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Abstract. We show that any real &ler Euclidean submanifold : M2 — R2HP with either
non-negative Ricci curvature or non-negative holomorphic sectional curvature has index of relative
nullity greater than or equal to:2- 2p. Moreover, if equality holds everywhere, then the subman-
ifold must be a product of Euclidean hypersurfaces almost everywhere, and the splitting is global
provided thatM 2" is complete. In particular, we conclude that the only reahker submanifolds

M?" in R3" that have either positive Ricci curvature or positive holomorphic sectional curvature
are products of. orientable surfaces iR3 with positive Gaussian curvature. Further applications

of our main result are also given.

Keywords. Real Kahler submanifolds, non-negative Ricci curvature, non-negative holomorphic
curvature, relative nullity

1. Introduction

Splitting theorems have always had a central role in Riemannian geometry, and in sub-
manifolds theory in particular. A well known example is Hartman’s cylinder theorem
([H]) which is the extrinsic version of Cheeger—-Gromoll’s splitting theorem for complete
manifolds of non-negative Ricci curvature.

In [F2,[FZ1,[FZ2,Z] we gave some splitting results for Euclidean submanifolds
of non-positive sectional curvature. In_[EZ1], we showed thatf if M™" — R™*7,
2p < m, is an isometric immersion in Euclidean space ofiadimensional (connected)
Riemannian manifold/™ with non-positive sectional curvature and negative Ricci cur-
vature, then 2 = m and f splits locally as a product gf surfaces irR3. We say that an
isometric immersiory : M™ — R™*? splits locally as a product of hypersurfadésfor
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anyx € M™, there exists a neighborhoade U € M™, and, for each ki < p, a Rie-
mannian manifold/l.m" of dimensiorm; and an isometric immersiofj : Uim" — Rmitl,
such that

U=U1x---xU, and fly=fix--x fp.

There is no such general splitting result for positive sectional curvature, as the standard
immersion of the unit sphere as a Euclidean hypersurface shows.

One of the main goals of this article is to study this kind of splitting when the Rie-
mannian manifold has aabler structure. In this case we are able to give an analogous
result to the aforementioned one In [FZ1], but with teeersedsign on the curvature,
and even with weaker curvatures than the sectional one:

Theorem 1. Let f : M%* — R?"tP be an isometric immersion of aakler manifold
with p < n. Assume that/?" has either positive Ricci curvature or positive holomorphic
sectional curvature. Thep = n, and f splits locally as a product of positively curved
surfaces inR3. Moreover, the splitting is global i#7%" is complete.

As an immediate consequence of the above we deduce that therddsahtsometric

immersion of a Kahler manifoldV 2" with positive sectional curvature inR*'*7, p < n.

In particular, no open subset 61" admits an isometric immersion inR?+7, p < n.
Theorenf L is a consequence of a more general result, where we study, for our situa-

tion, theindex of relative nullityw of the isometric immersiorf, that is,

v(x) =dimA(x),

whereA(x) = Kera(x) = {v € ThM : a(v,w) = 0, Yw € T, M} is therelative
nullity of f atx, i.e., the nullity space of the second fundamental farof f atx. It is
well known that the positiveness ofimposes quite strong restrictions on bgttand M,
since, on any open subset wheres constant, the relative nullity is a smooth integrable
distribution with totally geodesic leaves in bold and the ambient Euclidean space.
Therefore, any lower bound argives deep information on the submanifold. In particular,
our aforementioned splitting results for Euclidean submanifolds of non-positive sectional
curvature rely on a careful analysis of the relative nullity.

With this in mind, [F1] was devoted to show that the index of relative nullity of a
Euclidean submanifolg : M™ — R™*? with non-positive sectional curvature satisfies

v>m—2p,

while the main result in([FZ1] is that, if equality holds, the submanifold should split
locally as a product op hypersurfaces almost everywhere. Although it is easy to see that
the same estimate anholds for any real Khler Euclidean hypersurfacg & 1), even

for codimensionp = 2 we can have = 0 for anyn, as shown, for example, by the
holomorphic complex hypersurface @'+ = R?'+2 given byz,+1 = 22 + - + z2.
However, our next result states that the same estimate laslin [F1] and the same splitting as
in [FZ1] hold for Kahler Euclidean submanifolds, but with treversedsign on weaker
curvatures:
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Theorem 2. Let f : M%* — R2Z*P be an isometric immersion of asler mani-

fold with either non-negative Ricci curvature or non-negative holomorphic sectional cur-
vature. Then the index of relative nullity of f satisfiesv > 2n — 2p. Moreover, if

v = 2n — 2p, then there is an open dense subBetc M2 such thatf |y splits locally

as a product ofp nowhere flat real Khler Euclidean hypersurfaces with non-negative
Ricci curvature.

Therefore, every such realdller Euclidean submanifold should be foliated almost ev-
erywhere by (open subsets of) affine Euclidean subspaces of dimension atieagt)2
Moreover, its curvature (and hence Ricci) tensor also has nullity of dimensign

2(n — p) since, by the Gauss equation, the relative nullity is always contained in that
nullity. Thus, settingcy; = min, <y 1, which is an even integer numbenif?” is Kahler,

we can state an immediate corollary with purely intrinsic assumptions:

Corollary 3. Let M?" be a Kahler manifold with either non-negative Ricci curvature or
non-negative holomorphic sectional curvature. pet n— /2. If f © M — R2'+P

is an isometric immersion, then there is an open dense sibset M2 such thatf |y
splits locally as a product op nowhere flat real Khler Euclidean hypersurfaces.

Theoren{ P is sharp in the sense that there are locally irreducible isometric immersions
satisfying its hypothesis but with = 2n — 2p + 1. To see this, just compose a prod-
uct of p — 1 nowhere flat real Bhler hypersurfaces with a generic local immersion of
R2+P—1into R"*7. It is an interesting question if this is the only way to construct such
submanifolds, as is the case for non-positive sectional curvature; see [FZ2].

Since each hypersurface factor in the conclusion of Thepfem 2 has constant relative
nullity of codimension two, we conclude that any regier Euclidean submanifold
with either non-negative Ricci curvature or non-negative holomorphic sectional curvature
that has minimal index of relative nullity = 2n — 2p can now be explicitly locally
parametrized. This can be done by means of the Gauss parametrization in terms of pseu-
doholomorphic surfaces in the sphere in the senselof [C]. cf. [DG1] DG2/FZ1, FZ2].

There are some known cylinder theorems for complete réhlét submanifoldy :
M?" — R2tP  The aforementioned fact that> 2n — 2 for p = 1 was used inJA] to
show thatf splits as a surface iR and aC” 1 factor if either f is real analytic, or the
scalar curvature af/?" is negative or non-negative. In fact, it was shown in [DG3] that the
same holds true if = 21 — 2 in a dense connected subset, regardless of the codimension.
For other cylinder theorems for complete minimal reghier submanifolds, see [DR2,
DGA].

As a consequence of Theor@in 2 we are also able to give a cylinder theorem of global
nature that generalizes the onelin [Fw].

Corollary 4. Let f : M?' — R2*? be an isometric immersion of a completater
manifold with either non-negative Ricci curvature or non-negative holomorphic sectional
curvature. Then > 2n — 2p, and equality holds everywhere if and only if

M2”=M12><-~-><M1§x(cn—l’ and f=fix---x f,xI
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split globally, wheref; : M2 — R3, 1 < i < p, is a complete isometrically im-
mersed oriented surface of positive Gaussian curvature, AandC"~? — R2'~27 s
the identity map.

An analogous result holds if we require onlyxg) = 2n — 2p at one pointqg € M

and the metric of?" to be real analytic; see Rem 12. Observe that there is a large
family of complete, irreducible, minimal but not holomorphic reaer submanifolds

in codimensiorp = 2. They must be holomorphically ruled for> 3 (so,v =2n — 4 =

2n — 2p) and admit a Weierstrass-type representation]_cf. [DG4]. On the other hand, any
complete, not everywhere minimal, real analytiaier submanifoldf : M%" — R?'+2

in codimensionp = 2 must split asf = f1 x I, wherel : C""? — R? % is the
identity map, andf, : N4 — RS is either a product of two surfacesIR?, or a cylinder

over a surface ifR*, or a composition of isometric immersiorfs = i o (f> x I), where
fo:L? > R3 I1:C — R?andi : U c R®> — RS see[[FZ4]. Moreover, it was shown

in [EZ3] that any complete real&bhler Euclidean hypersurface must be a cylinder over a
surface inR3, a result that generalizes the aforementioned origlin [A].

The main ingredient in the proof of Theor¢in 2 is the general Propos§ition 10 of inde-
pendent interest. In fact, it also allows us to obtain the following generalization of several
results, as[[R] for Khler hypersurfaces in the sph&® of constant sectional curvature
¢, Theorem 4 in[[ET] and Corollary 5 in [IF1] (see also Corollary 11 below):

Theorem 5. If M?" Sf"“’ is a real K&hler submanifold of a sphere wigh < n, then
p =n —1andM? is (an open subset of) a productfound spheres ifR3. That is,
M C 2 x - x§2 C ST C R, wherel/c = 1/c1+ -+ + 1/cy.

We point out that the other part of the main resultlin [R], which deals withl&r hy-
persurfaces in hyperbolic spa&”+1, does not admit a generalization along the lines of
Theorenﬂs, since the hyperbolic space has a totally umbiiiéat?—1 ¢ H2'+7,

2. The second fundamental form of a real Kahler Euclidean submanifold

In this section, we shall study some aspects of the general behavior of the second funda-
mental form of a real Bhler Euclidean submanifold, especially (s 1) part.

Let us first fix some notations. From now ofi; M?* — R?*+7 will be an isometric
immersion of the Khler manifoldM?" into the Euclidean space. Fix a pointe M2,
The second fundamental foren= «/(x) of f atx is the symmetric bilinear map

a:TeM x TeM — TAM = N = R?,

whereT, M = R?" is the real tangent space %" atx, and(T;*M, ( ,)) is the normal
space off atx. Extendx bilinearly overC, and still denote it by,

a  (IM)yCx (IxyM)@ C— N®C.



Kahler Euclidean submanifolds 5

Let V be the space of typgl, 0) tangent vectors at, that is,V is the complex subspace
of (TyM) ® CgivenbyV ={v—iJv:veTyM}. Then(TyM)  C=V & V. Write

H =aly . v and S =ualyxy

for the (1, 1) and(2, 0) parts ofw, respectively. The : V x V. — N ® C is a symmetric
complex bilinear map, whilé7 : V x V — N ® C is a Hermitian bilinear map, that is,

HY,X)=H(X,Y), VX,YeV.

For simplicity, we will always writeSxy for S(X, Y) andH, for H(X, Y).

Let us also extend the inner prodyct ) on N bilinearly overC to N ® C, and still
denote it by( , ). The Riemannian curvature tensoof M?* and the second fundamental
form « are related by the Gauss equation:

Rapcp = (a(A, D), a(B, C)) — (a(A, ), a(B, D)),

for any real tangent vectors, B, C, D in T, M. By our linear extension ovet, this
equality also holds true for any, B, C, D in (TM)®C = V @ V. SinceM?" is Kahler,
we haveRyy.. = 0if both X andY are inV. Therefore, we get the following.

Proposition 6. Let f : M2 — RZ'*P pe a real Kahler Euclidean submanifold, and
considerV, H, S as above. Then for any vectaXs Y, Z, W in V,

(HXW’ vZ) = <Hva x7Z)s (1)
( XWsSYZ> (HYWvSXZ> 2
(Sxw. Syz) = (Sxz, Syw), )

Ryy 7w = (Hyw, Hyy) — (Sxz, Syw). (4)

In particular, if X = (v —iJv)/~/2, Y = (w — i Jw)/~/2 are unit vectors i/, we get
Ryjviww = Ryxyy = |Hyy? = 1Sxy %, (5)
K (v, Jv) = Ryxxx = |Hyxl® = 1Sxx|%, (6)
wherek is the sectional curvature %"
Define theindex of pluriharmonic nullity; = v, (x) of f atx € M?" by
vy =dimg Ay1, where Ap;=A11(x) ={XeV: :H7y=0 VYeV}]
Our goal in this section is to prove the next general result.

Lemma?7. Let f : M? — R?'*P be a real Kahler Euclidean submanifolgy > 1.
Takex € M?', and letV, N, H, S be as above. Then;(x) > n — p. Moreover, if

vy(x) = n — p, there exists a basies, ..., e,} of V such thatH,z, = See; = O
if eitheri # jori = j > p. Moreover, forl <i < p, Hpz, # 0, Se,e; is collinear
to w; = Hez, /|Heie; 1, @and{wy, ..., w,} is an orthonormal basis of the normal spate
atx.

Proof. We will prove this lemma by a series of claims. et v, (x) andVp = Ag1(x).
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Claim 1. We havef,y # 0forany0 # X € Vg-.

Proof. If not, then for anyY € V, by @) we havelHyy|? = (Hyy. Hyy) = 0. SO
X € Vp, which is a contradiction. ]

Claim 2. If n > 2, then there exist non-zero vectofsY € V4 such thatH,y = 0.

Proof. Let{ey, ..., e,—4} be abasis of/ol. In the following, we will WriteHi; for Hez;.
Consider the vector#l;3, Hy3, ..., Hy—; in N ® C = CP. By assumption, we have
p <n-—gq.lf p<n—gq,thenthese vectors are linearly dependent. So theéfe4s0 in

V such thatHel? = 0, and Claim 2 is proved. Now consider the case n — g. We may
also assume that the s¢f,7, H,3, ..., Hip} and{Hy;, Hy, ..., Hzp} are each linearly
independent inV ® C . Both sets are bases 6F, so there is a hon-degenerate complex
p x p matrix B = (B;;) such that

p
Hy; = Z BijHy;
j=1
foreach1<i < p.LetX = e1 — Xep, andY = )_ y;e;. Then we have
Hyy = JiHy—h) JiHz =) [ Vi(B — /\I)ij}sz
J i

Thus, if we choose. to be an eigenvalue of the matr&, and (1, ...,y,) # 0 the
corresponding eigenvector, théh, = 0. This completes the proof of Claim 2. O

Next, for eachX e VOL, denote byHy : VOl — N ® C the linear map given by
Hx(Y) = H(Y,X), and letK (X) = KerHy. We will call the subspace oV ® C
spanned by7,+ for all X, Y in VOL theimage spacef H.

Claim 3. We havep = n — ¢, the image space dff coincides withV ® C, and there
exists0 £ X € VOL such thatk (X) is (n — g — 1)-dimensional.

Proof. We will perform induction om — g. Whenn — g = 1, p must be 1Hy has trivial
kernel for any non-zerd € VOL, and the image space éf is N ® C by Claim 1.

Now assume that Claim 3 is true when restricted to any proper subspa/gé. ®for
our V- of dimensionn — ¢ > 2, fix 0 # X € V;-. From Claims 1 and 2 we see that
dmK((X)=n—g —rforsomel<r <n-—gq.

DefineP = Im(Hx) ¢ N ® C. It has complex dimension Consider the subspace
Q = P+ P C N ®C, and denote its complex dimension by r. SinceQ = Q, we
know thatQ = Ngp ® C for some real linear subspad® C N of real dimension. Let
N1 be the orthogonal complement &% in N, and writeV, = K(X). Then for anyY, Z
in Vo and anyW € V, by (1) we have

(Hyz, Hyw) = (Hyy, Hy7) =0,
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and similarly,(Hy,~, Hy,%) = 0. That is,H, is perpendicular t@, or, in other words,
the restrictionH|,, .7, has its image contained iN; ® C. Note that the dimension of
Ni is p — s, which is less than or equal i0— g — r, the dimension oV;. So by the
inductive hypothesis, we know that—s = n — ¢ — r, which implies thapp = n — ¢ and

r = s, and that there exists £ Y € V1 such that KefHy|y,) C V1 has codimension 1.
Moreover, the image space #f| VXV, is equal toN1 ® C, which implies that the image
space off is equal toN ® C.

We claimthatk (Y) C VOL has codimension 1, which completes the proof of Claim 3.
SinceH,y # 0, it suffices to show that, for ar € V", we haveW = Z — 1Y € K(Y),
wherex = A(Z) = (H,y, Hyy)/|Hyy|?. Observe thatH,,y, Hyy) = 0.

First, writem = n — ¢ — r, and choose a basfay, ..., ¢, } of V1 such thatt = e;
and KeXHy|y,) = spafiey, ..., en}. By the inductive hypothesis, the spae ® C is
spanned by for 1 <i, j <m. By @), we have

(Hyy. H7) = (Hwe;. H, y),

whichis zeroifi > 1, orifi = 1and;j > 1sinceH,; = 0inthis case. We also know that
the left hand side is zero if= j = 1, by our construction o. So Hy,y is orthogonal
to N1 ® C, thatis,Hyy € Q.

Secondly, from the fact that = s, we know thatQ = Im(Hx) = H(X, V). But
(Hyv, Hyi) = (Hyg, Hyy) = OforallU € V since Hyy = 0. We conclude that
Hy,v = 0 as desired. o

Now we are ready to finish the proof of Lemﬁa 7. By Claim 3, there exists V-
such that the kernet (e1) is (n — ¢ — 1)-dimensional. Note that; ¢ K (e1). Applying
Claim 3 to the restriction off to K (e1) x K (e1), we finde, € K (e1) for which H,, has
codimension one kernel i (e1). Inductively, we get a basi8 = {ey, ..., e,} of VoL
such thatt,; = 0 whenever # j. This fact andml) also imply that & H,; L H; for
anyi # j, and we get the desired orthonormal bgsis, ..., w,} of N. ExtendB to a
basisB’ = {e1, ..., e,} of V suchthafe,1, ..., e,} is a basis olp.

To see thafS is also diagonal undef’, fix anyi # j. Forany 1< k < p, we see
by (2) that(H,g, Sij) = (Hix, Skj) = (Hjz, Ski). So itis zero ifk # i ork # j, which
always happens ds# j. Thatis,S;; is perpendicular ta for all &, so it must be zero.
Similarly, S;; = 0if i > p.

The formula (2) also implies that;; L H,; for any j # i, thusS;; points in the
direction ofw;, for each 1< i < p. This completes the proof of Lemrpp 7. O

Remark 8. From its very definition, we see that the vanishing of tthel) part H of

the second fundamental form ¢fis equivalent tof being pluriharmonic (also called
circular), that is,a(JX,Y) = a(X, JY) forall X,Y € TM. Therefore, Lemmp]7 says
that the second fundamental form pis diagonal if the immersion is “as far as possible”
from being pluriharmonic. It was shown in Theorem 1.2 of [[DR1] that a Euclidedrieg
submanifold is pluriharmonic if and only if it is minimal. We point out that this result
follows immediately from[(]L), since the mean curvathef the immersion can be written
ash =3Y{_; Hyandthenlhl|> =3, ;(H;, Hy3) = 3, ; I1H511%.
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3. The main result and some consequences

With the notations of LemmE] 7, assume thatx) = n — p for all x € M?'. Then
v > 2n — 2p and there exists a tangent diagonalizing fraf@e . . . , ¢,} of type (1, 0)
vectors mAfO = VN(A1®C) at eachr. Note that this frame is unlque up to permutation
and scallngs In other words, the $fi1], . [e,,]} is unique in the symmetric power
S (IED(A o)) of the projectivized holomorphm bundle. Hence, sincH is smooth, in
a suff|C|entIy small neighborhoot of x, we can take a smooth franjey, ..., ¢,} that
has the diagonalization property of Lemfrja 7 at each poitf.itn particular, we also
obtain from Lemm{]? a smooth orthonormal normal frefme, . .., w,}.

Assume further that = 2n — 2p. For each 1< i < p, consider theshape tenson,,,
on M?" defined by(A,, X, Y) = (as(X, ¥), w;), and let

Vi=ImA,,. @)

Thus, the sefReey, Imey, ..., Ree;_1,Ime;_1, Ree; 1, Ime;11,...,Ree,, Ime,} is
a base ofVX N A+ by Lemmd 7, and each; is a two-dimensional complex smooth
distribution onM?" such that

Vl@"'@Vp:Al- (8)

Lemma 9. With the notations of Lemn@if v = 2v; = 2n—2p, then the normal bundle
of f is flat. Moreover, eachw; is parallel in the normal connection, the decomposition
@ is orthogonal and botlV; & A and Vl.L are integrable, foralll <i < p.

Proof. Letv;; be the 1-forms defined by;; (X) = (V)%wi, w;). To show that eachy; is
parallel it suffices to see thgt; = O for alli, j. Recall that the Codazzi equation féy,,
is
Vx(AwY) = Aw, VxY — Agi, Y = Vy(Ay, X) — Aw, Vv X — Agt,, X 9)
Taking X, Y € V- = Ker A,, in (9) we easily infer using {8) that
Aw, (Yij (XY —9;;(Y)X) =0, VX, Y eV’ 1<j<p.

Suppose that there abg) € VL and;j # i such that);;(Xo) # 0. The above equation
implies thatv;- c V;* @ spar{Xo} thatis, Tu M # V;- + V- = (V; N Vj)*, which is
a contradiction byﬂS) Thuls’L C Kery;; forall i, j. By the orthonormality ofw; } we
havey;; = —y;;. Therefore,TxM v+ V]L C Kery;;.

The Ricci equation now implies that thg’'s are orthogonal, since it says that
[Aw,;, Aw;] = 0. The integrability ofv/- follows from @) if we takeX, Y e V%, since
w; is parallel. This concludes our proof singe® A = ﬂj#i VjL. O

Lemmag ¥ anf]9 are the principal ingredients to deduce the next main result, which is of
interest in its own right:

Proposition 10. Let f : M?" — R%'*? be any Kahler Euclidean submanifolch < n.
Thenv; > n — p. Moreover:
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@) Ifvy; =n— p,thenv > 2n — 2p.

(i) fvy; =n— pandv = 2n — 2p, then there is an open dense subBetc M2
such thatf|w splits locally as a product op nowhere flat (with relative nullity of
codimension two) real &hler Euclidean hypersurfaces.

(i) If v = vy = 0, then f splits locally as a product ofp nhowhere flat orientable
surfaces inR® on the wholel?". This splitting is global if\/?" is complete.

Proof. (iii) We have p = n. Lemma[9 and the local de Rham decomposition theorem
imply that the metric om/?* splits locally. Replacind/ by a smaller simply connected
neighborhood of if necessary, we get the isometric splittibg= Uy x - -+ x U, into
factors of complex dimension one, with; = V;. Since by Lemmals| 7 arid 9 we have
a(V;, V;) =0forall1 <i # j <n, the Main Lemma of[ [M] gives the splitting of .

The surfaces are nowhere flat by (7). The complete case follows easily from the global de
Rham decomposition theorem upon liftigfgto the universal cover af/?".

(ii) The proof follows just as above after constructing the factors with the same argu-
ments of Lemma 5 in_[F2], so we will skip it here. We only recall that the presence of the
open dense subsBt is due to the fact that the relative nullity can indeed “jump” between
the hypersurface factors. O

The strength of this proposition becomes clear when we use it to easily derive the proofs
of the theorems stated in the introduction:

Proof of Theoremfs|1 arjd By Propositior] ID, all we have to show is that- 2v;. If
the holomorphic sectional curvature is assumed to be non-negative, th€refaxy 1,

Ryxyx = |Hyxl? — ISxx|1? = —|Sxx|? > 0

implies thatSxx = 0, and by (3),Sxy = 0 for anyY e V. If the Ricci curvature is
assumed to be non-negative, then for a&hy Aj 1, the Ricci curvature in the direction

of X is given by
n n
D (Hxw P = 1Sx0, D) = =) 1Sxu 1%,
i=1 i=1

where{v;}7_; is any unitary basis o¥'. So we know thafxy = 0 for anyY < V. Thus,
under either curvature assumptiaky 1, and hence\1 1 @& Zl,l, is contained imA ® C.
Therefore, 2; < v and the proof is complete. O

Proof ofTheorerﬂS.Considerthe inclusion in Euclidean spa@" ¢ S 17 c RZ1+r+1,
and call itf. If n is the Gauss map of the sphere, thenfandX € V, X # 0, we have
(Hyg. 1) = vl X||? # 0. So we obtain = v; = 0 < n — p — 1. Propositiof 10(iii)
then implies thatf (M?") is locally contained in a product af = p + 1 surfaces irR3.
Now, the only way that this product is includedSg* 1 is if each factor itself is an open
subset of a round two-sphere. O

With similar arguments we prove the following:
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Corollary 11. Letf : M?* — R%tP be areal Kahler submanifold withh < n. Assume
either that(a) f(M?") is contained in some strictly convex hypersurfacR¥ft?, or (b)
M2 is complete with sectional curvature bounded from belpw/?") is bounded and
f is real analytic. Therp = n and f splits as a product of orientable surfaces ifR®.

Proof. It is clear that in case (a) we have a positive definite shape operator, so the as-
sertion follows as in Theore@ 5. For part (b), tdke M?* — R defined by 2(x) =
(f(x), f(x)). By Omori’s Lemma ([0]), there is € M?" such that Hesgy)(X, X) <
X |2 forall X € TyM, X # 0. But Hess(y)(X, X) = || X|I?+ (a(X, X), f(»)). Hence,
A_fpt > 0. o

Proof of Corollary[4. The relative nullity estimate follows from Theorgm 2. Assume
that the equality holds everywhere. From Theo@m 2 we also inferMttathas non-
negative Ricci curvature with either curvature assumption. In fact, we easily see that the
Ricci curvature restricted ta - is positive. Since the leaves of the (complex) relative
nullity distribution A are totally geodesic in botW?* andR?**7, and they are complete
wheneverM? is complete, we deduce that?* contains 2 — 2p linearly independent
lines. So, by Hartman’s theorem|[H] (see Theorem 5.10 in [D] for the Ricci curvature
version using the splitting theorem of Cheeger—Gromglhas a complex factol 2" =

N?’ x C""P andf = f1 x I, wheref; : N7 — R is an isometric immersion of

a Kahler manifold with positive Ricci curvature ards the identity map. The corollary
follows by applying Theorein|1 tg:. O

Remark 12. For anf : M? — R?*7 as in Corollany 4, let = minv. It is well
known that the subsét = v=1(r) ¢ M?* is open and the leaves of restricted toU/ are
complete. Hence, again by Hartman’s theorem, we have a splififig= N2*~" x R’

andf = fyxI,withr > 2n—2p. Thus, if we require the maximal Euclidean factorfof

to have dimension/2— 2p then, by Theorelﬁ] 11 also splits locally i/ N (N2 x {0}) as

a product ofp orientable surfaces iR2 of positive Gaussian curvature in a unique way.
Therefore, if we further require the metric &2 to be real analytic, we easily obtain the
same global splitting as in Corollafy 4, although in this case the surface factors will have
positive Gaussian curvature almost everywhere.
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