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Abstract. We consider both standard and twisted actions of a (real) Coxeter graupthe com-
plementM ; to the complexified reflection hyperplanes by combining the reflections with complex
conjugation. We introduce a natural geometric class of special involutiogsand give explicit
formulae which describe both actions on the total conomolEdgy M, C) in terms of these in-
volutions. As a corollary we prove that the corresponding twisted representation is regular only for
the symmetric grougs;,,, the Weyl groups of typ®,,, 1, Ee and dihedral group$ (2k + 1). We

also discuss the relations with the cohomology of Brieskorn’s braid groups.
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Introduction

In 1969 V. I. Arnol'd [1] computed the cohomology algebra of the configuration space
M,, of n distinct points of the complex plane. This remarkable short paper was the start-
ing point of the active research in this area of mathematics at the crossroads of algebra,
geometry and combinatorics.

In particular, Brieskorn 7] generalised Arnol'd’s results to arbitrary irreducible Cox-
eter groups; and showed that the Poinéapolynomial of the complemenitt¢ to the
complexified reflection hyperplanes has the form

PMg,t) = A +mat)--- (14 myp),

wherem; = d; — 1 are the exponents of the Coxeter graupd; being the degrees of
the generators of the algebra@finvariants. Since the produ¢t + m1) --- (1 +m,,) =
di---d, = |G| is known to be the order of the group, it is tempting to suggest that
the total cohomology spadé* (M) = H*(Mg, C) is the regular representation with
respect to the natural action 6f on M. However this turns out not to be true already
for the symmetric groufis = S,,, as shown by Lehref [18], although not far from being
true.
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The starting point of this work was the following observation. Let us consider another
action ofG on M using the anti-holomorphic extensions of the reflections from the real
to the complexified space. In other words we combine the usual action of the reflections
with complex conjugation. The claim is that, for the symmetric gréup- S,, with this
new action H*(Mg, C) is indeed a regular representation. We were not able to find this
result in the literature, although the proof can be easily derived from known results. While
looking for the simplest explanation of this fact, we have found a simple universal way
to investigate this representation for any Coxeter group, both in the standard and twisted
case.

The main result of this paper is the following two explicit formulae which show how
far the corresponding representations are from the regular representation, and describe
them as virtual representations.

Let G be a finite group generated by reflections in a real Euclidean dpa¢eimen-
sionn, and M be the complement to the complexified reflection hyperplan&sgnC.

Let us denote the twisted representatioasn H* (M, C) by H¥(M). Alternatively
we can write

n
H(Mg) = P e @ H (Mg, ©), (1)
k=0
wheree is the alternating representation@f
We claim that for all Coxeter grougs with the standard action afvt,

H*(Mg) = Y_ (2Ind7, (1) — p), 2

ogeXg

and for the twisted action,

H(Mg) = ) 2IndG, (1) - p). (3)

€
0€EX;

Herep is the regular representation 6f, X is a special set of involutions i& (more
precisely, conjugacy classes of involutionX}; is the subset oK consisting of even
involutions, and In@>(1) is the representation induced from the trivial representation of
the subgroup generated by

We should mention that for the standard action in most of the cases our result can be
derived from the results of the papers|[L3] [14,[18, 19], so our main contribution here is
the following universal geometric description of the Xet.

Namely, consider any involutioa in the geometric realisation @ as a group of
orthogonal transformations of a Euclidean spéicand the corresponding splittirig =
V1@ Vo sothatVy = V~ (o) andV, = V(o) are the eigenspaces @fwith eigenvalues
—1 and 1, respectively. LeR; and R, be the intersections of the root systatrof the
groupG with these subspaces, a6d, G2 be the corresponding Coxeter subgroupé& of
We call the involutiors specialif for any roota € R at least one of the projections of
onto V1 and Vs is proportional to a root fronRy or R». In particular the identity and any
simple reflection are always special involutions.
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We denote byX the set of all conjugacy classes of special involutiong7inBy
choosing a representative in each class we can reglisas a special set of involutions
inG.

For the symmetric groug,, Weyl groups of typeD2,,+1, Es and dihedral groups
I>(2k + 1) the setXs consists of two elements: the identity and the class of a simple
reflections, so we have in that case

H*(Mg) =2Ind,(1) and H}(Mqg) = p.

For Coxeter groups of typB,, (or C,,) the setX consists of 2 involutions which in
the geometric realisation have the fosmmi= P1o® (— 1) ® I—x—2,k=0,1,...,n—2,
andtyy = (-I)® I1,—;,1 =0,1,...,n. HerePi12 denotes the permutation of the first two
coordinates andj is thek x k identity matrix.

In the case of Weyl groups of typBy,,, E7, Eg and for the icosahedral groupfs
and Hy, X consists of 4 involutionst Id and+s, wheres is a simple reflection.

For F4 we have 8 involutions which in the standard geometric realisaltion [6] have
the form +s with s representing two different conjugacy classes of simple reflections,
diag—1, —1,1, 1), P12 & diag(—1, 1) and the centre: Id.

Finally, for the dihedral group$;(2k), X¢ consists of 4 elements: two conjugacy
classes of simple reflections and the central elemends

In the Appendix we list the graphs of all equivalence classes of nontrivial special
involutions using Richardson’s description[22].

As a corollary we find that the twisted action of an irreducible Coxeter g@um
H*(Mg) is aregular representation only for the symmetric grSuphe Weyl groups of
type Dy, 11, Eg and dihedral group£(2k + 1). Note that besides the one-dimensional
Coxeter group of typel this is the list of Coxeter groups with trivial centre.

Our result can be reformulated in terms of the decomposition of the cohomology
into irreducibleG-modules: the multiplicityn (W) of the irreducibleG-moduleW in the
decomposition off*(Mg) is

m(W) = > (dimWw* (o) —dimw™ (o)) (4)

oeXg

whereW*(o) = {v € W : ov = +v} are the eigenspaces of the involutienFor the
twisted action X is replaced byX,.
In particular, the trivial representation has the multiplicity

m(1) = |Xgl,

where | X| denotes the number of elements in the XetThis gives us a topological
interpretation of|Xg| as the total Betti number of the corresponding quotient space
Y6 = Mg/G. More precisely we show that the Poinegpolynomial P(Z¢, 1) has
the form

P(Sg, 1) = Z tdlmV’(a), (5)

ogeXg
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whereV is the geometric representation GfandV~ (o) is the (—1)-eigenspace of

in this representation. Notice that, according to a classical result due to Brieskorn and
Deligne,X¢ is the Eilenberg—Mac Lane spak&, 1) for the corresponding generalised
braid groupr = Bg, so the last formula can also be interpreted in terms of the (rational)
cohomology ofBg (seel[T]).

Another interesting corollary of our results is that the multiplicitye) of the alter-
nating representation if * (M) is zero. Due to[(4) this is equivalent to the fact that the
numbers of even and odd classeig are equal. For the grou$), this was conjectured
(in different terms) by Stanley [23] and proved by Hanlon(inl [15]. For general Coxeter
groups it was first proved by Lehrér [20].

Our approach is geometrical and based on the (generalised) Lefschetz fixed point
formula which says that the Lefschetz numbers for actions of finite groups are equal to
the Euler characteristics of the corresponding fixed sets((5ee [8]). We should mention that
the idea to use the Lefschetz fixed point formula is not new in this area (seéle.g. [9]),
however in this form it does not seem to have been explored before.

Characters and Lefschetz fixed point formula

Consider first the standard action@fon M. The character of an elemeqte G in the
corresponding representatiéfi* (M) is

n
x(g) = trg.
k=0

whereg; is the action ofg on H*(Mg). Now replace the action qf by its composition
with the complex conjugation which we denotegad hen because complex conjugation
is acting ag—1)* on thek-th cohomology ofM; we have

x(@) =Y (-Dftrgt,
k=0

which by definition is the_efschetz numbek (g) of the mapg. Now we can apply the
Lefschetz fixed point formula [8] which says that this number is equal to the Euler char-
acteristicy (Fz) of the fixed setF; = {z € Mg : g(z) = z}.

In the twisted case all the even elementgohct in the standard way but the action
of all odd elements are twisted and the corresponding character of ag add; in
H}(Mg)is

Xe(®) =) (—Dftrgi = L),
k=0
the Lefschetz number of the standard actiog oh M.

Proposition 1. (i) The character of an elemepte G for the standard action of; on
H*(Mg) is equal to the Euler characteristic of the fixed gt
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(i) The character of an odd elemefite G in H (M) for the twisted action of; on
Mg is equal to the Euler characteristic of the fixed $gt

(i) The fixed seF, is empty unlesg is the identity, so the character of any odd element
in the twisted representatioH;" (M) is zero. The fixed sét; is empty unlesg is
an involution, so if the order of is greater thar2 theny (g) = 0.

Only the last part needs a proof. A fixed pointgforresponds to an eigenvectorgin

the geometric realisation with eigenvaluevithich can be chosen real (recall thatis a
real Coxeter group). But on the redlsacts freely on the set of Coxeter chambers. Thus
F, is empty unlesg is the identity. Now assume thathas a fixed point € Mg; then
obviouslys = g2 = g2 must also have a fixed point, which means tgamust be the
identity.

Remark. The fact that only involutions may have nonzero characters is known (see
Corollary 1.10 in[[14], where a combinatorial explanation of this fact is given). Our proof
is close to a similar proof from [9], where the case= S,, was considered.

Now we are ready to compute the characters for the classical series.

Let us start withA,_1, corresponding to the symmetric grodp = S,, acting by
permutations on the configuration spak€, of n distinct points of the complex plane.
Any involution o in that case is conjugate to one of the involutions of the fagm=
1234 ...(2k—1,2k),k = 1,...,[n/2], where(ij) denotes the transposition of
and j. The fixed setF; for the actions; consists of the point$z1, z1, 22, Z2, . . ., Zk,
Zks X1, ..., Xn—2k), Wherez; # Z; (i.e.zjisnotreal)x; e R, z; #zj,zi #zjifi #j
andx, # x, if p # 4.

It is easy to see that topologically all connected components are the same and equiv-
alent to the produciM; x R*~%_ where M; is the standard configuration spacekof
different points in the complex plane. Because the Euler characteristi¢;af zero for
k > 1 we conclude that only the simple reflectior= 71 = (12) has nonzero character.
In that case we have2 — 2)! contractible connected components, d@) = 2(n — 2)!.
We can formulate this fact in the following form.

Proposition 2 (G. Lehrer[18]) AsS,-module with respect to the standard actionSpf
onM,,
H*(My) = 2Ind3; (D),

wherelndf;g(l) denotes the representation 8f induced from the trivial representation
of the subgroufZ, generated by the simple reflection= (12).

Indeed, the characters for the representationg (ddinduced from the trivial represen-
tation of the subgroug/ C G are given by the formula

1
X@=—s Y, ICO, (6)
| |h~g,heH

whereh ~ g means that is conjugate tog in G, and C(h) is the centraliser of::
C(h) = {g € G : gh = hg}. The centraliser of the simple reflectianis C(s) =
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Zy x Sy—2, WwhereZ; is generated by = (12) andS,,_» is the subgroup of,, permuting
the numbers 34, ..., n. According to the formuld (6) only the identityandg ~ s have
nonzero characters in ZIE[gj(l). Moreover x(e) = |S,| = n! and x(s) = |C(s)| =
2(n — 2)!. Comparing this with our previous analysis we have the proposition.

Now let us consider the twisted action of the symmetric grSypn M,,. From the
previous analysis of the fixed sefs and Proposition 1 we deduce the following

Proposition 3. The twisted action of, on M,, induces the regular representation on the
total cohomologyH *(M,,).

Consider now the casB,. In the standard geometric realisation any involution is con-
jugate either to the diagonal form = diag(—1,...,-1,1,...,1) = (—I}) & I,

or to the form when we have additional elementary transposition blocks o,, y =
P®...® P& (—1Ix) ® I,—x—2n- A simple analysis similar to the previous case shows
that in the last case the fixed set consists of several connected components each topologi-
cally equivalent toM,, x R"~2"_ So if the number of transpositioms is greater than 1

the Euler characteristic of this set and thus the corresponding chagdetgr) is zero.

One can check that in the remaining cases, namght o1, andzy, all the components

are contractible and the action of the corresponding centraliders on them is effec-

tive. Thus if we define the sefp, as the union of ther2involutionsoy, k =0,...,n—2
andr;, ! =0,1,...,n, we have the following
Proposition 4.
H*Mp,) =Y (2Ind} 1) — p), (7)
O'EXBn

wherep is the regular representation df,. In the twisted case one should take the sum
over the subset of 5, consisting of the involutions which are even elements.of

For the standard action this result was first obtained by Lehrér In [19].
In the D, case the results are slightly different for odd and even
For an oddi = 2m +1 any involution is conjugate to one of the following involutions:

ox,k =0,1,...,m —1andry, ! = 0,1,...,m (with the same notations as in the
previous case).
The fixed set ofoy;, consists of the point$z, z, ix1, ..., ix2%, Y1, - -+ » Yn—2k—2),

wherez # %7 (i.e. z is not real or purely imaginary);, y; € R, x, # %x,, yp # £y4
if p # ¢g. The number of connected components of the fixed set in that case is equal to
the order of the grou®, x Dy, x D,_2_2 wWhich acts on this set. Howeverkf> 0 we
have to exclude from this set also the subspaces of codimension 2 given by the equations
xj=y =0forallj =1,...,2candl = 1,...,n — 2k — 2. One can check that as a
result the Euler characteristic of all connected components (and thus of the whole fixed
set) in that case is.@®imilar arguments show that the same is true for the fixed set of the
involutionsty;.

In the only remaining case of the simple reflectmgnall the connected components
of the corresponding fixed set are contractible. The centraliges) coincides with the
subgroupD2 x D,_», which acts freely and transitively on these components.
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For the groups of typ®,, with evenn = 2m the involutionssg, 2,2 and the central
elementr,,, = —I,, have the centralisers whose order is equal to the number of connected
components of the corresponding fixed sets, which are all contractible in this case. The
Euler characteristic of the fixed set of any other involution can be shown to be zero in the
same way as in the odd case.

Thus we have the following

Proposition 5. For the Coxeter grougs of typeD,, with the standard action we have
H*(Mg) = 2Indf; ) (D) 8)
in the odd case = 2m + 1 and
H*(Mg) = p+ 2IndG (1) — p) + 2IndG, (1) — p) + 2Ind(;, (D)~ p) (9)
in the even case = 2m. For the twisted action the formulas are respectively
H(Mg) = p (10)

in the odd case and
H}(Mg) =2Ind;, /(1) (11)

in the even case.

In order to investigate the general case and to understand the nature of the exceptional
setX s we will need the general results about involutions in Coxeter groups, summarised
in the next section.

Involutions in Coxeter groups and their centralisers

We start with the description of the conjugacy classes of involutions in a general Cox-
eter group due to Richardsan [22]. We refer to Bourbaki [6] or Humphieys [17] for the
standard definitions.

Let G be a Coxeter group, arid be its Coxeter graph. Recall that the verticed of
correspond to the generating reflections, which form thess®&te will identify G with
its geometric realisation in the Euclidean vector spdceén whichs € S acts as the
reflection with respect to the hyperplane orthogonal to the corresponding;root

Let J be a subset of, andG ; be the subgrou generated by (such a subgroup
is calledparabolig. Let alsoJ* = {e; : s € J} andV; be the subspace df generated
by J*. Following Richardson we say thatsatisfies thé—1)-conditionif G ; contains an
elements; which acts onV; as— Id. This element, being i ;, acts as the identity on
the orthogonal complement &f;. Thuso, is uniquely determined and is an involution.

Proposition 6 (Richardson([22]) Leto be any involution inG. Then

(i) there exists a subset C S satisfying the(—1)-condition such that is conjugate
tooy;
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(ii) the involutionss; andok are conjugate inG if and only ifg(J*) = K* for some
g €G.

Richardson also gave an algorithm for testgequivalence based on the results by
Howlett [16] and Deodhar [11].

For an irreducible Coxeter group the whole set/ = S satisfies thé—1)-condition
only in the following cases:

A1, By, D2y, E7, Eg, Fa, H3, Ha, I2(2n).

This means that each connected component of the Coxeter graph corresponding to the
groupG ; for any J satisfying the(—1)-condition must be of that form. In particular we
see that the components of tygg with n > 1 are forbidden, which imposes strong
restrictions on such subsefs In the Appendix we give a subsétfor each conjugacy
class of special involutions.

To describe the centralisers of the involutianswe can use the results by Howlett
[16] who described the normalisers of the parabolic subgroups in a general Coxeter group.
Indeed, we have the following

Proposition 7. The centraliselC (o) coincides with the normalise¥ (G ;) of the cor-
responding parabolic subgroug ;.

Recall that thenormaliser N (H) of a subgroupd C G consists of the elementse G
such thatgHg~! = H. Consider the orthogonal splitting = V; @ V}, correspond-
ing to the spectral decomposition @f. Obviously the normaliseN (G ;) preserves this
splitting and thusV (G ) is a subgroup of the centraliséro;). To show the opposite
inclusion take any € C(oy); theng(V,;) = V; and thereforeg(es) belongs to the
intersection of the root system® with the subspacé’;. But according tol[22, Proposi-
tion 1.10] this intersection coincides with the root system of the gi@ypThis means
that gsg~! belongs toG ; for any generating reflection € J and thusg belongs to the
normaliserN (G).

So the question now is only what are the special involutions which form thgset

Special involutions in Coxeter groups

Let o be any involution in the Coxeter group, andV = Vi @ V> be the corresponding
spectral decomposition of its geometric realisation, whgrand V- are the eigenspaces
with eigenvalues-1 and 1, respectively. According to the previous section one can as-
sume that/; = V; for some subsef € S.

Consider the intersectior®; and R» of the root systenR of G with the subspaces
V1 andV,. According to[22],[24] they are the root systems of the Coxeter subgrGups
andG», whereG1 is the corresponding parabolic subgrodp andG» is the subgroup
of G consisting of the elements fixing the subsp&ge

Definition. We will call the involutionr specialif for any root fromRr at least one of its
projections ontd/; and V3 is proportional to a root fromR1 or R».
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In particular, the identity and simple reflections are special involutions for all Coxeter
groups.
The following proposition explains the importance of this notion for our problem.

Proposition 8. For any special involutiornr all the connected components of the fixed
setF; are contractible. Their numbe¥,, is equal to|G1||G>|, the product of the orders
of the corresponding groups1 andGo.

Proof. The fixed setF; is the subspac®, @ i V1 minus the intersections with the reflec-
tion hyperplanes. The hyperplanes corresponding to the roots Byoamd R, split this
subspace intfG1||G2| contractible connected components. The meaning of the condition
on the special involutions is to make all other intersections redundant. Indeed, the inter-
section with the hyperplangr, z) = 0 is equivalent to two conditiongw, x) = 0 and

(a2, y) = 0, wherex1 anday are the projections of the roaton V; and Vs respectively,

andx € Vq, y € Va. If at least one of the vectorsg is proportional to some root frormR;

this intersection will be contained in the hyperplanes already considered.

Corollary 1. The character of the action of any special involutionon H*(Mg) is
nonzero and equal tgG1||G2|.

It turns out that the converse statement is also true.

Proposition 9. If the charactery (g) is not zero inH*(Mg) theng is a special involu-
tion.

Unfortunately the only proof we have is case by case check. For the classical series this
follows from the fact that the special involutions in that case are exactly those described
in the first section of this paper. For the exceptional Weyl groups one can also use the
results of [14].

The list of special involutions (up to conjugation) for all irreducible Coxeter groups
is given in the Introduction (see also the Appendix for the corresponding Richardson
graphs). It is easy to check that they all have the following property which is very impor-
tant for us.

Proposition 10. The centraliserC (o) of any special involutiorns coincides with the
product of the corresponding Coxeter subgrodpsx Go.

Obviously G1 x G2 is a subgroup ofC (o) but the equalityC(o) = G1 x G2 is not
true for a general involution (an example is any of the involutiepiswith £ > 0 in the
Dy, +1-case, for whichG1 x G2 is a subgroup o€ (o) of index 2).

Summarising, we have the following main

Theorem 1. Let X be the set of conjugacy classes of special involutions in the Coxeter
groupG. Then the total cohomology™* (M) as G-module with respect to the standard
action of G on M can be represented in the form

H*Mg) = )_ 2Ind, (D) - p). (12)

oeXg
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For the twisted action one should replace in this formila by its subset consisting of
the conjugacy classes of even special involutions.

In particular, we see thaf (M) is the regular representation only for the symmetric
groups,, the Weyl groups of typ@®,,,.1, Eg and dihedral group& (2k + 1).

Applying the Frobenius reciprocity formula for the characters of induced represen-
tations we have the following corollary. L&V be an irreducible representation 6f
and

Wi(o) ={veW:ov==v}

be the eigenspaces of the involuti@rwith eigenvaluest1 respectively.
Corollary 2. The multiplicitys (W) in the decomposition aff * (M) is equal to

m(W) = Z (dimW* (o) — dmWw~(0)).

oceXg

In particular, for the trivial and alternating representations we have respectively
m(1) = |Xg| and m(e) = |XG| — |XGl,
whereX¢; is the subset ok consisting of odd special involutions.

In other words the number of special involutions (up to conjugacy) is equal to the number
of invariant cohomology classes #i*(Mg). The corresponding numbers are given in
the table below.

Numbers X ;| of conjugacy classes of special involutions
A, B, Dp,nodd D,,neven Eg E7 Eg F4 H3 Hy Ix(n),nodd Iyx(n),neven
2 2 2 4 2 4 4 8 4 4 2 4

A simple analysis of this list leads to the following

Proposition 11. For any irreducible Coxeter grouw the numbers of even and odd in-
volutions in the special séf; are equal:

1
IXgl =Xl = 51 Xal.

The multiplicitym (¢) of the alternating representation iH* (M) is zero for allG.

In other words the alternating representation never appears in the cohomolddy; of

For the symmetric group the fact that(¢) = O was conjectured by Stanley [23] (in
different, combinatorial terms) and proved by Hanloriini [15]. The general case was settled
by Lehrer in [20]. We give some explanations of this remarkable fact in the next section.



Coxeter group actions on the complement of hyperplanes 111

Special involutions and cohomology of Brieskorn’s braid groups

Consider now the corresponding quotient spage= Mg /G. The fundamental group
of this space is calleBrieskorn’s braid grou@nd denoted aB. The fundamental group
of M is calledBrieskorn’s pure braid groupnd denoted agg.

It is known after Brieskorn and Deligne thatl; and X are Eilenberg—Mac Lane
spacesK (r, 1) for 7 the pure and usual braid groupg and Bg respectively (see [7],
[1Q]), so the cohomology of these spaces can be interpreted as cohomology of the cor-
responding braid groups. The investigation of this cohomology was initiated by Arnol'd
in [2], [2] who considered the case of the symmetric group. The rational (or complex)
cohomology of the braid groups related to an arbitrary Coxeter group was computed by
Brieskorn|[7]. Later Orlik and Solomon [21] found an elegant description of the de Rham
cohomology as the algebra generated by the differential fagns d loga, o € R, with
explicitly given relations (defining the so-call€xtlik—-Solomon algebrad).

SinceH*(Zg, C) is simply theG-invariant part ofH* (Mg, C), it follows from the
previous section that the total Betti numbef, which is the dimension aff * (2, C),
is equal to|X¢|. The relation between special involutions ¢h and the cohomology
H*(X¢g, C) can be described more precisely in the following way.

Proposition 12. The Poincaé polynomialP (X, ¢t) of the cohomology of Brieskorn’s
braid group Bg has the form

P(Zg.0)= Y Mm@, (13)

oeXg

whereV is the geometric representation 6fandV ~ (o) is the(—1)-eigenspace af in
this representation.

Explicitly, these polynomials are:

Ay P=1+¢

B, : P=14+2+212+. . 42" 14" =A+0)A+t+2+ ...+
D,,nodd: P=1+¢

Dy,neven: P=1+r+" 14+ =Q+)A+"YH

Es . P=1+1¢

E7: P=1+t+5+t"=A+1)1+15

Esg: P=1+t+t'+8=A+0)1+1)

Fa: P=14+2+224+23 4+ =Q+0)A+1+ 2+ 1)
Hz: P=1+t+2+3=1A+1)1+1?

Hj: P=1+t+3+t*=A+1)1+13

I(n),nodd: P=1+1¢
L(n),neven:P =1+ 2t 4+1% = (1+1)2.

The simplest proof of this proposition is by comparison of the Brieskorn formulas from
[7] and our list of simple involutions. A more satisfactory proof may be found in the
following way in terms of the corresponding Orlik—Solomon algeldga~ H*(Mg).
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Let o be a special involution ansl, be the set of simple roots in the Coxeter subsys-
tem R1, which is the set of roots € R such thaba = —« (See the previous section).

Conjecture. For any special involutions the symmetrisation of the produ€t, =
[laes, @wo by the action of the groufi is a nonzero element irlg. Any G-invariant
element in this algebra is a linear combination of such elements.

We have checked this for all Coxeter groups exdéptEs, Fs4, H3, Hy, but the proof is
by straightforward calculation with the use of the Orlik—Solomon relations. It would be
nice to find a more conceptual proof for all Coxeter groups.

Notice that in theS, case our claim reduces to Arnold’s result saying that the sym-
metrisation of any element from the cohomology of the pure braid group of degree more
than 1 is equal to zero and the oritinvariant element of degree 1 is given by the dif-
ferential form}_, . ; d log(z; — z;) (see Corollary 6 in[1]).

Notice that as a corollary of Proposition 11 we see that the anti-symmetrisation of any
element in the Orlik—Solomon algebra is zero. This is also related to the fact that all the
polynomialsP (Z¢, t) are divisible byt 4+ 1. Indeed, from the previous section we know
thatm(e) = |Xg| — | X, which due to Proposition 12 is equal R(X¢, —1) and thus
is zero.

Although the fact thaP (X, #) is divisible byr + 1 is transparent from the list of all
these polynomials given above we will give here an independent topological explanation.

Namely consider thprojectivisationP Mg of the spaceM . We have a diffeomor-
phism

MG ~ P./\/l(; x C*.

Indeed, for any rootr the mapx +— ([x], (¢, x)) establishes such a diffeomorphism.
Notice that it is compatible with the action of the groGpf we assume that the action on
C* is trivial.

On the cohomology level we have an isomorphism

H*(Mg) = H*(PMg) x H*(C"),

which immediately implies the following result.

Let W be any irreducible representation@fand Py (¢) be the Poincar polynomials
of the multiplicities of W in H*(M). An explicit description of these polynomials is
one of the most interesting open problems in this area. For the trivial representation the
corresponding polynomial coincides with the Poiricaplynomial P (X, ¢t) according
to Proposition 12.

Proposition 13. All irreducible representations of the Coxeter grodp appear in
H*(Mg) in pairs in degrees differing bg. The corresponding polynomialRy (1) are
divisible byr + 1.

In particular, this implies thaP (X, —1) = 0 and (modulo Propositions 11 and 12) the
fact that the alternating representation never appears in the cohomology of generalised
pure braid groups.
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Concluding remarks

We have shown that the action of the Coxeter grofpsn the total cohomology of the
corresponding complement spaté; can be described in a very simple way (2) in terms

of the special involutions. Although one might expect a formula like that knowing that
only involutions may have nonzero characters in this representation, there are two facts
which we found surprising:

1) the involutions with nonzero characters admit a very simple geometric characterisa-
tion;

2) the character of the action of such an involutioon H*(Mg) is exactly the order of
the corresponding centralis€i(o).

Special involutions also appear to play a key role in the description of the multiplicative
structure of the cohomology of the Brieskorn braid group: if the conjecture formulated in
the last section is true, a basis of representatives of the conomology in the Orlik—Solomon
algebra can be given in terms of special involutions.

The nature of the seX; also needs a better understanding. In particular, it may be
worth looking at the geometry of the subgraghsin the Coxeter grapli correspond-
ing to the special involutions (see the Appendix for a complete list of these subgraphs).
We would like to note that in all the cases excépt, I'; consists of at most two con-
nected components, which together with thel)-condition implies very strong restric-
tions onJ. The only exception is the graph of the involutien in D4, which consists of
three components.

It would be interesting to generalise our results to the spegRY) which isV ®
RY without the corresponding root subspadés ® R, € R (our case corresponds
to N = 2). For the symmetric grou@ = S, this is the configuration space efdistinct
points inR¥; this case was investigated by Cohen and Taylorin [9]. In this relation we
would like to mention the recent very interesting papeis [3,) 4, 5, 12]. In particular, the
idea of Atiyah [4] to use equivariant conomology may be the clue to understanding the
graded structure of th€-module H*(Mg).

Another obvious generalisation to look at is the case of complex reflection groups.

Appendix: Richardson graphs of special involutions

The following table lists the equivalence classes of nontrivial special involutions for all
Coxeter groups. For each class we give a representajiveessociated with a subsét

of the set of nodes of the Coxeter graph by the Richardson correspondence (see Proposi-
tion 6): the nodes iy, whose simple roots span tite 1)-eigenspace of, are coloured

in black. The notations in the third column follow the description in the Introduction. Be-
sides the special involutions listed here there is the identity, which is special for all groups
and corresponds to a Coxeter graph with white nodes only. The conventions for Coxeter
graphs are those dfl[6, Ch. IV, §1° A] except that we draw a double edge instead of an
edge with label 4.
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51
52

o e—e—0 diag—1, -1, 1, 1)
Fa —o—e—0 P1o @ diag(—1, 1)

—s1

e—e—e O —59

Hs 0 —o s

I>(m), m odd —oO s

I>(m), m even o—e 52
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