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Abstract. We consider both standard and twisted actions of a (real) Coxeter groupG on the com-
plementMG to the complexified reflection hyperplanes by combining the reflections with complex
conjugation. We introduce a natural geometric class of special involutions inG and give explicit
formulae which describe both actions on the total cohomologyH∗(MG, C) in terms of these in-
volutions. As a corollary we prove that the corresponding twisted representation is regular only for
the symmetric groupSn, the Weyl groups of typeD2m+1, E6 and dihedral groupsI2(2k + 1). We
also discuss the relations with the cohomology of Brieskorn’s braid groups.
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Introduction

In 1969 V. I. Arnol’d [1] computed the cohomology algebra of the configuration space
Mn of n distinct points of the complex plane. This remarkable short paper was the start-
ing point of the active research in this area of mathematics at the crossroads of algebra,
geometry and combinatorics.

In particular, Brieskorn [7] generalised Arnol’d’s results to arbitrary irreducible Cox-
eter groupsG and showed that the Poincaré polynomial of the complementMG to the
complexified reflection hyperplanes has the form

P(MG, t) = (1 + m1t) · · · (1 + mnt),

wheremi = di − 1 are the exponents of the Coxeter groupG, di being the degrees of
the generators of the algebra ofG-invariants. Since the product(1 + m1) · · · (1 + mn) =

d1 · · · dn = |G| is known to be the order of the groupG, it is tempting to suggest that
the total cohomology spaceH ∗(MG) = H ∗(MG, C) is the regular representation with
respect to the natural action ofG onMG. However this turns out not to be true already
for the symmetric groupG = Sn, as shown by Lehrer [18], although not far from being
true.
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The starting point of this work was the following observation. Let us consider another
action ofG onMG using the anti-holomorphic extensions of the reflections from the real
to the complexified space. In other words we combine the usual action of the reflections
with complex conjugation. The claim is that, for the symmetric groupG = Sn with this
new action,H ∗(MG, C) is indeed a regular representation. We were not able to find this
result in the literature, although the proof can be easily derived from known results. While
looking for the simplest explanation of this fact, we have found a simple universal way
to investigate this representation for any Coxeter group, both in the standard and twisted
case.

The main result of this paper is the following two explicit formulae which show how
far the corresponding representations are from the regular representation, and describe
them as virtual representations.

Let G be a finite group generated by reflections in a real Euclidean spaceV of dimen-
sionn, andMG be the complement to the complexified reflection hyperplanes inV ⊗ C.

Let us denote the twisted representation ofG onH ∗(MG, C) by H ∗
ε (MG). Alternatively

we can write

H ∗
ε (MG) =

n⊕
k=0

εk
⊗ H k(MG, C), (1)

whereε is the alternating representation ofG.

We claim that for all Coxeter groupsG with the standard action onMG,

H ∗(MG) =

∑
σ∈XG

(2 IndG
〈σ 〉

(1) − ρ), (2)

and for the twisted action,

H ∗
ε (MG) =

∑
σ∈Xε

G

(2 IndG
〈σ 〉

(1) − ρ). (3)

Hereρ is the regular representation ofG, XG is a special set of involutions inG (more
precisely, conjugacy classes of involutions),Xε

G is the subset ofXG consisting of even
involutions, and IndG

〈σ 〉
(1) is the representation induced from the trivial representation of

the subgroup generated byσ.

We should mention that for the standard action in most of the cases our result can be
derived from the results of the papers [13, 14, 18, 19], so our main contribution here is
the following universal geometric description of the setXG.

Namely, consider any involutionσ in the geometric realisation ofG as a group of
orthogonal transformations of a Euclidean spaceV and the corresponding splittingV =

V1 ⊕ V2 so thatV1 = V −(σ ) andV2 = V +(σ ) are the eigenspaces ofσ with eigenvalues
−1 and 1, respectively. LetR1 andR2 be the intersections of the root systemR of the
groupG with these subspaces, andG1, G2 be the corresponding Coxeter subgroups ofG.

We call the involutionσ specialif for any roota ∈ R at least one of the projections ofa

ontoV1 andV2 is proportional to a root fromR1 or R2. In particular the identity and any
simple reflection are always special involutions.
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We denote byXG the set of all conjugacy classes of special involutions inG. By
choosing a representative in each class we can realiseXG as a special set of involutions
in G.

For the symmetric groupSn, Weyl groups of typeD2m+1, E6 and dihedral groups
I2(2k + 1) the setXG consists of two elements: the identity and the class of a simple
reflections, so we have in that case

H ∗(MG) = 2 IndG
〈s〉(1) and H ∗

ε (MG) = ρ.

For Coxeter groups of typeBn (or Cn) the setXG consists of 2n involutions which in
the geometric realisation have the formσk = P12⊕ (−Ik)⊕ In−k−2, k = 0, 1, . . . , n− 2,
andτl = (−Il) ⊕ In−l , l = 0, 1, . . . , n. HereP12 denotes the permutation of the first two
coordinates andIk is thek × k identity matrix.

In the case of Weyl groups of typeD2m, E7, E8 and for the icosahedral groupsH3
andH4, XG consists of 4 involutions:± Id and±s, wheres is a simple reflection.

For F4 we have 8 involutions which in the standard geometric realisation [6] have
the form±s with s representing two different conjugacy classes of simple reflections,
diag(−1, −1, 1, 1), P12 ⊕ diag(−1, 1) and the centre± Id.

Finally, for the dihedral groupsI2(2k), XG consists of 4 elements: two conjugacy
classes of simple reflections and the central elements± Id.

In the Appendix we list the graphs of all equivalence classes of nontrivial special
involutions using Richardson’s description [22].

As a corollary we find that the twisted action of an irreducible Coxeter groupG on
H ∗(MG) is a regular representation only for the symmetric groupSn, the Weyl groups of
typeD2m+1, E6 and dihedral groupsI2(2k + 1). Note that besides the one-dimensional
Coxeter group of typeA1 this is the list of Coxeter groups with trivial centre.

Our result can be reformulated in terms of the decomposition of the cohomology
into irreducibleG-modules: the multiplicitym(W) of the irreducibleG-moduleW in the
decomposition ofH ∗(MG) is

m(W) =

∑
σ∈XG

(dimW+(σ ) − dimW−(σ )), (4)

whereW±(σ ) = {v ∈ W : σv = ±v} are the eigenspaces of the involutionσ. For the
twisted action,XG is replaced byXε

G.
In particular, the trivial representation has the multiplicity

m(1) = |XG|,

where |X| denotes the number of elements in the setX. This gives us a topological
interpretation of|XG| as the total Betti number of the corresponding quotient space
6G = MG/G. More precisely we show that the Poincaré polynomialP(6G, t) has
the form

P(6G, t) =

∑
σ∈XG

tdimV −(σ ), (5)
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whereV is the geometric representation ofG andV −(σ ) is the(−1)-eigenspace ofσ
in this representation. Notice that, according to a classical result due to Brieskorn and
Deligne,6G is the Eilenberg–Mac Lane spaceK(π, 1) for the corresponding generalised
braid groupπ = BG, so the last formula can also be interpreted in terms of the (rational)
cohomology ofBG (see [7]).

Another interesting corollary of our results is that the multiplicitym(ε) of the alter-
nating representation inH ∗(MG) is zero. Due to (4) this is equivalent to the fact that the
numbers of even and odd classes inXG are equal. For the groupSn this was conjectured
(in different terms) by Stanley [23] and proved by Hanlon in [15]. For general Coxeter
groups it was first proved by Lehrer [20].

Our approach is geometrical and based on the (generalised) Lefschetz fixed point
formula which says that the Lefschetz numbers for actions of finite groups are equal to
the Euler characteristics of the corresponding fixed sets (see [8]). We should mention that
the idea to use the Lefschetz fixed point formula is not new in this area (see e.g. [9]),
however in this form it does not seem to have been explored before.

Characters and Lefschetz fixed point formula

Consider first the standard action ofG onMG. The character of an elementg ∈ G in the
corresponding representationH ∗(MG) is

χ(g) =

n∑
k=0

tr g∗

k ,

whereg∗

k is the action ofg onH k(MG). Now replace the action ofg by its composition
with the complex conjugation which we denote asḡ. Then because complex conjugation
is acting as(−1)k on thek-th cohomology ofMG we have

χ(g) =

n∑
k=0

(−1)k tr ḡ∗

k ,

which by definition is theLefschetz numberL(ḡ) of the mapḡ. Now we can apply the
Lefschetz fixed point formula [8] which says that this number is equal to the Euler char-
acteristicχ(Fḡ) of the fixed setFḡ = {z ∈MG : ḡ(z) = z}.

In the twisted case all the even elements ofG act in the standard way but the action
of all odd elements are twisted and the corresponding character of an oddg ∈ G in
H ∗

ε (MG) is

χε(g) =

n∑
k=0

(−1)k tr g∗

k = L(g),

the Lefschetz number of the standard action ofg onMG.

Proposition 1. (i) The character of an elementg ∈ G for the standard action ofG on
H ∗(MG) is equal to the Euler characteristic of the fixed setFḡ.
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(ii) The character of an odd elementg ∈ G in H ∗
ε (MG) for the twisted action ofG on

MG is equal to the Euler characteristic of the fixed setFg.

(iii) The fixed setFg is empty unlessg is the identity, so the character of any odd element
in the twisted representationH ∗

ε (MG) is zero. The fixed setFḡ is empty unlessg is
an involution, so if the order ofg is greater than2 thenχ(g) = 0.

Only the last part needs a proof. A fixed point ofg corresponds to an eigenvector ofg in
the geometric realisation with eigenvalue 1, which can be chosen real (recall thatG is a
real Coxeter group). But on the realsG acts freely on the set of Coxeter chambers. Thus
Fg is empty unlessg is the identity. Now assume thatḡ has a fixed pointz ∈MG; then
obviouslyh = ḡ2

= g2 must also have a fixed point, which means thatg2 must be the
identity.

Remark. The fact that only involutions may have nonzero characters is known (see
Corollary 1.10 in [14], where a combinatorial explanation of this fact is given). Our proof
is close to a similar proof from [9], where the caseG = Sn was considered.

Now we are ready to compute the characters for the classical series.
Let us start withAn−1, corresponding to the symmetric groupG = Sn acting by

permutations on the configuration spaceMn of n distinct points of the complex plane.
Any involution σ in that case is conjugate to one of the involutions of the formπk =

(12)(34) . . . (2k − 1, 2k), k = 1, . . . , [n/2], where (ij) denotes the transposition ofi

and j. The fixed setFk for the actionπ̄k consists of the points(z1, z̄1, z2, z̄2, . . . , zk,

z̄k, x1, . . . , xn−2k), wherezi 6= z̄i (i.e. zi is not real),xi ∈ R, zi 6= zj , zi 6= z̄j if i 6= j

andxp 6= xq if p 6= q.

It is easy to see that topologically all connected components are the same and equiv-
alent to the productMk × Rn−2k, whereMk is the standard configuration space ofk

different points in the complex plane. Because the Euler characteristic ofMk is zero for
k > 1 we conclude that only the simple reflections = π1 = (12) has nonzero character.
In that case we have 2(n − 2)! contractible connected components, soχ(s) = 2(n − 2)!.
We can formulate this fact in the following form.

Proposition 2 (G. Lehrer [18]). AsSn-module with respect to the standard action ofSn

onMn,
H ∗(Mn) = 2 IndSn

〈s〉(1),

whereIndSn

〈s〉(1) denotes the representation ofSn induced from the trivial representation
of the subgroupZ2 generated by the simple reflections = (12).

Indeed, the characters for the representations IndG
H (1) induced from the trivial represen-

tation of the subgroupH ⊂ G are given by the formula

χ(g) =
1

|H |

∑
h∼g, h∈H

|C(h)|, (6)

whereh ∼ g means thath is conjugate tog in G, andC(h) is the centraliser ofh:
C(h) = {g ∈ G : gh = hg}. The centraliser of the simple reflections is C(s) =
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Z2 × Sn−2, whereZ2 is generated bys = (12) andSn−2 is the subgroup ofSn permuting
the numbers 3, 4, . . . , n. According to the formula (6) only the identitye andg ∼ s have
nonzero characters in 2 IndSn

〈s〉(1). Moreoverχ(e) = |Sn| = n! and χ(s) = |C(s)| =

2(n − 2)!. Comparing this with our previous analysis we have the proposition.

Now let us consider the twisted action of the symmetric groupSn onMn. From the
previous analysis of the fixed setsFḡ and Proposition 1 we deduce the following

Proposition 3. The twisted action ofSn onMn induces the regular representation on the
total cohomologyH ∗(Mn).

Consider now the caseBn. In the standard geometric realisation any involution is con-
jugate either to the diagonal formτk = diag(−1, . . . ,−1, 1, . . . , 1) = (−Ik) ⊕ In−k

or to the form when we havem additional elementary transposition blocksP : σm,k =

P ⊕ . . . ⊕ P ⊕ (−Ik) ⊕ In−k−2m. A simple analysis similar to the previous case shows
that in the last case the fixed set consists of several connected components each topologi-
cally equivalent toMm × Rn−2m. So if the number of transpositionsm is greater than 1
the Euler characteristic of this set and thus the corresponding characterχ(σm,k) is zero.
One can check that in the remaining cases, namelyσk = σ1,k andτk, all the components
are contractible and the action of the corresponding centralisersC(σ) on them is effec-
tive. Thus if we define the setXBn as the union of the 2n involutionsσk, k = 0, . . . , n−2
andτl , l = 0, 1, . . . , n, we have the following

Proposition 4.
H ∗(MBn) =

∑
σ∈XBn

(2 IndBn

〈σ 〉
(1) − ρ), (7)

whereρ is the regular representation ofBn. In the twisted case one should take the sum
over the subset ofXBn consisting of the involutions which are even elements ofG.

For the standard action this result was first obtained by Lehrer in [19].
In theDn case the results are slightly different for odd and evenn.
For an oddn = 2m+1 any involution is conjugate to one of the following involutions:

σ2k, k = 0, 1, . . . , m − 1 andτ2l , l = 0, 1, . . . , m (with the same notations as in the
previous case).

The fixed set ofσ2k consists of the points(z, z̄, ix1, . . . , ix2k, y1, . . . , yn−2k−2),

wherez 6= ±z̄ (i.e. z is not real or purely imaginary),xi, yi ∈ R, xp 6= ±xq , yp 6= ±yq

if p 6= q. The number of connected components of the fixed set in that case is equal to
the order of the groupD2 × D2k × Dn−2k−2 which acts on this set. However ifk > 0 we
have to exclude from this set also the subspaces of codimension 2 given by the equations
xj = yl = 0 for all j = 1, . . . , 2k andl = 1, . . . , n − 2k − 2. One can check that as a
result the Euler characteristic of all connected components (and thus of the whole fixed
set) in that case is 0. Similar arguments show that the same is true for the fixed set of the
involutionsτ2l .

In the only remaining case of the simple reflectionσ0 all the connected components
of the corresponding fixed set are contractible. The centraliserC(σ0) coincides with the
subgroupD2 × Dn−2, which acts freely and transitively on these components.
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For the groups of typeDn with evenn = 2m the involutionsσ0, σ2m−2 and the central
elementτ2m = −In have the centralisers whose order is equal to the number of connected
components of the corresponding fixed sets, which are all contractible in this case. The
Euler characteristic of the fixed set of any other involution can be shown to be zero in the
same way as in the odd case.

Thus we have the following

Proposition 5. For the Coxeter groupG of typeDn with the standard action we have

H ∗(MG) = 2 IndG
〈σ0〉

(1) (8)

in the odd casen = 2m + 1 and

H ∗(MG) = ρ + (2 IndG
〈σ0〉

(1) − ρ) + (2 IndG
〈σ2m−2〉

(1) − ρ) + (2 IndG
〈τ2m〉

(1) − ρ) (9)

in the even casen = 2m. For the twisted action the formulas are respectively

H ∗
ε (MG) = ρ (10)

in the odd case and
H ∗

ε (MG) = 2 IndG
〈τ2m〉

(1) (11)

in the even case.

In order to investigate the general case and to understand the nature of the exceptional
setXG we will need the general results about involutions in Coxeter groups, summarised
in the next section.

Involutions in Coxeter groups and their centralisers

We start with the description of the conjugacy classes of involutions in a general Cox-
eter group due to Richardson [22]. We refer to Bourbaki [6] or Humphreys [17] for the
standard definitions.

Let G be a Coxeter group, and0 be its Coxeter graph. Recall that the vertices of0

correspond to the generating reflections, which form the setS. We will identify G with
its geometric realisation in the Euclidean vector spaceV, in which s ∈ S acts as the
reflection with respect to the hyperplane orthogonal to the corresponding rootes .

Let J be a subset ofS, andGJ be the subgroupG generated byJ (such a subgroup
is calledparabolic). Let alsoJ ∗

= {es : s ∈ J } andVJ be the subspace ofV generated
by J ∗. Following Richardson we say thatJ satisfies the(−1)-conditionif GJ contains an
elementσJ which acts onVJ as− Id. This element, being inGJ , acts as the identity on
the orthogonal complement ofVJ . ThusσJ is uniquely determined and is an involution.

Proposition 6 (Richardson [22]). Letσ be any involution inG. Then

(i) there exists a subsetJ ⊂ S satisfying the(−1)-condition such thatσ is conjugate
to σJ ;
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(ii) the involutionsσJ andσK are conjugate inG if and only ifg(J ∗) = K∗ for some
g ∈ G.

Richardson also gave an algorithm for testingG-equivalence based on the results by
Howlett [16] and Deodhar [11].

For an irreducible Coxeter groupG the whole setJ = S satisfies the(−1)-condition
only in the following cases:

A1, Bn, D2n, E7, E8, F4, H3, H4, I2(2n).

This means that each connected component of the Coxeter graph corresponding to the
groupGJ for anyJ satisfying the(−1)-condition must be of that form. In particular we
see that the components of typeAn with n > 1 are forbidden, which imposes strong
restrictions on such subsetsJ. In the Appendix we give a subsetJ for each conjugacy
class of special involutions.

To describe the centralisers of the involutionsσJ we can use the results by Howlett
[16] who described the normalisers of the parabolic subgroups in a general Coxeter group.
Indeed, we have the following

Proposition 7. The centraliserC(σJ ) coincides with the normaliserN(GJ ) of the cor-
responding parabolic subgroupGJ .

Recall that thenormaliserN(H) of a subgroupH ⊂ G consists of the elementsg ∈ G

such thatgHg−1
= H. Consider the orthogonal splittingV = VJ ⊕ V ⊥

J , correspond-
ing to the spectral decomposition ofσJ . Obviously the normaliserN(GJ ) preserves this
splitting and thusN(GJ ) is a subgroup of the centraliserC(σJ ). To show the opposite
inclusion take anyg ∈ C(σJ ); then g(VJ ) = VJ and thereforeg(es) belongs to the
intersection of the root systemR with the subspaceVJ . But according to [22, Proposi-
tion 1.10] this intersection coincides with the root system of the groupGJ . This means
thatgsg−1 belongs toGJ for any generating reflections ∈ J and thusg belongs to the
normaliserN(GJ ).

So the question now is only what are the special involutions which form the setXG.

Special involutions in Coxeter groups

Let σ be any involution in the Coxeter groupG, andV = V1 ⊕ V2 be the corresponding
spectral decomposition of its geometric realisation, whereV1 andV2 are the eigenspaces
with eigenvalues−1 and 1, respectively. According to the previous section one can as-
sume thatV1 = VJ for some subsetJ ∈ S.

Consider the intersectionsR1 andR2 of the root systemR of G with the subspaces
V1 andV2. According to [22], [24] they are the root systems of the Coxeter subgroupsG1
andG2, whereG1 is the corresponding parabolic subgroupGJ andG2 is the subgroup
of G consisting of the elements fixing the subspaceV1.

Definition. We will call the involutionσ specialif for any root fromR at least one of its
projections ontoV1 andV2 is proportional to a root fromR1 or R2.
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In particular, the identity and simple reflections are special involutions for all Coxeter
groups.

The following proposition explains the importance of this notion for our problem.

Proposition 8. For any special involutionσ all the connected components of the fixed
setFσ̄ are contractible. Their numberNσ is equal to|G1||G2|, the product of the orders
of the corresponding groupsG1 andG2.

Proof. The fixed setFσ̄ is the subspaceV2 ⊕ iV1 minus the intersections with the reflec-
tion hyperplanes. The hyperplanes corresponding to the roots fromR1 andR2 split this
subspace into|G1||G2| contractible connected components. The meaning of the condition
on the special involutions is to make all other intersections redundant. Indeed, the inter-
section with the hyperplane(α, z) = 0 is equivalent to two conditions:(α1, x) = 0 and
(α2, y) = 0, whereα1 andα2 are the projections of the rootα onV1 andV2 respectively,
andx ∈ V1, y ∈ V2. If at least one of the vectorsαi is proportional to some root fromRi

this intersection will be contained in the hyperplanes already considered.

Corollary 1. The character of the action of any special involutionσ on H ∗(MG) is
nonzero and equal to|G1||G2|.

It turns out that the converse statement is also true.

Proposition 9. If the characterχ(g) is not zero inH ∗(MG) theng is a special involu-
tion.

Unfortunately the only proof we have is case by case check. For the classical series this
follows from the fact that the special involutions in that case are exactly those described
in the first section of this paper. For the exceptional Weyl groups one can also use the
results of [14].

The list of special involutions (up to conjugation) for all irreducible Coxeter groups
is given in the Introduction (see also the Appendix for the corresponding Richardson
graphs). It is easy to check that they all have the following property which is very impor-
tant for us.

Proposition 10. The centraliserC(σ) of any special involutionσ coincides with the
product of the corresponding Coxeter subgroupsG1 × G2.

ObviouslyG1 × G2 is a subgroup ofC(σ) but the equalityC(σ) = G1 × G2 is not
true for a general involution (an example is any of the involutionsσ2k with k > 0 in the
D2m+1-case, for whichG1 × G2 is a subgroup ofC(σ) of index 2).

Summarising, we have the following main

Theorem 1. LetXG be the set of conjugacy classes of special involutions in the Coxeter
groupG. Then the total cohomologyH ∗(MG) asG-module with respect to the standard
action ofG onMG can be represented in the form

H ∗(MG) =

∑
σ∈XG

(2 IndG
〈σ 〉

(1) − ρ). (12)
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For the twisted action one should replace in this formulaXG by its subset consisting of
the conjugacy classes of even special involutions.

In particular, we see thatH ∗
ε (MG) is the regular representation only for the symmetric

groupSn, the Weyl groups of typeD2m+1, E6 and dihedral groupsI2(2k + 1).
Applying the Frobenius reciprocity formula for the characters of induced represen-

tations we have the following corollary. LetW be an irreducible representation ofG,

and

W±(σ ) = {v ∈ W : σv = ±v}

be the eigenspaces of the involutionσ with eigenvalues±1 respectively.

Corollary 2. The multiplicitym(W) in the decomposition ofH ∗(MG) is equal to

m(W) =

∑
σ∈XG

(dimW+(σ ) − dimW−(σ )).

In particular, for the trivial and alternating representations we have respectively

m(1) = |XG| and m(ε) = |Xε
G| − |Xo

G|,

whereXo
G is the subset ofXG consisting of odd special involutions.

In other words the number of special involutions (up to conjugacy) is equal to the number
of invariant cohomology classes inH ∗(MG). The corresponding numbers are given in
the table below.

Numbers|XG| of conjugacy classes of special involutions

An Bn Dn, n odd Dn, n even E6 E7 E8 F4 H3 H4 I2(n), n odd I2(n), n even
2 2n 2 4 2 4 4 8 4 4 2 4

A simple analysis of this list leads to the following

Proposition 11. For any irreducible Coxeter groupG the numbers of even and odd in-
volutions in the special setXG are equal:

|Xo
G| = |Xε

G| =
1

2
|XG|.

The multiplicitym(ε) of the alternating representation inH ∗(MG) is zero for allG.

In other words the alternating representation never appears in the cohomology ofMG.

For the symmetric group the fact thatm(ε) = 0 was conjectured by Stanley [23] (in
different, combinatorial terms) and proved by Hanlon in [15]. The general case was settled
by Lehrer in [20]. We give some explanations of this remarkable fact in the next section.
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Special involutions and cohomology of Brieskorn’s braid groups

Consider now the corresponding quotient space6G = MG/G. The fundamental group
of this space is calledBrieskorn’s braid groupand denoted asBG. The fundamental group
ofMG is calledBrieskorn’s pure braid groupand denoted asPG.

It is known after Brieskorn and Deligne thatMG and6G are Eilenberg–Mac Lane
spacesK(π, 1) for π the pure and usual braid groupsPG andBG respectively (see [7],
[10]), so the cohomology of these spaces can be interpreted as cohomology of the cor-
responding braid groups. The investigation of this cohomology was initiated by Arnol’d
in [1], [2] who considered the case of the symmetric group. The rational (or complex)
cohomology of the braid groups related to an arbitrary Coxeter group was computed by
Brieskorn [7]. Later Orlik and Solomon [21] found an elegant description of the de Rham
cohomology as the algebra generated by the differential formsωα = d logα, α ∈ R, with
explicitly given relations (defining the so-calledOrlik–Solomon algebraAG).

SinceH ∗(6G, C) is simply theG-invariant part ofH ∗(MG, C), it follows from the
previous section that the total Betti number of6G, which is the dimension ofH ∗(6G, C),
is equal to|XG|. The relation between special involutions inG and the cohomology
H ∗(6G, C) can be described more precisely in the following way.

Proposition 12. The Poincaŕe polynomialP(6G, t) of the cohomology of Brieskorn’s
braid groupBG has the form

P(6G, t) =

∑
σ∈XG

tdimV −(σ ), (13)

whereV is the geometric representation ofG andV −(σ ) is the(−1)-eigenspace ofσ in
this representation.

Explicitly, these polynomials are:
An : P = 1 + t

Bn : P = 1 + 2t + 2t2
+ . . . + 2tn−1

+ tn = (1 + t)(1 + t + t2
+ . . . + tn−1)

Dn, n odd: P = 1 + t

Dn, n even: P = 1 + t + tn−1
+ tn = (1 + t)(1 + tn−1)

E6 : P = 1 + t

E7 : P = 1 + t + t6
+ t7

= (1 + t)(1 + t6)

E8 : P = 1 + t + t7
+ t8

= (1 + t)(1 + t7)

F4 : P = 1 + 2t + 2t2
+ 2t3

+ t4
= (1 + t)(1 + t + t2

+ t3)

H3 : P = 1 + t + t2
+ t3

= (1 + t)(1 + t2)

H4 : P = 1 + t + t3
+ t4

= (1 + t)(1 + t3)

I2(n), n odd: P = 1 + t

I2(n), n even:P = 1 + 2t + t2
= (1 + t)2.

The simplest proof of this proposition is by comparison of the Brieskorn formulas from
[7] and our list of simple involutions. A more satisfactory proof may be found in the
following way in terms of the corresponding Orlik–Solomon algebraAG ≈ H ∗(MG).
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Let σ be a special involution andSσ be the set of simple roots in the Coxeter subsys-
temR1, which is the set of rootsα ∈ R such thatσα = −α (see the previous section).

Conjecture. For any special involutionσ the symmetrisation of the product�σ =∏
α∈Sσ

ωα by the action of the groupG is a nonzero element inAG. Any G-invariant
element in this algebra is a linear combination of such elements.

We have checked this for all Coxeter groups exceptE7, E8, F4, H3, H4, but the proof is
by straightforward calculation with the use of the Orlik–Solomon relations. It would be
nice to find a more conceptual proof for all Coxeter groups.

Notice that in theSn case our claim reduces to Arnold’s result saying that the sym-
metrisation of any element from the cohomology of the pure braid group of degree more
than 1 is equal to zero and the onlyG-invariant element of degree 1 is given by the dif-
ferential form

∑
i 6=j d log(zi − zj ) (see Corollary 6 in [1]).

Notice that as a corollary of Proposition 11 we see that the anti-symmetrisation of any
element in the Orlik–Solomon algebra is zero. This is also related to the fact that all the
polynomialsP(6G, t) are divisible byt + 1. Indeed, from the previous section we know
thatm(ε) = |Xε

G| − |Xo
G|, which due to Proposition 12 is equal toP(6G, −1) and thus

is zero.
Although the fact thatP(6G, t) is divisible byt + 1 is transparent from the list of all

these polynomials given above we will give here an independent topological explanation.
Namely consider theprojectivisationPMG of the spaceMG. We have a diffeomor-

phism
MG ≈ PMG × C∗.

Indeed, for any rootα the mapx 7→ ([x], (α, x)) establishes such a diffeomorphism.
Notice that it is compatible with the action of the groupG if we assume that the action on
C∗ is trivial.

On the cohomology level we have an isomorphism

H ∗(MG) = H ∗(PMG) × H ∗(C∗),

which immediately implies the following result.
Let W be any irreducible representation ofG andPW (t) be the Poincaré polynomials

of the multiplicities ofW in H k(MG). An explicit description of these polynomials is
one of the most interesting open problems in this area. For the trivial representation the
corresponding polynomial coincides with the Poincaré polynomialP(6G, t) according
to Proposition 12.

Proposition 13. All irreducible representations of the Coxeter groupG appear in
H ∗(MG) in pairs in degrees differing by1. The corresponding polynomialsPW (t) are
divisible byt + 1.

In particular, this implies thatP(6G, −1) = 0 and (modulo Propositions 11 and 12) the
fact that the alternating representation never appears in the cohomology of generalised
pure braid groups.
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Concluding remarks

We have shown that the action of the Coxeter groupsG on the total cohomology of the
corresponding complement spaceMG can be described in a very simple way (2) in terms
of the special involutions. Although one might expect a formula like that knowing that
only involutions may have nonzero characters in this representation, there are two facts
which we found surprising:

1) the involutions with nonzero characters admit a very simple geometric characterisa-
tion;

2) the character of the action of such an involutionσ onH ∗(MG) is exactly the order of
the corresponding centraliserC(σ).

Special involutions also appear to play a key role in the description of the multiplicative
structure of the cohomology of the Brieskorn braid group: if the conjecture formulated in
the last section is true, a basis of representatives of the cohomology in the Orlik–Solomon
algebra can be given in terms of special involutions.

The nature of the setXG also needs a better understanding. In particular, it may be
worth looking at the geometry of the subgraphs0J in the Coxeter graph0 correspond-
ing to the special involutions (see the Appendix for a complete list of these subgraphs).
We would like to note that in all the cases exceptD4, 0J consists of at most two con-
nected components, which together with the(−1)-condition implies very strong restric-
tions onJ . The only exception is the graph of the involution−s in D4, which consists of
three components.

It would be interesting to generalise our results to the spaceMG(RN ) which isV ⊗

RN without the corresponding root subspaces5α ⊗ RN , α ∈ R (our case corresponds
to N = 2). For the symmetric groupG = Sn this is the configuration space ofn distinct
points inRN ; this case was investigated by Cohen and Taylor in [9]. In this relation we
would like to mention the recent very interesting papers [3, 4, 5, 12]. In particular, the
idea of Atiyah [4] to use equivariant cohomology may be the clue to understanding the
graded structure of theG-moduleH ∗(MG).

Another obvious generalisation to look at is the case of complex reflection groups.

Appendix: Richardson graphs of special involutions

The following table lists the equivalence classes of nontrivial special involutions for all
Coxeter groups. For each class we give a representativeσJ associated with a subsetJ

of the set of nodes of the Coxeter graph by the Richardson correspondence (see Proposi-
tion 6): the nodes inJ , whose simple roots span the(−1)-eigenspace ofσ , are coloured
in black. The notations in the third column follow the description in the Introduction. Be-
sides the special involutions listed here there is the identity, which is special for all groups
and corresponds to a Coxeter graph with white nodes only. The conventions for Coxeter
graphs are those of [6, Ch. IV, §1, no 9] except that we draw a double edge instead of an
edge with label 4.
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G (0, J ) σJ

An
s c c p p p c c

s

Bn
s c c p p p c s s p p p s s

σkc c c p p p c s s p p p s s
τl

Dn, n odd s c c p p p c c��
c

@
@ c s

s c c p p p c c��
c

@
@ c s

Dn, n even s c s p p p s s��
s

@
@ s −s

s s s p p p s s��
s

@
@ s − Id

E6
s c c c c

c
s

s c c c c
c

c
s

E7
c s s s s

s
s

−s

s s s s s
s

s
− Id

s c c c c
c

c c
s

E8
s s s s s

s
s c

−s

s s s s s
s

s s
− Id
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s c c c
s1c c c s
s2c s s c diag(−1, −1, 1, 1)

F4
s c s c

P12 ⊕ diag(−1, 1)c s s s
−s1s s s c
−s2s s s s
− Ids 5 c c
s

H3
s 5 c s

−ss 5 s s
− Ids 5 c c c
s

H4
s 5 s s c

−ss 5 s s s
− Id

I2(m), m odd s m c
ss m c
s1

I2(m), m even c m s
s2

ms s
− Id
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