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0. Introduction

0.1. Tautological classes

Let Mg,n be the moduli space of stable curves of genusg with n marked points. Let
A∗(Mg,n) denote the Chow ring withQ-coefficients. The system of tautological rings is
defined to be the set of smallestQ-subalgebras of the Chow rings,

R∗(Mg,n) ⊂ A
∗(Mg,n),

satisfying the following two properties:

(i) The system is closed under push-forward via all maps forgetting markings:

π∗ : R∗(Mg,n)→ R∗(Mg,n−1).

(ii) The system is closed under push-forward via all gluing maps:

ι∗ : R∗(Mg1,n1∪{∗})⊗Q R
∗(Mg2,n2∪{•})→ R∗(Mg1+g2,n1+n2),

ι∗ : R∗(Mg,n∪{∗,•})→ R∗(Mg+1,n),

with attachments along the markings∗ and•.

While the definition appears restrictive, natural algebraic constructions typically yield
Chow classes lying in the tautological ring. For example, the standardψ , κ, andλ classes
in A∗(Mg,n) all lie in the tautological ring. The tautological rings also possess a rich
conjectural structure; see [FP] for a detailed discussion.

The cotangent line classesψ are tautological by the following construction. For each
markingi, letLi denote the associated cotangent line bundle overMg,n. The classψi is
the first Chern class ofLi ,

ψi = c1(Li) ∈ A
1(Mg,n).

Let π denote the map forgetting the last marking,

π : Mg,n+1→ Mg,n,
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and letι denote the gluing map,

ι : Mg,{1,2,...,i−1,∗,i+1,...,n} ×M0,{•,i,n+1}→ Mg,n+1.

TheQ-multiples of the fundamental classes [Mg,n] are contained in the tautological rings
(asQ-multiples of the units in the subalgebras). A direct calculation shows that

−π∗((ι∗([Mg,n] × [M0,3]))2) = ψi .

Hence, the cotangent line classes lie in the tautological rings. A discussion of theκ andλ
classes can be found in [FP].

Gromov–Witten theory defines natural classes inA∗(Mg,n). LetX be a nonsingular
projective variety, and letMg,n(X, β) be the moduli space of stable maps representing
β ∈ H2(X,Z). Let ρ denote the map to the moduli of curves,

ρ : Mg,n(X, β)→ Mg,n,

in case 2g − 2+ n > 0. Letω ∈ A∗(Mg,n(X, β)) be a Gromov–Witten class composed
of algebraic primary fields and descendents. Then

ρ∗(ω ∩ [Mg,n(X, β)]
vir) ∈ A∗(Mg,n).

The push-forwards of all Gromov–Witten classes of compact homogeneous varietiesX

lie in the tautological ring by the localization formula for the virtual class (see [GrP1]).
We do not know any example defined overQ̄ of a Gromov–Witten class for which the
push-forward isnot tautological.

The moduli spaces of Hurwitz covers ofP1 also define natural classes on the moduli
space of curves. Letg ≥ 0. Letµ1, . . . , µm bem partitions of equal sized satisfying

2g − 2+ 2d =
m∑
i=1

(d − `(µi)),

where`(µi) denotes the length of the partitionµi . The moduli space of Hurwitz covers,

Hg(µ
1, . . . , µm),

parameterizes morphisms
f : C → P1,

whereC is a complete, connected, nonsingular curve with marked profilesµ1, . . . , µm

overm ordered points of the target (and no ramifications elsewhere). Two Hurwitz covers

C
f
→ P1, C′

f ′

→ P1

are isomorphic if there exist isomorphisms

α : C → C′, β : P1
→ P1

which commute withf, f ′ and respect all the markings. The moduli space of Hurwitz
covers is a dense open set of the compact moduli space of admissible covers [HM],

Hg(µ
1, . . . , µm) ⊂ H g(µ

1, . . . , µm).
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Let ρ denote the map to the moduli of curves,

ρ : H g(µ
1, . . . , µm)→ Mg,

∑m
i=1 `(µ

i ).

The push-forwards of the fundamental classes,

ρ∗(H g(µ
1, . . . , µm)) ∈ A∗(Mg,

∑m
i=1 `(µ

i )),

define classes on the moduli of curves.
The following two questions provide classical motivation for the results of our paper:

(i) Are the push-forwardsρ∗(H g(µ
1, . . . , µm)) tautological?

(ii) Can the push-forwards be computed?

We settle (i)–(ii) in the affirmative.
While Hurwitz covers have played a basic role in the study of the moduli of curves,

questions (i)–(ii) were open even for the class of the hyperelliptic locus,

ρ∗(H g((2), . . . , (2))),

in Mg,2g+2.

0.2. Stable relative maps

0.2.1. Overview. We study Hurwitz covers in the much richer context of stable relative
maps toP1. Stable relative maps combine features of stable maps and admissible covers.
The moduli space of stable relative maps was first introduced by Li and Ruan in [LR].
An algebraic development can be found in [Li]. The main results of the paper concern the
relationship between tautological classes on the moduli space of stable relative maps and
the moduli space of curves.

0.2.2. The parameterized case.We first define stable relative maps to a parameterized
P1. Let g, n ≥ 0. Letµ1, . . . , µm bem partitions of equal sized > 0. A stable relative
map

[(C, p1, . . . , pn,Q1, . . . ,Qm)
f
→ (T , q1, . . . , qm)

ε
→ P1] ∈ M

†
g,n(µ

1, . . . , µm)

consists of the following data:

(i) T is a complete, connected genus 0 nodal curve withm distinct nonsingular markings
q1, . . . , qm.

(ii) The structure mapε : T → P1 restricts to an isomorphism on a unique component
P ⊂ T and contracts all other components ofT .

(iii) All extremal components of the treeT not equal toP carry at least one of them
markings.

(iv) C is a complete, connected genusg nodal curve withn +
∑m
i=1 `(µ

i) distinct non-
singular markings

{p1, . . . , pn} ∪

m⋃
i=1

Qi,

where|Qi | = `(µ
i).
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(v) The morphismf satisfies the following basic conditions:
(a) f satisfies admissible cover conditions over the nodes ofT : matching branchings

with no markings or contracted components ofC lying over the nodes ofT ,
(b) f has profileµi overqi ,
(c) Qi is a complete marking of the fiber off overqi with `(µi) distinct points.

(vi) The data has afinite automorphism group. The automorphism group is determined
by curve automorphismsα : C → C andβ : T → T which respect the markings
and commute withf, ε, and the identity map onP1.

The dataC
f
→ T

ε
→ P1 andC′

f ′

→ T ′
ε′

→ P1 are isomorphic if there exist isomorphisms
α : C → C′ andβ : T → T ′, which respect all the markings and commute with
f, f ′, ε, ε′, and the identity map onP1. Condition (vi) may be interpreted as a stability
condition.

The superscript † in the notation for the moduli space of stable relative maps,

M
†
g,n(µ

1, . . . , µm),

indicates the targetP1 is parameterized. The moduli space, a Deligne–Mumford stack,
admits several canonical structures:

(i) a virtual fundamental class

[M
†
g,n(µ

1, . . . , µm)]vir
∈ Ae(M

†
g,n(µ

1, . . . , µm))

in the expected dimension

e = 2g − 2+ 2d + n+
m∑
i=1

(1+ `(µi)− d),

(ii) evaluation maps

ev :M
†
g,n(µ

1, . . . , µm)→ P1,

determined by the markingsp1, . . . , pn andq1, . . . , qm,

(iii) cotangent line classesψ ∈ A1(M
†
g,n(µ

1, . . . , µm)) determined by the markings
p1, . . . , pn andq1, . . . , qm,

(iv) a map to the moduli of curves (via the domain),

ρ : M
†
g,n(µ

1, . . . , µm)→ Mg,n+
∑m
i=1 `(µ

i ),

in case 2g − 2+ n+
∑m
i=1 `(µ

i) > 0,
(v) a map to the Fulton–MacPherson parameter space of points onP1 (via the target),

ρ0 : M
†
g,n(µ

1, . . . , µm)→ P1[m].

A relative Gromov–Witten classon the moduli space of stable relative maps,

ω =

n∏
i=1

ev∗pi (γi) ψ
ki
pi
∪

m∏
j=1

ev∗qj (γ
′

j ) ψ
k′j
qj ,

is constructed from structures (ii)–(iii). Here,γi, γ ′j ∈ A
∗(P1).
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The map to the moduli of curves (iv) may be defined to exist inall cases relevant to
our study. We will only consider moduli spaces of stable relative maps for whichm > 0.
Sinced is positive,̀ (µi) > 0. Therefore, the inequality

2g − 2+ n+
m∑
i=1

`(µi) > 0

can be violated only ifg = 0. The map to the moduli of curves is defined in the unstable
genus 0 cases by viewingM0,1 andM0,2 as points.

0.2.3. The unparameterized case.We will also require stable relative maps to an unpa-
rameterizedP1. Let g, n ≥ 0. Letµ1, . . . , µm bem ≥ 2 partitions of equal sized > 0.
A stable relative map

[(C, p1, . . . , pn,Q1, . . . ,Qm)
f
→ (T , q1, . . . , qm)] ∈ Mg,n(µ

1, . . . , µm)

consists of the following data:

(i) T is a complete, connected genus 0 nodal curve withm distinct nonsingular markings
q1, . . . , qm.

(ii) All extremal components of the treeT carry at least one of them markings.
(iii) C is a complete, connected genusg nodal curve withn +

∑m
i=1 `(µ

i) distinct non-
singular markings{p1, . . . , pn} ∪

⋃m
i=1Qi, where|Qi | = `(µ

i).
(iv) The morphismf satisfies (a)–(c) of the parameterized definition.
(v) The data has afinite automorphism group. The automorphism group is determined

by curve automorphismsα : C → C andβ : T → T which respect the markings
and commute withf .

We will consider the unparameterized case only whenm ≥ 2. The moduli space
Mg,n(µ

1, . . . , µm) admits the following structures:

(i) a virtual fundamental class

[Mg,n(µ
1, . . . , µm)]vir

∈ Ae(Mg,n(µ
1, . . . , µm))

in the expected dimension

e = 2g − 5+ 2d + n+
m∑
i=1

(1+ `(µi)− d),

(ii) cotangent line classesψ ∈ A1(Mg,n(µ
1, . . . , µm)) determined by the markings

p1, . . . , pn andq1, . . . , qm,
(iii) a map to the moduli of curves (via the domain),

ρ : Mg,n(µ
1, . . . , µm)→ Mg,n+

∑m
i=1 `(µ

i ),

in case 2g − 2+ n+
∑m
i=1 `(µ

i) > 0,
(iv) a map to the moduli of genus 0 pointed curves (via the target),

ρ0 : Mg,n(µ
1, . . . , µm)→ M0,m,

in casem ≥ 3.
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The moduli spaces of admissible covers arise as special cases of the moduli spaces of
stable relative maps:

Mg,0(µ
1, . . . , µm) = H g(µ

1, . . . , µm),

in case

2g − 2+ 2d =
m∑
i=1

(d − `(µi)).

Here, the virtual class of the space of stable relative maps (i) is equal to the fundamental
class of the space of admissible covers.

A relative Gromov–Witten classon the moduli space of stable relative maps,

ω =

n∏
i=1

ψkipi ∪

m∏
j=1

ψ
k′j
qj ,

is constructed from the cotangent line classes (ii). The evaluation maps are lost in the
unparameterized case. The map to the moduli of curves (iii) is defined in all relevant
cases as before.

0.2.4. Results.We prove results which show the compatibility of Gromov–Witten classes
on the moduli of stable relative maps and tautological classes on the moduli of curves in
both the parameterized and unparameterized cases.

Theorem 1. Relative Gromov–Witten classes push forward to tautological classes:

(i) For every relative Gromov–Witten classω onM
†
g,n(µ

1, . . . , µm),

ρ∗(ω ∩ [M
†
g,n(µ

1, . . . , µm)]vir)

is a tautological class on the target moduli space of curves.
(ii) For every relative Gromov–Witten classω onMg,n(µ

1, . . . , µm),

ρ∗(ω ∩ [Mg,n(µ
1, . . . , µm)]vir)

is a tautological class on the target moduli space of curves.

Theorem 1 is proven by studying relations obtained by virtual localization. The proof
for both parts isconstructive: the push-forwards of relative Gromov–Witten classes are
recursively calculated in the tautological ring in terms of the standardψ , κ, andλ classes.
The proof is given in Sections 2 and 3 of the paper. In practice, the execution of the
recursion is computationally quite hard. A discussion (together with a calculation) can be
found in Section 2.5.6.

0.3. Consequences

Theorem 1 has several consequences for the geometry of the moduli space of curves.

Proposition 1. The moduli space of Hurwitz covers yields tautological classes,

ρ∗(H g(µ
1, . . . , µm)) ∈ R∗(Mg,

∑m
i=1 `(µ

i )).
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Proposition 1 follows from part (ii) of Theorem 1 in caseω is the identity class and the
space of stable relative maps is specialized to the space of admissible covers. Moreover,
the push-forwards are effectively determined.

An additive set of generators forR∗(Mg,n) is indexed by strata dual graphs decorated
with ψ andκ classes on the nodes (see [GrP2]). We review the basic push-pull method
for constructing relations inR∗(Mg,n) introduced in [P1], [BP]. Consider the two maps
to the moduli of curves defined for the moduli space of admissible covers:

M0,m
ρ0
←− H g(µ

1, . . . , µm)
ρ
−→ Mg,

∑n
i=1 `(µ

i ).

Let r denote a relation among boundary strata inM0,m. Then

ρ∗ρ
∗

0(r) (1)

defines a relation inMg,
∑m
i=1 `(µ

i ).
Relation (1), however, consists of push-forwards of fundamental classes of auxiliary

moduli spaces of admissible covers. The push-pull method, along with a case-by-case
analysis of the push-forwards, yields the basic relations in genus 1 and 2 among descen-
dent stratum classes (see [P1], [BP], [Ge1], [Ge2]). Proposition 1 now guarantees all
push-forwards arising in (1) lie inR∗(Mg,n). The push-pull method together with Propo-
sition 1 provides a rich source of tautological relations in the moduli space of curves.

Speculation 1. All relations in the tautological ring are obtained via the push-pull
method and Proposition1.

A further study of the push-pull relations was undertaken in [I]. In the absence of Propo-
sition 1, only the principal terms (thesymbols) of the relations could be studied. The main
result of [I] is of interest here:

(i) Ionel’s vanishing,
n∏
i=1

ψ
ei
i

∏
j≥0

κ
fj
j = 0 ∈ R∗(Mg,n) for

n∑
i=1

ei +
∑
j≥0

jfj ≥ g + δ0g − δ0n,

can be obtained from the symbols of push-pull relations.

The above vanishing generalizes two well-known vanishings:

(ii) Getzler’s (conjectured) vanishing,
n∏
i=1

ψ
ei
i = 0 ∈ R∗(Mg,n) for

n∑
i=1

ei ≥ g + δ0g,

(iii) Looijenga’s vanishing,∏
j≥0

κ
fj
j = 0 ∈ R∗(Mg) for

∑
j≥0

jfj ≥ g − 1.

The tautological ring,R∗(Mg) ⊂ R
∗(Mg), for the open moduli spaceMg, is defined

to be the image ofR∗(Mg) via the natural map

R∗(Mg) ⊂ A
∗(Mg)→ A∗(Mg).
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Let ∂Mg = Mg \Mg denote the boundary of the moduli space of curves. The tautological
classes of the boundary,R∗(∂Mg) ⊂ A

∗(∂Mg), are defined by the push-forwards of all
tautological classes on the normalized boundary divisors via the gluing morphisms. There
is a restriction sequence

R∗(∂Mg)→ R∗(Mg)→ R∗(Mg)→ 0,

for which the exactness in the middle isunknown. An identical discussion holds forMg,n.
Proposition 1 combined with the symbol analysis of [I] directly yields a much stronger

version of Ionel’s vanishings.

Proposition 2. The class
∏n
i=1ψ

ei
i

∏
j≥0 κ

fj
j lies in the image

ImR∗(∂Mg,n) ⊂ R
∗(Mg,n)

for
∑n
i=1 ei +

∑
j≥0 jfj ≥ g + δ0g − δ0n.

Proposition 2 has consequences beyond Ionel’s original vanishing. A uniform Gorenstein
conjecture was advanced in [FP], [P2] for the tautological rings ofMg,n and the quotients
corresponding to the moduli spaces of compact type curvesMc

g,n and curves with rational
tailsM rt

g,n. An inductive argument using Proposition 2 yields the following result.

Proposition 3. The socle and vanishing claims of the Gorenstein conjectures hold for
Mg,n,Mc

g,n, andM rt
g,n.

Proposition 3 is proven in Section 4.1. A different approach to Proposition 3 has been
pursued recently by Graber and Vakil [GrV1], [GrV2].

Another consequence of Proposition 2 is the exactness of the restriction sequence

R∗(∂Mg)→ R∗(Mg)→ R∗(Mg)→ 0 (2)

in degrees greater thang − 2. The result motivates the following conjecture.

Conjecture 2. The restriction sequence(2) is exact in all degrees.

More generally, we conjecture the exactness of the tautological sequences associated to
the compact type and rational tail moduli spaces,

R∗(Mg,n \M
c
g,n)→ R∗(Mg,n)→ R∗(Mc

g,n)→ 0,

R∗(Mg,n \M
rt
g,n)→ R∗(Mg,n)→ R∗(M rt

g,n)→ 0,

(see [FP], [P2]).
Finally, Proposition 2 is therequired form of Getzler’s vanishing for applications

to Gromov–Witten theory. The main consequence is the following reconstruction result
proved in Section 4.2.

Proposition 4. LetX be a nonsingular projective variety. All descendent Gromov–Witten
invariants ofX can be reconstructed from the restricted invariants〈

τe1(γ1) · · · τen(γn)
∏
j≥0

κ
fj
j

〉X
g,n,β

,

where
∑n
i=1 ei +

∑
j≥0 jfj < g + δ0g.
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We conjecture a stronger result based on a new conjectured generation statement for
R∗(Mg,n) and the conjectured exactness of tautological restriction sequences. The con-
jectural framework is discussed in Section 4.3.

Conjecture 3. All descendent Gromov–Witten invariants ofX can be reconstructed from
the restricted invariants

〈τe1(γ1) · · · τen(γn)〉
X
g,n,β ,

where
∑n
i=1 ei < g + δ0g.

1. Localization

1.1. Overview

The localization formula for the virtual class of the moduli spaceM
†
g,n(µ

1, . . . , µm) is
required for our proof of Theorem 1. The localization formula can be obtained from
the algebraic construction of the virtual class [Li] together with the virtual localization
formula [GrP1]. A derivation can be found in [GrV2].

1.2. Disconnected domains

1.2.1. Notation. We will require moduli spaces of stable relative maps withdiscon-
necteddomains in both the parameterized and unparameterized cases. The definitions
follow the connected case with minor variations.

We first introduce notation for the disconnected case. Letgbe an ordered set of genera,

g= (g1, . . . , gc).

Let n be an ordered set partition,

n = (n1, . . . , nc),

c⋃
i=1

ni = n,

wheren = {1, . . . , n}. The datag andn describe the genera and marking distributions of
a disconnected domain withc ordered components.

The degree distribution on a disconnected domain is described by an ordered parti-
tion d,

d = (d1, . . . , dc), di > 0,
∑
i

di = d.

A partitionµ of d of typed is an ordered set of partitions,

µ = (µ[1], . . . , µ[c]),

whereµ[i] is a partition ofdi . Ordered partitions of typed describe ramification condi-
tions on the disconnected domain.

1.2.2. Moduli spaces. We first define stable relative maps to a parameterizedP1 with
disconnected domains. Letg, n, andd be as defined above. Letµ1, . . . , µm bem parti-
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tions ofd of typed. A stable relative map

[(C, p1, . . . , pn,Q1, . . . ,Qm)
f
→ (T , q1, . . . , qm)

ε
→ P1] ∈ M

†
g,n(µ

1, . . . , µm)

consists of the data (i)–(vi) of Section 0.2.2 with (iv) replaced by:

(iv) C is a complete, disconnected nodal curve withc ordered components carrying
n +

∑m
i=1 `(µ

i) distinct nonsingular markings{p1, . . . , pn} ∪
⋃m
i=1Qi , where

|Qi | = `(µi). The genera of the components are determined byg. The markings
are distributed by the data ofn andµi .

The dataC
f
→ T

ε
→ P1 andC′

f ′

→ T ′
ε′

→ P1 are isomorphic if there exist isomorphisms
α : C → C′ andβ : T → T ′ which respect all the structures and commute with
f, f ′, ε, ε′, and the identity map onP1.

The moduli space, a Deligne–Mumford stack, admits the canonical structures (i)–
(iv) of the connected case. Relative Gromov–Witten classes are defined as before using
structures (ii)–(iii). The map to the moduli of curves (iv) via the domain is slightly altered:

ρ : M
†
g,n(µ1, . . . , µm)→

c∏
i=1

Mgi ,|ni |+
∑m
j=1 `(µ

j [i])

in case

2gi − 2+ |ni | +
m∑
j=1

`(µj [i]) > 0,

for all i. Sincem > 0 anddi > 0, the map to the moduli of curves is defined in all relevant
cases by viewingM0,1 andM0,2 as points.

The definition of the unparameterized moduli spaceMg,n(µ
1, . . . , µm) is obtained

similarly. Part (iii) of the definition of Section 0.2.3 is modified to allow disconnected
domains. Also, the canonical map to the moduli of curves (iii) is replaced by a map to a
product of moduli spaces.

Of course, whenc = 1, the moduli spaces of stable relative maps with connected
domains are recovered.

1.2.3. Theorem 1 revisited.We will prove a stronger form of Theorem 1 including all
the moduli spaces of stable relative maps with disconnected domains.

Theorem 2. Relative Gromov–Witten classes push-forward to tautological classes:

(i) For every relative Gromov–Witten classω onM
†
g,n(µ

1, . . . , µm),

ρ∗(ω ∩ [M
†
g,n(µ

1, . . . , µm)]vir)

is a tautological class on the target.
(ii) For every relative Gromov–Witten classω onMg,n(µ

1, . . . , µm),

ρ∗(ω ∩ [Mg,n(µ
1, . . . , µm)]vir)

is a tautological class on the target.
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1.3. Torus actions, fixed points, and the localization formula

1.3.1. The torus action. The equivariant Chow ring ofC∗ is freely generated by the first
Chern classt of the standard representation,

A∗C∗([point]) = Q[t ].

Let C∗ act diagonally on a 2-dimensional vector spaceV via the trivial and standard
representations,

ξ · (v1, v2) = (v1, ξ · v2). (3)
Let P1

= P(V ). Let 0,∞ be the fixed points [1,0], [0,1] of the correspondingC∗-action
onP(V ).

An equivariant lifting ofC∗ to a line bundleL overP(V ) is uniquely determined by
the fiber representations at the fixed pointsL0 andL∞. The canonical lifting ofC∗ to the
tangent bundleTP has weights [t,−t ].

The representation (3) canonically induces aC∗-action on the moduli space
Mg,n(µ

1, . . . , µm) by translation of the map:

ξ · [C
f
→ T

ε
→ P1] = [C

f
→ T

ξ ·ε
→ P1].

The canonical structures of the moduli space of stable relative maps are compatible
with the inducedC∗-action. The virtual fundamental class canonically lifts to equivariant
Chow theory,

[M
†
g,n(µ

1, . . . , µm)]vir
∈ AC∗

e (M
†
g,n(µ

1, . . . , µm)).

TheC∗-action on the moduli space canonically lifts to the cotangent line bundles and is
equivariant with respect to the evaluation maps. Therefore, equivariant relative Gromov–
Witten classes

ω =

n∏
i=1

ev∗pi (γi)ψ
ki
pi
∪

m∏
j=1

ev∗qj (γ
′

j ) ψ
k′j
qj

are well defined forγi, γ ′j ∈ A
∗

C∗(P
1). TheC∗-action on the moduli space is equivariant

(via ρ) with respect to the trivial action on the moduli space of curves.
We will require a localization formula for the equivariant push-forward:

ρ∗(ω ∩ [M
†
g,n(µ

1, . . . , µm)]vir).

1.3.2. Graph notation. Let the data

g= (g1, . . . , gc), n = (n1, . . . , nc), d = (d1, . . . , dc)

describe (possibly) disconnected domains withc components. The torus fixed loci of

M
†
g,n(µ

1, . . . , µm) are indexed bylocalization graphs,

0 = (V ,E,N, γ, π, δ, (R1, . . . , Rm)),

defined by the following conditions:

(i) V is the vertex set,
(ii) γ : V → Z≥0 is a genus assignment,

(iii) π : V → {0,∞} is a function,
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(iv) E is the edge set, and
(a) if an edgee connectsv, v′ ∈ V , thenπ(v) 6= π(v′),

in particular, there are no self edges,
(b) 0 hasc orderedconnected components01, . . . , 0c, with vertex and edge sets

(Vi, Ei) respectively,
(v) δ : E→ Z>0 is a degree assignment,

(vi) N = {1, . . . , n} is a set of vertex markings for which each subsetni is incident
to Vi ,

(vii) gi =
∑
v∈Vi

γ (v)+ h1(0i),
(viii) di =

∑
e∈Ei

δ(e),
(ix) Rj is arefinementof µj consisting of:

(a) a choice ofsidesj ∈ {0,∞},
(b) a distribution of the parts ofµj to the vertices ofπ−1(sj ) satisfying two prop-

erties:
• the parts ofµj [i] are distributed to the vertices of0i ,
• the sum of the parts distributed tov equals the sum of the degrees of edges

incident tov.

1.3.3. Torus fixed points.Let the moduli point

[C
f
→ T

ε
→ P1] ∈ M

†
g,n(µ

1, . . . , µm) (4)

be fixed by the torus action. All marked points, nodes, contracted components, and ram-
ification points ofC must lie over the torus fixed set{0,∞} of P1. Each irreducible
componentD ⊂ C dominant ontoP1 must be a Galois cover with full ramification over
the two fixed points{0,∞}.

We associate a localization graph

0 = (V ,E,N, γ, π, δ, (R1, . . . , Rm))

to the torus fixed point (4) by the following construction:

(i) Let V be the set of connected components of(ε ◦ f )−1({0,∞}).
(ii) Let γ (v) be the arithmetic genus of the corresponding component (taken to be 0 if

the component is an isolated point).
(iii) Let π(v) be the fixed point inP1 over which the corresponding component lies.
(iv) Let E be the set of noncontracted irreducible componentsD ⊂ C.
(v) Let δ(D) be the degree of the Galois coverε ◦ f |D.

(vi) Let N be the marking set.
(ix) Let Rj be the refinement ofµj obtained by the ramification conditions.

All the conditions of a localization graph, including (vii)–(viii), hold by the definition of
a stable relative map.

A stackM0 together with an action of a finite groupA0 is canonically constructed
from 0 in Section 1.3.4 below. A canonical inclusion

τ0/A0 : M0/A0 → M
†
g,n(µ

1, . . . , µm)

will be defined. The disjoint union
⋃
0 M0/A0 will equal the total torus fixed set.
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1.3.4. The torus fixed locusM0/A0. Let 0 be a bipartite graph. The stackM0 is de-
fined as a product of auxiliary moduli spaces of curves and maps. TheA0-action is ob-
tained from the automorphisms of0.

Case I. The refinements(R1, . . . , Rm) lie onbothsides 0 and∞.

The data of0 over 0 uniquely defines a moduli space of unparameterized stable relative
maps,

M0 = Mg0,n0(R0, Rδ),

where:

(i) g0 is determined by the genera of the verticesV0 = f
−1
{0},

(ii) n0 is determined by the markings ofV0,
(iii) R0 is the set of refinements on side 0,
(iv) Rδ is the ramification condition determined byδ.

Let q0 denote the new marking associated toRδ.
Similarly, the unparameterized moduli space

M∞ = Mg∞,n∞(Rδ,R∞)

is defined by the data of0 over∞. Let q∞ denote the new marking associated toRδ. Let
M0 = M0×M∞. The moduli spaceM0 has a virtual class

[M0]vir
= [M0]vir

× [M∞]vir,

determined by the product of the virtual classes of the two factors.
OverM0, there is a canonical family ofC∗-fixed stable relative maps

πC : C → M0, πT : T → M0, C f
→ T ε

→ P1.

The canonical family is constructed by attaching the universal families overM0 andM∞
according to0. The canonical family yields a canonical morphism of stacks,τ0 : M0 →

M
†
g,n(µ

1, . . . , µm).

There is a natural automorphism groupA0 acting equivariantly onC andM0 with
respect to the morphismsρ andπC . The groupA0 acts via automorphisms of the Galois
covers (corresponding to the edges) and the symmetries of the graph0. The groupA0 is
filtered by an exact sequence of groups,

1→
∏
e∈E

Z/δ(e)→ A0 → Aut(0)→ 1,

where Aut(0) is the automorphism group of0: Aut(0) is the subgroup of the permutation
group of the vertices and edges which respects all the structures of0. Aut(0) naturally
acts on

∏
e∈E Z/δ(e) andA0 is the semidirect product.

The quotient stackM0/A0 is a nonsingular Deligne–Mumford stack. The induced
map

τ0/A0 : M0/A0 → M
†
g,n(µ

1, . . . , µm)

is a closed immersion of Deligne–Mumford stacks.
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The multiplicitym(0) and the Euler class of the virtual normal bundlee(Nvir
0 ) will be

required for the localization formula:

m(0) =
∏
e∈E

δ(e)2,
1

e(Nvir
0 )
=

1

t (t − ψq0)

1

−t (−t − ψq∞)
.

A degenerate configuration occurs over 0 if the following special conditions hold for0:

(i) all vertices ofV0 have genus 0,
(ii) all vertices ofV0 have valence 1,

(iii) a singleRj lies on side 0andRj = Rδ.

Condition (ii) implies that no markings are incident toV0.
If 0 satisfies (i)–(iii), thenM0 is defined to be a point. The multiplicity formula and

Euler class formulas for the degenerate configuration are

m(0) =
∏
e∈E

δ(e),
1

e(Nvir
0 )
=

1

t

1

−t (−t − ψq∞)
.

Similarly, a degenerate configuration may occur over∞. The treatment is identical with
the roles of 0 and∞ interchanged. In fact, degenerate configurations may occur simulta-
neously at 0 and∞. Then bothM0 andM∞ are defined to be points and

m(0) = 1,
1

e(Nvir
0 )
=

1

t

1

−t
.

Case II. The refinements lie only on side 0.

The data of0 over 0 defines a moduli space of unparameterized stable relative maps,

M0 = Mg0,n0(R0, Rδ),

as in Case I. The data of0 over∞ determines a product of moduli spaces,

M∞ =
∏
v∈V∞

Mγ (v),val(v). (5)

Here, the valence val(v) of a vertex counts both the incident edges and incident markings.
The unstable moduli spacesM0,1 andM0,2 arising in the product (5) are viewed as points.

LetM0 be the productM0×M∞. The moduli spaceM0 has a virtual class

[M0]vir
= [M0]vir

× [M∞],

determined by the product of the virtual class of the first factor and the ordinary funda-
mental class of the second factor.

There exists a canonical family overM0 and a canonical map

τ0 : M0 → M
†
g,n(µ

1, . . . , µm)

equivariant with respect to anA0-action exactly as in Case I. A closed immersion

τ0/A0 : M0/A0 → M
†
g,n(µ

1, . . . , µm)

is obtained.
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We define the multiplicity and the Euler class of the virtual normal bundle ofM0 in
Case II by

m(0) =
∏
e∈E

δ(e),
1

e(Nvir
0 )
=

1

t (t − ψq0)

∏
e∈E

−t

(−t)δ(e)δ(e)!/δ(e)δ(e)
∏
v∈V∞

1

N(v)
.

The vertex terms,N(v), are discussed below.
A vertexv ∈ V∞ is stableif 2γ (v)− 2+ val(v) > 0. If v is stable, the moduli space

Mγ (v),val(v) is a factor ofM∞. The vertex termN(v) is an equivariant cohomology class
on the factorMγ (v),val(v) in the stable case.

• Letv ∈ V∞ be a stable vertex. Lete1, . . . , el denote the distinct edges incident tov in bi-
jective correspondence to a subset of the local markings of the moduli spaceMγ (v),val(v).
Letψi denote the cotangent line of the marking atv corresponding toei , and letλj denote
the Chern classes of the Hodge bundle. Then

1

N(v)
=

1

−t
·

l∏
i=1

1

−t/δ(ei)− ψi
·

γ (v)∑
j=0

(−1)jλj (−t)
γ (v)−j .

If v ∈ V∞ is an unstable vertex, thenγ (v) = 0 and val(v) ≤ 2. There are three unstable
cases: two with valence 2 and one with valence 1.

• Let v ∈ V∞ be anunmarkedvertex withγ (v) = 0 and val(v) = 2. Lete1 ande2 be the
two incident edges. Then

1

N(v)
=

1

−t
·

1

−t/δ(e1)− t/δ(e2)
.

• Let v ∈ V∞ be a 1-marked vertex withγ (v) = 0 and val(v) = 2. Then

1

N(v)
=

1

−t
,

there are no contributing factors.

• Let v ∈ V∞ be anunmarkedvertex withγ (v) = 0 and val(v) = 1. Lete be the unique
incident edge. Then

1

N(v)
=

1

−t
·
−t

δ(e)
.

A degenerate configuration may arise over 0 in Case II. The treatment exactly follows the
discussion in Case I.

Case III. The refinements lie only on side∞.

The treatment of Case III exactly follows the discussion of Case II with the roles of 0 and
∞ interchanged (andt replacing−t in all the formulas).
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1.3.5. The localization formula. The localization formula for the virtual class of the

moduli spaceM
†
g,n(µ

1, . . . , µm) is

[M
†
g,n(µ

1, . . . , µm)]vir
=

∑
0

m(0)

|A0|
τ0∗

(
[M0]vir

e(Nvir
0 )

)
, (6)

in localized equivariant Chow theory.

1.3.6. First application. The localization formula immediately yields the following im-
plication.

Lemma 1. Theorem2(i) is a consequence of Theorem2(ii).

Proof. Let ω be the canonical equivariant lift of a relative Gromov–Witten class on the

parameterized moduli spaceM
†
g,n(µ

1, . . . , µm). By the localization formula (6),

ρ∗(ω ∩ [M
†
g,n(µ

1, . . . , µm)]vir) =
∑
0

m(0)

|A0|
ρ0∗

(
τ ∗0(ω)

e(Nvir
0 )
∩ [M0]vir

)
, (7)

whereρ0 = ρ ◦ τ0.
We now analyze the0 term on the right side of (7). The spaceM0 is a product of un-

parameterized moduli spaces of stable relative maps and moduli spaces of stable curves.
The classτ ∗0(ω) is composed of Gromov–Witten and tautological classes on these factor
spaces (together with powers oft). Similarly, the expansion of 1/e(Nvir

0 ) is composed of
Gromov–Witten and tautological classes (together with powers oft). Hence, by Theorem
2(ii), the equivariant term

ρ0∗

(
τ ∗0(ω)

e(Nvir
0 )
∩ [M0]vir

)
is a series int with coefficients in the tautological ring of the target ofρ.

The nonequivariant limit of theρ push-forward

ρ∗(ω ∩ [M
†
g,n(µ

1, . . . , µm)]vir)

is obtained from thet0 coefficient of the right side of (7). ut

2. Theorem 2(ii)

2.1. Overview

We obtain basic relations constraining theρ push-forward of relative Gromov–Witten
classes on the unparameterized spaces from the localization formula on parameterized
spaces. The relations are proven to recursively determine all theρ push-forwards in terms
of tautological classes on the target ofρ.

For the proof of Theorem 2(ii), we will require relations for the disconnected case.
However, for ease of presentation, we first discuss the connected case. The disconnected
case follows with minor modifications.
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2.2. Basic relations I: The connected case

2.2.1. The set5(d, n, k). Let d andn be integers satisfyingd ≥ n > 0. Letk ≥ 0 be
an integer. A partially ordered partition

ᾱ = (α, α′)

of degreed and ordern consists of the following data:

(i) an ordered partition withn (positive) parts of an integer of size at mostd,

α = (α1, . . . , αn),

n∑
i=1

αi ≤ d,

(ii) an unordered partitionα′ (with positive parts) ofd −
∑n
i=1 αi .

The partitionα′ may be empty. Let̀(ᾱ) denote the length of̄α,

`(ᾱ) = `(α)+ `(α′) = n+ `(α′).

Let5(d, n, k) be the set of partially ordered partitions of degreed, ordern, and length at
leastd − k. Our basic relations in the connected case will be indexed by5(d, n, k).

The set5(d, n, k) is stable fork ≥ d − n:

5(d, n, k) = 5(d, n, d − n).

Let5(d, n,∞) denote the stabilized set.

2.2.2. The push-forward construction.Let g > 0 be the domain genus and letᾱ ∈
5(d, n, k). We will construct a relation

Tg,ᾱ(µ
1, . . . , µm | γ ),

where:

(i) µ1, . . . , µm are partitions ofd,
(ii) γ is a monomial

∏n′

j=1ψ
rj
pj ∪

∏m
j=1ψ

sj
qj .

The relationT will be obtained from equivariant localization on

M
†
g,n+`(α′′)+n′(µ

1, . . . , µm), (8)

whereα′′ is the (possibly empty) subpartition ofα′ consisting of parts of size at least 2.

We will use the abbreviated notationM
†

for the moduli space of stable relative maps (8).

The moduli spaceM
†

carriesn + `(α′′) + n′ markings of typep indexed by the
following conventions:

(i) let pi denote the firstn,
(ii) let pi′′ denote the middlè(α′′),

(iii) let pj denote the lastn′.

Let the middlè (α′′) markings be placed in correspondence with the parts ofα′′.
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Define the equivariant relative Gromov–Witten classω on the moduli spaceM
†

as a
product of four factors:

ω =

n∏
i=1

ψαi−1
pi

ev∗pi ([∞]) ·
`(α′′)∏
i′′=1

ψ
α′′
i′′
−1

pi′′
ev∗pi′′ ([∞]) · γ · (ev∗q1

([0]))2+`(ᾱ)−d+k,

whereγ is the monomial in the argument ofT . The degree ofω is

k + n+ `(α′′)+

n′∑
j=1

rj +

m∑
j=1

sj + 2.

Since the virtual dimension ofM
†

is

2g − 2+ 2d + n+ `(α′′)+ n′ +
m∑
i=1

(1+ l(µi)− d),

the dimension ofω ∩ [M
†
]vir is

2g − 2+ 2d + n′ +
m∑
i=1

(1+ l(µi)− d)−
(
k +

n′∑
j=1

rj +

m∑
j=1

sj + 2
)
.

The moduli spaceM
†

carriesn+ `(α′′)+ n′ +
∑m
i=1 `(µ

i) total domain markings. Let

ρ′′ : M
†
→ Mn+n′+

∑m
i=1 `(µ

i )

be the stabilization map obtained fromρ after forgetting the markings corresponding to
α′′. Since the class ev∗q1

([0]) occurs inω with total exponent at least 2, the nonequivariant

limit of ω is 0. Hence, in the nonequivariant limit, the push-forwardρ′′∗ (ω ∩ [M
†
]vir)

vanishes:
ρ′′∗ (ω ∩ [M

†
]vir) = 0 ∈ A∗(Mg,n+n′+

∑m
i=1 `(µ

i )). (9)

The left side of (9) can be calculated by the localization formula (7). Asω is a nontrivial
equivariant class, equation (9) yields a nontrivial relation after localizing and taking the
nonequivariant limit,

Tg,ᾱ(µ
1, . . . , µm |γ ) =

∑
0

m(0)

|A0|
ρ′′0∗

(
τ ∗0(ω)

e(Nvir
0 )
∩ [M0]vir

)
= 0,

whereρ′′0 = ρ
′′
◦ τ0.

2.2.3. The principal terms ofT . A localization graph0 corresponding to a fixed locus

of M
†

is of typeβ̄ ∈ 5(d, n, k) if the following properties are satisfied:

(i) the vertex setV0 consists of a single vertexv0 of genusg,
(ii) the edge setE is in bijective correspondence to the`(β̄) parts ofβ̄,
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(iii) the vertex setV∞ consists of̀ (β̄) vertices each incident to a unique edge,
(iv) then+ `(α′′)+ n′ markings of typep are distributed by the following rules:

(a) the firstnmarkings lie over∞ with theith marking incident to the vertex corre-
sponding to theith part of the first partitionβ of β̄,

(b) the second̀(α′′) markings lie over∞ on distinct vertices incident to the edges
corresponding to the parts of the second partitionβ ′ of β̄,

(c) the thirdn′ markings are all incident tov0,
(v) all refinements lie on side 0.

Let 0β̄ denote the set of localization graphs of typeβ̄. Sinceg > 0, the localization
graphs0 ∈ 0β̄ areneverdegenerate over 0.

Theprincipal terms of the relationT are indexed by partially ordered partitionsβ̄ ∈
5(d, n, k). The principal term ofT of typeβ̄ is

Tg,ᾱ(µ
1, . . . , µm | γ )[β̄] =

∑
0∈0β̄

m(0)

|A0|
ρ′′0∗

(
τ ∗0(ω)

e(Nvir
0 )
∩ [M0]vir

)
.

We may compute the principal term ofTg,ᾱ(µ1, . . . , µm | γ ) of type β̄ explicitly. How-
ever, we must define a functionS[α′′](β ′) which arises naturally from the localization
formula.

Let α′′ andβ ′ be two unordered partitions. Select an ordering of the parts,

α′′ = (α′′1, . . . , α
′′

`(α′′)), β ′ = (β ′1, . . . , β
′

`(β ′)).

Define the integer sets 0= ∅ and i = {1, . . . , i} for eachi ≥ 1. Define the function
S[α′′](β ′) by the following rules:

(i) if `(α′′) > `(β ′), thenS[α′′](β ′) = 0,
(ii) if `(α′′) ≤ `(β ′), then

S[α′′](β ′) =
∑

ι:`(α′′)→`(β ′)

`(α′′)∏
j=1

1

(β ′ι(j))
α′′j −1

·

∏
i /∈Im(ι)

1

β ′i
.

is a sum over all injectionsι : `(α′′)→ `(β ′).

The functionS[α′′](β ′) depends only upon theunorderedpartitionsα′′ andβ ′.
LetM(β̄) denote the moduli space of unparameterized maps,

M(β̄) = Mg,n′(β̄, µ
1, . . . , µm),

with markings of typeq indexed by 0,1, . . . , m. Define the standard Gromov–Witten
classωβ̄ on the moduli spaceM(β̄) by

ωβ̄ = γ · ψ
`(β̄)−d+k
q0

.

The degree ofωβ̄ is
n′∑
j=1

rj +

m∑
j=1

sj + `(β̄)− d + k.
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Since the dimension ofM(β̄) is

2g − 2+ 2d + n′ + (1+ `(β̄)− d)+
m∑
j=1

(1+ `(µj )− d)− 3,

the dimension ofωβ̄ ∩ [M(β̄)]vir is

2g − 2+ 2d + n′ +
m∑
i=1

(1+ l(µi)− d)−
(
k +

n′∑
j=1

rj +

m∑
j=1

sj + 2
)
,

equal to the dimension ofω ∩ [M
†
]vir .

A direct application of the localization formula (7) yields the following result.

Lemma 2. The principal term ofTg,ᾱ(µ1, . . . , µm | γ ) of typeβ̄ is( n∏
i=1

1

β
αi−1
i

S[α′′](β ′)(−1)n+`(β
′) η(β̄)

)
· ρ′′∗ (ωβ̄ ∩ [M(β̄)]vir),

whereη(β̄) is the nonvanishing factor

1

|Aut(β ′)|

n∏
i=1

1

(−1)βiβi !/β
βi
i

`(β ′)∏
i=1

1

(−1)β
′
iβ ′i !/β

′

i
β ′i
.

2.3. Basic relations II: The disconnected case

2.3.1. The set5(d,n, k). Let d = (d1, . . . , dc) be an ordered degree partition, and let

d =

c∑
i=1

di .

Let n = (n1, . . . , nc) be an ordered set partition ofn for which

di ≥ |ni | > 0

for all i. Let k ≥ 0 be an integer. A partially ordered partition

ᾱ = ((α[1], α′[1]), . . . , (α[c], α′[c]))

of degreed and ordern consists of the following data:

(i) ordered partitions with|ni | (positive) parts of integers of size at mostdi ,

α[i] = (α[i]1, . . . , α[i]|ni |),
n∑
j=1

α[i]j ≤ di,

(ii) unordered partitionsα′[i] (with positive parts) ofdi −
∑n
j=1 α[i]j .
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The partitionsα′[i] may be empty. Let̀ (ᾱ) denote the length of̄α,

`(ᾱ) =

c∑
i=1

(`(α[i])+ `(α′[i])) = n+
c∑
i=1

`(α′[i]).

Let5(d,n, k) be the set of partially ordered partitions of degreed, ordern, and length at
leastd − k. Our basic relations in the disconnected case will be indexed by5(d,n, k).

The set5(d,n, k) is stable fork ≥ d − n:

5(d,n, k) = 5(d,n, d − n).

Let5(d,n,∞) denote the stabilized set.

2.3.2. The push-forward construction.Let g= (g1, . . . , gc) be an ordered set of genera
where not allgi are 0. Letᾱ ∈ 5(d,n, k). We will construct a relation

Tg,ᾱ(µ
1, . . . , µm | γ ),

where:

(i) µ1, . . . , µm are partitions of typed,
(ii) γ is a monomial

∏n′

j=1ψ
rj
pj ∪

∏m
j=1ψ

sj
qj .

The relationT will be obtained from equivariant localization on

M
†
g,n+`(α′′)+n′(µ

1, . . . , µm), (10)

whereα′′ is the (possibly empty) subpartition of(α′[1], . . . , α′[c]) consisting of parts of
size at least 2. The lastn′ markings of typep are distributed on the domain components

by n′. As before, letM
†

denote the moduli space of stable relative maps (10).

Define the equivariant relative Gromov–Witten classω on the moduli spaceM
†

as a
product of four factors:

ω =

c∏
i=1

( |ni |∏
j=1

ψ
α[i]j−1
pj ev∗pj ([∞]) ·

`(α′′[i])∏
j ′′=1

ψ
α′′[i]j ′′−1
pj ′′

ev∗pj ′′ ([∞])
)

· γ · (ev∗q1
([0]))2+`(ᾱ)−d+k, (11)

whereγ is the monomial in the argument ofT .
The dimension calculus proceeds exactly as in the connected case (replacing the con-

nected genusg by the arithmetic genus
∑c
i=1 gi − c + 1 in the disconnected case).

The moduli spaceM
†

carriesn + `(α′′) + n′ +
∑m
i=1 `(µ

i) total domain markings.
Let

ρ′′ : M
†
→

c∏
i=1

Mgi ,|ni |+|n
′
i |+

∑m
j=1 `(µ

j [i])

be the stabilization map obtained fromρ after forgetting the markings corresponding
to α′′. As before, the push-forward vanishes in the nonequivariant limit,

ρ′′∗ (ω ∩ [M
†
]vir) = 0. (12)
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The left side of (12) can be calculated by the localization formula (7) to yield the relation

Tg,ᾱ(µ
1, . . . , µm | γ ) =

∑
0

m(0)

|A0|
ρ′′0∗

(
τ ∗0(ω)

e(Nvir
0 )
∩ [M0]vir

)
= 0.

2.3.3. The principal terms ofT . A localization graph0 corresponding to a fixed locus

of M
†

is of typeβ̄ ∈ 5(d,n, k) if the following properties are satisfied:

(i) the vertex setV0 consists of verticesv1,0, . . . , vc,0 with genus assignmentsg1, . . . , gc
respectively,

(ii) the edge setE is in bijective correspondence to the`(β̄) parts ofβ̄,
(iii) the vertexvi,0 is incident to the edges corresponding to the parts of(β[i], β ′[i]),
(iv) the vertex setV∞ consists of̀ (β̄) vertices each incident to a unique edge,
(v) then+ `(α′′)+ n′ markings of typep are distributed by the following rules:

(a) the markingsni lie over∞ with the j th marking incident to the vertex corre-
sponding to thej th part ofβ[i],

(b) the middlè (α′′[i])markings lie over∞ on distinct vertices incident to the edges
corresponding to the parts ofβ ′[i],

(c) the markingsn′i are incident tovi,0,
(vi) all refinements lie on side 0.

Let0β̄ denote the set of localization graphs of typeβ̄. Since not allgi are 0, the localiza-
tion graphs0 ∈ 0β̄ areneverdegenerate over 0.

Theprincipal terms of the relationT are indexed by partially ordered partitionsβ̄ ∈
5(d,n, k). The principal term ofT of typeβ̄ is

Tg,ᾱ(µ
1, . . . , µm | γ )[β̄] =

∑
0∈0β̄

m(0)

|A0|
ρ′′0∗

(
τ ∗0(ω)

e(Nvir
0 )
∩ [M0]vir

)
.

The principal term ofTg,ᾱ(µ
1, . . . , µm | γ ) of type β̄ may also be explicitly computed

from the localization formula.
LetM(β̄) denote the moduli space of unparameterized maps,

M(β̄) = Mg,n′(β̄, µ
1, . . . , µm),

with markings of typeq indexed by 0,1, . . . , m. Define the standard Gromov–Witten
classωβ̄ on the moduli spaceM(β̄) by

ωβ̄ = γ · ψ
`(β̄)−d+k
q0

.

A direct application of the localization formula (7) yields the following result.

Lemma 3. The principal term ofTg,ᾱ(µ
1, . . . , µm | γ ) of typeβ̄ is

c∏
i=1

( |ni |∏
j=1

1

(β[i]j )α[i]j−1
S[α′′[i]](β ′[i])(−1)|ni |+`(β

′[i]) η((β[i], β ′[i]))

)
· ρ′′∗ (ωβ̄ ∩ [M(β̄)]vir).
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2.4. The matrixM

Let M(d,n, k) be the matrix with rows and columns indexed by the set5(d,n, k) defined
by the prefactors of the principal terms of the basic relations. Forᾱ, β̄ ∈ 5(d,n, k), let
the element ofM(d,n, k) in position(ᾱ, β̄) be

c∏
i=1

( |ni |∏
j=1

1

(β[i]j )α[i]j−1
S[α′′[i]](β ′[i])(−1)|ni |+`(β

′[i]) η((β[i], β ′[i]))

)
,

the prefactor of the principal term ofTg,ᾱ(µ
1, . . . , µm | γ ) of typeβ̄.

Lemma 4. M(d,n, k) is invertible.

Lemma 4 will be proven in Section 3. The nonsingularity ofM(d,n, k) plays a funda-
mental role in our proof of Theorem 2(ii).

2.5. Proof of Theorem 2(ii)

2.5.1. Overview. LetMg,n′(µ
1, . . . , µm) be a moduli space of stable relative maps with

c domain components, degree partitiond, and total degreed. Letω be a relative Gromov–
Witten class onMg,n′(µ

1, . . . , µm). Let ρ∗(ω ∩ [M]vir) denote the push-forward

ρ∗(ω ∩ [Mg,n′(µ
1, . . . , µm)]vir).

We must proveρ∗(ω ∩ [M]vir) is a tautological class on the target ofρ.
The proof consists of a multilayer induction using the basic relationsT . We will prove

the result for each total degreed separately. The proof will follow the notation of Section
2.3.

2.5.2. Genus induction. Since all algebraic cycle classes on products of moduli spaces
of genus 0 pointed curves are tautological [K], the classρ∗(ω ∩ [M]vir) is certainly tau-
tological if all the domain generagi are 0.

We will proceed by induction on the arithmetic genus

g(g) =
c∑
i=1

gi − c + 1

of the domain curve. The smallest value for the arithmetic genus is−d + 1, which occurs
when the number of domain components equalsd andg = (0, . . . ,0), d = (1, . . . ,1).
The base case of the genus induction holds as all domain genera in the base case are 0.

2.5.3. Induction on the markings.We now induct upon the number of markingsm of
typeq. We first establish the base casem = 2. In fact, all aspects of the proof of the full
result are manifest in the base case. We will also induct on the numbern′ of markings of
typep. The induction on typep markings is straightforward and plays a very minor role.
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Let g be a genus distribution with not all genera 0, and letd be a degree distribution.
Let a partitionµ1 of typed and a relative Gromov–Witten class

γ =

n′∏
j=1

ψ
rj
pj ∪ ψ

s1
q1

be given. Letn have cardinalities|n| = (1, . . . ,1). We will first consider all basic rela-
tions

Tg,ᾱ(µ
1
| γ ), (13)

whereᾱ ∈ 5(d,n, k). Let us analyze the terms of the relations (13). Let0 be a local-
ization graph. Since ev∗pj ([∞]) occurs in (11) for all the firstn+ `(α′′) markings of type
p, only graphs0 for which these markings lie over∞ contribute nontrivially to the basic
relations. Similarly, since ev∗q1

([0]) occurs in (11), only graphs0 for which R1 lies on
side 0 contribute.

As there are no refinements on side∞, we are in Case II of the localization formula.
We findM0 = M0×M∞, where

M0 = Mg0,n′0
(R1, Rδ)

andM∞ is simply a product of moduli spaces of pointed curves. If

g(g0) < g(g) or n′0 < n′, (14)

then the localization terms over 0 of0 push forward underρ′′ to tautological classes by
the induction hypotheses on the genus and the marking numbern′. The localization terms
over∞ certainly push forward to tautological classes.

The graphs0 satisfyingg(g0) = g(g) have only genus 0, edge valence 1 vertices
over∞. If n′0 = n′, only the firstn + `(α′′) markings of typep lie over∞. Of these,
the firstn markings are distributed on the different connected components of0 since
|n| = (1, . . . ,1). Since all the parts ofα′′ are at least two, the second`(α′′) markings
of typep trivialize the contribution of0 if any vertex of marking valence greater than
1 occurs over∞. An ordered partitionβ̄ is obtained from0 from the edge degrees. By
dimension considerations, the contribution of0 is trivial unlessβ̄ ∈ 5(d,n, k).

We have proven that for contributing graphs0, eithercondition (14) holdsor 0 ∈ 0β̄ .
Therefore, the nonprincipal terms of the basic relations (13) all push forward viaρ′′ to
tautological classes.

The principal terms of the basic relations (13) taken for allᾱ ∈ 5(d,n, k) determine
a nonsingular matrix of prefactors by Lemmas 3 and 4. We conclude that, for allβ̄ ∈

5(d,n, k),
ρ′′∗ (γ · ψ

`(β̄)−d+k
q0

∩ [Mg,n′(β̄, µ
1)]vir) (15)

is tautological in the target moduli of curves. By considering the classes (15) for allk ≥ 0,
we find,

ρ′′∗ (ω ∩ [Mg,n′(β̄, µ
1)]vir) (16)

is tautological on the target for all relative Gromov–Witten classesω andβ̄ ∈ 5(d,n,∞).
We have exhausted the basic relations (13) for the element|n| = (1, . . . ,1).
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If d = (1, . . . ,1), we have completed them = 2 induction base sinceρ = ρ′′.
However, ifd has parts of size greater than 1, thenρ 6= ρ′′ for generalβ̄. To proceed,
consider an augmentation

|n| = (1, . . . ,1,2,1, . . . ,1),

subject todi ≥ |ni | > 0. We will exhaust the basic relations for the augmentedn. We will
repeat the cycle of augmentation and exhaustion until alln satisfyingdi ≥ |ni | > 0 have
been considered.

We repeat the entire argument for the augmentedn. The argument is identical except
for one important difference. For graphs0 satisfying

g(g0) = g(g), n′0 = n
′,

the firstn markings of typep maynot be incident to distinct vertices over∞. However,
the graphs which contain common incidences yield tautological push-forwards by the
analysis forlowern. After each cycle of the analysis, we conclude that

ρ′′∗ (ω ∩ [Mg,n′(β̄, µ
1)]vir) (17)

is tautological in the target for all relative Gromov–Witten classesω andβ̄ ∈ 5(d,n,∞).
Them = 2 base case is proven.

2.5.4. The full induction. The full induction exactly follows the argument for them = 2
base case. Letm ≥ 3.

Let g be a genus distribution with not all genera 0, and letd be a degree distribution.
Let partitionsµ1, . . . , µm−1 of typed and a relative Gromov–Witten class

γ =

n′∏
j=1

ψ
rj
pj ∪

m−1∏
j=1

ψ
sj
qj

be given. We consider the basic relations

Tg,ᾱ(µ
1, . . . , µm−1

| γ ), (18)

whereᾱ ∈ 5(d,n, k).
Let 0 be a localization graph. As before, only graphs0 for which the firstn +

`(α′′) markings of typep lie over∞ contribute nontrivially to the basic relations. Since
ev∗q1

([0]) occurs in (11), only graphs0 for whichR1 lies on side 0 contribute.
If there are refinements over∞, then we are in Case I of the localization formula. We

findM0 = M0×M∞, where

M0 = Mg0,n′0
(R0, Rδ), M∞ = Mg0,n′0

(Rδ,R∞).

Since the graph0 has at mostm− 2 refinements on side∞, bothM0 andM∞ have
strictly lessthanm markings of typeq. The localization terms over 0 and∞ of 0 push
forward underρ′′ to tautological classes by the induction hypotheses onm.
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If there are no refinements over∞, we are in Case II of the localization formula.
We then exactly follow the augmentation and exhaustion argument of the base case to
conclude that

ρ′′∗ (ω ∩ [Mg,n′(β̄, µ
1, . . . , µm−1)]vir) (19)

is tautological on the target for all relative Gromov–Witten classesω andβ̄ ∈ 5(d,n,∞)
for all n subject todi ≥ |ni | > 0. The induction step is therefore established and the proof
of Theorem 2(ii) is complete. ut

2.5.5. Effectivity. The argument of Theorem 2(ii) yields an effective procedure for cal-
culating the class of the push-forward

ρ∗(ω ∩ [M]vir) (20)

in the tautological ring of the target.
To establish the procedure, we must only check the push-forward (20) can be effec-

tively determined if
g= (0, . . . ,0), (21)

the base case of the genus induction. In fact, the argument of Theorem 2(ii) applies with
almost no modification to the base case (21). A minor issue is the possibility of degenerate
data over the fixed point 0 (for which the dimension formula is not valid). We leave the
details to the interested reader. The outcome is a procedure for calculating (20) in the base
case (21).

Theorem 2(i) is then also effective. The push-forwardρ∗(ω ∩ [M
†
]vir) is express-

ible by localization in terms of the push-forwards of relative Gromov–Witten classes on
unparameterized spaces.

2.5.6. Computations. Although we have established an effective procedure for calculat-

ing the classes of the push-forwardsρ∗(ω∩[M]vir) andρ∗(ω∩[M
†
]vir) in the tautological

ring of the target, the procedure may not be practical. The basic reason for the difficulty
is the explosive growth in the number of additive generators of the tautological ring of
the moduli space of curves as the number of markings increases. For example, in the case
of the hyperelliptic locus, the number of additive generators of codimension 3g for the
tautological ring ofMg,2g+2 is huge already forg = 2.

Our purpose here is to illustrate how one can use the main result of the paper in
combination with auxiliary results to obtain explicit formulas for certain classes.

By [GrP2, Prop. 11] additive generators for the tautological ring of the moduli space
of curves are obtained by taking arbitrary strata, corresponding to stable graphs, and con-
sidering the push-forwards of products of arbitrary monomials in the cotangent line and
κ classes on the vertex moduli spaces. As explained in [AC], the pairings of such genera-
tors with monomials in the globalκ, λ, andψ classes of the dual degree are easily written
as sums of products of integrals on the vertex moduli spaces. By the Witten–Kontsevich
theory, these integrals can be evaluated explicitly. For low genus, the computation of such
pairings is practical.
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The null space of the pairings of the additive generators of a given degree with mono-
mials in theκ, λ, andψ classes determines a space of possible relations among the gener-
ators. Often one can show (by a variety of methods) that these possible relations are actual
relations, so that one obtains a basis for the tautological classes of the given degree. Then
the only auxiliary information necessary to express atautologicalclass in terms of the ba-
sis is the evaluation of the pairings of the class with monomials in theκ, λ, andψ classes.

As a concrete example, considerHEg, the hyperelliptic locus inMg. By Theorem 1,
the class ofHEg lies in the tautological ring. In genus 3, the class of the divisorHE3 is
well known:

[HE3]Q = 9λ1− δ0− 3δ1

(see [HM]). Here, we use the stack class [HEg]Q (see [M]). We will compute [HE4]Q.
To begin with, by symmetry and divisor relations in low genus, one finds 14 generators

for R2(M4): κ2
1 andκ2 from the open stratum, the push-forwards ofκ1 andψ1 fromM3,2

to10, the push-forwards to11 of κ1 andψ1 on the genus 3 vertex, the push-forward to
12 of ψ1 on a genus 2 vertex, and the seven strata of codimension 2.

The classesκ2
1 andκ2 are known to be proportional inR2(M4). Hence there is a re-

lation inA2(M4) with an undetermined boundary term. The codimension 1 Chow group
of a boundary divisor ofMg is tautological. Thus we get a relation inR2(M4). By inter-
secting with sufficiently many monomials inκ andλ classes, the relation is identified and
shown to be unique (so dimR2(M4) = 13). See [F] for an alternative derivation.

By our results in [FP, §4], the pairing of [HEg]Q with an arbitrary monomial inκ and
λ classes can in principle be evaluated. We have calculated the pairings with [HE4]Q for
arbitrary monomials inκ classes and two monomials containing a singleλ1. The matrix
of pairings of these monomials with a basis ofR2(M4) has rank 13, so the class ofHE4
can be computed.

Proposition 5. In genus4,

2[HE4]Q = 27κ2− 339λ2
1+ 64λ1δ0+ 90λ1δ1+ 6λ1δ2− δ

2
0

−8δ0δ1+ 15δ2
1 + 6δ1δ2+ 9δ2

2 − 4δ00− 6γ1+ 3δ01a − 36δ11.

The strata notation of [F] is used in the above result.

3. Nonsingularity

3.1. Overview

Let A(d,n, k) be the matrix with rows and columns indexed by5(d,n, k) with the fol-
lowing coefficients. For̄p, q̄ ∈ 5(d,n, k), let the element ofA(d,n, k) in position(p̄, q̄)
be

c∏
i=1

( |ni |∏
j=1

1

(p[i]j )q[i]j−1
S[q ′′[i]](p′[i])

)
.

The matrixA(d,n, k) is obtained fromM(d,n, k) by transposition followed by a rescal-
ing of the rows and columns. We will prove Lemma 4 by establishing the nonsingularity
of A(d,n, k).
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3.2. Nonsingularity for5(d, n, k)

3.2.1. Overview. We will start by proving the nonsingularity ofA in case the index set
is5(d, n, k).

Lemma 5. The matrixA(d, n, k) is invertible.

The nonsingularity ofA(d,n, k) will be a direct consequence of the proof of Lemma 5.

3.3. The functionT [q ′′](p′′)

In order to prove Lemma 5, we will require an auxiliary matrix. Letp′′ andq ′′ be parti-
tions with parts of size at least 2. Define the functionT [q ′′](p′′) by the following rules:

(i) If `(q ′′) > `(p′′), thenT [q ′′](p′′) = 0.
(ii) If `(q ′′) ≤ `(p′′), thenT [q ′′](p′′) is a sum over all injectionsθ : `(q ′′) → `(p′′).

For such an injectionθ , let

v(θ) = |{j ∈ `(q ′′) : q ′′j = p
′′

θ(j) = 2}|.

Then

T [q ′′](p′′) =
∑

θ :`(q ′′)→`(p′′)

2v(θ)
`(q ′′)∏
j=1

(
p′′θ(j) − 1

q ′′j − 1

)
(−1)q

′′
j −1

(q ′′j )
p′′
θ(j)
−2
.

Let p̄, q̄ ∈ 5(d, n, k). Let p′′ and q ′′ be the subpartitions ofp′ and q ′ respectively
consisting of the parts of size at least 2. Letp′′′ be the subpartition ofp′′ consisting
of parts at least 3.

Let B(d, n, k) be the matrix with rows and columns indexed by the set5(d, n, k)

with coefficient

1

|Aut(p′′)| |Aut(q ′′)|

∏
h

ph
∏
i

p′′′i

n∏
j=1

((
pj − 1

qj − 1

)
(−1)qj−1q

pj−2
j

)
· T [q ′′](p′′),

in position(p̄, q̄).

3.4. An order on5(d, n, k)

We order the set5(d, n, k) in the following manner. Let̄p andq̄ be distinct elements of
5(d, n, k). We assume the parts of the subpartitionsp′′ andq ′′ are arranged in increasing
order. Thenp̄ precedes̄q if and only if

• `(p′′) < `(q ′′), or
• `(p′′) = `(q ′′) andp′′ precedesq ′′ in the lexicographic order, or
• p′′ = q ′′ and`(p′) > `(q ′), or
• p′ = q ′ andp precedesq in the lexicographic order.

We writep̄ < q̄ if p̄ precedes̄q in the above order on5(d, n, k).
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3.5. Proof of Lemma 5

DefineC(d, n, k) by
C(d, n, k) = B(d, n, k) · A(d, n, k).

Lemma 5 is an immediate consequence of the following result.

Lemma 6. The matrixC(d, n, k) is upper triangular with1’s along the diagonal.

Proof. Recall the well known identities
n∑
k=0

(
n

k

)
(−1)kka = 0, 0≤ a ≤ n− 1,

and
n∑
k=0

(
n

k

)
(−1)k(k + 1)−1

=
1

n+ 1
, n ≥ 0.

To prove these identities, consider the function

f (t) =

n∑
k=0

(
n

k

)
(−1)ktk = (1− t)n.

The first identity is obtained by the evaluation of(t d
dt
)af at t = 1, and the second is

obtained by computing
∫ 1

0 f (t) dt .
Let p̃, r̃, p̂, and r̂ be integers satisfying̃p ≥ r̃ ≥ 1 andp̂ ≥ r̂ ≥ 2. Further, let

δ(x, y, z) = 1 whenx = y = z, and 0 otherwise. We will need four closely related sums:

(α) :
p̃∑
q̃=1

(
p̃ − 1

q̃ − 1

)
(−1)q̃−1q̃p̃−1−r̃

=

{
0, r̃ < p̃,

1/p̃, r̃ = p̃;

(β) :
p̂∑
q̂=1

(
p̂ − 1

q̂ − 1

)
(−1)q̂−1q̂p̂−32δ(2,p̂,q̂) =

{
0, p̂ ≥ 3,

0, p̂ = 2;

(β ′) :
p̂∑
q̂=1

(
p̂ − 1

q̂ − 1

)
(−1)q̂−1q̂p̂−22δ(2,p̂,q̂) =

{
0, p̂ ≥ 3,

−1, p̂ = 2;

(γ ) :
p̂∑
q̂=1

(
p̂ − 1

q̂ − 1

)
(−1)q̂−1q̂p̂−1−r̂2δ(2,p̂,q̂) =


0, r̂ < p̂,

0, r̂ = p̂ = 2,

1/p̂, r̂ = p̂ ≥ 3.

Let p̄ andr̄ be elements of5(d, n, k). The matrix elementC(p̄, r̄) is given by

C(p̄, r̄) =
∑

q̄∈5(d,n,k)

B(p̄, q̄)A(q̄, r̄)

=

∏
ph

∏
p′′′i

|Aut(p′′)|

∑
q̄

n∏
j=1

((
pj − 1

qj − 1

)
(−1)qj−1q

pj−1−rj
j

)
·
T [q ′′](p′′)

|Aut(q ′′)|
· S[r ′′](q ′). (22)

We must show:
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(i) C(p̄, r̄) = 0 if r̄ precedes̄p in the order on5(d, n, k),
(ii) C(p̄, p̄) = 1 for all p̄.

Let r̄ ≤ p̄ with respect to the order on5(d, n, k). The prefactor
∏
ph

∏
p′′′i /|Aut(p′′)|

plays a role only in the normalization of the diagonal elements (ii). We will first concen-
trate on the main sum in formula (22) forC(p̄, r̄): a triple sum over partially ordered par-
titions q̄, injectionsθ : `(q ′′) → `(p′′) via T [q ′′](p′′), and injectionsι : `(r ′′) → `(q ′)

via S[r ′′](q ′).
The key step in the proof is to recognize that the main sum in (22) can be written in

terms of products of the sums(α), (β), (β ′), and(γ ) discussed above. The products have
n+ |p′′| factors. We will define and analyze the products in stages.

We first consider the casep′′ = ∅. We will write the sum (22) as a single product with
n factors of type(α). Then factors are obtained by replacing(p̃, q̃, r̃) in the formula for
(α) by (pi, qi, ri) for 1 ≤ i ≤ n. As qi varies in the range 1≤ qi ≤ pi , all possible
choices of the ordered partitionq = (q1, . . . , qn), in the partially ordered partition̄q =
(q, q ′) indexing (22) occur, as̄q does not contribute to (22) if there exists ani for which
qi > pi .

Sincep′′ = ∅, we find that forq̄ to contribute to (22), the equalityq ′′ = ∅must hold.
By the orderinḡr ≤ p̄, the equalityr ′′ = ∅must hold. The sum over̄q, θ , andι is then just
a sum over̄q. The partially ordered partition̄q is given by the choice ofq = (q1, . . . , qn),
for q ′ then consists ofd −

∑
qi parts equal to 1. We conclude that the main sum of (22)

equals the product of then sums of type(α).
The product of then sums vanishes if there exists ani for whichri < pi . Sincer̄ ≤ p̄

andr ′′ = p′′, we find|r ′| ≥ |p′|. Hence,
∑n
i=1 ri ≤

∑n
i=1pi . For a nonvanishing prod-

uct, r̄ = p̄ is then necessary. In the diagonal case, the product equals
∏n
i=1(1/pi), which

is exactly cancelled by the prefactor to yield the matrix element 1. We have completed
the analysis of the casep′′ = ∅.

We now consider generalp′′. Let m = `(p′′). We will analyze associated products
with n factors of type(α) andm additional factors, each of type(β), (β ′), orγ . The firstn
factors are obtained as before by replacing(p̃, q̃, r̃) in the formula for(α) by (pi, qi, ri),
for 1≤ i ≤ n. Let them upper bounds of the last sums be denoted byp̂1, . . . , p̂m, and let
them index variables for the sums bêq1, . . . , q̂m. The precise forms of the lastm sums
will be specified below.

Let p̂i = p′′i for 1 ≤ i ≤ m. The choice of them index variableŝq1, . . . , q̂m exactly
corresponds to the choice of aq̄ contributing to (22)togetherwith an injectionθ , up to
automorphisms ofq ′′. More precisely, as the index variables of the firstn sums determine
q = (q1, . . . , qn), the unordered partitionq ′ consists of̂q1, . . . , q̂m and

d −

n∑
i=1

qi −

m∑
j=1

q̂j

parts equal to 1. Clearly,q ′′ consists then of thosêqj that are at least 2. Finally, thej such
that q̂j ≥ 2 determine Im(θ), andθ itself is uniquely determined up to automorphisms
of q ′′.
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Let us analyze the factorS[r ′′](q ′). Let q∗ denote the subpartition ofq ′ consisting of
q̂1, . . . , q̂m. Fix an injectionι : `(r ′′)→ `(q ′). Supposec of them parts ofq∗ lie in Im(ι).
The summand

`(r ′′)∏
j=1

1

(q ′ι(j))
r ′′j −1
·

∏
i /∈Im(ι)

1

q ′i

of S[r ′′](q ′) corresponding toι can, in first approximation, be accounted for by taking
m− c factors of type(β) andc factors of type(γ ). The lastc factors correspond exactly
to thec parts ofq∗ in Im(ι), and the constantŝr in the factors are set to equal the partsr ′′j .

Givenι, we have defined an initial product ofn+m factors of type(α), (β), and(γ ).
However, the terms of the product do not properly account for all the data ofι. The
difficulty is that whileι specifies the subinjection of thè(r ′′)− c parts ofr ′′ to the parts
of q ′ not inq∗, the terms of the defined product do not.

We must alter the product in order to properly account forι. The partitionq ′ consists
of q∗ and

e = d −

n∑
i=1

qi −

m∑
j=1

q̂j

parts equal to 1. The number of subinjections of the remaining`(r ′′)− c parts ofr ′′ into
thee parts ofq ′ not inq∗ equals

e!/(e − `(r ′′)+ c)!.

By giving such a subinjection in addition to the other data, the injectionι is essentially
determined. To be precise, by the choice ofc factors of type(γ ), the choice ofc corre-
sponding partsr ′′j , and the choice of a subinjection of the remaining`(r ′′)− c parts ofr ′′

into thee parts ofq ′ not inq∗, the injectionι is uniquely determined up to automorphisms
of thec chosen partsr ′′j .

Consider thee!/(e − `(r ′′)+ c)! subinjections into thee parts ofq ′ not inq∗, with

e = d −

n∑
i=1

qi −

m∑
j=1

q̂j .

A crucial observation is the following: we can take account of the subinjections by slight
modifications of the factors of type(α), (β), and(γ ). Namely, after expandinge!/(e −
`(r ′′) + c)! we find a polynomialf of degreè (r ′′) − c in qi andq̂j . Eachqi raises the
exponent ofqi in the ith factor of type(α) by 1. Similarly, eacĥqj raises the exponent
of q̂j in the j th factor of type either(β) or (γ ) by 1. After raising, a factor of type(β)
becomes a factor of type(β ′).

Starting with an injectionι, we have obtained, by expandingf , a sum of products.
Each product consists of factors (possibly raised) of types(α), (β), and(γ ). The sum of
products defines a subsum of∑

q̄

n∏
j=1

((
pj − 1

qj − 1

)
(−1)qj−1q

pj−1−rj
j

)
·
T [q ′′](p′′)

|Aut(q ′′)|
· S[r ′′](q ′).
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For example, the factor 2v(θ) in T [q ′′](p′′) has been rewritten as a product of the factors
2δ(2,p̂j ,q̂j ) occurring in the (possibly raised) sums(β) and(γ ).

We may now finally establish the required vanishing and nonvanishing. Sincer̄ ≤ p̄,
we have

`(r ′′) ≤ `(p′′) = m.

The initial product obtained fromι hadn factors of type(α), m − c factors of type(β),
andc factors of type(γ ). Every factor of type(β) vanishes. Every such factor must be
raised for a nonvanishing contribution. The maximum number of raisings is`(r ′′)− c. So
for nonvanishing,̀ (r ′′) = m is required. Moreover, every factor of type(β) becomes a
factor of type(β ′) with a minus sign. The product ofn factors of type(α),m− c factors
of type (β ′), andc factors of type(γ ), the unique possibly nonvanishing contribution,
appears with a coefficient(−1)m−c(m− c)!.

Since`(r ′′) = `(p′′), the partitionr ′′ must precedep′′ in the lexicographic order. So
for every part ofp′′ equal to 2, there exists a part ofr ′′ equal to 2. To obtain a nonvanishing
contribution, each such part ofp′′ must come with a factor of type(β ′). Considering the
parts ofp′′ equal to 3,4,5, . . . successively, we find a nonvanishing contribution requires
that each such part come with a factor of type(γ ) and an equal part ofr ′′. Thus,r ′′ = p′′.
Arguing as in the caser ′′ = p′′ = ∅, we find that a nonvanishing contribution requires
r̄ = p̄. We have proven the required vanishing whenr̄ < p̄.

For the diagonal elements, assumer̄ = p̄. The only nonvanishing contributions arise
by exactly matching every part ofp′′′ with an equal part ofr ′′ (via the element ofq ′ in
the corresponding factor of type(γ )), inserting a factor of type(β ′) for each remaining 2
in p′′, and mapping the 2’s inr ′′ to the 1’s ofq ′ not inq∗. The number of automorphisms
of the c chosen partsr ′′j may be identified with|Aut(p′′′)|. The factor(m − c)! may
now be identified with the number of permutations of the 2’s. Multiplied together, these
factors yield|Aut(p′′)|, cancelling the denominator of the prefactor of the matrix element
C(p̄, p̄). Finally, the factor(−1)m−c cancels the contribution of them− c factors of type
(β ′), and the numerator

∏
ph

∏
p′′′i of the leading factor cancels the contribution of the

factors of type(α) and(γ ). We concludeC(p̄, p̄) = 1 for all p̄. ut

The lower boundd − k for the length of partitions̄p in5(d, n, k) does not play a crucial
role. In fact, Lemmas 5 and 6 hold for the submatrices ofA(d, n,∞) andB(d, n,∞)
indexed by any subset4 of 5(d, n,∞) for which

5p̄ = { q̄ ∈ 5(d, n,∞) : q ≤ p, 1`(p
′′)−`(q ′′) q ′′ ≤ p′′ }

is contained in4 for all p̄ ∈ 4. The proof is obtained simply by analyzing the vanishing
of entries ofB(d, n,∞) forced by the definition of the matrix (and the definition ofT ).

For Lemmas 5 and 6, the set4 should be closed under the operation of lowering the
parts of a partially ordered partition, necessarily making up for this by adding parts equal
to 1 to the unordered partition. Clearly, the subsets5(d, n, k) satisfy this condition for
all k ≥ 0.
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3.6. The nonsingularity ofA(d,n, k)

The nonsingularity ofA(d,n, k) is immediate when

k ≥ d −

c∑
i=1

|ni |,

for then the matrix is the Kronecker product of the matricesA(di, |ni |, di − |ni |). For
smallerk, certain rows and the corresponding columns are omitted and the resulting ma-
trix is not necessarily a Kronecker product. However, for eachk the set5(d,n, k) is
closed under the operation of lowering the parts of some of the constituent partially or-
dered partitions and compensating by adding parts equal to 1 to the corresponding un-
ordered partitions. From the remark at the end of 3.5, the method of proof of Lemmas 5
and 6 still applies.

The nonsingularity ofA(d,n, k) is established and the proof of Lemma 4 is complete.
ut

4. Consequences

4.1. Proof of Proposition 3

4.1.1. The moduli spaceMg,n. We prove that the socleR3g−3+n(Mg,n) is 1-dimen-
sional. By [GrP2, Proposition 11], the socle is generated by classes of the form

ξB∗

( ∏
v∈V (B)

θv

)
,

whereB is a stable graph of genusg with n legs andθv ∈ R∗(Mg(v),n(v)) is a monomial
in theψ andκ classes ofMg(v),n(v), of degree equal to the dimension 3g(v)− 3+ n(v).
By Proposition 2, we may assume

3g(v)− 3+ n(v) ≤ g(v)− 1+ δ0g(v)

for all v ∈ V (B). This impliesg(v) = 0 andn(v) = 3. SoR3g−3+n(Mg,n) is generated
by the point classes of maximally degenerate stablen-pointed curves of genusg. All such
curves are degenerations of stablen-pointed irreducible rational curves (withg nodes).
The closed stratum of such curves is dominated byM0,2g+n. Hence all the point classes
are equivalent, which proves the socle claim forMg,n.

4.1.2. The moduli spaceMc
g,n. The maximally degenerate stablen-pointed curves of

genusg of compact type consist ofg elliptic tails attached tog of the marked points of a
maximally degenerate stable(g+n)-pointed curve of genus 0 (contracted to a point when
g + n = 2). The classes of the different strata determined by these maximally degenerate
curves are rationally equivalent inMc

g,n via the rational equivalence of points onM0,g+n.
We prove that these strata classes generate the socle and that classes of higher degree
vanish.
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The tautological ringR∗(Mc
g,n) is additively generated by classes of the form

ξB∗(
∏
v∈V (B) θv), whereB is now a stable tree of genusg with n legs. By Proposition 2,

we may assume
degθv ≤ g(v)− 1+ δ0g(v) − δ0n(v).

Since
g(v)− 1+ δ0g(v) − δ0n(v) ≤ 2g(v)− 3+ n(v),

we find

degξB∗
( ∏
v∈V (B)

θv

)
= −1+

∑
v∈V (B)

(1+ degθv)

≤ −1+
∑

v∈V (B)

(g(v)+ δ0g(v) − δ0n(v))

≤ −1+
∑

v∈V (B)

(2g(v)− 2+ n(v)) = 2g − 3+ n,

which proves the vanishing. The equality

degξB∗
( ∏
v∈V (B)

θv

)
= 2g − 3+ n

implies that(g(v), n(v)) = (0,3) or (1,1) for all v, proving the socle claim forMc
g,n.

4.1.3. The moduli spaceM rt
g,n for g ≥ 2. The tautological ring is additively generated

by classes of the formξB∗(
∏
v∈V (B) θv), whereB is now a stable tree of genusg with n

legs and a single vertexw of genusg (and all other vertices of genus 0). By Proposition 2,
we may assume the classθv has degree at mostg − 1− δ0n onw (and degree 0 on the
genus 0 vertices). Then

degξB∗
( ∏
v∈V (B)

θv

)
= −1+

∑
v∈V (B)

(1+ degθv) ≤ g − 1− δ0n − 1+
∑

v∈V (B)

1

≤ g − 1− δ0n +
∑
v 6=w

(n(v)− 2) = g − 1− δ0n + n− n(w)

≤ g − 2+ n,

which proves the vanishing. The equality

degξB∗
( ∏
v∈V (B)

θv

)
= g − 2+ n

impliesn(v) = 3 for v 6= w, thatn(w) = 0 or 1, andθw is a top class onMg orMg,1. The
1-dimensionality of the socle follows now from Looijenga’s results [Lo] forMg andMg,1,
the nonvanishing ofκg−2 (see [FP]), and the rational equivalence of points onM0,n+1.
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4.2. Gromov–Witten theory

4.2.1. κ descendent invariants.Let X be a nonsingular projective variety. Theκ de-
scendent Gromov–Witten invariants ofX are defined by:〈

τe1(γ1) · · · τen(γn)
∏
j≥0

κ
fj
j

〉X
g,n,β
=

∫
[Mg,n(X,β)]vir

n∏
i=1

ψ
ei
i ev∗i (γi)

∏
j≥0

κ
fj
j , (23)

whereψi is the cotangent line on the domain, ev∗i (γi) is the pull-back ofγi ∈ H ∗(X,Q)
via theith evaluation map, andκj is the Arbarello–Cornalbaκ class on the moduli space
of maps.

4.2.2. Proof of Proposition 4. Since Proposition 4 is well known in genus 0 and 1, we
will assumeg ≥ 2. Let

ρ : Mg,n(X, β)→ Mg,n.

By the comparison results relatingψi andκj to theρ-pull-backs of the corresponding
classes on the moduli space of curves, the invariants (23) are equal to the integrals∫

[Mg,n(X,β)]vir

n∏
i=1

ρ∗(ψ
ei
i )ev∗i (γi)

∏
j≥0

ρ∗(κ
fj
j ), (24)

modulo corrections by invariants indexed by lower data(g, n, β). Here,ψi andκj denote
the cotangent line and Arbarello–Cornalbaκ class on the moduli space of curves. We will
prove Proposition 4 for the integrals (24). The result for the invariants (23) follows.

Let
∑n
i=1 ei +

∑
j≥0 jfj ≥ g. Then, by Proposition 2, the class

n∏
i=1

ψ
ei
i

∏
j≥0

κ
fj
j (25)

onMg,n can be rewritten as a tautological boundary class. The boundary strata are in-
dexed by dual graphs. Basic tautological classes are obtained on a given stratum by prod-
ucts ofψ andκ classes,

val(v)∏
i=1

ψ
ai
i

∏
j≥0

κ
bj
j ,

at each vertexv of the dual graph. Every tautological boundary class is a linear combina-
tion of these basic classes (see [GrP2]). By Proposition 2, we may require the condition

val(v)∑
i=1

ai +
∑
j≥0

jbj < g(v)+ δ0g(v) (26)

at each vertexv.
The proof of Proposition 4 is completed by rewriting (25) as a sum of basic classes

satisfying the vertex condition (26) and then applying the splitting axiom to (24).ut
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4.3. The generation conjecture

We conjecture the ringR∗(Mg,n) is additively generated by a restricted set of tautological
classes.

Conjecture 4. R∗(Mg,n) is additively generated by monomials

n∏
i=1

ψ
ei
i

∏
j≥1

κ
fj
j

satisfying
n∑
i=1

ei +
∑
j≥1

(j + 1)fj < g + δ0g.

We have verified Conjecture 4 forg + 3n ≤ 21, assuming forn > 0 the Gorenstein
conjecture forCng , the fiber product of the universal curve overMg.

Conjecture 3 is a consequence of the following three statements: Proposition 4, Con-
jecture 4, and the (unproven) exactness of the sequence

R∗(∂Mg,n)→ R∗(Mg,n)→ R∗(Mg,n)→ 0.

Conjecture 3 is derived from these statements by the standard method of expressingκ

monomials in terms of push-forwards of cotangent line classes on additionally pointed
spaces. OnMg,n, the class ∏

j≥1

κ
fj
j

is expressed as a sum of classes

πr∗

( r∏
i=1

ψ
hi
n+i

)
,

whereπr : Mg,n+r → Mg,n is the forgetting map and

r ≤
∑
j≥1

fj ,

r∑
i=1

hi ≤
∑
j≥1

(j + 1)fj

(see [AC]). We leave the details to the reader.
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