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0. Introduction
0.1. Tautological classes

Let Mg,n be the moduli space of stable curves of gegusith n marked points. Let
A*(Mg,n) denote the Chow ring witlQ-coefficients. The system of tautological rings is
defined to be the set of smallégtsubalgebras of the Chow rings,

R*(Mgy,) C A*(Myg.),
satisfying the following two properties:
(i) The system is closed under push-forward via all maps forgetting markings:
Trx * R*(Mg,n) - R*(Mg,n—l)-
(i) The system is closed under push-forward via all gluing maps:
by - R*(Mgl,nlu{*}) ®Q R*(Mgz,ﬂzU{O}) - R*(Mgl+g2,n1+nz)v
Ly . R*(Mg)nu{*’.}) — R*(Mg+l‘n)ﬂ
with attachments along the markingsinde.

While the definition appears restrictive, natural algebraic constructions typically yield
Chow classes lying in the tautological ring. For example, the stanflardanda classes
in A*(Mg,,,) all lie in the tautological ring. The tautological rings also possess a rich
conjectural structure; sele [FP] for a detailed discussion.

The cotangent line class@sare tautological by the following construction. For each
markingi, let L; denote the associated cotangent line bundle 07/95. The classy; is
the first Chern class df;,

i = c1(Li) € A (M)
Let 7 denote the map forgetting the last marking,

. Mg,n+l - Mg,n,
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and let: denote the gluing map,

LMy 12, i—1wi4d,n) X Mo jein+1) = Mg pti.
TheQ-multiples of the fundamental cIasse\T!g,n] are contained in the tautological rings
(asQ-multiples of the units in the subalgebras). A direct calculation shows that
— (1 ([Mg 0] x [Mo3])?) = .

Hence, the cotangent line classes lie in the tautological rings. A discussion«oatits
classes can be found in [FP].

Gromov-Witten theory defines natural classesﬁ‘mﬁg,n). Let X be a nonsingular
projective variety, and Ieﬁg,n(x, B) be the moduli space of stable maps representing
B € Hy(X,Z). Let p denote the map to the moduli of curves,

o - Mg,n(Xa B) — Mg,na
incase2 —2+n > 0. Letw € A*(Mg,n(x, B)) be a Gromov-Witten class composed
of algebraic primary fields and descendents. Then
pe(@ N [Myn(X, B)]") € A*(My ).

The push-forwards of all Gromov—Witten classes of compact homogeneous vakieties
lie in the tautological ring by the localization formula for the virtual class (see [GrP1]).
We do not know any example defined ov@rof a Gromov—Witten class for which the
push-forward isottautological.

The moduli spaces of Hurwitz covers B} also define natural classes on the moduli
space of curves. Lat > 0. Letu?, ..., u™ bem partitions of equal sizé satisfying

m
2g—2+2d=7) (d—t@u),
i=1
wheret (i) denotes the length of the partitigri. The moduli space of Hurwitz covers,
Hy(ut, ..o ™,

parameterizes morphisms

fiC— P
whereC is a complete, connected, nonsingular curve with marked prafites. ., u”
overm ordered points of the target (and no ramifications elsewhere). Two Hurwitz covers

chpl olpt

are isomorphic if there exist isomorphisms
«:C—>C, B:Pl>p!

which commute withf, f’ and respect all the markings. The moduli space of Hurwitz
covers is a dense open set of the compact moduli space of admissible cavérs [HM],

Hg(/,Ll, Lo u™C ﬁg(u,l, ™).
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Let p denote the map to the moduli of curves,
p - ﬁg(/}.l, ey M’n) g M&Z;ﬂ:]_e(#[)'
The push-forwards of the fundamental classes,
p*(ﬁg(ulv ey /-'Lm)) € A*(Mg,zlmzlf(ui))v
define classes on the moduli of curves.
The following two questions provide classical motivation for the results of our paper:
(i) Are the push-forwardg, (Fg (ul, ..., W) tautological?
(i) Can the push-forwards be computed?
We settle (i)—(ii) in the affirmative.
While Hurwitz covers have played a basic role in the study of the moduli of curves,
guestions (i)—(ii) were open even for the class of the hyperelliptic locus,

px(Hg((2), ..., (2))),

iN Mg 2440.

0.2. Stable relative maps

0.2.1. Overview. We study Hurwitz covers in the much richer context of stable relative
maps toP!. Stable relative maps combine features of stable maps and admissible covers.
The moduli space of stable relative maps was first introduced by Li and Ruan’in [LR].
An algebraic development can be foundiin [Li]. The main results of the paper concern the
relationship between tautological classes on the moduli space of stable relative maps and
the moduli space of curves.

0.2.2. The parameterized caseWe first define stable relative maps to a parameterized
Pl Letg,n > 0. Letul, ..., ™ bem partitions of equal sizé > 0. A stable relative
map

A —t

[(Cs pla "'7p}’lﬂ Qla e ey an) - (Taqla ~~-aCZm) _e) Pl] E Mg,n(l’(/17~--vl’l/’n)

consists of the following data:

() T isacomplete, connected genus 0 nodal curve mittistinct nonsingular markings

q1, --->qm-

(ii) The structure maj : T — P! restricts to an isomorphism on a unique component
P c T and contracts all other componentsTof

(iii) All extremal components of the treg not equal toP carry at least one of the:
markings. _

(iv) C isa comple.te, connected gengsodal curve wittn + > ; €(u') distinct non-
singular markings

m
tp. -yl 0,

i=1
where|Q;| = £(u').
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(v) The morphismy satisfies the following basic conditions:

(a) f satisfies admissible cover conditions over the nod&s afatching branchings
with no markings or contracted componentgoliying over the nodes of’,

(b) f has profileu’ overg;,
(c) Q; is a complete marking of the fiber gfoverg; with £(u?) distinct points.

(vi) The data has &inite automorphism group. The automorphism group is determined
by curve automorphisms : C — C andg : T — T which respect the markings
and commute witly, €, and the identity map oR?.

The dateC > T 5 Plandc’ & 17 5 PLare isomorphic if there exist isomorphisms
a : C — C'andpB : T — T/, which respect all the markings and commute with
f, f', €, €, and the identity map oR!. Condition (vi) may be interpreted as a stability
condition.

The superscript T in the notation for the moduli space of stable relative maps,

—t
Mg,n(ﬂla R I’Lm)a

indicates the targe®! is parameterized. The moduli space, a Deligne—Mumford stack,
admits several canonical structures:

() avirtual fundamental class
— i —
[Mg (s DI € Ae(M g, (it ™))
in the expected dimension
m .
e=2¢—2+2d+n+y (L+Lu)—d),
i=1
(ii) evaluation maps
—
ev:M,, (', ..., u") — P,
determined by the markings, ..., p, andqs, ..., ¢m,

(i) cotangent line classeg < Al(ﬁz,n(ul, ..., u™)) determined by the markings

plv-~'9pn andqlqumv
(iv) a map to the moduli of curves (via the domain),

a1 ¥vi
P - Mg,n(l’b 9 ey /'Lm) - Mg’n«l,»zi.":ll(ui)a

incase2 —2+n+ Y L, e(u) >0,
(v) amap to the Fulton—-MacPherson parameter space of poiri$ (uia the target),

—t
00 - Mg,n(ul, o u™ = Pl[m].

A relative Gromov-Witten clagm the moduli space of stable relative maps,
n m 4
ki / J
o=[]ev;, vy U []ev,0) vy,
i=1 j=1

is constructed from structures (ii)—(iii). Herg, yj/ € A*(PY).
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The map to the moduli of curves (iv) may be defined to existlircases relevant to
our study. We will only consider moduli spaces of stable relative maps for wiishO.
Sinced is positive,£(u') > 0. Therefore, the inequality

m
2g—2+n+2€(/ﬁ) >0
i=1

can be violated only i = 0. The map to the moduli of curves is defined in the unstable
genus 0 cases by viewing o1 andMg 2 as points.

0.2.3. The unparameterized casale will also require stable relative maps to an unpa-
rameterized®. Letg,n > 0. Letul, ..., " bem > 2 partitions of equal sizé > 0.
A stable relative map

f J—
[(C7p17""pl’lﬂ le-qum)_)(Tvéﬂan-va)]EMg,n(le-wlfLm)
consists of the following data:

(i) T isacomplete, connected genus 0 nodal curve mithstinct nonsingular markings
q1s.--s9m-

(if) All extremal components of the tree carry at least one of the markings.

(iii) C is a complete, connected genusodal curve withn + Zj”:_lﬁ(u‘) distinct non-
singular marking$ps, ..., p,} UL Qi, where|Q;| = £(u').

(iv) The morphismf satisfies (a)—(c) of the parameterized definition.

(v) The data has finite automorphism group. The automorphism group is determined
by curve automorphisms : C — C andg : T — T which respect the markings
and commute withy.

We will consider the unparameterized case only when> 2. The moduli space
Mg,,,(ul, ..., ™) admits the following structures:

() avirtual fundamental class
[Mg,n(ﬂl» ct /J“m)]VIr € Ae(ﬁg,n (/"Lla M} H'm))
in the expected dimension
m .
e=2g-5+2d+n+y (1+Lu')—d),
i=1

(i) cotangent line classe¢ € AY(M, ,(ul, ..., ")) determined by the markings
8

plv-~'9pn andCIL,Qm,
(iii) a map to the moduli of curves (via the domain),

v 1 §Yi
P - Mg,n(l'L N T s Mg,nJrZ;":lK(u")’

incase 2 —2+n+ > ", ¢(u') > 0,
(iv) a map to the moduli of genus 0 pointed curves (via the target),

00 - Mg,n(,ul, ey Mm) — Mo,m,
in casem > 3.
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The moduli spaces of admissible covers arise as special cases of the moduli spaces of
stable relative maps:

Mgo(ut, ..o w™ = Ho(ut, ..., u™,
in case
m .
2g—2+2d =" (d—tu).
i=1
Here, the virtual class of the space of stable relative maps (i) is equal to the fundamental

class of the space of admissible covers.
A relative Gromov—Witten clagm the moduli space of stable relative maps,

n m K
— ki J
w = w i ij ’
i=1 j=1

is constructed from the cotangent line classes (ii). The evaluation maps are lost in the
unparameterized case. The map to the moduli of curves (iii) is defined in all relevant
cases as before.

0.2.4. ResultsWe prove results which show the compatibility of Gromov—Witten classes
on the moduli of stable relative maps and tautological classes on the moduli of curves in
both the parameterized and unparameterized cases.

Theorem 1. Relative Gromov—Witten classes push forward to tautological classes:
(i) For every relative Gromov—Witten classon M;n(ul, o w1,

ps(@ N [ﬁ;n(ul, e ™1V

is a tautological class on the target moduli space of curves.
(i) For every relative Gromov—Witten clagson Mg,n(ul, e, 1™,

pe(@ N [Mgn(ut, ... ")
is a tautological class on the target moduli space of curves.

Theoren( 1L is proven by studying relations obtained by virtual localization. The proof
for both parts isconstructive the push-forwards of relative Gromov-Witten classes are
recursively calculated in the tautological ring in terms of the standakd and classes.

The proof is given in Sectiorfg 2 andl 3 of the paper. In practice, the execution of the
recursion is computationally quite hard. A discussion (together with a calculation) can be
found in Section 2.516.

0.3. Consequences

Theorenj IL has several consequences for the geometry of the moduli space of curves.

Proposition 1. The moduli space of Hurwitz covers yields tautological classes,
pr(Hg(ut, o ™) € R (Mg s o)
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Propositior] ]L follows from part (ii) of Theorefr) 1 in cases the identity class and the
space of stable relative maps is specialized to the space of admissible covers. Moreover,
the push-forwards are effectively determined.

An additive set of generators f&* (M, ,) is indexed by strata dual graphs decorated
with ¢ and« classes on the nodes (see [CGrP2]). We review the basic push-pull method
for constructing relations im*(ﬁg,n) introduced in[[P1],[[BP]. Consider the two maps
to the moduli of curves defined for the moduli space of admissible covers:

— 0 — J
Mom £ Ho(ut, ..., um 5 My s gy
Letr denote a relation among boundary stratafg,,. Then

PPy (r) @)
defines arelation it , s 4,1y

Relation [), however, consists of push-forwards of fundamental classes of auxiliary
moduli spaces of admissible covers. The push-pull method, along with a case-by-case
analysis of the push-forwards, yields the basic relations in genus 1 and 2 among descen-
dent stratum classes (see [P1], [BP], [Gel]. [Ge2]). Propodition 1 now guarantees all
push-forwards arising ilﬂl) lie iR*(Mg,n). The push-pull method together with Propo-

sition[] provides a rich source of tautological relations in the moduli space of curves.

Speculation 1. All relations in the tautological ring are obtained via the push-pull
method and Propositid.

A further study of the push-pull relations was undertakeinlin [I]. In the absence of Propo-
sition[d], only the principal terms (trsymbol$ of the relations could be studied. The main
result of [I] is of interest here:

() lonel's vanishing,

n n
[TveT]x) =0e R Me,) for S e+ jf; = g+ dog — bon.
i=1 j=0 i=1 j=0
can be obtained from the symbols of push-pull relations.

The above vanishing generalizes two well-known vanishings:

(ii) Getzler's (conjectured) vanishing,

n n

Y =0€e R*(My,) for Y e > g+ oy
i=1 i=1

(i) Looijenga’s vanishing,

H"./fj =0e R (M) for > jfi=g—1

j=0 j=0

The tautological ringR*(M,) C R*(M,), for the open moduli spac¥,, is defined
to be the image oR*(Mg) via the natural map

R*(Mg) C A*(Mg) — A*(My).
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LetaM, = M, \ M, denote the boundary of the moduli space of curves. The tautological
classes of the boundany,*(aﬁg) C A*(8Mg), are defined by the push-forwards of all
tautological classes on the normalized boundary divisors via the gluing morphisms. There
is a restriction sequence

R*(AMg) — R*(My) — R*(Mg) — O,

for which the exactness in the middletisknown An identical discussion holds fa, ,,.
Propositior . combined with the symbol analysig bf [I] directly yields a much stronger
version of lonel’s vanishings.

Proposition 2. The clas{[/_; ¥’ [1i-0 Kjf’ lies in the image
Im R*(9M,,,) C R*(My,,)

fory 7 e+ ijojfj > g +80g — don-

Propositiorf 2 has consequences beyond lonel’s original vanishing. A uniform Gorenstein
conjecture was advanced [n [FR], [P2] for the tautological ring¥ gf, and the quotients
corresponding to the moduli spaces of compact type cumgg; and curves with rational

tails Mgn. An inductive argument using Propositi@q 2 yields the following result.

Proposition 3. The socle and vanishing claims of the Gorenstein conjectures hold for

C rt
Mg, Mg ,, andMg_n.

Propositior] B is proven in Secti¢n #.1. A different approach to Proposition 3 has been
pursued recently by Graber and Vakil [GrV1], [GrV2].
Another consequence of Propositjdn 2 is the exactness of the restriction sequence

R*(0Mg) — R*(My) — R*(My) — 0 2
in degrees greater than— 2. The result motivates the following conjecture.
Conjecture 2. The restriction sequendg) is exact in all degrees.

More generally, we conjecture the exactness of the tautological sequences associated to
the compact type and rational tail moduli spaces,

R*(Mg, \ Mg,) — R*(My ) — R*(Mg,) — 0,

R*(Mg, \ My,) > R*(Mg,) — R*(My,) — 0,
(seel[EP],[P2]).
Finally, Propositior] P is theequired form of Getzler's vanishing for applications

to Gromov—Witten theory. The main consequence is the following reconstruction result
proved in Sectiop 4]2.

Proposition 4. LetX be a nonsingular projective variety. All descendent Gromov—Witten
invariants ofX can be reconstructed from the restricted invariants

<re1(y1) o, ) [ ] "Jﬁ>

j=0

E)

X
g.n.p

where} i1 ei + 3 i20Jfi < &+ Sog-
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We conjecture a stronger result based on a new conjectured generation statement for
R*(M, ,) and the conjectured exactness of tautological restriction sequences. The con-
jectural framework is discussed in Sectjon|4.3.

Conjecture 3. All descendent Gromov—Witten invariantsXotan be reconstructed from
the restricted invariants

(Tey (VD) -+ Tey (V) g -
where} "’ 1 e; < g + 8o

1. Localization
1.1. Overview

The localization formula for the virtual class of the moduli spa_tén(ul, co,u™y s
required for our proof of Theoreifr] 1. The localization formula can be obtained from
the algebraic construction of the virtual class! [Li] together with the virtual localization
formula [GrP1]. A derivation can be found in [GrV/2].

1.2. Disconnected domains

1.2.1. Notation. We will require moduli spaces of stable relative maps vdibcon-
necteddomains in both the parameterized and unparameterized cases. The definitions
follow the connected case with minor variations.

We first introduce notation for the disconnected caseglbetan ordered set of genera,

g= (g17~~-7gc)'
Letn be an ordered set partition,

c
n=(nl’---7nc), Unlzﬂa
i=1

wheren = {1, ..., n}. The datag andn describe the genera and marking distributions of
a disconnected domain withordered components.
The degree distribution on a disconnected domain is described by an ordered parti-
tiond,
d=(d.....d;). di >0 > di=d.

A partition o of d of typed is an ordered set of partitions,

w= ], ..., ulc),

wherepu[i] is a partition ofd;. Ordered partitions of typd describe ramification condi-
tions on the disconnected domain.

1.2.2. Moduli spaces. We first define stable relative maps to a parameteri@edith
disconnected domains. Lgtn, andd be as defined above. Let, ..., u" bem parti-
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tions ofd of typed. A stable relative map

A —t
[(Cap1a~~'7pnv leme)_> (TJIl,,Qm)—E) Pl] Engn(//le-~-st)
consists of the data (i)—(vi) of Sectipn 0.2.2 with (iv) replaced by:

(iv) C is a complete, disconnected nodal curve witlordered components carrying
n + Y, e(u') distinct nonsingular marking$pa, ..., p,} U U, Qi, Where
|Qil = £(u'). The genera of the components are determined.Bihe markings
are distributed by the data afand .

The dateC 5 7 5 Plandc’ & 7/ 5 Pl are isomorphic if there exist isomorphisms
@ :C — C'andB : T — T’ which respect all the structures and commute with
f. ', €, €, and the identity map oR?.

The moduli space, a Deligne—-Mumford stack, admits the canonical structures (i)—
(iv) of the connected case. Relative Gromov—Witten classes are defined as before using
structures (ii)—(iii). The map to the moduli of curves (iv) via the domain is slightly altered:

c
Lt —
P Mgn(u o im) = [ [ My iy, ey
i=1

in case

m
2gi — 2+ [nil + Y _ t'[i]) > O,
j=1
foralli. Sincem > 0 andd; > 0, the map to the moduli of curves is defined in all relevant
cases by viewing/o 1 and Mg, as points.

The definition of the unparameterized moduli spa_at@n(ul, ..., ™) is obtained
similarly. Part (iii) of the definition of Sectioh 0.3.3 is modified to allow disconnected
domains. Also, the canonical map to the moduli of curves (iii) is replaced by a map to a
product of moduli spaces.

Of course, wherr = 1, the moduli spaces of stable relative maps with connected
domains are recovered.

1.2.3. Theore|1 revisited.We will prove a stronger form of Theorem 1 including all
the moduli spaces of stable relative maps with disconnected domains.
Theorem 2. Relative Gromov—Witten classes push-forward to tautological classes:

(i) For every relative Gromov—Witten classon M;n(ul, e 1M,

,0*(0) N [ﬁ;‘n(l‘c]-» DR Mm)]Vir)

is a tautological class on the target. .
(i) For every relative Gromov-Witten clagson Mg n(u?, ..., u™),

pe(w N [Mgn(ut, ... ™Y
is a tautological class on the target.
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1.3. Torus actions, fixed points, and the localization formula

1.3.1. The torus action. The equivariant Chow ring a* is freely generated by the first
Chern class of the standard representation,
¢+ ([point]) = Q[7].

Let C* act diagonally on a 2-dimensional vector spacesia the trivial and standard
representations,

£ - (v1,v2) = (v1,§ - v2). 3)
Let P = P(V). Let 0, oo be the fixed points [10], [0, 1] of the correspondin@*-action
onP(V).

An equivariant lifting ofC* to a line bundleL overP(V) is uniquely determined by
the fiber representations at the fixed poibgsand L ... The canonical lifting ofC* to the
tangent bundl@p has weightsd, —¢].

The representation[|(3) canonically inducesCé-action on the moduli space
Mg,n(ul, ..., u™) by translation of the map:

tchrSpPy=[cL ey

The canonical structures of the moduli space of stable relative maps are compatible

with the inducedC*-action. The virtual fundamental class canonically lifts to equivariant
Chow theory,

(Mgt ... ™" € AS (FTY ot ... ™).
The C*-action on the moduli space canonically lifts to the cotangent line bundles and is
equivariant with respect to the evaluation maps. Therefore, equivariant relative Gromov—
Witten classes

n . m , k,
w= l_{e\fzi ()¥h U r[lev:;j ) gl
1= j:

are well defined foy;, y/ € A?é*(Pl). TheC*-action on the moduli space is equivariant
(via p) with respect to tf1e trivial action on the moduli space of curves.
We will require a localization formula for the equivariant push-forward:

—t "
pulw N [Mg(ut, ... ™]".
1.3.2. Graph notation. Let the data

g=(g1,...,8), h=(0n1,...,n:.), d=(d1,...,d.)
describe (possibly) disconnected domains withomponents. The torus fixed loci of
M;n(ul, ..., W™ are indexed byocalization graphs

= (V,E,N,y, 6 (RY,....,R™),

defined by the following conditions:

(i) V isthe vertex set,
(i) y 1 V — Zsois a genus assignment,
(i) 7 :V — {0, oo} is a function,
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(iv) E isthe edge set, and
(a) if an edgee connectw, v’ € V, thenn (v) # 7 (v'),
in particular, there are no self edges,
(b) T" hasc orderedconnected componeniy, ..., I'¢, with vertex and edge sets
(V;, E;) respectively,
(v) 6 : E — Z-gis a degree assignment,
(vi) N = {1,...,n} is a set of vertex markings for which each subsets incident
to Vi,
(Vi) g =Y ,cy, ¥(0) + AT,
Vii)) di = 3,5, 8(e),
(ix) R/ is arefinemenbf u/ consisting of:
(@) achoice osides’ € {0, oo},
(b) a distribution of the parts qi/ to the vertices ofr ~1(s/) satisfying two prop-
erties:
e the parts of/[i] are distributed to the vertices of,
o the sum of the parts distributed toequals the sum of the degrees of edges
incident tov.

1.3.3. Torus fixed points. Let the moduli point

[cL TSP e wh ... um (@)
be fixed by the torus action. All marked points, nodes, contracted components, and ram-
ification points of C must lie over the torus fixed s¢@, oo} of PL. Each irreducible
componentD ¢ C dominant ontd®! must be a Galois cover with full ramification over

the two fixed pointg0, co}.
We associate a localization graph
F'=(V,E,N,y, 78 (R ....,R™)
to the torus fixed poinf {4) by the following construction:
() Let V be the set of connected componentgeo$ f)~1({0, oo}).
(ii) Let y(v) be the arithmetic genus of the corresponding component (taken to be O if
the component is an isolated point).
(iii) Let 7 (v) be the fixed point ifP* over which the corresponding component lies.
(iv) Let E be the set of noncontracted irreducible componénts C.
(v) Lets(D) be the degree of the Galois coves f|p.
(vi) Let N be the marking set.
(ix) Let R/ be the refinement qi/ obtained by the ramification conditions.
All the conditions of a localization graph, including (vii)—(viii), hold by the definition of
a stable relative map.
A stack M together with an action of a finite groujr is canonically constructed
from I in Sectior 1.3.4 below. A canonical inclusion

— —t
r/Ar : Mr/Ar — Mg,n(ul, o ™)

will be defined. The disjoint uniolJ. Mr/Ar will equal the total torus fixed set.
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1.3.4. The torus fixed locud/Ar. LetT be a bipartite graph. The stadkr is de-
fined as a product of auxiliary moduli spaces of curves and mapsAFkaction is ob-
tained from the automorphisms bf

Case |. The refinementsRy, ..., R™) lie onbothsides 0 andx.

The data ofl” over 0 uniquely defines a moduli space of unparameterized stable relative
maps,

MO = Mgo,no(R& Ré),
where:

() gois determined by the genera of the vertidgs= f~1{0},
(i) ngis determined by the markings o,
(i) Ro is the set of refinements on side 0,
(iv) Rjs is the ramification condition determined By
Let go denote the new marking associatedr®ip
Similarly, the unparameterized moduli space

Moo = Mgoo,noc (RS» Roo)

iidefirEd byt_he data df overoo. Letgeo denote the new marking associatedvfpo Let
Mr = Mg x M. The moduli spacé/ has a virtual class

[Mr]vir — [Mo]vir x [Moo]vir’

determined by the product of the virtual classes of the two factors.
Over Mr, there is a canonical family @*-fixed stable relative maps

ﬂciC—)Mr, JTTZT—>M1", Cl>T—€>Pl.

The canonical family is constructed by attaching the universal familiesMygeand M
according td". The canonical family yields a canonical morphism of stacks, M —
M;’n(ul, e, ™).

There is a natural automorphism groAp acting equivariantly o€ and M with
respect to the morphismsandn¢. The groupAr acts via automorphisms of the Galois
covers (corresponding to the edges) and the symmetries of the Qrajite groupAr is
filtered by an exact sequence of groups,

1— ]‘[ Z)8(e) — Ar — Aut(l') — 1,
ecE
where AutT) is the automorphism group of Aut(I") is the subgroup of the permutation
group of the vertices and edges which respects all the structuies/Aaft(I") naturally
acts on[ [,z Z/8(e) andAr is the semidirect product.
The quotient stack/r/Ar is a nonsingular Deligne—Mumford stack. The induced
map
— —

r/Ar : Mr/Ar = Mgt .. 1™

is a closed immersion of Deligne—Mumford stacks.
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The multiplicitym(T") and the Euler class of the virtual normal bundde/‘r’") will be
required for the localization formula:

1 1
N =[]se? _ — .
m(T) ]1_ (e) SN 10— V) 1T — V)

A degenerate configuration occurs over 0 if the following special conditions hold: for

(i) all vertices ofVy have genus 0,
(i) all vertices ofVp have valence 1,
(iii) asingle R/ lies on side Gnd R/ = R;.
Condition (ii) implies that no markings are incidentitg.
If I satisfies (i)—(iii), thenM is defined to be a point. The multiplicity formula and
Euler class formulas for the degenerate configuration are

1 1 1
D=1]]5se), == )
m(I) HE (e) V) = T i =

Similarly, a degenerate configuration may occur axerThe treatment is identical with
the roles of 0 ando interchanged. In fact, degenerate configurations may occur simulta-
neously at 0 ando. Then bothM o andM , are defined to be points and

1 11
e(NYIy 11’

m() =1,

Case Il. The refinements lie only on side 0.
The data of" over 0 defines a moduli space of unparameterized stable relative maps,
Mo = Mg, no(Ro, Rs),
as in Case |. The data of overoo determines a product of moduli spaces,
Mo = 1_[ M, () valv)- (5)

VeV

Here, the valence val) of a vertex counts both the incident edges and incident markings.
The unstable moduli spacéfo 1 andM > arising in the product {5) are viewed as points.
Let Mt be the producdfy x M. The moduli spac@/ has a virtual class

[MF]V" — [Molvir x [Moo]s

determined by the product of the virtual class of the first factor and the ordinary funda-
mental class of the second factor.
There exists a canonical family ovéf and a canonical map

— —t
i M — Mga(ut. ... 1™
equivariant with respect to akr-action exactly as in Case I. A closed immersion
— —t
r/Ar . Mr/Ar — Mg,n(ul, co ™)

is obtained.
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We define the multiplicity and the Euler class of the virtual normal bundl& gfin
Case Il by

1 1 —t 1
m(T) = 8(e), — = - .
Ll e(N}") tu——w%>£l(—oﬁwawﬂ/aaﬁdULszw>
The vertex termsl (v), are discussed below.

__ Avertexv € Voo is stibleif 2y(v) — 2+ val(v) > 0. If v is stable, the moduli space
M, @) valv) IS a factor ofM .. The vertex termvV (v) is an equivariant cohomology class
on the facto,, ) vaiqw) in the stable case.

elLetv € V, be astable vertex. Let, . . ., ¢; denote the distinct edges incidentitin bi-
jective correspondence to a subset of the local markings of the modulim_ga(gg\,a“v).
Lety; denote the cotangent line of the marking @orresponding te;, and leth; denote
the Chern classes of the Hodge bundle. Then

1 1 l 1 y () ) o
o == U sy = 200

j=0

If v € V is an unstable vertex, thenv) = 0 and va{v) < 2. There are three unstable
cases: two with valence 2 and one with valence 1.

e Letv € V,, be anunmarkedvertex withy (v) = 0 and va{v) = 2. Lete1 ande; be the
two incident edges. Then

1_i_ 1
N@w) —t —t/8(e1) —t/8(ex)’

e Letv € V, be a 1-marked vertex with(v) = 0 and valv) = 2. Then

1 1

N@ -t

there are no contributing factors.

e Letv € V, be anunmarkedvertex withy (v) = 0 and va{v) = 1. Lete be the unique
incident edge. Then
1 1 -t
N@w) —t 8(e)
A degenerate configuration may arise over 0 in Case Il. The treatment exactly follows the
discussion in Case |.

Case lll. The refinements lie only on side.

The treatment of Case 11l exactly follows the discussion of Case Il with the roles of 0 and
oo interchanged (andreplacing—¢ in all the formulas).
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1.3.5. The localization formula. The localization formula for the virtual class of the
moduli —t 1 s
0 U|spaceMg,n(M N A B

. o m@T)  ([Mr]"
[Mg ot ... """ =XF: Ar] rr*(e(N\F/ir)>’ ©

in localized equivariant Chow theory.

1.3.6. Firstapplication. The localization formula immediately yields the following im-
plication.

Lemma 1. Theoren?(i) is a consequence of TheoraXtii).

Proof. Let w be the canonical equivariant lift of a relative Gromov-Witten class on the
parameterized moduli spaﬂ_é;,n(ul, ..., u™). By the localization formuleﬂG),

vl 1 mNvir m(I") ( ) =7 vir)
" M R = " : M , 7
px(@ N [Mg o (1 w1 EF Anl T (NI N[Mr] ()

wherepr = p o Tr.

We now analyze thé term on the right side of {7). The spal#- is a product of un-
parameterized moduli spaces of stable relative maps and moduli spaces of stable curves.
The clasg i (w) is composed of Gromov-Witten and tautological classes on these factor

spaces (together with powers0f Similarly, the expansion of/}:(N‘r’") is composed of
Gromov-Witten and tautological classes (together with powerk bfence, by Theorem

2(ii), the equivariant term
(@) =7 vir>
— N [M
pr*(e(Nll/'r) [Mr]
is a series i with coefficients in the tautological ring of the targetwf
The nonequivariant limit of the push-forward

pale O Mg s - ™)

is obtained from the® coefficient of the right side of [7). o

2. Theorem 2(ii)
2.1. Overview

We obtain basic relations constraining thepush-forward of relative Gromov-Witten
classes on the unparameterized spaces from the localization formula on parameterized
spaces. The relations are proven to recursively determine all pluish-forwards in terms
of tautological classes on the targetwof

For the proof of Theorem 2(ii), we will require relations for the disconnected case.
However, for ease of presentation, we first discuss the connected case. The disconnected
case follows with minor modifications.
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2.2. Basic relations I: The connected case

2.2.1. The sefl(d, n, k). Letd andn be integers satisfyind > n > 0. Letk > 0 be
an integer. A partially ordered partition

a=(x,a)
of degreal and order: consists of the following data:
(i) an ordered partition with (positive) parts of an integer of size at mdst

n
(X:(alv~"aa}1)7 Zalida
i=1

(i) an unordered partition’ (with positive parts) ofl — >, «;.
The partitiono’ may be empty. Lef(&) denote the length af,
La) = L(@) + L) =n+ ).

LetT1(d, n, k) be the set of partially ordered partitions of deg#ieerdern, and length at
leastd — k. Our basic relations in the connected case will be indexed @i n, k).
The setll(d, n, k) is stable fork > d — n:

I(d,n, k) =T1(d,n,d — n).

LetI1(d, n, o) denote the stabilized set.

2.2.2. The push-forward constructionLet ¢ > 0 be the domain genus and kete
I1(d, n, k). We will construct a relation

Tea(uts ... u™ | y),
where:
(i) ul, ..., w" are partitions of,
(i) yisa monomiaﬂ;/=1 Y UTTIy W) -
The relationT will be obtained from equivariant localization on

Mg ooy - ™), (8)

wherea” is the (possibly empty) subpartition af consisting of parts of size at least 2.
We will use the abbreviated notatial_rtiT for the moduli space of stable relative ma@s (8).
The moduli spacefWT carriesn + £(a”) + n’ markings of typep indexed by the

following conventions:

(i) let p; denote the first,
(ii) let p;» denote the middlé(«”),
(iii) let p; denote the last’.

Let the middleZ(a”) markings be placed in correspondence with the paras’ of
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Define the equivariant relative Gromov-Witten clasen the moduli spacﬁJr as a
product of four factors:

(') p

al,—1 .
[T vo "y, (oo -y - (ev, ([0]) @43,
i//zl

o=[]vs " ev: (oo]) -
i=1
wherey is the monomial in the argument &f. The degree ob is

n' m
k+n+ ") +er +Zsj +2.
= =

Since the virtual dimension GITIT is

m
26 —2+2d +n+ L@y +n'+ ) L+1w) —d),
i=1

the dimension of» N [M ]V is

2g—2+2d+n/+§:(1+l(lli)—d) - <k+ir/ +§:SJ +2)-
i=1 j=1 j=1

The moduli spacez;_/IJr carriesn + £(a”) +n’ + Y, £(u') total domain markings. Let

vl -
p” M — Mn+n’+z,'~"=ll(/ti)

be the stabilization map obtained frgenafter forgetting the markings corresponding to
a”. Since the class éw([0]) occurs inw with total exponent at least 2, the nonequivariant

limit of w is 0. Hence, in the nonequivariant limit, the push-forwatdw N [MT]"")
vanishes: e .

p;/(w n[m ]VIr) =0¢€ A*(Mg,n+n’+Z;":1/é(ui))' 9)
The left side of[(P) can be calculated by the localization fornula (7)wAsa nontrivial

equivariant class, equatiopn] (9) yields a nontrivial relation after localizing and taking the
nonequivariant limit,

Tea(u', ... 0™ ly) =)

r

m(T") " fl:k(w) a7 vir)
- M =
|AF|I0F*(e(Nl‘1”) N[Mr] 0,

wherep. = p” o 1.

2.2.3. The principal terms &f. A localization graph" corresponding to a fixed locus
of M is of types € I1(d, n, k) if the following properties are satisfied:

(i) the vertex se¥; consists of a single vertex of genusg, .
(i) the edge sek is in bijective correspondence to the3) parts ofs,
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(ii) the vertex setV,, consists of(j) vertices each incident to a unique edge,
(iv) then + £(a”) + n’ markings of typep are distributed by the following rules:
(a) the first» markings lie overc with theith marking incident to the vertex corre-
sponding to théth part of the first partitior of S,
(b) the second(a”) markings lie overo on distinct vertices incident to the edges
corresponding to the parts of the second partioof 3,
(c) the thirdn’ markings are all incident top,
(v) all refinements lie on side 0.

Let I'; denote the set of localization graphs of typeSinceg > 0, the localization
graphsl” € Iz areneverdegenerate over 0.

The principal terms of the relatiorf” are indexed by partially ordered partitiofise
I1(d, n, k). The principal term of" of typeg is

_ I * —
Tpatd . w A = 3 20 (TF(“)) ﬂ[MF]V">-

r .
Felg ARl e(N},"r)

We may compute the principal term @S},&(ul, ...,u™ | y) of type B explicitly. How-
ever, we must define a functia$a”"](8’) which arises naturally from the localization
formula.

Leta” andp’ be two unordered partitions. Select an ordering of the parts,

CY// = (Ol:/l_/, ey (Xg(a//)), ﬁ/ = (ﬂ:/l.’ ey ﬂé(ﬂ/))
Define the integer sets & ¢ andi = {1,...,i} for eachi > 1. Define the function
S[a”1(B") by the following rules:
(i) if £(@”) > ¢(B"), thenS[«"](B)) = 0,
(i) if £@”) < £(B), then

L@”) 1 1

S[O{”](ﬂ/)z Z H — 1 1_[ F

cl@ =B j=1 (ﬂ[(j)) J i¢im@ Pi

is a sum over all injections: £(a”) — £(B).

The functionS[a"](8") depends only upon thenorderedpartitionsa” andp’.
Let M(B) denote the moduli space of unparameterized maps,

MB) =My B, 1t ... ™),

with markings of typeg indexed by 01, ..., m. Define the standard Gromov-Witten
cIass«uf; on the moduli spacé/ (8) by

ap =g,
The degree ob; is

n' m

er—i-zsj +€(B) —d +k.

=1 =
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Since the dimension o¥ (B) is
26 —2+2d+n + A +L(B) —d) +i(1+z(,ﬂ) —d) -3,
=1
the dimension ofo; N [M(8)]" is
2g —2+2d+n’+zm:(1+l(,ui) —d) — <k+i;rj +f:1sj +2),
J= J=

i=1

equal to the dimension @ N [3']"".
A direct application of the localization formulg](7) yields the following result.

Lemma 2. The principal term ong@(ul, ..., 1" | y) of typeB is

a;—1
i=1P;

n 1 , _ o )
(1"[ p S[a"1(B) (=1 P n(ﬂ)) - ol (s N MBI,

wheren(B8) is the nonvanishing factor

1 n 1 140:8) 1
|Aut(8")| 11 1)k il /Bl 11 G AN

2.3. Basic relations II: The disconnected case

2.3.1. Thesell(d, n, k). Letd = (d,...,d.) be an ordered degree partition, and let

Letn = (n1, ..., n.) be an ordered set partition affor which
di > |ni| >0
foralli. Letk > 0 be an integer. A partially ordered partition
a = ((«[1], &'[1]), ..., (a[c], &'[c]))
of degread and ordein consists of the following data:

(i) ordered partitions withn;| (positive) parts of integers of size at mast

n

alil = @[ils, ..., alilp), Y elil; < di,

j=1

(i) unordered partitiong'[i] (with positive parts) ofl; — 27:1 ali];.
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The partitionsx/[i] may be empty. Let(«) denote the length af,

0@ =y (i) + L@i]) =n+ Y t@'[i]).

i=1 i=1

LetT1(d, n, k) be the set of partially ordered partitions of degdeerdern, and length at
leastd — k. Our basic relations in the disconnected case will be indexdd (ol n, k).
The setll(d, n, k) is stable fork > d — n:

T(d, n, k) = 1(d, n, d — n).

c

LetI1(d, n, oo) denote the stabilized set.

2.3.2. The push-forward constructionLetg = (g1, . .., &) be an ordered set of genera
where not allg; are 0. Letx € I1(d, n, k). We will construct a relation
Tga(u's ... 1" | y),

where:
(i) ut, ..., w™ are partitions of type,
(i) y is amonomialTj_; vy, U TTjy v -
The relationT will be obtained from equivariant localization on

—t

Mg’n+€(a//)+n/(,ul, ey [;Lm), (10)

wherea” is the (possibly empty) subpartition @&'[1], ..., «’[c]) consisting of parts of
size at least 2. The last markings of typep are distributed on the domain components
by n’. As before, let?' denote the moduli space of stable relative m (10).

Define the equivariant relative Gromov-Witten classn the moduli spacﬁJr asa
product of four factors:

L@"liD

= |ni‘ i]j— o"[in—
o =TT(TTws™ ey, @b TT w3, e, tocD)
i:]- j:1 j//=1
Y- (evgl([o]))2+é(&)—d+k’ (11)

wherey is the monomial in the argument &f.

The dimension calculus proceeds exactly as in the connected case (replacing the con-
nected genug by the arithmetic genu®_;_; g¢; — ¢ + 1 in the disconnected case).

The moduli space_/fr carriesn + £(a”) +n' + Y, £(u') total domain markings.
Let

c
il —
piM HMgf,ln,-\+In,’-|+2;”:le(u.f[i])

1=
be the stabilization map obtained fromafter forgetting the markings corresponding
to «”. As before, the push-forward vanishes in the nonequivariant limit,

PN [M']) =0, (12)
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The left side of[(IR) can be calculated by the localization fornjyla (7) to yield the relation

TyaGitseo w1y = 3 D) f/(’F(“?) MV">=0.
ga(nts . 1" y) 21—:|AF| Pl e(N\F,.,)ﬂ[ r]

2.3.3. The principal terms &f. A localization grapH" corresponding to a fixed locus
of MT is of typeB e T1(d, n, k) if the following properties are satisfied:

(i) the vertex seVy consists of verticesy o, . . ., vc,0 With genus assignmengs, . . ., g.
respectively,
(ii) the edge seE is in bijective correspondence to the3) parts off,
(iii) the vertexwv; g is incident to the edges corresponding to the part®pfl, 8'[i]),
(iv) the vertex seV,, consists of () vertices each incident to a unique edge,
(v) then + £(a”) + n’ markings of typep are distributed by the following rules:
(a) the markings:; lie over co with the jth marking incident to the vertex corre-
sponding to thegth part of 8[i],
(b) the middleZ(«”[i]) markings lie ovepo on distinct vertices incident to the edges
corresponding to the parts gf[i],
(c) the markings:; are incident ta; o,
(vi) all refinements lie on side 0.
LetI'; denote the set of localization graphs of tyheSince not all; are 0, the localiza-
tion graphd” € Iz areneverdegenerate over 0.

The principal terms of the relatiorf” are indexed by partially ordered partitiofise
I1(d, n, k). The principal term of" of typeg is

_ r .
Toalid i IR = 30 ) ( O g r]V”).

e, 1Ar (N

The principal term otrg,&(ul, ..., 1" | y) of type 8 may also be explicitly computed
from the localization formula.
Let M(B) denote the moduli space of unparameterized maps,

M@PB) = Mgy B, 1t ..., k"),

with markings of typeg indexed by 01, ..., m. Define the standard Gromov-Witten
classwj on the moduli space/ (8) by

wg=1y- I/fé(ﬂ) d+k

A direct application of the localization formulg] (7) yields the following result.
Lemma 3. The principal term ong,&(ul, ..., 1" | y) of typep is

c

|n
H<H (Blil, )a[z -1 ST (B'[i]) (— 1)l +HEETD n((ﬁ[i],ﬂ’[i]))>

-l (wz N[M(BI'™).
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2.4. The matrixv

LetM(d, n, k) be the matrix with rows and columns indexed by the_l'ssei, n, k) defined
by the prefactors of the principal terms of the basic relationsof-@r € T1(d, n, k), let
the element oM (d, n, k) in position(a, B) be

c |ni| 1 .
I1 (1"[ — g Sl T BT (D" T g, ﬂ’[i]))),
i=1 \j=1 (Bli] ™y

the prefactor of the principal term 6575[(#1, ..., 1" | y) of typep.
Lemma 4. M(d, n, k) is invertible.

Lemma[4 will be proven in Sectidrj 3. The nonsingularityMtd, n, k) plays a funda-
mental role in our proof of Theorem 2(ii).

2.5. Proof of Theorem 2(ii)

2.5.1. Overview. Letﬁg,n/ (ul, ..., u™) be amoduli space of stable relative maps with
¢ domain components, degree partitthrand total degreé. Letw be a relative Gromov—
Witten class onVg (ul, ..., WM. Let ps(w N [M]VT) denote the push-forward

pe(o N [Mgn(ut, ... w™]"").

We must provep, (w N [M]V") is a tautological class on the targetcf
The proof consists of a multilayer induction using the basic relationd’e will prove
the result for each total degrdeseparately. The proof will follow the notation of Section

23.

2.5.2. Genus induction. Since all algebraic cycle classes on products of moduli spaces
of genus 0 pointed curves are tautologi¢al [K], the clagg» N [M]Y") is certainly tau-
tological if all the domain generg are O.

We will proceed by induction on the arithmetic genus

g@=) gi—c+1
i=1

of the domain curve. The smallest value for the arithmetic genugis 1, which occurs
when the number of domain components eqdagsxdg = (0,...,0),d = (1, ..., 1).
The base case of the genus induction holds as all domain genera in the base case are 0.

2.5.3. Induction on the markings.We now induct upon the number of markingsof
typeq. We first establish the base case= 2. In fact, all aspects of the proof of the full
result are manifest in the base case. We will also induct on the nusthbémarkings of
type p. The induction on typg markings is straightforward and plays a very minor role.
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Let g be a genus distribution with not all genera 0, andliee a degree distribution.
Let a partitionu? of typed and a relative Gromov—Witten class

n/
y=[]vyv
j=1
be given. Letn have cardinalitiesn| = (1, ..., 1). We will first consider all basic rela-
tions
Tga(n' | ¥), (13)

wherea € TI(d, n, k). Let us analyze the terms of the relatiops|(13). Cete a local-
ization graph. Since gv([oo]) occurs |n u) for all the first + £(«”) markings of type
p, only graphd” for which these markings lie oveo contribute nontrivially to the basic
relations. Similarly, since €y([0]) occurs |n u) only graphE for which R? lies on
side O contribute.

As there are no refinements on siste we are in Case |l of the localization formula.
We find M = Mg x M, Where

Mo = Mgo,%(Rl, Rs)
and M, is simply a product of moduli spaces of pointed curves. If

g(go) <g(@ or ny<n, (14)

then the localization terms over 0 Bfpush forward undep” to tautological classes by
the induction hypotheses on the genus and the marking numbEre localization terms
overoo certainly push forward to tautological classes.

The graphd” satisfyingg(go) = g(g) have only genus 0, edge valence 1 vertices
overoo. If ny = n’, only the firstn + £(«”) markings of typep lie over co. Of these,
the firstn markings are distributed on the different connected componenis sifice
In| = (1,...,1). Since all the parts of” are at least two, the secoritx”) markings
of type p trivialize the contribution of" if anyvertex of marking valence greater than
1 occurs ovepo. An ordered partitiors is obtained fronT" from the edge degrees. By
dimension considerations, the contributiorlois trivial unlessg € I1(d, n, k).

We have proven that for contributing graghseithercondition [(14) holder I' € I'.
Therefore, the nonprincipal terms of the basic relatipn$ (13) all push forwara"via
tautological classes.

The principal terms of the basic relations|(13) taken fovadl T1(d, n, k) determine
a nonsingular matrix of prefactors by Le 3 Ehd 4. We conclude that, fgr all
Ii(d, n, k), )

Pl - WP~ My (B, ] (15)
is tautological in the target moduli of curves. By considering the clagsgs (15) kor-afl,
we find, _

P (N [Mgw (B, uhH]"") (16)
is tautological on the target for all relative Gromov—-Witten clagsaadp € I1(d, n, 0o).
We have exhausted the basic relatigng (13) for the elemest (1, ..., 1).
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If d = (1,...,1), we have completed the = 2 induction base sincg = p”.
However, ifd has parts of size greater than 1, thent p” for generalg. To proceed,
consider an augmentation

Inl=(,...,1,2,1,...,1),

subjecttad; > |n;| > 0. We will exhaust the basic relations for the augmemtéd/e will
repeat the cycle of augmentation and exhaustion until afitisfyingd; > |n;| > 0 have
been considered.

We repeat the entire argument for the augmentethe argument is identical except
for one important difference. For graphssatisfying

g(go) = g(@). np=n',

the firstn markings of typep may not be incident to distinct vertices ovev. However,
the graphs which contain common incidences yield tautological push-forwards by the
analysis folower n. After each cycle of the analysis, we conclude that

Pl (@ N [Mgw (B, pH]'") (17)

is tautological in the target for all relative Gromov—-Witten classesdp < I1(d, n, 0o).
Them = 2 base case is proven.

2.5.4. The fullinduction. The full induction exactly follows the argument for thee= 2
base case. Let > 3.

Let g be a genus distribution with not all genera 0, andllée a degree distribution.
Let partitionsu?, ..., w1 of typed and a relative Gromov—Witten class

n' m—1
r si
y=[Tvsu]lvg
j=1 j=1
be given. We consider the basic relations

Tg,&(Mls ] /’Lmil | )’), (18)

wherea € T1(d, n, k).

Let I' be a localization graph. As before, only graphgor which the firstn +
£(a”) markings of typep lie overoo contribute nontrivially to the basic relations. Since
eV, ([0]) occursiin ), only graphs for which R lies on side 0 contribute.

If there are refinements oves, then we are in Case | of the localization formula. We
find M = Mo x Mo, Where

MO = Mgo,né,(RO’ Rs), Moo = Mgo,né)(RSv ROO)

Since the grapi™ has at mosin — 2 refinements on sideo, both My and M, have
strictly lessthanm markings of typeg. The localization terms over O ard of I' push
forward underp” to tautological classes by the induction hypotheseson
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If there are no refinements oveo, we are in Case |l of the localization formula.
We then exactly follow the augmentation and exhaustion argument of the base case to
conclude that _
pl (N [Mgw (B, ut. ... " D] (19)
is tautological on the target for all relative Gromov—Witten clagsasdg < I1(d, n, 0o)
for all n subjecttad; > |n;| > 0. The induction step is therefore established and the proof
of Theorem 2(ii) is complete. O

2.5.5. Effectivity. The argument of Theorem 2(ii) yields an effective procedure for cal-
culating the class of the push-forward

px(w N [M]') (20)

in the tautological ring of the target.
To establish the procedure, we must only check the push-forfvafd (20) can be effec-
tively determined if
g=(,...,0, (21)

the base case of the genus induction. In fact, the argument of Theorem 2(ii) applies with
almost no modification to the base cgs¢ (21). A minor issue is the possibility of degenerate
data over the fixed point O (for which the dimension formula is not valid). We leave the
details to the interested reader. The outcome is a procedure for calcylafing (20) in the base

case[(21L).

Theorem 2(i) is then also effective. The push-forwagdw N [HT]V") is express-
ible by localization in terms of the push-forwards of relative Gromov—Witten classes on
unparameterized spaces.

2.5.6. Computations. Although we have established an effective procedure for calculat-

ing the classes of the push-forwaggwN[M]V") andp, (a)ﬂ[ﬁT]V") in the tautological

ring of the target, the procedure may not be practical. The basic reason for the difficulty
is the explosive growth in the number of additive generators of the tautological ring of
the moduli space of curves as the number of markings increases. For example, in the case
of the hyperelliptic locus, the number of additive generators of codimensidorZhe
tautological ring ofﬁg,gﬁz is huge already fog = 2.

Our purpose here is to illustrate how one can use the main result of the paper in
combination with auxiliary results to obtain explicit formulas for certain classes.

By [GrP2, Prop. 11] additive generators for the tautological ring of the moduli space
of curves are obtained by taking arbitrary strata, corresponding to stable graphs, and con-
sidering the push-forwards of products of arbitrary monomials in the cotangent line and
k classes on the vertex moduli spaces. As explaingd. in [AC], the pairings of such genera-
tors with monomials in the global, A, andyr classes of the dual degree are easily written
as sums of products of integrals on the vertex moduli spaces. By the Witten—Kontsevich
theory, these integrals can be evaluated explicitly. For low genus, the computation of such
pairings is practical.
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The null space of the pairings of the additive generators of a given degree with mono-
mials in thex, A, andy classes determines a space of possible relations among the gener-
ators. Often one can show (by a variety of methods) that these possible relations are actual
relations, so that one obtains a basis for the tautological classes of the given degree. Then
the only auxiliary information necessary to expresatdologicalclass in terms of the ba-
sis is the evaluation of the pairings of the class with monomials iw theandy classes.

As a concrete example, considéiE ., the hyperelliptic locus i/ ;. By Theorem 1,
the class oﬁg lies in the tautological ring. In genus 3, the class of the divigdrs is
well known: _

[HE3]p = 911 — 80— 3681
(see[HM]). Here, we use the stack clagsl ;] o (see[M]). We will compute f/ E4] o.

To begin with, by symmetry and divisor relations in low genus, one finds 14 generators
for R2(M4): Klz andx, from the open stratum, the push-forwardsgfindy- from Mg,g
to Ao, the push-forwards ta\; of k1 andi1 on the genus 3 vertex, the push-forward to
A» of ¢r1 on a genus 2 vertex, and the seven strata of codimension 2.

The classe:'zal2 and«y are known to be proportional iR2(M4). Hence there is a re-
lation in A%(M 4) with an undetermined boundary term. The codimension 1 Chow group
of a boundary divisor oM, is tautological. Thus we get a relation R¥(Ma). By inter-
secting with sufficiently many monomials inanda classes, the relation is identified and
shown to be unique (so di®?(M4) = 13). Seel[F] for an alternative derivation.

By our results in[[FP, §4], the pairing of{E ] o with an arbitrary monomial ir and
A classes can in principle be evaluated. We have calculated the pairinggﬂ_ﬂr,tw for
arbitrary monomials i classes and two monomials containing a sirigleThe matrix
of pairings of these monomials with a basisR#(M4) has rank 13, so the class BfE 4
can be computed.

Proposition 5. In genus4,
2[HE4] o = 27k2 — 3392 + 641180 + 901181 + 62182 — 83
—88081 + 158% + 66162 + 98% — 4500 — 6y1 + 3501, — 36511.
The strata notation of [F] is used in the above result.

3. Nonsingularity
3.1. Overview

Let A(d, n, k) be the matrix with rows and columns indexed Iiyd, n, k) with the fol-
lowing coefficients. Fop, g € T1(d, n, k), let the element oA (d, n, k) in position(p, g)

be
c < |ni] 1 ,
Sl D ).
U G
The matrixA(d, n, k) is obtained fronM (d, n, k) by transposition followed by a rescal-

ing of the rows and columns. We will prove Lemfrja 4 by establishing the nonsingularity

of A(d, n, k).
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3.2. Nonsingularity foll1(d, n, k)

3.2.1. Overview. We will start by proving the nonsingularity & in case the index set
isTI(d, n, k).
Lemma 5. The matrixA(d, n, k) is invertible.

The nonsingularity oA(d, n, k) will be a direct consequence of the proof of Lenfma 5.

3.3. The functio'[¢”](p")
In order to prove Lemma 5, we will require an auxiliary matrix. lpgtandq” be parti-
tions with parts of size at least 2. Define the functidg”](p”) by the following rules:
() If £(g”) > £(p”), thenT[q"1(p") = 0.
(i) If ¢(¢") < £(p"), thenT[q"](p") is a sum over all injection8 : ¢(q”) — £(p").
For such an injection, let
v(@) = Hj et q/ = py) =2l
Then
e<q”) p// N — 1 " "
Tl = Y, 29 ]] ( o >(—l)"f' gy,
j=1

14
0:0(g" )= E(p") q; —1

Let p,g € TI(d,n, k). Let p” andg” be the subpartitions op’ and g’ respectively
consisting of the parts of size at least 2. gt be the subpartition op” consisting
of parts at least 3.

Let B(d, n, k) be the matrix with rows and columns indexed by the Bét, n, k)
with coefficient

1 " - pj—1 _\gi=1.Pi=2\ M
IAut(p”) | |Aut(q")] l;[ Ph H ' T] ((qj _ 1)( DU q; ) Tlq"1(p"),

i j=1

in position(p, g).

3.4. Anorder oli(d, n, k)

We order the sefl(d, n, k) in the following manner. Lep andg be distinct elements of
I1(d, n, k). We assume the parts of the subpartitipfi|andg” are arranged in increasing
order. Therp precedeg if and only if

e(p”) < tg"),or

L(p") = £(q") andp” precedeg” in the lexicographic order, or
p’ =q" andé(p’) > £(q"), or

p' = q’ andp precedeg in the lexicographic order.

We write p < ¢q if p precedeg in the above order ofl (d, n, k).
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3.5. Proof of Lemmp]5
DefineC(d, n, k) by
C(d,n, k) =B(d,n, k) -Ald,n, k).
Lemmd% is an immediate consequence of the following result.
Lemma 6. The matrixC(d, n, k) is upper triangular withl's along the diagonal.

Proof. Recall the well known identities

n

3 (Z)(—l)kk” —0, O<a<n-1,

k=0
and

n

n x 1 1
Z<k>(—l) (k+1) =TT n > 0.

k=0
To prove these identities, consider the function

fo=>" (Z)(—l)" F—@-n.

k=0
The first identity is obtained by the evaluation (mf%)“f atr = 1, and the second is

obtained by computing‘o1 f@)dt.
Let p, 7, p, andr be integers satisfying > 7 > 1 andp > 7 > 2. Further, let
8(x,y,z) = 1whenx = y = z, and 0 otherwise. We will need four closely related sums:

5 .
. p—1 1epl1—F 0, F<p,
() : ( )( 1)4- p = -
{; qg-1 1/p, 7=p;
Porp—1 p >3
B) : Z(p 1)( 1)!1 1, P 3938(2.5.9) _ : p =
=1\~
p A
p—1
B : Z( _1)< - 1”2‘“2’””:: b=
G=1\4 p=
N S F<p,
2K (@ _ 1)(—1)4‘14"‘1"2“2"*4) - o, F=p=2
g=1 1/p, r=p=>3.

Let p andr be elements of1(d, n, k). The matrix elemen€(p, r) is given by
C(hp.N= Y.  BGPAG.H

GeTl(d,n,k)
[Tean 10 (( ) 1P r-> Tl o pe
=——" 1 4qj— 7 / —_— .9 . 22
AUt(p")] Zq:l_[ (=D% " Ay Sr@- @

We must show:
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(i) C(p,r) =0if r precedep in the order or1(d, n, k),
(i) C(p, p) =1forall p.

Let7 < p with respect to the order ofi (d, n, k). The prefactof | p, [ p!”/|Aut(p”)]
plays a role only in the normalization of the diagonal elements (ii). We will first concen-
trate on the main sum in formula (22) f6x p, 7): a triple sum over partially ordered par-
titions g, injectionsd : £(q") — £(p") via T[¢"](p"), and injections : £(r") — £(q")

via S[r"](¢").

The key step in the proof is to recognize that the main surp ih (22) can be written in
terms of products of the sungs), (8), (8"), and(y) discussed above. The products have
n + |p”| factors. We will define and analyze the products in stages.

We first consider the cage’ = ¢1. We will write the sum|(2PR) as a single product with
(o) by (pi,qi,ri) for 1 < i < n. As g; varies in the range ¥ ¢; < p;, all possible
choices of the ordered partitian= (q1, ..., g»), in the partially ordered partitiof =
(¢, q") indexing [22) occur, ag does not contribute td (22) if there existsafor which
qi > Di-

Sincep” = ¢, we find that forg to contribute to[(2R), the equality’ = ¢ must hold.

By the ordering < p, the equality” = ¢ must hold. The sum ovey, , and: is then just

a sum ovey;. The partially ordered partitioq is given by the choice of = (¢1, ..., gn),

for ¢’ then consists of — }_ ¢; parts equal to 1. We conclude that the main sun of (22)
equals the product of thesums of typd«).

The product of the sums vanishes if there existsafor whichr; < p;. Sincer < p
andr” = p”, we find|r'| > |p'|. HenceY " _;r; < >_! 4 pi. For a nonvanishing prod-
uct,7 = p is then necessary. In the diagonal case, the product eflfalg1/p;), which
is exactly cancelled by the prefactor to yield the matrix element 1. We have completed
the analysis of the cage’ = ¢.

We now consider genergd’. Letm = £(p”). We will analyze associated products
with n factors of typg(«w) andm additional factors, each of ty@@), (8’), ory. The firstn
factors are obtained as before by repladifigg, 7) in the formula for(«) by (p;, gi, ),
for 1 <i < n. Let them upper bounds of the last sums be denoteghy. . ., p,,, and let

them index variables for the sums lge, ..., .. The precise forms of the last sums
will be specified below.
Let p; = p} for 1 < i < m. The choice of then index variablegjs, . . ., ,, exactly

corresponds to the choice ofzacontributing to [(ZRXogetherwith an injectiond, up to
automorphisms af”. More precisely, as the index variables of the firsums determine
q = (q1, ..., qn), the unordered partitiop’ consists ofj, ..., ¢, and

n m
d— Z%‘ - Zflj
-1 =

parts equal to 1. Clearly,” consists then of thosg that are at least 2. Finally, thyesuch
thatg; > 2 determine In®), ando itself is uniquely determined up to automorphisms
of ¢”.
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Let us analyze the factdi{r”’](¢’). Letg* denote the subpartition gf consisting of
q1, - .., gm. Fixaninjection : £(r") — £(q’). Suppose of them parts ofg* lie in Im(1).
e(r//) 1

The summand
1
1_[ PN H Z
i=1 (q,;y)"7 i¢im@ i

of S[r"](¢") corresponding te can, in first approximation, be accounted for by taking
m — ¢ factors of type(8) andc factors of type(y). The lastc factors correspond exactly
to thec parts ofg* in Im(¢), and the constanisin the factors are set to equal the paa/‘.ts
Given:, we have defined an initial product @f+ m factors of type(e), (8), and(y).
However, the terms of the product do not properly account for all the dataTdie
difficulty is that while: specifies the subinjection of tli¢r”) — ¢ parts ofr” to the parts
of ¢’ noting*, the terms of the defined product do not.
We must alter the product in order to properly account fdte partitiong’ consists

of ¢* and ; "
e=d=Y a3
i=1 j=1

parts equal to 1. The number of subinjections of the remaifint) — c parts ofr” into
thee parts ofg’ not ing* equals

el/(e— L") + o).

By giving such a subinjection in addition to the other data, the injeatisressentially
determined. To be precise, by the choice déctors of type(y), the choice ot corre-
sponding partsj’/, and the choice of a subinjection of the remainiitg’) — ¢ parts ofr”
into thee parts ofg’ not ing*, the injection is uniquely determined up to automorphisms
of thec chosen partsj’/.

Consider thee! /(e — £(r"") + ¢)! subinjections into the parts ofg’ not in¢*, with

n m
e=d-320-3%
i=1 =1

A crucial observation is the following: we can take account of the subinjections by slight
modifications of the factors of typer), (8), and(y). Namely, after expanding /(e —
£(r") + ¢)! we find a polynomialf of degreet(r”) — c in g; andg;. Eachg; raises the
exponent ofy; in theith factor of type(e) by 1. Similarly, eachy; raises the exponent
of g; in the jth factor of type eithe(g) or (y) by 1. After raising, a factor of typ€s)
becomes a factor of typg’).

Starting with an injection, we have obtained, by expanding a sum of products.
Each product consists of factors (possibly raised) of typ@s(8), and(y). The sum of
products defines a subsum of

2 pPj — 1) -1 qj—l Pj_l_rj> . T[q”]([)”) .S 7 /
Z]Ul«qj REV Aty U@

q
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For example, the factor’® in T[¢”](p") has been rewritten as a product of the factors
25@2.j-4j) occurring in the (possibly raised) surg®) and(y).

We may now finally establish the required vanishing and nonvanishing. Bircg,
we have

Ly < e(p”) =m.

The initial product obtained fromhadn factors of type(«), m — ¢ factors of type(B),
andc factors of type(y). Every factor of typg8) vanishes. Every such factor must be
raised for a nonvanishing contribution. The maximum number of raisings'i$ — c¢. So
for nonvanishing{ (") = m is required. Moreover, every factor of ty|§8) becomes a
factor of type(B8’) with a minus sign. The product aeffactors of type(«), m — ¢ factors

of type (B’), andc factors of type(y), the unique possibly nonvanishing contribution,
appears with a coefficierit-1)"~¢(m — c)!.

Sincel(r”) = £(p”), the partitionr”” must precede” in the lexicographic order. So
for every part ofp” equal to 2, there exists a part:dfequal to 2. To obtain a nonvanishing
contribution, each such part pf’ must come with a factor of typg’). Considering the
parts ofp” equal to 34, 5, . .. successively, we find a nonvanishing contribution requires
that each such part come with a factor of type and an equal part of . Thus,r” = p”.
Arguing as in the caseg’ = p” = @, we find that a nonvanishing contribution requires
7 = p. We have proven the required vanishing whea p.

For the diagonal elements, assume: p. The only nonvanishing contributions arise
by exactly matching every part @f” with an equal part of” (via the element of’ in
the corresponding factor of tyge)), inserting a factor of typ€g’) for each remaining 2
in p”, and mapping the 2's ir’ to the 1's ofg’ not ing*. The number of automorphisms
of the ¢ chosen partg/ may be identified withAut(p”")|. The factor(m — c)! may
now be identified with the number of permutations of the 2's. Multiplied together, these
factors yield|Aut(p”)|, cancelling the denominator of the prefactor of the matrix element
C(p, p). Finally, the factor—1)" ¢ cancels the contribution of the — ¢ factors of type
(B'), and the numeratdr] p, [] p}” of the leading factor cancels the contribution of the
factors of type(w) and(y). We concludeC (p, p) = 1 for all p. O

The lower bound! — k for the length of partitiong in I1(d, n, k) does not play a crucial
role. In fact, Lemma§]5 ar[d 6 hold for the submatriced\@f, n, c0) and B(d, n, 00)
indexed by any subsé& of T1(d, n, co) for which

M; ={g eTld,n,o00):q < p, 14" —t@") q" <p’}

is contained irg€ for all p € E. The proof is obtained simply by analyzing the vanishing
of entries ofB(d, n, oo) forced by the definition of the matrix (and the definitionTof

For Lemmag$p and| 6, the sBtshould be closed under the operation of lowering the
parts of a partially ordered partition, necessarily making up for this by adding parts equal
to 1 to the unordered partition. Clearly, the subdétd, n, k) satisfy this condition for
allk > 0.
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3.6. The nonsingularity ok(d, n, k)

The nonsingularity oA (d, n, k) is immediate when

.
k>d=>"|nl,
i=1

for then the matrix is the Kronecker product of the matriggd;, |n;|, d; — |n;|). For
smallerk, certain rows and the corresponding columns are omitted and the resulting ma-
trix is not necessarily a Kronecker product. However, for eache setll(d, n, k) is
closed under the operation of lowering the parts of some of the constituent partially or-
dered partitions and compensating by adding parts equal to 1 to the corresponding un-
ordered partitions. From the remark at the end of 3.5, the method of proof of Lemmas 5
and 6 still applies.
The nonsingularity oA(d, n, k) is established and the proof of Lem[ja 4 is complete.
]

4. Consequences
4.1. Proof of Propositiof]3

4.1.1. The moduli spac#f,,. We prove that the socl@*—3+"(M, ,) is 1-dimen-
sional. By [GrP2, Proposition 11], the socle is generated by classes of the form

$B*< I 9u),

veV(B)

whereB is a stable graph of gengswith n legs andd, € R*(M g().n(v)) iS @ monomial
in they andk classes oﬁg(v),,,(v), of degree equal to the dimensiog(3) — 3 + n(v).
By Propositiorj 2, we may assume

3g(v) —3+n() < g(v) — 1+ dogv)

for all v € V(B). This impliesg(v) = 0 andn(v) = 3. SOR%~3t" (M, ,) is generated
by the point classes of maximally degenerate stakpeinted curves of genys All such
curves are degenerations of stahlpointed irreducible rational curves (withnodes).
The closed stratum of such curves is dominatecﬂn/zﬁn. Hence all the point classes
are equivalent, which proves the socle claimﬁg,n.

4.1.2. The moduli spacﬂg’n. The maximally degenerate stablepointed curves of

genusg of compact type consist @f elliptic tails attached t@ of the marked points of a
maximally degenerate stallg+n)-pointed curve of genus O (contracted to a point when

g +n = 2). The classes of the different strata determined by these maximally degenerate
curves are rationally equivalent M , via the rational equivalence of points [

We prove that these strata classes generate the socle and that classes of higher degree
vanish.
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The tautological ringR*(MgC’n) is additively generated by classes of the form
&p«([1,ev By Ov), WhereB is now a stable tree of genygswith n legs. By PropositioE]Z,
we may assume

degdy < g(v) — 1+ 80gw) — Son()-

Since
g(w) — 1+ 80gv) — Son(w) < 2g(v) — 3+ n(v),

we find

degén( [] ) =-1+ Y (1+degs)

veV(B) veV(B)
< -1+ > (8() + Sogw) — Sonwy)
veV(B)
< -1+ Z (2g(v) —24+n)) =2¢ —3+n,
veV(B)

which proves the vanishing. The equality

degép. ( Uel;([B) Ov) =2¢—3+n

implies that(g(v), n(v)) = (0, 3) or (1, 1) for all v, proving the socle claim fob/ ,.

4.1.3. The moduli spaddé% for g > 2. The tautological ring is additively generated
by classes of the fords..([ [ ey 5 0v), WhereB is now a stable tree of genyswith n
legs and a single vertex of genusg (and all other vertices of genus 0). By Proposifipn 2,
we may assume the clags has degree at mogt— 1 — &g, on w (and degree 0 on the

genus 0 vertices). Then

degen.( [] 6)=-1+ Y (+degp)<g—1-so,—1+ Y 1
veV(B) veV(B) veV (B)
<g—1—bdon+ ) (1) =2 =g 1~ o +n—nw)
VFEW
<g—2+n,

which proves the vanishing. The equality

degéB*<UEIJB) 9v> =g—2+n

impliesn(v) = 3 forv # w, thatn(w) = 0 or 1, and,, is a top class oM, or M, 1. The
1-dimensionality of the socle follows now from Looijenga’s results [Lo]#y andM, 1,
the nonvanishing of,_, (see[[EP]), and the rational equivalence of poiNtsa), 1 1.
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4.2. Gromov-Witten theory

4.2.1. ¥ descendent invariants.Let X be a nonsingular projective variety. Thede-
scendent Gromov-Witten invariants Xfare defined by:

e _ et o i
<m(y1)-~-ren(yn)]"[xj ) f[MW(m]WHwi v [« (23)

j=0 = lemp i=1 j=0

wherey; is the cotangent line on the domain; ey ) is the pull-back ofy; € H*(X, Q)
via theith evaluation map, and; is the Arbarello-Cornalba class on the moduli space
of maps.

4.2.2. Proof of Propositiop]4. Since Propositioh]4 is well known in genus 0 and 1, we
will assumeg > 2. Let . .
P Mgu(X,B)—> Mg,.

By the comparison results relating andx; to the p-pull-backs of the corresponding
classes on the moduli space of curves, the invarianis (23) are equal to the integrals

n
/f Tt weion []e e (24)
[Mgn (X, I ;=1 j=0 ’
modulo corrections by invariants indexed by lower datan, §). Here,; andk; denote
the cotangent line and Arbarello—Cornalbalass on the moduli space of curves. We will
prove Propositiof4 for the integra[s {24). The result for the invari@nis (23) follows.
Letd " je + ijo jfi = g- Then, by PropositioE|2, the class

[Tvi T (25)
i=1

Jj=0

on Mg,n can be rewritten as a tautological boundary class. The boundary strata are in-
dexed by dual graphs. Basic tautological classes are obtained on a given stratum by prod-

ucts ofyr andk classes,
val(v)

. b;
[T 1«
i=1 j=0
at each vertex of the dual graph. Every tautological boundary class is a linear combina-
tion of these basic classes (see [GrP2]). By Propodifion 2, we may require the condition

val(v)
Z a; + Zjbj < g(v) + 50g(v) (26)
i=1 j>0

at each vertex.
The proof of Propositiof]4 is completed by rewritifig](25) as a sum of basic classes
satisfying the vertex conditiof (R6) and then applying the splitting axiofn fo (24). 0
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4.3. The generation conjecture

We conjecture the ring@*(M, ,,) is additively generated by a restricted set of tautological
classes.

Conijecture 4. R*(M, ,) is additively generated by monomials

[Twe T«

i=1 j>1
satisfying
n
Yoty (DS <g+ o
i=1 j>1
We have verified Conjecture 4 fgr+ 3n < 21, assuming for > 0 the Gorenstein
conjecture folCg, the fiber product of the universal curve ovit.

Conjecture 3 is a consequence of the following three statements: Proppkition 4, Con-
jecture 4, and the (unproven) exactness of the sequence

R*(0Mg ) — R*(My,) — R*(M,,) — O.

Conjecture 3 is derived from these statements by the standard method of expkessing
monomials in terms of push-forwards of cotangent line classes on additionally pointed
spaces. O/, ,, the class

I

j=1
is expressed as a sum of classes

,
he
nr*( 1_[ wn_tH')7
i=1

wherern, : Mg uqr — Mg, is the forgetting map and

r<Y fin D hi<) (+Df
i=1

jz1 j>1
(seel[AC]). We leave the details to the reader.
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