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Abstract. We show that any real K̈ahler Euclidean submanifoldf : M2n
→ R2n+p with either

non-negative Ricci curvature or non-negative holomorphic sectional curvature has index of relative
nullity greater than or equal to 2n− 2p. Moreover, if equality holds everywhere, then the subman-
ifold must be a product of Euclidean hypersurfaces almost everywhere, and the splitting is global
provided thatM2n is complete. In particular, we conclude that the only real Kähler submanifolds
M2n in R3n that have either positive Ricci curvature or positive holomorphic sectional curvature
are products ofn orientable surfaces inR3 with positive Gaussian curvature. Further applications
of our main result are also given.

Keywords. Real Kahler submanifolds, non-negative Ricci curvature, non-negative holomorphic
curvature, relative nullity

1. Introduction

Splitting theorems have always had a central role in Riemannian geometry, and in sub-
manifolds theory in particular. A well known example is Hartman’s cylinder theorem
([H]) which is the extrinsic version of Cheeger–Gromoll’s splitting theorem for complete
manifolds of non-negative Ricci curvature.

In [F2, FZ1, FZ2, Z] we gave some splitting results for Euclidean submanifolds
of non-positive sectional curvature. In [FZ1], we showed that, iff : Mm

→ Rm+p,
2p ≤ m, is an isometric immersion in Euclidean space of anm-dimensional (connected)
Riemannian manifoldMm with non-positive sectional curvature and negative Ricci cur-
vature, then 2p = m andf splits locally as a product ofp surfaces inR3. We say that an
isometric immersionf : Mm

→ Rm+p splits locally as a product of hypersurfacesif, for
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anyx ∈ Mm, there exists a neighborhoodx ∈ U ⊆ Mm, and, for each 1≤ i ≤ p, a Rie-
mannian manifoldUmii of dimensionmi and an isometric immersionfi : Umii → Rmi+1,
such that

U = U1 × · · · × Up and f |U = f1 × · · · × fp.

There is no such general splitting result for positive sectional curvature, as the standard
immersion of the unit sphere as a Euclidean hypersurface shows.

One of the main goals of this article is to study this kind of splitting when the Rie-
mannian manifold has a K̈ahler structure. In this case we are able to give an analogous
result to the aforementioned one in [FZ1], but with thereversedsign on the curvature,
and even with weaker curvatures than the sectional one:

Theorem 1. Let f : M2n
→ R2n+p be an isometric immersion of a Kähler manifold

withp ≤ n. Assume thatM2n has either positive Ricci curvature or positive holomorphic
sectional curvature. Thenp = n, andf splits locally as a product ofn positively curved
surfaces inR3. Moreover, the splitting is global ifM2n is complete.

As an immediate consequence of the above we deduce that there is nolocal isometric
immersion of a K̈ahler manifoldM2n with positive sectional curvature intoR2n+p,p ≤ n.
In particular, no open subset ofCPn admits an isometric immersion intoR2n+p, p ≤ n.

Theorem 1 is a consequence of a more general result, where we study, for our situa-
tion, theindex of relative nullityν of the isometric immersionf , that is,

ν(x) = dim1(x),

where1(x) = Kerα(x) = {v ∈ TxM : α(v,w) = 0, ∀w ∈ TxM} is the relative
nullity of f at x, i.e., the nullity space of the second fundamental formα of f at x. It is
well known that the positiveness ofν imposes quite strong restrictions on bothf andM,
since, on any open subset whereν is constant, the relative nullity is a smooth integrable
distribution with totally geodesic leaves in bothM and the ambient Euclidean space.
Therefore, any lower bound onν gives deep information on the submanifold. In particular,
our aforementioned splitting results for Euclidean submanifolds of non-positive sectional
curvature rely on a careful analysis of the relative nullity.

With this in mind, [F1] was devoted to show that the index of relative nullity of a
Euclidean submanifoldf : Mm

→ Rm+p with non-positive sectional curvature satisfies

ν ≥ m− 2p,

while the main result in [FZ1] is that, if equality holds, the submanifold should split
locally as a product ofp hypersurfaces almost everywhere. Although it is easy to see that
the same estimate onν holds for any real K̈ahler Euclidean hypersurface (p = 1), even
for codimensionp = 2 we can haveν ≡ 0 for anyn, as shown, for example, by the
holomorphic complex hypersurface inCn+1

= R2n+2 given byzn+1 = z2
1 + · · · + z2

n.
However, our next result states that the same estimate as in [F1] and the same splitting as
in [FZ1] hold for Kähler Euclidean submanifolds, but with thereversedsign on weaker
curvatures:
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Theorem 2. Let f : M2n
→ R2n+p be an isometric immersion of a Kähler mani-

fold with either non-negative Ricci curvature or non-negative holomorphic sectional cur-
vature. Then the index of relative nullityν of f satisfiesν ≥ 2n − 2p. Moreover, if
ν ≡ 2n − 2p, then there is an open dense subsetW ⊂ M2n such thatf |W splits locally
as a product ofp nowhere flat real K̈ahler Euclidean hypersurfaces with non-negative
Ricci curvature.

Therefore, every such real Kähler Euclidean submanifold should be foliated almost ev-
erywhere by (open subsets of) affine Euclidean subspaces of dimension at least 2(n−p).
Moreover, its curvature (and hence Ricci) tensor also has nullity of dimensionµ ≥

2(n − p) since, by the Gauss equation, the relative nullity is always contained in that
nullity. Thus, settingµM = minx∈M µ, which is an even integer number ifM2n is Kähler,
we can state an immediate corollary with purely intrinsic assumptions:

Corollary 3. LetM2n be a K̈ahler manifold with either non-negative Ricci curvature or
non-negative holomorphic sectional curvature. Letp = n−µM/2. If f : M2n

→ R2n+p

is an isometric immersion, then there is an open dense subsetW ⊂ M2n such thatf |W

splits locally as a product ofp nowhere flat real K̈ahler Euclidean hypersurfaces.

Theorem 2 is sharp in the sense that there are locally irreducible isometric immersions
satisfying its hypothesis but withν ≡ 2n − 2p + 1. To see this, just compose a prod-
uct of p − 1 nowhere flat real K̈ahler hypersurfaces with a generic local immersion of
R2n+p−1 into R2n+p. It is an interesting question if this is the only way to construct such
submanifolds, as is the case for non-positive sectional curvature; see [FZ2].

Since each hypersurface factor in the conclusion of Theorem 2 has constant relative
nullity of codimension two, we conclude that any real Kähler Euclidean submanifold
with either non-negative Ricci curvature or non-negative holomorphic sectional curvature
that has minimal index of relative nullityν ≡ 2n − 2p can now be explicitly locally
parametrized. This can be done by means of the Gauss parametrization in terms of pseu-
doholomorphic surfaces in the sphere in the sense of [C]; cf. [DG1, DG2, FZ1, FZ2].

There are some known cylinder theorems for complete real Kähler submanifoldsf :
M2n

→ R2n+p . The aforementioned fact thatν ≥ 2n − 2 for p = 1 was used in [A] to
show thatf splits as a surface inR3 and aCn−1 factor if eitherf is real analytic, or the
scalar curvature ofM2n is negative or non-negative. In fact, it was shown in [DG3] that the
same holds true ifν = 2n−2 in a dense connected subset, regardless of the codimension.
For other cylinder theorems for complete minimal real Kähler submanifolds, see [DR2,
DG4].

As a consequence of Theorem 2 we are also able to give a cylinder theorem of global
nature that generalizes the one in [Fw].

Corollary 4. Let f : M2n
→ R2n+p be an isometric immersion of a complete Kähler

manifold with either non-negative Ricci curvature or non-negative holomorphic sectional
curvature. Thenν ≥ 2n− 2p, and equality holds everywhere if and only if

M2n
= M2

1 × · · · ×M2
p × Cn−p and f = f1 × · · · × fp × I
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split globally, wherefi : M2
i → R3, 1 ≤ i ≤ p, is a complete isometrically im-

mersed oriented surface of positive Gaussian curvature, andI : Cn−p → R2n−2p is
the identity map.

An analogous result holds if we require onlyν(x0) = 2n − 2p at one pointx0 ∈ M2n

and the metric ofM2n to be real analytic; see Remark 12. Observe that there is a large
family of complete, irreducible, minimal but not holomorphic real Kähler submanifolds
in codimensionp = 2. They must be holomorphically ruled forn ≥ 3 (so,ν ≡ 2n− 4 =

2n− 2p) and admit a Weierstrass-type representation; cf. [DG4]. On the other hand, any
complete, not everywhere minimal, real analytic Kähler submanifoldf : M2n

→ R2n+2

in codimensionp = 2 must split asf = f1 × I , whereI : Cn−2
→ R2n−4 is the

identity map, andf1 : N4
→ R6 is either a product of two surfaces inR3, or a cylinder

over a surface inR4, or a composition of isometric immersionsf1 = i ◦ (f2 × I ), where
f2 : L2

→ R3, I : C → R2 andi : U ⊂ R5
→ R6; see [FZ4]. Moreover, it was shown

in [FZ3] that any complete real K̈ahler Euclidean hypersurface must be a cylinder over a
surface inR3, a result that generalizes the aforementioned one in [A].

The main ingredient in the proof of Theorem 2 is the general Proposition 10 of inde-
pendent interest. In fact, it also allows us to obtain the following generalization of several
results, as [R] for K̈ahler hypersurfaces in the sphereSNc of constant sectional curvature
c, Theorem 4 in [FT] and Corollary 5 in [F1] (see also Corollary 11 below):

Theorem 5. If M2n
⊂ S2n+p

c is a real Kähler submanifold of a sphere withp < n, then
p = n − 1 andM2n is (an open subset of) a product ofn round spheres inR3. That is,
M2n

⊆ S2
c1

× · · · × S2
cn

⊂ S3n−1
c ⊂ R3n, where1/c = 1/c1 + · · · + 1/cn.

We point out that the other part of the main result in [R], which deals with Kähler hy-
persurfaces in hyperbolic spaceH2n+1, does not admit a generalization along the lines of
Theorem 5, since the hyperbolic space has a totally umbilicalR2n+p−1

⊂ H2n+p.

2. The second fundamental form of a real K̈ahler Euclidean submanifold

In this section, we shall study some aspects of the general behavior of the second funda-
mental form of a real K̈ahler Euclidean submanifold, especially its(1,1) part.

Let us first fix some notations. From now on,f : M2n
→ R2n+p will be an isometric

immersion of the K̈ahler manifoldM2n into the Euclidean space. Fix a pointx ∈ M2n.
The second fundamental formα = α(x) of f atx is the symmetric bilinear map

α : TxM × TxM → T ⊥
x M = N ∼= Rp,

whereTxM ∼= R2n is the real tangent space ofM2n at x, and(T ⊥
x M, 〈 , 〉) is the normal

space off atx. Extendα bilinearly overC, and still denote it byα,

α : (TxM)⊗ C × (TxM)⊗ C → N ⊗ C.
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Let V be the space of type(1,0) tangent vectors atx, that is,V is the complex subspace
of (TxM)⊗ C given byV = {v − iJ v : v ∈ TxM}. Then(TxM)⊗ C ∼= V ⊕ V . Write

H = α|V×V and S = α|V×V

for the(1,1) and(2,0) parts ofα, respectively. ThenS : V ×V → N⊗C is a symmetric
complex bilinear map, whileH : V × V → N ⊗ C is a Hermitian bilinear map, that is,

H(Y,X) = H(X, Y ), ∀X, Y ∈ V.

For simplicity, we will always writeSXY for S(X, Y ) andHXY for H(X, Y ).
Let us also extend the inner product〈 , 〉 onN bilinearly overC toN ⊗ C, and still

denote it by〈 , 〉. The Riemannian curvature tensorR ofM2n and the second fundamental
form α are related by the Gauss equation:

RABCD = 〈α(A,D), α(B,C)〉 − 〈α(A,C), α(B,D)〉,

for any real tangent vectorsA, B, C, D in TxM. By our linear extension overC, this
equality also holds true for anyA,B,C,D in (TxM)⊗C = V ⊕V . SinceM2n is Kähler,
we haveRXY∗∗ = 0 if bothX andY are inV . Therefore, we get the following.

Proposition 6. Let f : M2n
→ R2n+p be a real K̈ahler Euclidean submanifold, and

considerV ,H , S as above. Then for any vectorsX, Y , Z,W in V ,

〈HXW , HYZ〉 = 〈HYW , HXZ〉, (1)

〈HXW , SYZ〉 = 〈HYW , SXZ〉, (2)

〈SXW , SYZ〉 = 〈SXZ, SYW 〉, (3)

RXYZW = 〈HXW , HZY 〉 − 〈SXZ, SYW 〉. (4)

In particular, ifX = (v − iJ v)/
√

2, Y = (w − iJw)/
√

2 are unit vectors inV , we get

RvJvJww = RXXYY = |HXY |
2
− |SXY |

2, (5)

K(v, Jv) = RXXXX = |HXX|
2
− |SXX|

2, (6)

whereK is the sectional curvature ofM2n.

Define theindex of pluriharmonic nullityνJ = νJ (x) of f atx ∈ M2n by

νJ = dimC11,1, where 11,1 = 11,1(x) := {X ∈ V : HXY = 0, ∀Y ∈ V }.

Our goal in this section is to prove the next general result.

Lemma 7. Let f : M2n
→ R2n+p be a real K̈ahler Euclidean submanifold,p ≥ 1.

Takex ∈ M2n, and letV , N , H , S be as above. ThenνJ (x) ≥ n − p. Moreover, if
νJ (x) = n − p, there exists a basis{e1, . . . , en} of V such thatHeiej = Seiej = 0
if either i 6= j or i = j > p. Moreover, for1 ≤ i ≤ p, Heiei 6= 0, Seiei is collinear
towi = Heiei/|Heiei |, and{w1, . . . , wp} is an orthonormal basis of the normal spaceN
at x.

Proof. We will prove this lemma by a series of claims. Setq = νJ (x) andV0 = 11,1(x).
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Claim 1. We haveHXX 6= 0 for any0 6= X ∈ V ⊥

0 .

Proof. If not, then for anyY ∈ V , by (1) we have|HXY |
2

= 〈HXX, HYY 〉 = 0. So
X ∈ V0, which is a contradiction. ut

Claim 2. If n ≥ 2, then there exist non-zero vectorsX, Y ∈ V ⊥

0 such thatHXY = 0.

Proof. Let {e1, . . . , en−q} be a basis ofV ⊥

0 . In the following, we will writeHij forHeiej .
Consider the vectorsH11, H12, . . . , H1n−q in N ⊗ C ∼= Cp. By assumption, we have
p ≤ n− q. If p < n− q, then these vectors are linearly dependent. So there isY 6= 0 in
V such thatHe1Y = 0, and Claim 2 is proved. Now consider the casep = n− q. We may
also assume that the sets{H11, H12, . . . , H1p} and{H21, H22, . . . , H2p} are each linearly
independent inN ⊗ C . Both sets are bases ofCp, so there is a non-degenerate complex
p × p matrixB = (Bij ) such that

H1i =

p∑
j=1

BijH2j

for each 1≤ i ≤ p. LetX = e1 − λe2, andY =
∑
yiei . Then we have

HXY =

∑
yiH1i − λ

∑
yiH2i =

∑
j

{ ∑
i

yi(B − λI)ij

}
H2j

Thus, if we chooseλ to be an eigenvalue of the matrixB, and (y1, . . . , yp) 6= 0 the
corresponding eigenvector, thenHXY = 0. This completes the proof of Claim 2. ut

Next, for eachX ∈ V ⊥

0 , denote byHX : V ⊥

0 → N ⊗ C the linear map given by
HX(Y ) = H(Y,X), and letK(X) = KerHX. We will call the subspace ofN ⊗ C
spanned byHXY for all X, Y in V ⊥

0 the image spaceof H .

Claim 3. We havep = n − q, the image space ofH coincides withN ⊗ C, and there
exists0 6= X ∈ V ⊥

0 such thatK(X) is (n− q − 1)-dimensional.

Proof. We will perform induction onn−q. Whenn−q = 1,p must be 1,HX has trivial
kernel for any non-zeroX ∈ V ⊥

0 , and the image space ofH isN ⊗ C by Claim 1.
Now assume that Claim 3 is true when restricted to any proper subspace ofV ⊥

0 . For
our V ⊥

0 of dimensionn − q ≥ 2, fix 0 6= X ∈ V ⊥

0 . From Claims 1 and 2 we see that
dimK(X) = n− q − r for some 1≤ r < n− q.

DefineP = Im(HX) ⊂ N ⊗ C. It has complex dimensionr. Consider the subspace
Q = P + P ⊆ N ⊗ C, and denote its complex dimension bys ≥ r. SinceQ = Q, we
know thatQ = N0 ⊗ C for some real linear subspaceN0 ⊆ N of real dimensions. Let
N1 be the orthogonal complement ofN0 in N , and writeV1 = K(X). Then for anyY , Z
in V1 and anyW ∈ V , by (1) we have

〈HYZ, HXW 〉 = 〈HYW , HXZ〉 = 0,
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and similarly,〈HYZ, HWX〉 = 0. That is,HYZ is perpendicular toQ, or, in other words,
the restrictionH |V1×V 1

has its image contained inN1 ⊗ C. Note that the dimension of
N1 is p − s, which is less than or equal ton − q − r, the dimension ofV1. So by the
inductive hypothesis, we know thatp− s = n− q− r, which implies thatp = n− q and
r = s, and that there exists 06= Y ∈ V1 such that Ker(HY |V1) ⊂ V1 has codimension 1.
Moreover, the image space ofH |V1×V 1

is equal toN1 ⊗ C, which implies that the image
space ofH is equal toN ⊗ C.

We claim thatK(Y) ⊂ V ⊥

0 has codimension 1, which completes the proof of Claim 3.
SinceHYY 6= 0, it suffices to show that, for anyZ ∈ V ⊥

0 , we haveW = Z−λY ∈ K(Y),
whereλ = λ(Z) = 〈HZY , HYY 〉/|HYY |

2. Observe that〈HWY , HYY 〉 = 0.
First, writem = n − q − r, and choose a basis{e1, . . . , em} of V1 such thatY = e1

and Ker(HY |V1) = span{e2, . . . , em}. By the inductive hypothesis, the spaceN1 ⊗ C is
spanned byHij for 1 ≤ i, j ≤ m. By (1), we have

〈HWY , Hij 〉 = 〈HWej , HeiY 〉,

which is zero ifi > 1, or if i = 1 andj > 1 sinceH1j = 0 in this case. We also know that
the left hand side is zero ifi = j = 1, by our construction ofW . SoHWY is orthogonal
toN1 ⊗ C, that is,HWY ∈ Q.

Secondly, from the fact thatr = s, we know thatQ = Im(HX) = H(X, V ). But
〈HWY , HXU 〉 = 〈HWU , HXY 〉 = 0 for all U ∈ V sinceHXY = 0. We conclude that
HWY = 0 as desired. ut

Now we are ready to finish the proof of Lemma 7. By Claim 3, there existse1 ∈ V ⊥

0
such that the kernelK(e1) is (n − q − 1)-dimensional. Note thate1 /∈ K(e1). Applying
Claim 3 to the restriction ofH toK(e1)×K(e1), we finde2 ∈ K(e1) for whichHe2 has
codimension one kernel inK(e1). Inductively, we get a basisB = {e1, . . . , ep} of V ⊥

0
such thatHij = 0 wheneveri 6= j . This fact and (1) also imply that 06= Hii ⊥ Hjj for
any i 6= j , and we get the desired orthonormal basis{w1, . . . , wp} of N . ExtendB to a
basisB′

= {e1, . . . , en} of V such that{ep+1, . . . , en} is a basis ofV0.
To see thatS is also diagonal underB′, fix any i 6= j . For any 1≤ k ≤ p, we see

by (2) that〈Hkk, Sij 〉 = 〈Hik, Skj 〉 = 〈Hjk, Ski〉. So it is zero ifk 6= i or k 6= j , which
always happens asi 6= j . That is,Sij is perpendicular towk for all k, so it must be zero.
Similarly, Sii = 0 if i > p.

The formula (2) also implies thatSii ⊥ Hjj for any j 6= i, thusSii points in the
direction ofwi , for each 1≤ i ≤ p. This completes the proof of Lemma 7. ut

Remark 8. From its very definition, we see that the vanishing of the(1,1) partH of
the second fundamental form off is equivalent tof beingpluriharmonic (also called
circular), that is,α(JX, Y ) = α(X, JY ) for all X, Y ∈ TM. Therefore, Lemma 7 says
that the second fundamental form off is diagonal if the immersion is “as far as possible”
from being pluriharmonic. It was shown in Theorem 1.2 of [DR1] that a Euclidean Kähler
submanifold is pluriharmonic if and only if it is minimal. We point out that this result
follows immediately from (1), since the mean curvatureh of the immersion can be written
ash =

∑n
i=1Hii and then‖h‖2

=
∑
i,j 〈Hii, Hjj 〉 =

∑
i,j ‖Hij‖

2.
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3. The main result and some consequences

With the notations of Lemma 7, assume thatνJ (x) = n − p for all x ∈ M2n. Then
ν ≥ 2n − 2p and there exists a tangent diagonalizing frame{e1, . . . , ep} of type (1,0)
vectors in1⊥

1,0 = V ∩(1⊥
⊗C) at eachx. Note that this frame is unique up to permutation

and scalings. In other words, the set{[e1], . . . , [ep]} is unique in the symmetric power
Sn(P(1⊥

1,0)) of the projectivized holomorphic1⊥

1,0 bundle. Hence, sinceH is smooth, in
a sufficiently small neighborhoodU of x, we can take a smooth frame{e1, . . . , en} that
has the diagonalization property of Lemma 7 at each point inU . In particular, we also
obtain from Lemma 7 a smooth orthonormal normal frame{w1, . . . , wp}.

Assume further thatν ≡ 2n−2p. For each 1≤ i ≤ p, consider theshape tensorAwi
onM2n defined by〈AwiX, Y 〉 = 〈αf (X, Y ),wi〉, and let

Vi = ImAwi . (7)

Thus, the set{Ree1, Im e1, . . . ,Reei−1, Im ei−1,Reei+1, Im ei+1, . . . ,Reep, Im ep} is
a base ofV ⊥

i ∩ 1⊥ by Lemma 7, and eachVi is a two-dimensional complex smooth
distribution onM2n such that

V1 ⊕ · · · ⊕ Vp = 1⊥. (8)

Lemma 9. With the notations of Lemma7, if ν ≡ 2νJ ≡ 2n−2p, then the normal bundle
of f is flat. Moreover, eachwi is parallel in the normal connection, the decomposition
(8) is orthogonal and bothVi ⊕1 andV ⊥

i are integrable, for all1 ≤ i ≤ p.

Proof. Letψij be the 1-forms defined byψij (X) = 〈∇
⊥

Xwi, wj 〉. To show that eachwi is
parallel it suffices to see thatψij = 0 for all i, j . Recall that the Codazzi equation forAwi
is

∇X(AwiY )− Awi∇XY − A
∇

⊥
Xwi

Y = ∇Y (AwiX)− Awi∇YX − A
∇

⊥
Y wi

X. (9)

TakingX, Y ∈ V ⊥

i = KerAwi in (9) we easily infer using (8) that

Awj (ψij (X)Y − ψij (Y )X) = 0, ∀X, Y ∈ V ⊥

i , 1 ≤ j ≤ p.

Suppose that there areX0 ∈ V ⊥

i andj 6= i such thatψij (X0) 6= 0. The above equation
implies thatV ⊥

i ⊂ V ⊥

j ⊕ span{X0}, that is,TxM 6= V ⊥

i + V ⊥

j = (Vi ∩ Vj )
⊥, which is

a contradiction by (8). ThusV ⊥

i ⊂ Kerψij for all i, j . By the orthonormality of{wi} we
haveψij = −ψji . Therefore,TxM = V ⊥

i + V ⊥

j ⊂ Kerψij .
The Ricci equation now implies that theVi ’s are orthogonal, since it says that

[Awi , Awj ] = 0. The integrability ofV ⊥

i follows from (9) if we takeX, Y ∈ V ⊥

i , since
wi is parallel. This concludes our proof sinceVi ⊕1 =

⋂
j 6=i V

⊥

j . ut

Lemmas 7 and 9 are the principal ingredients to deduce the next main result, which is of
interest in its own right:

Proposition 10. Let f : M2n
→ R2n+p be any K̈ahler Euclidean submanifold,p ≤ n.

ThenνJ ≥ n− p. Moreover:



Kähler Euclidean submanifolds 9

(i) If νJ ≡ n− p, thenν ≥ 2n− 2p.
(ii) If νJ ≡ n − p and ν ≡ 2n − 2p, then there is an open dense subsetW ⊂ M2n

such thatf |W splits locally as a product ofp nowhere flat (with relative nullity of
codimension two) real K̈ahler Euclidean hypersurfaces.

(iii) If ν ≡ νJ ≡ 0, thenf splits locally as a product ofp nowhere flat orientable
surfaces inR3 on the wholeM2n. This splitting is global ifM2n is complete.

Proof. (iii) We havep = n. Lemma 9 and the local de Rham decomposition theorem
imply that the metric onM2n splits locally. ReplacingU by a smaller simply connected
neighborhood ofx if necessary, we get the isometric splittingU = U1 × · · · × Un into
factors of complex dimension one, withT Ui = Vi . Since by Lemmas 7 and 9 we have
α(Vi, Vj ) = 0 for all 1 ≤ i 6= j ≤ n, the Main Lemma of [M] gives the splitting off |U .
The surfaces are nowhere flat by (7). The complete case follows easily from the global de
Rham decomposition theorem upon liftingf to the universal cover ofM2n.

(ii) The proof follows just as above after constructing the factors with the same argu-
ments of Lemma 5 in [F2], so we will skip it here. We only recall that the presence of the
open dense subsetW is due to the fact that the relative nullity can indeed “jump” between
the hypersurface factors. ut

The strength of this proposition becomes clear when we use it to easily derive the proofs
of the theorems stated in the introduction:

Proof of Theorems 1 and 2.By Proposition 10, all we have to show is thatν ≥ 2νJ . If
the holomorphic sectional curvature is assumed to be non-negative, then forX ∈ 11,1,

RXXXX = |HXX|
2
− |SXX|

2
= −|SXX|

2
≥ 0

implies thatSXX = 0, and by (3),SXY = 0 for anyY ∈ V . If the Ricci curvature is
assumed to be non-negative, then for anyX ∈ 11,1, the Ricci curvature in the direction
of X is given by

n∑
i=1

(|HXvi |
2
− |SXvi |

2) = −

n∑
i=1

|SXvi |
2,

where{vi}
n
i=1 is any unitary basis ofV . So we know thatSXY = 0 for anyY ∈ V . Thus,

under either curvature assumption,11,1, and hence11,1 ⊕11,1, is contained in1⊗ C.
Therefore, 2νJ ≤ ν and the proof is complete. ut

Proof of Theorem 5.Consider the inclusion in Euclidean spaceM2n
⊂ S2n+p

c ⊂ R2n+p+1,
and call itf . If η is the Gauss map of the sphere, then forf andX ∈ V ,X 6= 0, we have
〈HXX, η〉 =

√
c‖X‖

2
6= 0. So we obtainν ≡ νJ ≡ 0 ≤ n − p − 1. Proposition 10(iii)

then implies thatf (M2n) is locally contained in a product ofn = p + 1 surfaces inR3.
Now, the only way that this product is included inS3n−1

c is if each factor itself is an open
subset of a round two-sphere. ut

With similar arguments we prove the following:
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Corollary 11. Letf : M2n
→ R2n+p be a real K̈ahler submanifold withp ≤ n. Assume

either that(a) f (M2n) is contained in some strictly convex hypersurface ofR2n+p, or (b)
M2n is complete with sectional curvature bounded from below,f (M2n) is bounded and
f is real analytic. Thenp = n andf splits as a product ofn orientable surfaces inR3.

Proof. It is clear that in case (a) we have a positive definite shape operator, so the as-
sertion follows as in Theorem 5. For part (b), takeh : M2n

→ R defined by 2h(x) =

〈f (x), f (x)〉. By Omori’s Lemma ([O]), there isy ∈ M2n such that Hessh(y)(X,X) <
‖X‖

2 for all X ∈ TyM,X 6= 0. But Hessh(y)(X,X) = ‖X‖
2
+ 〈α(X,X), f (y)〉. Hence,

A−f (y)⊥ > 0. ut

Proof of Corollary 4. The relative nullity estimate follows from Theorem 2. Assume
that the equality holds everywhere. From Theorem 2 we also infer thatM2n has non-
negative Ricci curvature with either curvature assumption. In fact, we easily see that the
Ricci curvature restricted to1⊥ is positive. Since the leaves of the (complex) relative
nullity distribution1 are totally geodesic in bothM2n andR2n+p, and they are complete
wheneverM2n is complete, we deduce thatM2n contains 2n − 2p linearly independent
lines. So, by Hartman’s theorem [H] (see Theorem 5.10 in [D] for the Ricci curvature
version using the splitting theorem of Cheeger–Gromoll),f has a complex factor,M2n

=

N2p
× Cn−p andf = f1 × I , wheref1 : N2p

→ R3p is an isometric immersion of
a Kähler manifold with positive Ricci curvature andI is the identity map. The corollary
follows by applying Theorem 1 tof1. ut

Remark 12. For anf : M2n
→ R2n+p as in Corollary 4, letr = minν. It is well

known that the subsetU = ν−1(r) ⊂ M2n is open and the leaves of1 restricted toU are
complete. Hence, again by Hartman’s theorem, we have a splittingM2n

= N2n−r
× Rr

andf = f1×I , with r ≥ 2n−2p. Thus, if we require the maximal Euclidean factor off

to have dimension 2n−2p then, by Theorem 1,f1 also splits locally inU∩(N2p
×{0}) as

a product ofp orientable surfaces inR3 of positive Gaussian curvature in a unique way.
Therefore, if we further require the metric ofM2n to be real analytic, we easily obtain the
same global splitting as in Corollary 4, although in this case the surface factors will have
positive Gaussian curvature almost everywhere.
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