is sufficiently small. The value
of γ0 depends only on theC2 “norm” of ∂�.

By Lemma 2.5, ifK ⊂ 03γ /2(σ (x0)),∫
�∩∂B4γ (σ (x0))

uρ dS ≤ cγN−2/(q−1)C2/q,q ′(K/γ ).

The assumptions of the present lemma imply that the above condition onK is satisfied.
Hence, ∫

�∩∂Btγ (σ (x0))

uρ dS ≤ cγN−2/(q−1)C2/q,q ′(K/γ ) (2.58)

for everyt ∈ [4,7], with c independent oft . Integrating overt we obtain∫
D4γ,7γ (σ (x0))

uρ dx ≤ cγ 1+N−2/(q−1)C2/q,q ′(K/γ ). (2.59)

This inequality and (2.57) imply (2.56). ut
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Proof of Theorem 2.1.Let γ0(�) andm(�) be as in Lemma 2.6 and Theorem C.1 re-
spectively. Assume that diamK < θ := min(γ0, β0/40m) and pickγ ∈ (diamK, θ). Let
x0 ∈ � be a point such that

ρ∂�(x0) = ρK(x0) = δ := γ /4. (2.60)

ThenK ⊂ B5γ /4(x0) and Lemma 2.6 applies, so that inequality (2.56) holds.
Denote byPx0

τ the Poisson kernel ofDτ (x0). Sinceu is subharmonic,

u(x) ≤ v(x) :=
∫
y∈� : |y−x0|=τ

Pτ (x, y)u(y) dS(y) (2.61)

for everyτ > 5γ /4. Assume, as we may, thatm(�) > 20. Then

τ ∈ [9γ /2,5γ ] =⇒ τ < min(β0/8m,mδ). (2.62)

Assuming thatτ satisfies this condition, it follows, by Theorem C.1, that there exists a
constantc, independent ofτ andx0, such that

Px0
τ (x, y) ≤ c

ρ(x)ρ(y)

τ |x − y|N
(2.63)

in the set

E�(τ, x0) = {(x, y) ∈ �×� : |y − x0| = τ, |x − x0| ≥ 4τ }. (2.64)

Note that, in this set,|x − y| ≈ |x − x0|. Therefore, if|x − x0| ≥ 4τ ,

u(x) ≤ c
ρ(x)

τ |x − x0|
N

∫
y∈� : |y−x0|=τ

ρ(y)u(y) dS(y). (2.65)

This inequality holds for everyτ ∈ [9γ /2,5γ ] andx ∈ D4τ (x0). Therefore, integrating
overτ in this interval yields

u(x)γ ≤ c
ρ(x)

γ |x − x0|
N

∫
D9γ /2,5γ (x0)

ρ(y)u(y) dy (2.66)

for everyx ∈ D20γ (x0), γ ∈ (diamK, θ) andx0 satisfying (2.60). Hence, by (2.56),

u(x)γ ≤ c
ρ(x)

γ |x − x0|
N
γ 1+N−2/(q−1)C2/q,q ′(K/γ ) (2.67)

and consequently

u(x) ≤ cρ(x)γ−1−2/(q−1)C2/q,q ′(K/γ ), (2.68)

for every x ∈ � and γ ∈ (diamK, θ) such thatρK(x) > 25γ . This inequality and
Lemma B.2 imply that

u(ξ) ≤ cC2/q,q ′(K/θ) ≤ cC2/q,q ′(K/β0) ∀ξ ∈ � : ρK(ξ) = β0.

By the maximum principle, applied inDKβ0
= {x ∈ � : ρK(x) > β0},

u(ξ) ≤ cC2/q,q ′(K/β0) ∀ξ ∈ DKβ0
,
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and by Lemma B.2,

C2/q,q ′(K/β0) ≤ cC2/q,q ′(K/d(�)) ≤ cC2/q,q ′(K/α) ∀α ∈ (0, d(�)),

whered(�) := diam�. Consequently, (2.6) holds for everyξ ∈ DKβ0
.

Next we show that, for every compact setK ⊂ 6 and every integern > d(�)/20θ ,
(2.6) holds (with a constant depending onn) for all pointsξ ∈ � such that

diam�

n
diamK ≤ ρK(ξ). (2.69)

There is a numberMn such that∂� can be covered byMn balls of diameterdiam�
20n diamK.

Consequently,K =
⋃Mn

m=1Km, whereKm is compact and

diamKm < θ, m = 1, . . . ,Mn.

Furthermore, ifξ satisfies (2.69),

20 diamKm ≤ ρKm(ξ), m = 1, . . . ,Mn.

Hence

UKm(ξ) ≤ cρ(ξ)ρKm(ξ)
−1−2/(q−1)C2/q,q ′(Km/ρKm(ξ)), m = 1, . . . ,Mn.

Howeveru ≤
∑Mn

m=1UKm andρK(ξ) ≤ ρKm(ξ). Therefore

u(ξ) ≤ cMnρ(x)ρK(ξ)
−1−2/(q−1)C2/q,q ′(K/ρK(ξ)).

Thus (2.6) holds, with a constantc depending onn, for everyξ ∈ � satisfying (2.69).
Finally we show that (2.6) holds for everyξ ∈ � such that

1

4
diamK ≥ ρK(ξ). (2.70)

Let ξ be such a point and putδ =
1
2ρK(ξ). Let

Fj (ξ) := {x ∈ K : 2j−1δ ≤ |x − ξ | ≤ 2j δ}.

Let J (ξ) = max{j ∈ N : C2/q,q ′(Fj ) 6= 0}. Then

K =

J⋃
j=1

Fj (ξ), diamFj ≤ 2j+1δ ≤ 4ρFj (ξ).

Consequently,

UFj (ξ) ≤ cρ(ξ)ρFj (ξ)
−1−2/(q−1)C2/q,q ′(Fj/ρFj (ξ)), (2.71)

with c independent ofj . By [1] (see Remark below), taking into account the fact that
ρFj (ξ) ≥ 2j−1δ, it follows that

C2/q,q ′(Fj/ρFj (ξ)) ≤ C2/q,q ′(Fj/2
j−1δ) ≤ c2−(j−1)(N−1−2/(q−1))C2/q,q ′(Fj/δ).
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Therefore, by (2.71),

u(ξ) ≤

J∑
j=1

UFj (ξ)

≤ cρ(ξ)

J∑
j=1

2−(j−1)(1+2/(q−1))δ−1−2/(q−1)2−(j−1)(N−1−2/(q−1))C2/q,q ′(K/δ)

≤ cρ(ξ)δ−1−2/(q−1)C2/q,q ′(K/δ)

∞∑
j=1

2−(j−1)N

≤ cρ(ξ)ρK(ξ)
−1−2/(q−1)C2/q,q ′(K/ρK(ξ)). ut

Remark. By the argument employed in the first part of the proof of [1, Thm. 5.2.1] (see
in particular inequality (5.2.3)),

C2/q,q ′(tE) ≤ AtN−1−2/(q−1)C2/q,q ′(E) ∀t ∈ (0,1], (2.72)

for everyq ≥ qc = (N + 1)/(N − 1) and every compact setE ⊂ ∂�, with the constant
A depending only onq,N, ∂�. (Recall that, forq ≥ qc, 2q ′/q = 2/(q − 1) ≤ N − 1.)
In addition, for every positive numberτ ,

C2/q,q ′(αE) ≤ AC2/q,q ′(E) ∀α ∈ (0, τ ], (2.73)

whereA depends only onq, N, ∂� andτ . For the proof of this assertion see Lemma B.2.

3. Boundary singularities: estimates from below

Given a pointξ ∈ RN , a setK ⊂ RN and an integerm, put

Sm(ξ) := {x ∈ RN : rm+1 ≤ |x − ξ | ≤ rm}, rm = 2−m,

Km(ξ) := K ∩ Sm(ξ).
(3.1)

In addition we define

uK = sup{uµ : µ ∈ W
2/q,q ′

+ (6), µ(6 \K) = 0}. (3.2)

Theorem 3.1. Assume thatq ≥ qc = (N + 1)/(N − 1) and letK be a compact subset
of ∂�. Then there exists a constantc = c(�,N, q), independent ofK, such that

uK(ξ) ≥ cρ(ξ)

∞∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′(Km(ξ)/rm) (3.3)

for every pointξ ∈ �. Here`(�) is an integer such that

diam� ≤ 2`(�) < 2 diam�.

Proof. Inequality (3.3) is invariant with respect to dilations. Therefore, without loss of
generality, we assume thatβ0 = 1.
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It is sufficient to prove (3.3) under the following additional conditions:

(i) diamK ≤ 1/8, (ii) ρK(ξ) ≤ 1/8. (3.4)

We verify this assertion in two steps.
First, assuming that (3.3) holds forK andξ satisfying (3.4), we show that it holds for

all ξ ∈ �. Put

�Kτ = {x ∈ � : ρK(x) > τ }. (3.5)

In �K1/8 inequality (3.3) is equivalent to

uK(ξ) ≥ cρ(ξ)C2/q,q ′(K). (3.6)

Clearly, forξ ∈ �K1/8, the right hand side of (3.3) is bounded above bycρ(ξ)C2/q,q ′(K)

so that (3.6) implies (3.3). On the other hand, (3.3) implies that for everyξ ∈ �K1/8,

uK(ξ) ≥ cρ(ξ)

3∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′(Km(ξ)/rm)

≥ cρ(ξ)

3∑
m=−`(�)

C2/q,q ′(Km(ξ)/rm) ≥ cρ(ξ)C2/q,q ′(K). (3.7)

By Theorem 2.1,

uK(ξ) ≤ c(τ )ρ(ξ)C2/q,q ′(K) ∀ξ ∈ DKτ . (3.8)

Therefore, settingη = u
q−1
K , we have

−1uK + ηuK = 0 in�K1/16, (3.9)

where sup�K1/16
|η| ≤ c. By Hopf’s lemma,−∂nuK(x) > 0 for everyx ∈ ∂� such that

ρK(x) > 1/16. Therefore inf�∩�K1/8
uK/ρ > 0. By (3.7) and our assumption,

uK(ξ) ≈ ρ(ξ)C2/q,q ′(K) on� ∩ ∂�K1/8.

Consequently, there exists a constantc depending only on�, q such that (3.6) holds
in �K1/8.

Next we show that if (3.3) holds forK such that diamK ≤ 1/8 then it holds for every
compact setK ⊂ ∂�. There exists a natural numbern0 such that6 can be covered byn0
balls of diameter 1/16. Therefore every compact setK can be written as a union

⋃n0
i=1Fi

of compact sets, each of which has diameter smaller than 1/8. Since

uK ≥
1

n0

n0∑
i=1

uFi
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we conclude that

uK(ξ) ≥
c

n0
ρ(ξ)

n0∑
i=1

∞∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′((Fi)m(ξ)/rm)

≥ cρ(ξ)

∞∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′(Km(ξ)/rm) (3.10)

for everyξ ∈ �.
Assume that diamK ≤ 1/8 and put

AK := {x ∈ � : ρK(x) ≤ 1/8}.

Then

diamAK ≤ 3/8, K ⊂ B1/4(ξ), AK ⊂ B3/8(ξ) ∀ξ ∈ AK . (3.11)

Pick a pointx0 ∈ AK and letQ = Q(x0) be a subdomain of� of classC2 such that

� ∩ B̄3/8(x0) ⊂ Q(x0) ⊂ � ∩ B1/2(x0).

By (3.11),
AK ⊂ Q(x0) ⊂ B7/8(ξ) ∀ξ ∈ AK . (3.12)

Let u0
K be defined as in (3.2) with� replaced byQ(x0). Then

u0
K ≤ uK , ρ∂Q(x) = ρ∂�(x) ∀x ∈ AK . (3.13)

The first assertion is obvious and the second is easily verified. Indeed, if it does not hold,
there existsx′

∈ AK such thatρ∂Q(x′) < ρ∂�(x
′). Let y′

∈ ∂Q be a point such that
ρ∂Q(x

′) = |x′
− y′

|. Theny′
6∈ ∂� and therefore|y′

− x0| ≥ 1/2. On the other hand, by
(3.11),|x′

− x0| ≤ 3/8, so that

ρ∂Q(x
′) ≥ |y′

− x0| − |x′
− x0| ≥ 1/8.

This is impossible becauseρ∂�(x′) ≤ 1/8.
In the remaining part of the proof we establish the following:

Assertion 1. For every compact setK ⊂ ∂� andx0 ∈ AK , if

diamK < 1/8, (3.14)

then inequality(3.3) is valid inQ(x0) (as previously defined), withuK replaced byu0
K

and with a constant independent ofK andQ(x0).

First we verify that the assertion implies the statement of the theorem. Assumption
(3.14) implies thatK ⊂ B1/4(x0) andAK ⊂ Q. In view of (3.13), the assertion implies
that (3.3) holds inAK for every compact setK ⊂ ∂� satisfying (3.14). Therefore, by the
first part of the proof, it implies the statement of the theorem.

Proof of Assertion 1. To simplify the notation we writeQ = Q(x0). By the first part of
the proof it is sufficient to show that (3.3) holds forξ ∈ AK . Let ξ be such a point and
denote byM = M(ξ) an integer such that

rM+1 < ρK(ξ) ≤ rM .
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Put

Qm(ξ) := Q ∩ Sm(ξ), m = 0, . . . ,M(ξ), QM+1 = Q ∩ BrM+1(ξ).

By (3.11), (3.12),

K =

M⋃
m=1

Km(ξ), Q =

M+1⋃
m=0

Qm(ξ).

By translation we may locate the pointξ at the origin. Therefore in what follows we
assume thatξ = 0 and writeQm = Qm(0),Km = Km(0), etc.

Let νm ∈ W
2/q,q ′

+ (∂�) be a measure with support inKm and putν =
∑M
m=1 νm and

νε = εν (for ε > 0). Consider the problem

−1u+ uq = 0 inQ, u = νε on ∂Q. (3.15)

Let u be the (unique) solution of this problem and letv be the harmonic function with the
same boundary data. Thenu < v so that

−1u+ vq > 0 inQ, u = νε on ∂Q.

Hence, by the maximum principle,

u(x) ≥

∫
K

P(x, y) dνε(y)−

∫
Q

G(x, z)

( ∫
K

P(z, y) dνε(y)

)q
dz, (3.16)

whereP andG denote the Poisson and Green kernels inQ. Sinceu vanishes on∂Q \K,

u < u0
K in Q. (3.17)

From (3.16) we obtain

u(0) ≥ ε

M∑
m=1

∫
Km

P(0, y) dνm(y)− εq
∫
Q

G(0, z)

( M∑
m=1

∫
Km

P(z, y) dνm(y)

)q
dz

= εI1 − εqI2. (3.18)

Recall thatc or cj denote positive constants which may vary from one formula to another,
and which depend only onq, N, Q. (In particular, the constants do not depend onξ .) To
simplify notation we writeρ′(x) = ρ∂Q(x).

First we observe that

P(x, y) ≈ ρ′(x)|x − y|−N ∀x ∈ Q, ∀y ∈ K. (3.19)

Hence,

I1 =

M∑
m=1

∫
Km

P(0, y) dνm(y) ≥ cρ′(0)
M∑
m=1

r−Nm νm(Km). (3.20)

In order to estimateI2 from above we use the following well-known estimate of the Green
kernel:

G(x, z) ≈
ρ′(x)ρ′(z)|x − z|2−N

|x − z|2 + ρ′(x)2 + ρ′(z)2
∀x, z ∈ Q. (3.21)
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As a consequence we find that, for everyz ∈ Brj (4),

G(0, z) ≤ cρ′(0)ρ′(z)r−Nj . (3.22)

Hence

I2 =

∫
Q

G(0, z)

( M∑
m=1

∫
Km

P(z, y) dνm(y)

)q
dz

=

M+1∑
j=0

∫
Qj

G(0, z)

( M∑
m=1

∫
Km

P(z, y) dνm(y)

)q
dz

≤ cρ′(0)
M+1∑
j=0

r−Nj

∫
Qj

( M∑
m=1

∫
Km

P(z, y) dνm(y)

)q
ρ′(z) dz. (3.23)

Up to this point the measuresνm have not been specified; we define them below. Set

Dm :=
1

rm−1
(Q ∩ Brm−2(0)) = (Q/rm−1) ∩ B2(0), (3.24)

Fm := Km/rm−1 = (K/rm−1) ∩ S1(0), (3.25)

F ∗
m := (K/rm−1) ∩ B1/2(0), m = 1, . . . ,M. (3.26)

If µm is the capacitary measure ofFm relative to the capacityC2/q,q ′ on ∂Dm (see [1,
Sec. 2.2]) we defineνm as follows:

νm(A) := r
N−1−2/(q−1)
m−1 µm(A/rm−1) (3.27)

for any Borel setA ⊂ Km. By [1, Thm. 2.2.7],µm is a positive measure inW−2/q,q(∂Dm)

supported inFm and

C2/q,q ′(Fm) = µm(Fm) = ‖µm‖
q

W−2/q,q (∂Dm)
. (3.28)

By (3.27) and (3.28),

νm(Km) = r
N−1−2/(q−1)
m−1 µm(Fm) = r

N−1−2/(q−1)
m−1 C2/q,q ′(Fm). (3.29)

By (3.20) and (3.29),

I1 ≥ cρ′(0)
M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(Fm). (3.30)

In addition we have the following inequality:

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(Fm) ≥ c

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m). (3.31)

For its proof see Appendix A.
In order to estimateI2 we need the following result [15]: IfD is aC2 bounded domain

then, for every measureµ ∈ W−2/q,q(∂D),

‖PD(µ)‖Lq (D,ρ∂D dx) ≈ ‖µ‖W−2/q,q (∂D). (3.32)



Semilinear elliptic equations 503

In general, the constants involved in the relation≈ depend onq,N andD. However, a
careful examination of the proof of Theorem 2.2 of [15] shows that, for some families of
domains, the estimate is uniform. In particular we have:

Assertion 2. Let ξ ∈ AK andDm := (Q/rm−1) ∩B2(ξ) for 1 ≤ m ≤ M(ξ). Then there
exists a constantc, independent ofξ andm, such that

c−1
‖τ‖W−2/q,q ≤ ‖PDm(τ )‖Lq (Dm,ρm dx) ≤ c‖τ‖W−2/q,q (3.33)

for any measureτ ∈ W
−2/q,q
+ (∂Dm) with suppτ ⊂ Fm. Hereρm := ρ∂Dm .

We continue the proof of Assertion 1, using Assertion 2, whose proof is deferred to
the end of this section.

By (3.23),

I2 ≤ cρ′(0)
M+1∑
j=0

r−Nj

∫
Qj

( M∑
m=1

∫
Km

P(z, y) dνm(y)
)q
ρ′(z) dz,

≤ cρ′(0)
M+1∑
j=0

r−Nj

∫
Qj

j+1∑
m=j−1

( ∫
Km

P(z, y) dνm(y)

)q
ρ′(z) dz

+ cρ′(0)
M+1∑
j=0

r−Nj

( j−2∑
m=1

sup
z∈Sj

∫
Km

P(z, y) dνm(y) ρ
′(z)1/q

)q
|Sj |

+ cρ′(0)
M+1∑
j=0

r−Nj

( M∑
m=j+2

sup
z∈Sj

∫
Km

P(z, y) dνm(y) ρ
′(z)1/q

)q
|Sj |

= cρ′(0)(I2,1 + I2,2 + I2,3) (3.34)

where we putνm = 0 for m < 1 orm > M. We proceed to estimate each of the three
terms on the right hand side of this inequality.

Estimate ofI2,1. If 1 ≤ m ≤ M andj − 1 ≤ m ≤ j + 1 then

Qj/rm−1 ⊂ Dm, (3.35a)

P(z, y) ≤ cr1−N
m−1PDm(z

′, y′) ∀z ∈ Qj , ∀y ∈ Km, (3.35b)

wherey′ := y/rm−1, z′ := z/rm−1 andc is independent ofj,m. The first relation follows
directly from the definition of the domains. To verify the second relation observe that

ρ′(z) = dist(z, ∂Q) = rm−1 dist(z′, r−1
m−1∂Q) ≤ 4rm−1ρm(z

′),

whereρm = ρ∂Dm . Consequently, for everyz ∈ Qj andy ∈ Km,

P(z, y) ≤ c1ρ
′(z)|z− y|−N ≤ c2r

1−N
m−1ρ∂Dm(z

′)|z′ − y′
|
−N

≤ c3r
1−N
m−1PDm(z

′, y′).
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Using (3.35) and (3.27) we obtain∫
Qj

( ∫
Km

P(z, y) dνm(y)

)q
ρ′(z) dz

≤ c

∫
Dm

( ∫
Fm

r1−N
m−1PDm(z

′, y′) r
N−1−2/(q−1)
m−1 dµm(y

′)

)q
rN+1
m−1ρm(z

′) dz′

≤ cr
N+1−2q/(q−1)
m−1

∫
Dm

( ∫
Fm

PDm(z
′, y′) dµm(y

′)
)q
ρm(z

′) dz′

≤ cr
N−1−2/(q−1)
m−1 C2/q,q ′(Fm). (3.36)

By (3.28), (3.33) and (3.36),

I2,1 =

M+1∑
j=0

r−Nj

∫
Qj

j+1∑
m=j−1

( ∫
Km

P(z, y) dνm(y)

)q
ρ′(z) dz

≤c

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(Fm). (3.37)

Estimate ofI2,2. Herez ∈ Sj , y ∈ Km andm ≤ j − 2. Thusρ′(z) ≈ rj , |y − z| ≈ rm and

P(z, y) ≤ cρ′(z)|y − z|−N ≤ cr−Nm rj .

Hence,

I2,2 =

M+1∑
j=3

r−Nj

( j−2∑
m=1

sup
z∈Sj

∫
Km

P(z, y) dνm(y)ρ
′(z)1/q

)q
|Sj |

≤ c

M+1∑
j=3

( j−2∑
m=1

sup
z∈Sj

∫
Km

P(z, y) dνm(y)ρ
′(z)1/q

)q

≤ c

M+1∑
j=3

r
1+q
j

( j−2∑
m=1

r−Nm νm(Km)
)q
. (3.38)

Consequently, by (3.29),

I2,2 ≤ c

M+1∑
j=3

r
1+q
j

( j−2∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(Fm)

)q
≤ c

M+1∑
j=3

r
1+q
j

( j−2∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m)
)q
. (3.39)

Furthermore,

M+1∑
j=3

r
1+q
j

( j−2∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m)
)q

≤ c

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m). (3.40)

For the proof of this inequality see Appendix B.
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Estimate ofI2,3. Herez ∈ Sj , y ∈ Km andm ≥ j + 2. Thusρ′(z) ≈ rj , |y − z| ≈ rj and

P(z, y) ≤ cρ′(z)|y − z|−N ≤ cr1−N
j .

Hence

I2,3 =

M−2∑
j=0

r−Nj

( M∑
m=j+2

sup
z∈Sj

∫
Km

P(z, y) dνm(y) ρ
′(z)1/q

)q
|Sj |

≤ c

M−2∑
j=0

( M∑
m=j+2

sup
z∈Sj

∫
Km

P(z, y) dνm(y) ρ
′(z)1/q

)q

≤ c

M−2∑
j=0

rj

( M∑
m=j+2

r1−N
j νm(Km)

)q
≤ c

M−2∑
j=0

r
1−q(N−1)
j

( M∑
m=j+2

r
N−1−2/(q−1)
m C2/q,q ′(F ∗

m)
)q
. (3.41)

Put

θ(r) =

∫ r

0
tN−2−2/(q−1)C2/q,q ′

(
2

t
(K ∩ Bt )

)
dt.

By Lemmas B.1 and B.2 we obtain

M−2∑
j=0

r
1−q(N−1)
j

( M∑
m=j+2

r
N−1−2/(q−1)
m C2/q,q ′(F ∗

m)
)q

≤ c

M−2∑
j=0

r
1−q(N−1)
j θ(rj )

q
≤ c

∫
∞

0
t−q(N−1)θ(t)q dt. (3.42)

Further, by Hardy’s inequality,∫
∞

0
t−q(N−1)θ(t)qdt ≤ c

∫
∞

0
t−q(N−2)θ ′(t)q dt

≤ c

∫
∞

0
t−2q/(q−1)C2/q,q ′

(
2

t
(K ∩ Bt )

)q
dt. (3.43)

Combining (3.42) with (3.43) and applying once again Lemmas B.1 and B.2 we obtain

M−2∑
j=0

r
1−q(N−1)
j

( M∑
m=j+2

r
N−1−2/(q−1)
m C2/q,q ′(F ∗

m)
)q

≤ c

M∑
m=1

r
1−2q/(q−1)
m C2/q,q ′(F ∗

m)
q

≤ c′
M∑
m=1

r
1−2q/(q−1)
m C2/q,q ′(F ∗

m). (3.44)
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For the last inequality we used the fact thatC2/q,q ′(F ∗
m) is bounded (see (3.26)). By (3.41)

and (3.44),

I2,3 ≤ c

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m). (3.45)

Combining (3.34), (3.37), (3.39), (3.40) and (3.45) we obtain

I2 ≤ c

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m). (3.46)

Finally, by (3.18), (3.30), (3.31) and (3.46),

u(0) ≥ ρ′(0)(c1ε − c2ε
q)

M+1∑
m=0

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m). (3.47)

Thus, choosingε > 0 sufficiently small we obtain

u(0) ≥ cρ′(0)
M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m). ut (3.48)

Proof of Assertion 2.By translation we locate the origin atξ . By an additional rotation
we locate the point(0, . . . ,0, ρ′(0)) atσ(0) (= the nearest point to the origin on∂Q). By
the definition ofM = M(ξ),

2M−1ρ′(0) ≤ 2M−1ρK(0) ≤ 1/2. (3.49)

Therefore, in view of (3.24) and the regularity of∂Q, if m0 ∈ N is sufficiently large (de-
pending only onQ) then, form0 < M, the domainsDm with m0 ≤ m ≤ M “approach”
the domainB2(0)∩ {x : xN < 2m−1ρ′(0)}. To make this statement more precise we need
some notation:

Or
m := Br(0) ∩ {x : xN < 2m−1ρ′(0)}, (3.50)

Em := ∂Dm ∩

(
1

rm−1
∂Q

)
. (3.51)

For everyα > 0 there existsmα such that for everyM > mα and every integerm ∈

[mα,M], there exists an open neighborhoodUm of D̄m, aC2 diffeomorphismTm : Um →

U ′
m and a numberd ∈ (1,1 + α), independent ofm, such that

sup
mα≤m≤M

‖Tm‖C2(Um)
≤ c, sup

mα≤m≤M

‖T −1
m ‖C2(U ′

m)
≤ c, (3.52a)

d−1
|x| ≤ |Tm(x)| ≤ d|x|, (3.52b)

E′
m := Tm(Em) ⊂ {x : xN = am}, (3.52c)

where
ρ′(0)/d ≤ rm−1 am ≤ ρ′(0)d.
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SinceFm ⊂ Em ∩ S1(0) we have

F ′
m := Tm(Fm) ⊂ {x : xN = am, 1/4d ≤ |x| ≤ d/2}. (3.53)

Let Lm be the elliptic operator inD′
m corresponding to the Laplacian inDm by the

transformationTm. Let T̃m denote the mapping induced byTm on the space of Borel
measuresM(∂Dm) onto M(∂D′

m). Then T̃m mapsW−2/q,q(∂Dm) continuously onto
W−2/q,q(∂D′

m) and has a continuous inverse. LetPDm (resp.PD′
m

) denote the Poisson

kernel for1 in Dm (resp. inD′
m) and letPLm

D′
m

denote the Poisson kernel forLm in D′
m. If

τ ∈ W−2/q,q(∂Dm) andτ̃ := T̃m(τ ), then

ũm := PLm
D′
m
(τ̃ ), um := PDm(τ ) =⇒ um = ũm ◦ T̃m (3.54)

and
PLm
D′
m
(τ̃ ) ≈ PD′

m
(τ̃ ). (3.55)

The last relation follows from the equivalence of the Poisson kernels forLm and1 inD′
m.

In view of the uniform bounds onTm, this equivalence relation is uniform with respect to
m andξ .

Put

B−
r (0) := {x ∈ Br(0) : xN < 0}, B0

r := {x ∈ Br(0) : xN = 0},

Sm := (0,0, . . . ,0, am), A1 := B−

3/2(0), A2 := B−

3 (0).

Then, by (3.52) and (3.49), assuming that 0< α < 10−1,

Sm + A1
⊂ O

2/d
m ⊂ D′

m ⊂ O2d
m ⊂ Sm + A2. (3.56)

By (3.53),
F ′
m = Tm(Fm) ⊂ Sm + B0

1 ⊂ Sm + ∂Ai, i = 1,2. (3.57)

Hence, by (3.56),

PSm+A1(x, y) ≤ PD′
m
(x, y) ∀x ∈ Sm + A1, (3.58a)

PSm+A2(x, y) ≥ PD′
m
(x, y) ∀x ∈ D′

m, (3.58b)

for everyy ∈ Sm + B0
1.

If τ is a bounded Borel measure with support inFm, let τ̃m := T̃m(τ ) and denote by
τ ∗
m the measure onxN = 0 given byτ ∗

m(B) = τ̃m(B + Sm) for every Borel setB. Then,
in view of (3.57),∫

F ′
m

PSm+Ai (x, y) dτ̃ (y) =

∫
B0

1

PAi (x
′, y′) dτ ∗(y′) ∀x ∈ Sm + Ai, (3.59)

for i = 1,2 andx′
= x + Sm. By (3.32), ifτ ∈ W−2/q,q(∂Dm) and suppτ ⊂ Fm,

‖τ ∗
‖W−2/q,q (∂Ai ) ≈

∥∥∥∥∫
B0

1

PAi (·, y) dτ
∗(y)

∥∥∥∥
L
q
bw(A

i )

, i = 1,2. (3.60)
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Here for any open setO ⊂ RN , Lqbw(O) denotes the weighted Lebesgue spaceLq with
weight dist(x, ∂O).

Combining (3.58), (3.59) and (3.60) we obtain

c1‖τ̃‖W−2/q,q (Sm+∂A1) = c1‖τ
∗
‖W−2/q,q (∂A1)

≤ ‖PA1(τ
∗)‖Lqbw(A

1) ≤ ‖PD′
m
(τ̃ )‖Lqbw(D

′
m)

≤ ‖PA2(τ
∗)‖Lqbw(A

2)

≤ c2‖τ
∗
‖W−2/q,q (∂A2) = c2‖τ̃‖W−2/q,q (Sm+∂A2). (3.61)

Obviously the constants depend only onAi . For measuresτ ∈ W−2/q,q(∂Dm) with sup-
port inFm,

‖τ̃‖W−2/q,q (Sm+∂Ai ) ≈ ‖τ̃‖W−2/q,q (Sm+B0
5/4)

≈ ‖τ‖W−2/q,q (Em)

and, in view of (3.52), the equivalence relations hold with constants independent ofm

or ξ . Hence (3.61) implies (3.33). ut

4. A uniqueness result and asymptotic behavior of solutions

The inequalities established in the previous section are fundamental in the study of pos-
itive solutions of the equation (1.2). In this section we present some of the first conse-
quences of these estimates. Further applications, including the full characterization of
such solutions in terms of their boundary trace will be presented in a follow-up paper.

Theorem 4.1. Let� be a bounded domain of classC2 andK be a compact subset of
∂�. As in Section3 denote byuK the maximalσ -moderate solution of(1.2) (see(3.2))
and byUK the maximal solution of this equation. ThenUK = uK .

Proof. By Theorem 3.1, for every pointξ ∈ �,

uK(ξ) ≥ cρ(ξ)

∞∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′(Km(ξ)/rm), (4.1)

with Km(ξ) as in (3.1). The constantc depends only on�,N andq.
For everyξ ∈ �,

K =

M⋃
m=−`(�)

Km(ξ), M = M(ξ) := sup{m ∈ Z : Km(ξ) 6= ∅}, (4.2)

and consequently,

UK(x) ≤

∞∑
m=−`(�)

UKm(ξ)(x) ∀x ∈ �. (4.3)

To verify this inequality, keepξ fixed and letVm denote a relatively open neighborhood
of Km(ξ) on ∂�. PutV := ∂� \

⋃M
m=−`(�) Vm and

V βm = {x ∈ 6β : σ(x) ∈ Vm}, V β = {x ∈ 6β : σ(x) ∈ V }
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for β ∈ (0, β0) and−`(�) ≤ m ≤ M(ξ). Denote byvβm andvβ the solutions of the
boundary value problem

−1v + vq = 0 in�′
β , v = uKχW on6β (4.4)

with W = V
β
m andW = V β respectively. Clearly limβ→0 v

β
= 0 and there exists a

sequence{βj } decreasing to zero such that{v
βj
m } converges to a solutionvm of (1.2) in

�, for every integerm ∈ [−`(�),M(ξ)]. Furthermorevm vanishes on∂� \ V̄m so that
vm ≤ uV̄m . In addition, for everyβ ∈ (0, β0),

UK ≤

M∑
m=−`(�)

vβm + vβ ,

so that

UK ≤

M∑
m=−`(�)

vm ≤

M∑
m=−`(�)

UV̄m .

SinceUKm = infKm⊂F UF (F compact subsets of∂�), the last inequality implies (4.3).
By Theorem 2.1,

UKm(ξ)(x) ≤ cρ∂�(x)ρm(x)
−1−2/(q−1)C2/q,q ′(Km(ξ)/ρm(x)) ∀x ∈ �, (4.5)

whereρm(x) = ρKm(ξ)(x) andc is a constant depending only on�, N andq. Hence, by
(4.3),

UK(x) ≤ c

M∑
m=−`(�)

ρ∂�(x)ρm(x)
−1−2/(q−1)C2/q,q ′(Km(ξ)/ρm(x)) ∀x ∈ �. (4.6)

Sinceρm(ξ) ∈ [rm+1, rm] it follows that (see Lemma B.2)

C2/q,q ′(Km(ξ)/ρm(ξ)) ≈ C2/q,q ′(Km(ξ)/rm).

Therefore, by (4.6)

UK(ξ) ≤ cρ∂�(ξ)

M∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′(Km(ξ)/rm). (4.7)

Recall thatξ was an arbitrary point in�. Inequalities (4.1) and (4.7) imply that there
exists a constantC depending only onq,N,� such that

UK(x) ≤ CuK(x) ∀x ∈ �. (4.8)

ClearlyuK ≤ UK . If the two solutions are not identical we have

u(x) < U(x) ∀x ∈ �. (4.9)

Let α = 1/2C and putv = (1 + α)uK − αUK . ThenαuK < v < uK . As in [13] we find
thatv is a supersolution of (1.2). SinceαuK is a subsolution it follows that there exists a
solutionw such thatαuK < w < uK . If µ is a positive bounded Borel measure on∂�
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thenuαµ is the smallest solution which dominates the subsolutionαuµ. Hence, ifµ is
supported inK, uαµ < w. Therefore

uK = sup{uαµ : µ ∈M+(∂�)} ≤ w.

This contradiction completes the proof. ut

Theorem 4.2. For everya ≥ 1 there exists a constantc(a) > 0, depending also on
q,N,�, such that, for everyσ ∈ ∂�,

1

c(a)

∫ β0

s

t−1−2/(q−1)C2/q,q ′

(
1

t
(K ∩ B̄t (σ ))

)
dt

t
≤
UK(x)

|x − σ |

≤ c(a)

∫ β0

s

t−1−2/(q−1)C2/q,q ′

(
1

t
(K ∩ B̄t (σ ))

)
dt

t
+O(1) (4.10)

for all x ∈ � with s = |x − σ | ≤ aρ(x). Note that ifσ 6∈ K then the integral is bounded.

Proof. The inequality is trivial forx such thatρ(x) ≥ β0. Therefore we assumeρ(x) <
β0. Letσ ∈ K. It is sufficient to prove (4.10) (with a constant depending only onq,N,�)
for x = σ−sν(σ ), 0< s < β0. (Recall thatν(σ ) is the outward unit normal atσ .) Indeed,
once it is proved in this case, (4.10) follows, by Harnack’s inequality, for arbitraryx ∈ �

such thats = |x − σ | ≤ aρ(x).
By (4.1), (4.7) and (3.31), ifx = σ − sν(σ ), 0< s < β0,

UK(x) ≈ s

M∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′(Km(x)/rm)

≈ s

M∑
m=−`(�)

r
−1−2/(q−1)
m C2/q,q ′

(
1

rm
(K ∩ Brm+1(x))

)
, (4.11)

with M = M(x) as in (4.2). These relations together with Corollary B.3 imply

UK(x) ≈ s

∫ diam�

2s
t−1−2/(q−1)C2/q,q ′

(
1

t
(K ∩ Bt/2(x))

)
dt

t
. (4.12)

Finally, sinceBt−s(σ ) ⊂ Bt (x) ⊂ B3(t−s)(σ ), a simple computation (using Lemma B.2)
yields (4.10) forx as above. ut

Remark. By [1, Sec. 5.2] (see in particular Cor. 5.2.3 and the first part of the proof of
Thm. 5.2.1).

C2/q,q ′(γE) ≈ cγN−1−2/(q−1)C2/q,q ′(E) ∀γ > 0, if q > qc,

C2/q,q ′(γE) ≤ cγN−1−2/(q−1)C2/q,q ′(E) ∀γ ∈ (0,1), if q = qc.
(4.13)

A setK is said to be(2/q, q ′)-thick at a pointσ ∈ 6 if

Jq(σ ;K) :=
∫ β0

0

(
C2/q,q ′(K ∩ B̄t (σ ))

tN−1−2/(q−1)

)q−1
dt

t
= ∞. (4.14)
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If Jq(σ ;K) < ∞ we say thatK is (2/q, q ′)-thin atσ (see [1]). By (4.13),

Jq(σ ;K) ≈

∫ β0

0
C2/q,q ′

(
1

t
(K ∩ B̄t (σ ))

)q−1
dt

t
if q > qc,

Jq(σ ;K) ≤

∫ β0

0
C2/q,q ′

(
1

t
(K ∩ B̄t (σ ))

)q−1
dt

t
if q = qc.

(4.15)

It is well known thatK is (2/q, q ′)-thick, (2/q, q ′)-a.e. inK, i.e., everywhere except for
a subset ofC2/q,q ′ -capacity zero.

In the next definition we introduce a related notion:

Definition 4.3. A pointσ ∈ 6 is a (2/q, q ′)-concentration pointofK if

J ∗
q (σ ;K) :=

∫ β0

0
t−1−2/(q−1)C2/q,q ′

(
1

t
(K ∩ B̄t (σ ))

)
dt

t
= ∞. (4.16)

If the integral is finite we say thatK is (2/q, q ′)-sparseat σ .
The functionθK(· ; σ) defined by

θK(t; σ) := C2/q,q ′

(
1

t
(K ∩ B̄t (σ ))

)
, 0< t ≤ 1,

will be called thecapacitary distributionofK at σ .

It is clear that ifK is closed (as in our case) then every point at which it is(2/q, q ′)-
thick (resp.(2/q, q ′)-concentrated) belongs toK. The following blow-up criterion is an
immediate consequence of Theorem 4.2.

Corollary 4.4. For everyσ ∈ 6, either

lim
x→σ

x∈Cσa (�)

UK(x)|x − σ |
−1

= ∞ for everya ≥ 1,

or
sup

x∈Cσa (�)

UK(x)|x − σ |
−1 < ∞ for everya ≥ 1.

The first case occurs iffσ is a (2/q, q ′)-concentration point ofK.

Our next result provides more detailed information on the rate of blow up at points of
concentration ofK.

Theorem 4.5. (a) If K is (2/q, q ′)-thick atσ then∫ 1

0
UK(0(t))

q−1t dt = ∞ (4.17)

for every curve0 ∈ Lip([0,1], � ∪ {σ }) such that0(0) = σ and0 < |0(t)− σ | ≤

aρ(γ (t)) for somea ≥ 1 and everyt ∈ (0,1]. Thus(4.17)holds(2/q, q ′)-a.e. inK.
Obviously the integral is finite everywhere outsideK.

(b) If K is (2/q, q ′)-thick atσ then it is(2/q, q ′)-concentrated atσ .
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(c) For everyσ ∈ 6,

1

c(a)
s−2/(q−1)θK(s; σ) ≤ UK(x) ∀x ∈ C�a (σ ), (4.18)

where0< s := |x − σ | < 1.
(d) The following asymptotic estimate holds:

lim sup
x→σ

x∈C�a (σ )

|x − σ |
2/(q−1)UK(x)

a
≈ lim sup

s→0
θK(s; σ). (4.19)

If, in addition,θK(· ; σ) has a limit ass → 0, which we denote byθ0
K(σ ), then

1

c(a)
θ0
K(σ ) ≤ lim inf

x→σ
x∈C�a (σ )

|x − σ |
2/(q−1)UK(x)

≤ lim sup
x→σ

x∈C�a (σ )

|x − σ |
2/(q−1)UK(x) ≤ c(a)θ0

K(σ ) (4.20)

for everya ≥ 1.

Proof. By (4.10), for everyσ ∈ 6,

s

c(a)

∫ 2s

s

t−1−2/(q−1)θK(t; σ)
dt

t
≤ UK(x)

for everyx ∈ C�a (σ ), s = |x − σ | < 1/2. By Corollary B.3,

θK(t; σ) ≈ θK(s; σ), s < t < 2s.

This implies (4.18). This inequality can be rewritten in the form

1

c(a)
θK(s; σ)

q−1
≤ UK(x)

q−1s2. (4.21)

By (4.21) and (4.15), ifxs = σ − sν(σ ),

Jq(σ ;K) ≤ c(a)

∫ β0

0
UK(xs)

q−1s ds. (4.22)

This proves (4.17) in the casea = 1. Assertion (a) in the general case follows from (4.22)
and the Harnack inequality.

If K is (2/q, q ′)-thick atσ then, by (4.17), for everyε > 0,

lim sup
s→0

UK(xs)s
2/(q−1)−ε

= ∞.

By Corollary 4.4 it follows that limUK(xs)/s = ∞ andK is (2/q, q ′)-concentrated atσ .
We turn to the proof of the last assertion. Put

V (s) :=
∫ 1

s

t−1−2/(q−1)θK(t; σ)
dt

t
.
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For everyk ≥ 1,

0 ≤ V (s)− V (ks) =

∫ ks

s

t−1−2/(q−1)θK(t; σ)
dt

t
(4.23)

and by Lemma B.2,

θK(t; σ)
k
≈ θK(s; σ), s < t < ks.

(The notation
k
≈ indicates that the constants involved in the equivalence relation depend

onk.) Hence

0 ≤ V (s)− V (ks)
k
≈ s−1−2/(q−1)θK(s; σ). (4.24)

Let k ≥ 1 and putxs = σ − sν(σ ). Then, by (4.10),

1

c
sV (s) ≤ UK(xs) ≤ cs(V (s)+O(1)). (4.25)

By (4.24) and (4.25),

1

cs
UK(xs) ≤ V (s)+O(1)

≤ V (ks)+ cks
−1−2/(q−1)θK(s; σ)+O(1)

≤
c

ks
UK(xks)+ cks

−1−2/(q−1)θK(s; σ)+O(1). (4.26)

Therefore,

UK(xs) ≤
c2

k
UK(xks)+ cks

−2/(q−1)θK(s; σ)+O(s). (4.27)

Applying this inequality withk1+2/(q−1)
= 2c2 we obtain

lim sup
s→0

s2/(q−1)UK(xs) ≤ c lim sup
s→0

θK(s; σ). (4.28)

Combining (4.18) and (4.28) we obtain (4.19) in the casea = 1. In the general case the
inequality follows by an application of Harnack’s inequality. Finally, (4.20) is a simple
consequence of (4.18) and (4.19). ut

The following is an immediate consequence of the theorem.

Corollary 4.6. If
lim inf
s→0

θK(s; σ) > 0, (4.29)

then, for everya ≥ 1,

1

c(a)
|x − σ |

−2/(q−1)
≤ Uk(x) ≤ c(a)|x − σ |

−2/(q−1) in C�a (σ ). (4.30)

If
lim
s→0

θK(s; σ) = 0 (4.31)

then
|x − σ |

2/(q−1)UK(x) → 0 asx → σ non-tangentially. (4.32)
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Remark. Obviously, condition (4.31) may occur at points whereK is (2/q, q ′)-thick.
ThereforeUK may blow up at a rate weaker than the maximal rate even at such points.

Appendix A. Proof of inequality (3.31)

Let k ∈ N be a number to be determined later on. Noting that

F ∗
m = (rkF

∗

m+k) ∪

k−1⋃
j=0

(rjFm+j ),

we obtain
k−1∑
j=0

C2/q,q ′(rjFm+j ) ≥ C2/q,q ′(F ∗
m)− C2/q,q ′(rkF

∗

m+k). (A.1)

By the argument employed in the first part of the proof of [1, Thm. 5.2.1] (see in particular
inequality (5.2.3))

C2/q,q ′(tE) ≤ AtN−1−2/(q−1)C2/q,q ′(E) ∀t ∈ (0,1], (A.2)

for everyq ≥ qc = (N + 1)/(N − 1) and every compact setE ⊂ ∂Q, with the constant
A depending only onq,N, ∂Q. (Recall that, forq ≥ qc, 2q ′/q = 2/(q − 1) ≤ N − 1.)
Consequently, by (A.1),

C2/q,q ′(F ∗
m)− Ar

N−1−2/(q−1)
k C2/q,q ′(F ∗

m+k)

≤ A

k−1∑
j=0

r
N−1−2/(q−1)
j C2/q,q ′(Fm+j ) for m = 1, . . . ,M. (A.3)

Now choosek sufficiently large so thata := ArN−1
k < 1. Recall thatFM+j = F ∗

M+j = ∅

for j ≥ 1. Clearly

(1 − a)

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m)

≤

M∑
m=1

(r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m)− ar
−1−2/(q−1)
m+k−1 C2/q,q ′(F ∗

m+k)). (A.4)

Further, by (A.3) and (A.4),

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m) ≤ A′

M∑
m=1

r
−1−2/(q−1)
m−1

k−1∑
j=0

r
N−1−2/(q−1)
j C2/q,q ′(Fm+j )

= A′

k−1∑
j=0

rNj

M∑
m=1

r
−1−2/(q−1)
m+j−1 C2/q,q ′(Fm+j ) ≤ kA′

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(Fm), (A.5)

whereA′
= A/(1 − a). This proves (3.31).
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Appendix B. Proof of inequality (3.40)

We start with the following elementary lemma.

Lemma B.1. Let ϕi : (0,∞) → [0,∞), i = 1,2, be measurable functions satisfying
the following conditions. There exists a constantA such that, for everyα ∈ [1/2,2] and
everyt > 0,

A−1ϕ2(t) ≤ ϕ2(αt) ≤ Aϕ2(t), (B.1)

and either

A−1ϕ1(t/2) ≤ ϕ1(αt) ≤ Aϕ1(2t), (B.2a)

or

Aϕ1(t/2) ≥ ϕ1(αt) ≥ A−1ϕ1(2t), (B.2b)

Then there exists a constantc > 0 such that, for everyi, k ∈ N, i < k, the function
ϕ := ϕ1ϕ2 satisfies either

c−1
k∑
j=i

ϕ(rj+1) ≤

∫ ri

rk+1

ϕ(t)
dt

t
≤ c

k∑
j=i

ϕ(rj ), (B.3a)

or

c

k∑
j=i

ϕ(rj+1) ≥

∫ ri

rk+1

ϕ(t)
dt

t
≥ c−1

k∑
j=i

ϕ(rj ), (B.3b)

according to which of the conditions(B.2) holds.

Proof. By (B.1), (B.2a), and the mean value theorem there existsτj ∈ [rj+1, rj ] such that

1

2A2
ϕ(rj+1) ≤

∫ rj

rj+1

ϕ(t)
dt

t
= rj+1ϕ(τj )/τj ≤ A2ϕ(rj ). (B.4)

This implies (B.3a). The second case is similarly verified. ut

Lemma B.2. For every compact setF ⊂ ∂Q and every positive numberτ ,

C2/q,q ′(αF ) ≤ A(τ)C2/q,q ′(F ) ∀α ∈ (0, τ ], (B.5)

where the constantA(τ) depends only onq, N, ∂Q and τ if q = qc, andA(τ) =

A0τ
N−1−2/(q−1), withA0 independent ofτ , if q > qc.

Remark. Recall thatC2/q,q ′(F ) denotes capacity relative to∂Q while C2/q,q ′(αF ) de-
notes capacity relative toα∂Q.
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Proof. Since∂Q can be covered by a finite number of coordinate patches it is sufficient
to prove the inequality in the case thatF is contained in a coordinate patch. Thus there
exists aC2 diffeomorphism of a relative neighborhoodU of F onto an open setU ′ in
RN−1. Denote this diffeomorphism byT and letTα denote the induced mapping onαU :

Tα(αx) = αT (x) ∀x ∈ U.

ThusTα(αF ) = αT (F ) and the Lipschitz constant forTα is the same as that forT . Since

C2/q,q ′(F ) ≈ C2/q,q ′(T (F )), C2/q,q ′(αF ) ≈ C2/q,q ′(Tα(αF )),

it is sufficient to prove (B.5) in the case thatF ⊂ B1 ∩ RN−1 and the capacity is relative
to RN−1. If q > qc the inequality follows immediately from [1, Cor. 5.2.3]. Ifq = qc we
first apply [1, Thm. 5.2.1] to obtain

C2/q,q ′(τF ) ≤ CτC2/q,q ′(F ),

whereCτ depends only onN andτ . Next we observe that the first part of the proof of
[1, Thm. 5.2.1] and in particular inequality (5.2.3) implies that, for every compact set
E ⊂ RN−1,

C2/q,q ′(γE) ≤ C′γN−1−2/(q−1)C2/q,q ′(E) ∀γ ∈ (0,1],

whereC′ is a constant depending only onq, N . This is valid for 1< q ≤ qc. Combining
the last two inequalities we obtain (B.5). ut

Corollary B.3. LetK be a compact subset of∂Q and put

φ(t) = C2/q,q ′

(
1

t
(K ∩ Bt/2)

)
= C2/q,q ′

(
1

t
K ∩ B1/2

)
∀t > 0. (B.6)

Thenφ satisfies(B.2a)and, for everya ∈ R andi, k ∈ N, i < k,

1

c

k∑
m=i+1

ramφ(rm) ≤

∫ ri

rk

taφ(t)
dt

t
≤ c

k∑
m=i+1

ram−1φ(rm−1), (B.7)

wherec is a constant depending ona, q, Q.

Proof. If α ∈ [1/2,2] then, by Lemma B.2,

φ(αt) ≥ cC2/q,q ′

(
1

t
(K ∩ Bαt/2)

)
≥ cC2/q,q ′

(
1

t
(K ∩ Bt/4)

)
≥ cC2/q,q ′

(
2

t
(K ∩ Bt/4)

)
= cφ(t/2), (B.8)

φ(αt) ≤ cC2/q,q ′

(
1

t
(K ∩ Bαt/2)

)
≤ cC2/q,q ′

(
1

t
(K ∩ Bt )

)
≤ cC2/q,q ′

(
1

2t
(K ∩ Bt )

)
= cφ(2t). (B.9)

Thus the functionφ satisfies (B.2a), and consequently, Lemma B.1 implies (B.7). ut
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Proof of (3.40). Let φ be defined as in (B.6). With this notation

φ(rm−1) = C2/q,q ′(F ∗
m).

Put

ϕ(r, s) :=
∫ s

r

t−1−2/(q−1)φ(t)
dt

t
, 0< r < s. (B.10)

By Corollary B.3,

1

c

k∑
m=i+1

r
−1−2/(q−1)
m C2/q,q ′(F ∗

m+1) ≤ ϕ(rk, ri)

≤ c

k∑
m=i+1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m) (B.11)

for everyi, k ∈ N, i < k. The constantc depends only onq, N, Q. Hence

ϕ(0, ri) := lim
r↓0

ϕ(r, ri) ≤ c

M∑
m=i+1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m). (B.12)

Sinceφ is bounded,
ϕ(r,∞) ≤ cr−1−2/(q−1), r > 0. (B.13)

Further, by (B.11) and (B.10),

M+1∑
j=3

r
1+q
j

( j−2∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m)
)q

≤ c

M+1∑
j=3

r
1+q
j

( ∫ 2

rj−3

t−1−2/(q−1)φ(t)
dt

t

)q
=

M+1∑
j=3

r
1+q
j ϕ(rj−3,2)

q . (B.14)

By Lemma B.1 (sinceϕ is non-increasing, it satisfies (B.2b)),

M+1∑
j=3

r
1+q
j ϕ(rj−3,2)

q
≤ c

∫ 2

rM−1

t1+qϕ(t,2)q
dt

t
= c

∫ 2

0
(tϕ(t,2))q dt. (B.15)

By (B.13) and (B.12),∫ 2

0
(tϕ(t,2))q dt = −

q

q + 1

∫ 2

0
tq+1ϕq−1ϕ′ dt

≤ −c

∫ 2

0
ϕ′ dt = cϕ(0,2) ≤ c

M∑
m=1

r
−1−2/(q−1)
m−1 C2/q,q ′(F ∗

m). (B.16)

Finally (B.14)–(B.16) imply (3.40). ut



518 Moshe Marcus, Laurent V́eron

Appendix C. Estimates of Poisson kernels

This appendix is devoted to the derivation of the following theorem.

Theorem C.1. Givenx0 ∈ RN and0< r put

Dr(x0) := � \ B̄r(x0), 6r := {x ∈ RN : ρ̇∂�(x) = r}

and letPr denote the Poisson kernel of−1 in Dr . Then there exists a numberm =

m(�) ≥ 2 such that, for everyr1 ∈ (0, β0/8m), γ ∈ I := [r1/m, r1/2) andx0 ∈ 6γ , the
Poisson kernel of−1 in Dr1(x0), to be denoted byPx0

r1 , satisfies the inequality

Px0
r1
(x, y) ≤ c

ρ∂�(x)ρ∂�(y)

r1|x − y|N
∀x ∈ D4r1(x0), y ∈ ∂Br1(x0) ∩�, (C.1)

wherec, m depend only onN and theC2 “norm” of ∂�.

We begin with a related estimate whose proof is based on the Harnack inequality up to
the boundary (see [2]).

Lemma C.2. Let G be a domain inRN with compact boundary of classC2 and let
βi(G), βe(G) be as in(2.4). Putβ0 = min(βi(G), βe(G)). For everyγ ∈ (0, βe) and
σ ∈ ∂G put

Mγ (G) := {ξ ∈ RN : ρ̇∂G(ξ) = −γ }, Qγ (σ ) := σ + γ ν(σ ). (C.2)

Further setGr(Q) := G ∩ Br(Q). Then:

(a) For everyσ ∈ ∂G there existsβ̄ ∈ (0, β0/4) and an increasing function

Rσ : I 7→ (0,∞), I := (0, β̄),

such that
2γ < Rσ (γ ) < min(βi + γ, βe − γ )

and, for everyγ ∈ I ,

−ν(x) · (x −Q) ≥ 0 ∀x ∈ GRσ (Q), Q = Qγ (σ ) (C.3)

(Recall thatν(x) denotes the outward unit normal on∂G at σ(x).)

(b) There exists a constantC, depending only onN , βe and the Lipschitz constant of∂G,
such that, for everyσ ∈ ∂G andγ ∈ I , the Poisson kernel of−1 in GR(Q), where
Q = Qσ (γ ), 2γ < R ≤ Rσ (γ ), satisfies

PGR(Q)(x, y) ≤
C

γ

ρ∂G(x)ρ∂G(y)

|x − y|N
(C.4)

for everyx ∈ G ∩ B3R/4(Q) andy ∈ G ∩ ∂BR(Q).
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Proof. To verify statement (a) it is enough to observe that, if

β̄ := −(β0 + 1/2)+

√
(β0 + 1/2)2 + β0, R(γ ) :=

√
2β0γ + γ 2,

then the functionR(· ) on I has all the properties mentioned in (a), for everyσ ∈ ∂G.
However, in general,Rσ need not tend to zero asγ → 0. For instance, ifG is the
complement of a ball of radiusβ0 and β̄ = β0/4 then the function given byR(γ ) :=
β0 − γ satisfies all the conditions stated in (a).

We turn to the proof of (b). We assume (as we may) thatQ is the origin and write
Br ,Gr forBr(0),Gr(0). The conditions onx, y imply thatR/4 ≤ |x−y| < R. Therefore
(C.4) is equivalent to

PGR (x, y) ≤
C

γRN
ρ∂G(x)ρ∂G(y), (C.5)

whereγ = dist(0,G).
For any boundedC2 domainD with compactC2 boundary and any positiveα,

PD(x, y) = αN−1PαD(αx, αy). (C.6)

Let γ ∈ I andR > 2γ be given. In order to prove that (C.5) holds inGR with dist(0,G)
= γ , it is sufficient to prove that it holds in( 1

R
G)1 with dist( 1

R
G,0) = γ /R:

P
( 1
R
G)1
(X, Y ) ≤

CR

γ
ρ ∂G

R
(X)ρ ∂G

R
(Y ) (C.7)

for everyX ∈ ( 1
R
G) ∩ B3/4 andY ∈ ( 1

R
G) ∩ ∂B1. Indeed, forx = RX, y = RY ,

PGR (x, y) = R1−NP
( 1
R
G)1
(x/R, y/R)

≤
C

γ
R2−Nρ ∂G

R
(x/R)ρ ∂G

R
(y/R)

=
C

γ
R−Nρ∂G(x)ρ∂G(y). (C.8)

Note that if (C.3) holds inGR, relative toQ = 0, then it also holds in( 1
R
G)1 relative to

the origin.
We turn to the proof of (C.5) assuming thatγ = dist(0,G) ∈ (0,1/2), R = 1 and

β0 > 2.
We start with the construction of a certain superhamonic function inG1 = G ∩ B1,

vanishing on the boundary, which will be used in our estimate of the Poisson kernel. Let
h, η(· ;M,γ ) be solutions of

−1h = 1 inB1, h = 0 on∂B1, (C.9)

and

−1η = 1 inBM \ Bγ , η = 0 on∂Bγ , η = 1 on∂BM , (C.10)

whereM > γ . Then bothh andη are radially symmetric, the first decreasing and the
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second increasing with respect tor = |x|. Clearly, for everyα > 0, η(x;M,γ ) =

η(αx;αM, αγ ). In addition, ifM ′ > M thenη(· ;M ′, γ ) < 1 on∂BM and consequently

η(x;M ′, γ ) ≤ η(x;M,γ ).

Therefore, ifγ ∈ (0,1),

η(x;M,γ ) = η(x/γ ;M/γ,1) ∀x ∈ BM \ B̄γ (C.11)

∂rη(· ;M,γ )|∂Bγ =
1

γ
∂rη(· ;M/γ,1)|∂B1 ≤

1

γ
∂rη(· ;M,1)|∂B1, (C.12)

where∂r denotes differentiation in the radial direction on the indicated sphere. For|x|=r,
let h0(r) := h(x), ηγ (r) := η(x; 4, γ ).

For everyx ∈ G1, put

η̃(x) := inf{η(x − P) : P ∈ Mγ (G), σ (P ) ∈ ∂G ∩ B1}. (C.13)

Then
−1η̃ ≥ 1 inG1 = G ∩ B1, η̃ = 0 on∂G ∩ B1, (C.14)

and
η̃(x) = η(x − Px) with Px = σ(x)+ γ ν(x) ∀x ∈ G1, (C.15)

whereν(x) = νG(x) denotes the outward unit normal on∂G at the pointσ(x). The first
statement is obvious since, for everyy ∈ ∂G∩B1, Py ∈ Mγ (G) andη(y−Py) = 0. The
second statement follows from the fact that|x − Px | ≤ |x − P | for everyP ∈ Mγ (G)

such thatσ(P ) ∈ ∂G ∩ B1.
Sinceσ(·) andν(·) are inC1((∂G)β0), the mappingx 7→ Px is in C1(G1). Hence

η̃ ∈ C1(G1) and

∂j η̃(x) = η′

0(|x − Px |)
x − Px

|x − Px |
· ∂j (x − Px)

=
η′

0(|x − Px |)

2|x − Px |
∂j |x − Px |

2
= η′

0(|x − Px |)∂j |x − Px |. (C.16)

By (C.15),|x − Px | = γ + ρ∂G(x). Hence

∇η̃(x) = η′

0(|x − Px |)∇ρ∂G(x). (C.17)

If v := hη̃,

−1v = −(1h)η̃ − h1η̃ − 2∇h · ∇η̃

≥ η̃ + h− 2h′

0(|x|)η
′
γ (|x − Px |)(x/|x|) · ∇ρ∂G(x). (C.18)

Now h′

0 ≤ 0, η′
γ ≥ 0 and∇ρ∂G(x) is in the direction of−ν(x). Therefore, by (C.3),

−1v ≥ 0 inG1, v = 0 on∂G1. (C.19)

The vanishing on the boundary follows from (C.14) and (C.9).
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We turn to the proof of (C.5) withR = 1. By the Harnack inequality up to the bound-
ary (see [2, p. 623]), there exists a constantC which depends only onN and the Lipschitz
constant of∂G∩B1 such that, ifw1, w2 are positive harmonic functions inG1, vanishing
on ∂G ∩ B1,

w1(x)/w2(x) ≤ Cw1(ξ)/w2(ξ) ∀x, ξ ∈ Ḡ3/4. (C.20)

Pick a, y ∈ G ∩ ∂B1 andξ ∈ G ∩ ∂B3/4 such thatσ(a) = σ(ξ). Applying (C.20) with
w1 := PG1(·, y), w2 := PG1(·, a) we have

PG1(x, y) ≤ CPG1(x, a)
PG1(ξ, y)

PG1(ξ, a)
∀x ∈ Ḡ3/4. (C.21)

We estimate each of the factors on the right hand side.
Since|a − ξ | = 1/4 andB1/4(ξ) ⊂ G1 it follows that

PG1(ξ, a) ≥ PB1/4(0, a − ξ) = c1, (C.22)

wherec1 is a positive number depending only onN .
Let Ta denote the half space tangent toB1 at a, which containsB1. ThenG1 ⊂

Ta \ Br(Q
σ (r)) := T σa,r , r := min(βe/2,2−4), for everyσ ∈ ∂G ∩ B1. Consequently,

PT σa,r (x, a) ≥ PG1(x, a) ∀x ∈ G1.

By Hopf’s lemma, there exists a constantc2 depending only onN andβe such that

PT σa,r (x, a) ≤ c2|x − σ | ∀x ∈ G ∩ B3/4.

Hence,
PG1(x, a) ≤ P

T
σ(x)
a,r

(x, a) ≤ c2ρ∂G(x) ∀x ∈ B3/4. (C.23)

For the estimate ofPG1(ξ, y), y ∈ G∩∂B1, we use the superharmonic function previously
constructed. SinceB1 ⊂ B4(ξ) it follows that, for everyz ∈ G1 \ {ξ},

GG1(ξ, z) ≤ GB4(ξ)(ξ, z) = GB4(0, z− ξ),

whereGD denotes the Green function of−1 in D. Forε ∈ (0,1/8), put

Aε := max
|ζ |=ε

GB4(0, ζ ), A′
ε = min

|ζ |=ε
v(ξ + ζ ). (C.24)

Since 0< v < 1,A′
ε ≤ 1. Letε0 := max{ε ∈ (0,1/8) : Aε ≥ 1} and putc3 := Aε0/A

′
ε0

.
Clearlyε0 depends only onN and

GG1(ξ, z) ≤ c3v(z) ∀z ∈ ∂Bε0(ξ).

The functionc3v is superharmonic inG1; therefore, by the maximum principle (recall
thatv = 0 on∂G1),

GG1(ξ, z) ≤ c3v(z) in G1 \ Bε0(ξ). (C.25)
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This implies

PG1(ξ, y) = −∂nGG1(ξ, y) ≤ −c3∂nv(y) ∀y ∈ G ∩ ∂B1, (C.26)

wheren = y/|y|. Using (C.17) we obtain

−∂nv(y) = −h′

0(|y|)η̃(y)− h(y)∂nη̃(y) (C.27)

= −h′

0(1)η(y − Py)− h(y)η′
γ (|y − Py |)n · ∇ρ∂G(y)

≤ −h′

0(1)η(y − Py).

The last inequality follows from the fact thatη′
γ ≥ 0 and (C.3) which implies that

n · ∇ρ∂G(y) ≥ 0. Sinceηγ (γ ) = 0 andηγ is increasing and concave,

ηγ (|y − Py |) = ηγ (γ + ρ∂G(y)) ≤ η′
γ (γ )ρ∂G(y). (C.28)

By (C.26)–(C.28) and (C.12),

PG1(ξ, y) ≤
c4

γ
ρ∂G(y), (C.29)

wherec4 depends only onN . Finally, (C.21)–(C.23) and (C.29) imply (C.4). ut

Remark. From the proof of the lemma it is clear that the result is of a local nature. In
addition, if theC2 condition on the boundary is satisfied in a relatively open neighbor-
hood of a pointS ∈ ∂G, say01(S), then (C.4) holds for all pointsQ ∈ Ḡc ∩ B1/2(S)

sufficiently close to the boundary ofG. In this case the relevant values ofβe andβi are
those associated with theC2 “norm” of 03/4(S).

The following is an immediate consequence of the lemma:

Corollary C.3. If G is a bounded convex domain withC2 boundary then(C.4)holds for
everyγ ∈ (0, β0(G)/3) and 2γ < R < γ + β0 and the constant depends only onN
and the Lipschitz constant ofG. In particular ifG is a ball of radiusβ0 then the constant
depends only onN . If G is a half space then(C.4) holds for everyγ > 0 andR > 2γ ,
the constant depending only onN .

Proof. If G is a bounded convex domain withC2 boundary thenβe = ∞ and condition
(C.3) holds for everyQ 6∈ Ḡ. This implies the statements of the lemma. ut

Lemma C.4. Let� = {X ∈ RN : X1 > 0}, γ ∗ > 0 andR∗
≥ 3γ ∗. Then the Poisson

kernel of the domain

D∗ := DR∗(Z) = � \ BR∗(Z), Z = (γ ∗,0, . . . ,0),

satisfies the inequality

PD∗(X, Y ) ≤ c
X1Y1

γ ∗|X − Y |N
(C.30)

for everyX, Y ∈ � such that|X − Z| > 4R∗/3 and |Y − Z| = R∗, with the constantc
depending only onN .

Proof. Put

γ =
γ ∗

(R∗)2 − (γ ∗)2
, R :=

R∗

(R∗)2 − (γ ∗)2
, Q0

γ = (−γ,0, , . . . ,0).
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By scaling (see (C.6)) we may assume thatR∗
= 1 andγ ∗ < 1/3. In this case 0<

γ < 3/8 and 1< R < 9/8. The inversionT relative to the sphere|x| = 1 maps
BR(Q

0
γ ) onto the exterior of the ballBR∗(Z) and� onto itself. Consequently,BR(Q0

γ )∩

� is transformed toD∗. By Corollary C.3, the Poisson kernel ofD = BR(Q
0
γ ) ∩ �

satisfies inequality (C.5), which in this case is equivalent to (C.4). By a straightforward
computation, ifQ is a bounded domain of classC1 then

PQ(x, y) = |x|2−NPT (Q)(X, Y ), X = x/|x|2, Y = y/|y|2. (C.31)

Applying this relation toD = BR(Q
0
γ )∩� andD∗

= T (D) = DR∗(Z) and using (C.5),
we obtain

PD∗(X, Y ) ≤ |X|
2−N C

γ
x1y1

for everyX, Y such that|x −Q0
γ | < 3R/4 and|y −Q0

γ | = 1. Sincex1 = X1/|X|
2 we

obtain

PD∗(X, Y ) ≤
C

γ
|X|

−NX1Y1|Y |
−2.

SinceR∗
= 1, 1 < R < 9/8 andR/γ = R∗/γ ∗ it follows that 1< γ/γ ∗ < 9/8. If

|X − Z| > 4/3 and|Y − Z| = 1 then|X − Y | ≈ |X|, |Y | ≈ 1. Hence

PD∗(X, Y ) ≤
C

γ ∗
|X − Y |

−NX1Y1. ut

Lemma C.5. LetR, r1, γ1 be given such that

R/r1 := m > 4, 1/m < γ1/r1 < 1.

Denote bye the unit vector in the direction of the positivex1-axis, putτ1 := 2R+ γ1 and

� := {x ∈ RN : |x + Re| > R}, D∗ := � \ Br1(−τ1e).

Then the Poisson kernel ofD∗ satisfies the inequality

PD∗(x, y) ≤ cmRN−1ρ∂�(x)ρ∂�(y)

r1|x − y|N
(R + ρ∂�(x)) (C.32)

for everyx, y ∈ � such that|x + τ1e| > 4r1 and |y + τ1e| = r1, with the constantc
depending only onN .

Proof. Put a := 1/2R, µ := τ1/r1 = (2R + γ1)/r1 and computeγ0 andr0 from the
relations

r1 =
r0

(a − γ0)2 − r2
0

, τ1 =
a − γ0

(a − γ0)2 − r2
0

. (C.33)

This yields

r0 =
1

r1(µ2 − 1)
=

µ

τ1(µ2 − 1)
, γ0 = a − µr0. (C.34)

We note that

γ0 ≥
1

16m3r1
=

r1

16mR2
. (C.35)
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Indeed, by (C.34),

γ0 =
1

τ1 − γ1
−

τ1

τ2
1 − r2

1

=
γ1τ1 − r2

1

(τ1 − γ1)(τ
2
1 − r2

1)

and, by assumption,τ1/r1 = 2m so thatγ1τ1 > 2r2
1 . Hence

γ0 ≥
r2
1

(τ1 − γ1)(τ
2
1 − r2

1)
=

1

r1

1

(µ2 − 1)(µ− 1)
, (C.36)

which implies (C.35).
Now consider the domain

D0 := {X ∈ RN : X1 > −a} \ Br0((−a + γ0)e).

Let T denote the inversion relative to the unit sphere centered at the origin:TX =

X/|X|
2. Then

T (E) =


� if E = {X ∈ RN : X1 > −a},

Br1(−τ1e) if E = Br0((−a + γ0)e),
Br2(−τ2e) if E = B2r0((−a + γ0)e),

(C.37)

where

r2 =
2r0

(a − γ0)2 − 4r2
0

, τ2 =
a − γ0

(a − γ0)2 − 4r2
0

.

ThereforeT (D0) = D∗ and

Br2(−τ2e) ⊂ B4r1(−τ1e). (C.38)

Indeed, by (C.34),µ = (a − γ0)/r0 and consequently

τ2 − τ1

r1
=

3r0(a − γ0)

(a − γ0)2 − 4r2
0

=
3µ

µ2 − 4
.

If X = −τ1e+ 4r1h̄, whereh̄ is a unit vector, it follows that

|X + τ2e| ≥ 4r1 − (τ2 − τ1) = r1

(
4 −

3µ

µ2 − 4

)
,

and, sinceµ = τ1/r1 > 2m ≥ 8,

r1

(
4 −

3µ

µ2 − 4

)
≥ r2 =

2

r0(µ2 − 4)
=

2r1(µ2
− 1)

µ2 − 4
,

which proves (C.38).
By Lemma C.4,

PD0(X, Y ) ≤ c
(X1 + a)(Y1 + a)

γ0|X − Y |N
(C.39)
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for everyX, Y ∈ {X ∈ RN : X1 > −a} with |X + (a − γ0)e| > 2r0 and|Y + (a − γ0)e|
= r0. The constant depends only onN . By (C.31), asT (D0) = D∗,

PD∗(x, y) = |x|2−NPD0(X, Y ), X = x/|x|2, Y = y/|y|2. (C.40)

From (C.38)–(C.40) we obtain

PD∗(x, y) ≤ c
(X1 + a)(Y1 + a)

γ0|X − Y |N
|x|2−N (C.41)

for everyx, y ∈ � such that|x + τ1e| > 4r1 and|y + τ1e| = r1. It is easily verified that

|T x − Ty| =
|x − y|

|x| |y|
. (C.42)

Therefore, by (C.41),

PD∗(x, y) ≤ c
(2Rx1 + |x|2)(2Ry1 + |y|2)

γ0R2|x − y|N |y|2−N
, (C.43)

for x, y as before. A simple computation yields the identity

|x|2 + 2Rx1 = δR(x)(2R + δR(x)), δR(x) := dist(x, ∂BR(−Re)).

Hence (C.43) implies

PD∗(x, y) ≤ c
δR(x)δR(y)(2R + δR(x))(2R + δR(y))

γ0R2|x − y|N |y|2−N
.

If |y + τ1e| = r1 thenδR(y) ≤ 2r1 = 2R/m andR ≤ |y| ≤ 3R. Therefore, by (C.43)
and (C.35),

PD∗(x, y) ≤ c
δR(x)δR(y)(2R + δr(x))

γ0R3−N |x − y|N

≤ cmRN−1δR(x)δR(y)

r1|x − y|N
(R + (δR(x))), (C.44)

with the constantc depending only onN . ut

Proof of the theorem.Choosem large enough so that ifr1 ∈ (0, β0/8m) andx0 ∈ �

satisfiesρ∂�(x0) = γ ∈ [r1/m, r1/8) then

ν(x) · (x − x0) ≥ 0 ∀x ∈ ∂Br1(x0) ∩ ∂�. (C.45)

Such a choice ofm exists because� is bounded of classC2.
Let r1 andx0 be as above and letξ be a point in∂Br1(x0) ∩ ∂�. PutR = mr1 and

ξ0 = Rν(ξ). Define

B ′

R(ξ0) := {x ∈ RN : |x − ξ0| > R}, D∗
r1
(x0; ξ0) := B ′

R(ξ0) \ B̄r1(x0).

Then
�̄ ∩ B̄ ′

R(ξ0) = {ξ}, Dr1(x0) ⊂ D∗
r1
(x0, ξ0).
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Therefore

Pr1(x, y) ≤ PD∗
r1
(x, y) ∀x ∈ Dr1(x0), y ∈ ∂Br1(x0) ∩�. (C.46)

A simple computation shows that

γ ≤ dist(x0, ∂B
′

R(ξ0)) ≤ γ +
c

R
r2
1 = γ + cr1/m,

wherec is a constant depending only on� andβ0. Therefore, by choosingm sufficiently
large, we guarantee thatγ ≤ dist(x0, ∂B

′

R(ξ0)) ≤ 2γ . By Lemma C.5,

PD∗
r1
(x, y) ≤ C

ρER (x)ρER (y)

r1|x − y|N
≤ C

ρER (y)

r1|x − y|N−1
, ER = ∂B ′

R(ξ0), (C.47)

for everyx, y ∈ � such that|x−x0| > 4r1, |y−x0| = r1,withC = cm(1+diam�)βN−1
0 .

The second inequality follows from the fact that, for anyx, y as above,

ρER (x) ≤ ρD∗
r1
(x)+ 2r1 ≤ 2|x − y|.

If y ∈ ∂Br1(x0) ∩� is a point such that

|y − ξ | = inf
η∈∂Br1(x0)∩∂�

|y − η|

thenρER (y) ≈ |y − ξ | ≈ ρ∂�(y) and consequently, by (C.46) and (C.47),

Pr1(x, y) ≤ C
ρ∂�(y)

r1|x − y|N−1

for everyx ∈ � such that 4r1 < |x − x0|. For everyy ∈ ∂Br1(x0) ∩ � there exists a
nearest pointξ ∈ ∂Br1(x0)∩ ∂� (althoughξ may not be unique). SinceC is independent
of ξ , it follows that

Pr1(x, y) ≤ C
ρ∂�(y)

r1|x − y|N−1
(C.48)

for everyy ∈ ∂Br1(x0) ∩� and everyx ∈ � such that 4r1 < |x − x0|.
By a standard argument, (C.48) implies (C.1). Obviously (C.1) holds for pairs of

points(x, y) such that|x − y| ≤ 8ρ∂�(x). Therefore we consider pairs(x′, y′) such that

y′
∈ ∂Br1(x0) ∩�, x′

∈ D4r1(x0), ρ∂�(x
′) ≤ 1/8|x′

− y′
|.

Put
E′ := {x ∈ � : |x − σ(x′)| < α/2}, α := |x′

− y′
|.

Forx ∈ E′, we have|x − y′
| ≤ α. Therefore

Pr1(x, y
′) ≤ C

ρ∂�(y
′)

αN−1r1
:= A ∀x ∈ E′.

The functionPr1(·, y′) is harmonic and vanishes on∂�. By Hopf’s lemma,

Pr1(x, y
′) ≤ Aρ∂�(x)/α ∀x ∈ � : |x − σ(x′)| < 1

4|x′
− y′

|.

In particular

Pr1(x
′, y′) ≤ C

ρ∂�(x
′)ρ∂�(y

′)

αN r1
. ut
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