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Abstract. We deal with a class on nonlinear Setinger equation$ (NIJS) with potentialigx) ~
x|7%, 0 < a < 2, andK (x) ~ |x|75, B > 0. Working in weighted Sobolev spaces, the exis-
tence of ground states belonging towL2RN) is proved under the assumption that< p <

(N +2)/(N — 2) for someo = oy o g. Furthermore, it is shown that arespikesconcentrating

at a minimum point ofd = V¢ Kk —2/(P=D 'whered = (p + 1)/(p — 1) — 1/2.
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1. Introduction

This paper deals with existence of ground state solutions of stationary nonlineér Schr
dinger equations of the form

—2Av+ V(x)v = K@x)v?, xeRV,

ve WHEY), v@ >0, lim v(x) =0 (NLS)
X[— 00

Here and below)N > 3and 1< p < (N + 2)/(N — 2). A solution of (NLS) is called a
ground statdf it is a Mountain-Pass critical point of the corresponding Euler functional,
and hence its Morse index is 1.dfis a solution of (NLS), then

V(x, 1) = explire 1t)u(x)
represents a standing wave of the nonlinear &tinger equation

0
l-ga_f = —2AY + (V(x) — Dy — K@)y |P~ Ly, (1)

wheree (= h) is the Planck constant ards the imaginary unit.
One of the main purposes of this paper is to look for solutigrsf which have
the following properties:
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() ve € WHRY);
(ii) v. is a ground state.

As for (i), let us point out that standing wavesvhich have finiteL.? norm are the most
relevant from the physical point of view since they corresportbiend statesMoreover,

if v e WL2(RN), one can prove that lip— o v(x) = O (see the proof of Theorl6),
which implies that solutions are well localized in space.

On the other hand, concerning (ii), the interest in searching ground states relies on the
fact that a standing wave is possibly orbitally stable provided it corresponds to a ground
state of [NL$), in the sense specified in the literature (seeeld. [114, 17]).

A lot of work has been devoted to the existence of solutiong of [NLS), both foid
and fore tending to zero. In the latter case, as a specific feature of the nonlinear (focusing)
model, solutions concentrate at points withaditonprofile. We limit ourselves to citing a
few recent papers$ [5] 6] 81,[9,111,/12] 15| 16], referring to their bibliography for a broader
list of works, although still not exhaustive.

However, to our knowledge, it is everywhere assumed (with the only exception| of [18,
20)]) that liminfy—.o V(x) > 0. The main new feature of the present paper is that we
will be concerned with potentialg such that limy . V = 0.

Our main results are Theoreins 1 and 3. The former deals with existence of ground
states of[(NLE), the latter with concentration.

Roughly, [NL$) has a ground state which concentrates at a global minimum point of
the auxiliary potentiald := V¢ K=2/(»=1D whered = (p +1)/(p — 1) — N/2, provided

(i) V(x) ~ x| *with0 < o < 2,
(i) K(x)~ |x|~# with g > 0,
(i) o < p < (N + 2)/(N — 2), whereo is a number depending upenand g, and
defined in[(2) below.

Some comments on the proof and the preceding assumptions are in order. If we deal
with a potentialV which decays to zero at infinity, the methods used in the preceding
papers cannot be employed. First of all, variational theorW?(R"), as in [11[12],
cannot be used. Nor can one apply perturbation methods,[ds id [6, 16], since the spectrum
of the linear operator A + V is [0, co) (see([10]).

To overcome this difficulty, we frame our problem in a class of weighted Sobolev
spacesH,, discussed ir [19], consisting of the functiansnR" for which

/ (2| Vu)|? + V(x)u?(x)) dx < oo.
RN

In these spaces the nonlinear tefgy K |u|P+1 dx is well defined if (i)—(iii) hold. More-
over, under these conditions the Euler functional satisfies the Palais—Smale compactness
condition onH,, and this allows us to find in a straightforward way a positive Mountain-
Pass solution, € H, (see Theorern 13). It is worth pointing out that for such a result it
suffices to assume that (i) holds with<0a < 2.

However, we are interested in solutions which belongitb? and which decay to
zero at infinity. To achieve these conditions we first prove some careful integral estimates
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for solutions inH,. The proof of the concentration phenomenon also relies on some sharp
pointwise decay estimates and on appropriate bounds of the energy of the Mountain-Pass
solutionsv,, uniformly with respect te@. These estimates requiseto be smaller than 2

and represent one of the main novelties of the present paper.

As for the assumptions, we point out thatVifx) ~ |x|™ with 0 < « < 2, then
(iii) cannot be eliminated if we want to finground statesFor more details concerning
this claim, we refer to Propositign [L5 in Sectfgdn 4. Concerning assumption (i), see also
Remark Th(i).

As already pointed out, the only papers dealing with equatiori®’6mwith potentials
vanishing at infinity are[[18] and [20]. The former deals witheagenvalue problerm
the radial case. In the latter, weighted Sobolev spaces have also been used. For more de-
tails, see Remafk 14¢(ii)—(iii) later on. However, in both the aforementioned papers neither
results concerning the fact that the solutions belon@{e?(R") are given, nor concen-
tration is proved.

The rest of the paper is organized as follows. Sedtion 2 contains our assumptions
and main results. Sectiph 3 is devoted to discussing the weighted $paciesiuding an
embedding theorem frorn [19]), as well as to proving some uniform integral estimates that
are used in what follows. In Sectiph 4 we deal with the main existence result, Thgorem 1.
We first prove (see Theorgm|13) thatifs the Mountain-Pass Theorem applies in a direct
way for any O< o < 2; next, we assume thatQ a < 2 and prove some exponential
decay for the above Mountain-Pass critical points, which allows us to show that they give
rise to ground states df (NIS); see Theoferh 16. Finally, in Sefction 5 we prove that these
ground states argpikesconcentrating at a minimum point of. This result is achieved
by using the preceding decay estimates, jointly with a uniform bound on the energy of the
Mountain-Pass critical points found before.

Notation. Throughout the paper we will use the following notation:

Br isthe ball{x € RV : |x| < R};

wkr(Q), whkP(RN) are the usual Sobolev spaces;
LP(Q), L?(RY) are the usual Lebesgue spaces;

¢, c1,..., C,C1,...denote possibly different constants;
h1 ~ h2 means thak1 andh» are of the same order as— 0.

2. Assumptions and main results

In order to find solutions of (NLS) we will make the following assumptions/oand K :

(V)  V:RN - Ris smooth and there exist a, A > 0 such that
v <A
_“ X ,
1+ |x|* — B
(K) K :RN — Rissmooth and there exigt k > 0 such that

O0<K(®x) < k
< K(x —_—
14 |x|8
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In order to prove existence of ground stateq of (NLS) as well as their concentration prop-
erties we assume a suitable boundpoimvolving & andg. Let

2 4
N+z_ P if0 <8 <a,
0=0Napg=1N—-2 aN-2) (2)
1 otherwise

Our main existence result is the following.

Theorem 1. Let(V), (K) hold, with0O < @ < 2andg > 0, respectively, and suppoge
satisfies

o< p<

N-—2 3

Then for every > 0 equation(NLS) has a positive classical solution € WH2(RV).
Moreover,u, is a ground state of the energy functional correspondinfNIDS).

Remark 2. (i) The ground state found above is obtained as Mountain-Pass of the en-
ergy functional associated tp (19) or, equivalently, it realizes the following supre-
mum:

sup S Klul?”
weH\ (O} IIRN [82|Vu|2 + Vu2](p+l)/2’

whereH, is a suitable weighted Sobolev space defined in Seftion 3. Such a supre-
mum is+oo if p < o aswell asifp > (N + 2)/(N — 2). For more details we refer
to Propositior Ip.

(i) If0 < B < «a, theno > 1 and the range of in (3) is smaller than the usual one
l<p<(N+2/(N-2).If =0, wewould haver = (N + 2)/(N — 2) and the
interval of admissiblg would be empty.

(iii) When & = 2 we can still find a solution ift{, but not in W32(R") (see Theo-

rem[13). o

Concerning semiclassical states[of (NILS) we show the following concentration behavior.
Theorem 3. Let the assumptions of Theorgihold. Then the ground state concen-

trates at a global minimum point* of A = V/ K =%/ (?=D witho = (p+1)/(p—1)—N/2.
More preciselyp, has a unique maximum poig with x, — x* ase — 0, and

ve(x) = U*<x;_xs> + w.(x) ase— 0,

wherew, — 0in C%C(IR{N) and in L*(RY) ase — 0, andU* is the unique positive
radial solution of
—AU* 4+ V(xHU* = K(x*)(U*P.

The proofs of the above two theorems will be carried out in the rest of the paper.
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3. Some weighted Sobolev spaces

As anticipated in the Introduction, we will work in a class of weighted Sobolev spaces.
Precisely, let us set, for adl > 0,

H, = {u e DY2(RY) : / [£21Vux)? + V()u(x)]dx < oo}.
RN
‘H. is a Hilbert space with scalar product and norm, respectively,
) = f [EAIVu@) P+ V ouP o] da.
R

(u|v)e = / [EZVu(x) -Vou(x) + V(x)u(x)v(x)] dx.
RN
SetH = H1 with norm|| - ||%.

Remark 4. SinceV is positive and uniformly bounded, it follows th#t-2(RY) c H,
foralle > 0. O

Denote byL?( the weighted space of measurableR" — R such that

1/q
|M|q,K=[/ K<x>|u(x>|qu} < .
RN

He andL?( are particular cases of weighted spaces discussedlin [19], where the following
result is proved.

Theorem 5. Let N > 3 and suppose thatV), (K) hold witha € (0,2] andg8 > 0,

respectively. Then for all > 0, %, ¢ L2™ provided

N+2
o =<p= )
N-2
and there isC; > 0 such that
lulg.k < Cellulle, Vue He. (4)

Furthermore, the embedding &f; into L}'}H is compact if(3) holds.
In view of this theorem we will assume in what follows thgix andg always satisfy[(3).

Remark 6. (i) If a < V(x) < A, thatis, wherw = 0, we haveH, = WL12[R"Y) and
Theorerrﬁi implies tha1-2(RV) is compactly embedded it provided ¢ > 0
and) 3) holds.

(i) f Vx) ~ A+ x| TandK(x) ~ 1+ |x|#)~1, with0 < « < 2andB > 0, itis
proved in [19] that the growth restrictian < p < (N 4+ 2)/(N — 2) is a necessary
condition forH, to be embedded intb?rl(RN) (see also Propositign 15). O
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In the rest of this section we will prove some integral estimates for functiorfg.in
uniform with respect t@. We anticipate that, as a byproduct, we will deduce a proof of
the embedding result stated in Theoifgm 5 (see Remark 10 below).

Proposition 7. Let0 < & < 2and letp satisfy(3). Then for alls > 0 there exist®R > 0
such that, for allR > R and allu € H, with supgu) N Bg = ¥, one has

/R K lulP < sem PNy 2, (5)

Proof. The proof is carried out in several steps. First, let us introduce some quantities we
need in the proof:

(i) the sequence of radR,, . defined by

2 —a 2/(270{)
4172 ”} ;

Rn,s = 8an Rn = |:

(i) the sequence of continuous functiopis . : R. — [0, 1] satisfying

1 if0<r< Ry-1,
r—Rig .
=y ———"" +1 ifR1; <r <Ry,
WLS(") RZ,e “Ri. le ST = K2¢
0 if r > Ry,
and forn > 2,
0 ifO<r <Ry_1¢,
r sl +1 if Rnfl,s <r< Rn,e,
Rn e Rn—l,a
Wn,a(r) = F— R
n,e .
- ™" 41 ifR,.<r<R ,
Rn+1’£ — Rn,s ne =V = Rptle
0 if r > Ryt1e;

(i) the sequence of sets
Ane={x € RY 1 Ry_1¢ < |x| < Ruy1e).

Note thatA1 . is a ball,A, . is an annulus for > 2, and they, .’s have been chosen in
such a way that

u(x) =Y Y e(lxDulx).

These cut-off functions are useful to estimate integrals ®/éy means of a discrete
sum of integrals on the annudi, ..
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Lemma 8. There existg > 0 such that
/ Ku|”*t < cZ = / [neulP L, Vu e He, Ve € (0,1]
RN 114+ Ry JAue

Proof. On A, . one hast = V,_1. .4 + Y cu + Yni1,.u (With abuse of notation we are
taking Ag . = #), which implies

/K|u|l’+1ssup1<(/ |wn,8u|f’“+/ |¢n,gu|P+1+/ m,euw“).
An,s An,s An—l,s An,s An+1,£

Since the width of4,, . is small with respect t®, . there existg2 = c2(K) such that
1 1

Supk < c» 7 <c2 7 <c (6)
Ane 1+R, 1, 1+ Ry, 1+Rn Le
The last two formulas imply
+1 1 +1 1 +1
KlulP ™ < cp ——— Wt —— [ eul?
An,e 1 + Rn—l,é‘ Anfl,e 1 + Rﬂ,é‘ n,e
1
+ / |wn,su|p+1).
1+ Rn+1 ¢ ¥V Antle
Summing over all integens completes the proof. O

Next, we estimate each ter!fkng |Ymcu|PtL. Let y satisfyy(2* —2) = p — 1, or
equivalently 2y = (p — 1)N/2. Then

1 2%y +2-2
/ an,@’/”pJr = / |¢n,8u| vt v
Ape An.e

Using the Holder inequality we find that

Y 1-y
1 2* 2
f IK/fn,suler = Cl|:/ |I/fn,8u| i| |:/ |1/fn,su| :| .
Ape Ape Ape

From the embedding @12 into L2" we infer that

2y/2 1y
/ W e < czU IV(wn,su)lz] [/ Iwn,guﬁ} . 7)
An.e An,a An,s

From [§) and[([7) we get

1 1 5 2ty /2 ) 1-y
| s scs—ﬂ[f |V<wn,gu>|] [/ wrn,guq . ®
Ape 1 + Rn,g Ape Ane

We now show
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Lemma 9. We have

/ IV (W, ew)|? < c4/ [IVul? + e2Vu?].
An,e

Ane
Proof. First we estimate
IV Wne)* = Ve + Yn.e Vit < 20% Vi ] + 2| V). 9
From the definition oRR,, . we get
|Rut1e — Ruel® = 6%|Ryt1 — Ryl? = ce®RY

n+l,e"

V, and we deduce that

As aboveR 7, <csinfy,,
|V1pn,s|2 =< C6|Rn+l,£ - Rn,£|_2 = 073_2‘/’ X € An,e'
Substituting in[(P) and integrating ovdr, . proves the lemma. O

Proof of Propositiofj |7 completed.emmd 9 together with {8) yields

1 2%y /2 1-y
/ K|u|P+15c—ﬂ[f [|W|2+e‘2wﬂ]} U |x/fn,£u|2] . (10)
An,e 1 + Rn,g An,a An,a

Let M,s > 0 and let?, 8’ be any pair of conjugate exponenid (s, 8, 8’ will be fixed
appropriately later). For brevity, set

S= S, =/ [Vl +e2Vu?), T =T,. =/ . et]?
Ape A

n,e

so that[(IP) becomes

f K|u|”+1 < C;SZ*V/Z .7
Ane T 1+Rf

n,e

Since
1- 1—
Sz*}//z . T—y — MEASZ*)//Z . M_lg_ST—y
1+RE, 1+ RS,
1 . 1 oy TA
< _M08s9 SZ y0/2 + _/M—G 8—59 Rt
4 0 (14 Ry
we get
. 2% 2 ’ .0/ T(liy)e/
/ Klu|Ptt < eqM?e3052770/2 4 copp =0 =50 — (11)
Ane (1+ Rp.)?

Now we choose, 6 satisfying

2y =p+1, 0O(s—2")=—s6.
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Then

2y6/2 (p+1)/2
§%r0/2 |:/ [IVul? + 8_2Vu2]i| =g~ (P*D [/ [£2|Vu|? + Vuz]:| ,
A A"‘S

n.e

and hence

MO0 57012 = M%—U’—DN/Z[ / [e?|Vul? + Vu?] (12)
A

n,e

:|(p+1)/2

On the other hand, we also have

T A=7)¢’ 1 (p+1)/2
B o = B [ / ”2]
A+ Rne)? (A4 Ry LJa,,

(14 R® 5)([’+1)/2 u2 (p+1)/2
- . w5

1+ R 1+ R,
1)/2 1)/2
- a1+ Rg’e?;PJr )/ [/- Vu2:| (p+1/ .
1+ Ry Ane

Inserting the above inequality ard {12) info](11), and taking into account-thlt =
0(s —2*y) = —(p — 1)N/2, we infer that

/ K|u|p+1 < C387(P71)N/2
Ape

(p+1)/2 , (14 R H(p+D/2 (p+1)/2
X (M0|:/ [16°Vu?+ Vuz]] +M~ %[/ Vu2i| >
Ane (14+Ry.0)? Ane

Now, let us remark that

1)/2
1+ Rg’s)(“ )/

N AL
(1+ Rue)

(Rn,s — 00),

sincep > o implies that—p6" + a(p + 1)/2 < 0. Then, givers > 0, we can choose
M, R > 0 such that

8 ! / 8 —
M? < —, and M ORPITetD/2 - — for R > R,
2c3 c3

yielding

s

(p+D/2
f Klu|Ptt < 38—("—1>N/2U [£2|Vu)? + Vuz]]
An,s An,s
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provided thatR,_1,. > R. S_umming over these annuli, . and using the fact that
suppu) N Bg = ¥ forall R > R we get

(p+1)/2
/ Ku|Pt1 < se=(p=DN/2 § : [/ [£2|Vul? + Vuz]i|
\x|>R n An,s

Setting
ap = ape = / [82|Vu|2+ Vuz],
Ape

one has)_a, < ||u||§ < oo. Lettinga, = a,/ Y a,, we have O< @, < 1 foralln

and henc&” /2 < &,, thatis,a'" /% < (3" a,)P+D/2-14,  Summing over alh, it

follows that}" alPu2 o (X" a,)PtY/2 < oo, This implies

/ K|u|p+1 < 58—([)—1)N/2|:Z/ [82|Vu|2+ Vuz]
[x|>R Ape

—(p=1)N/2 1
< 8= (PmDN/Z) )y P+

:|(17+1)/2

completing the proof of Propositin 7.

Remark 10. Fore = 1 the preceding arguments give an alternative proof of the embed-
ding result stated in Theorgm 5. To see this, let us wrrite xgu + (1 — xg)u, Wherexg

is a cut-off function such thatg = 0 onBg, xg = 1 for |x] > R+ 1, andy, is linear on

R < |x| < R+1.Foro < p < (N +2)/(N — 2) we can use inequality(5) to estimate
Jgv KlxrulP*1, while the integralf|, 1 KI(1— xr)u|Pt1 can be bounded by using
the standard Sobolev embedding theorera. § p < (N +2)/N —2), the above method
shows that there exigt > 0 andR > 1 for which

/ KlulP™t < Cllull;™7, Vu e .
[x|>R

Moreover, modifying the definition oR, . (with a logarithmic dependence or) we
could also recover the embedding in the case 2. O

Proposition 11. Let0 < « < 2 and letp satisfy(3). Then for all§ > 0O there exists
R > Osuch that for allR > R,

/ K () |u(x) P dx
|x|>R

(p+1)/2
> . VYueM. (13

< 58—0’—1)1*’/2([ [£2|Vu(x)]? + V (x)u?(x)] dx
|x|>R

Proof. Let JR,g : Ry — [0, 1] be a smooth non-decreasing function such that

0 ifO<r<R—eRY?,

Ve () = {1 ifr > R,
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satisfying| V' , ()| < 2e~1R~%/2. Define, in polar coordinates, ¥) € Ry x S¥=1,

Ure(ru@R —r, ) if R—eRY2<r <R,

~ 9) = !
URe(r, D) u(r, %) if r > R.

In the annulusAg . = {R — eR*?2 < |x| < R} we have (subscripts denote partial
derivatives)

~ ~ 1~ ~
Vige = —Yre(r)ur2R—r, )&+ ~VRe(ruy (2R—r, 9)e9 +Vg (Nu2R~r, 9)€;,

wheree, = x/|x| andey is a unit vector tangent to the unit sphefe| = 1}. Thus, in
Ag . one finds that

|Vilg.el? < c1|VuR — r, 9)|? + coe >R™u?(2R — 1, 9).

Let us explicitly point out that here and below the constantio not depend UpoR, ¢.
Integrating inAr . and performing the change of varialgle ) — (2R — r, ¥) we get

/ Vil < c3 / [IVul? + e 2R~*u?]
AR.e R<|x|<R+eR%/?

< C48_2/ [£2|Vul?> + V(x)u?]. (14)
R<|x|<R+&R%/2
Here we have taken into account that. = u for |x| > R. From [1I4) we infer that
f |Vig.el? < C5e—2f [2|Vu|? + V (x)u?]. (15)
AR.e |x|>R

Moreover, similar arguments yield

/ V(x)ﬁ% e < CG/ V(x)ﬁ% e < ce/ V(x)u®. (16)
AR ’ R<|x|<R+eR/2 ’ |x|>R

From [1%) and[(16) we deduce that

/ [€2|Viig,e|* + V(0% ] < c7 / [£2|Vul? + V (x)u?]. 17)
AR,s |x|>R

From the embeddin{{4) and singég . = u for r > R, we get
/ K ()|ulPT < / K (x)[iig.e|"th
|x|>R RN

From Propositiofi[7 we have

1 1HN/2 2 2 2 (p+1/2
/ Klig P < 8=~ N/ (/ [ ViR, +VuR,g]>
RN RN

N N N RN
< 55<P1>N/2</ [€?|Vilg,c|? + Viig ] +/ [2| Vg2 + VM%’6]> .
AR,£

[x|>R

From this and[(1]7) we finally find (13). O
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4. Proof of the existence results

This section is devoted to the proof of Theorgm 1, which is divided into two parts. First,
we show the existence of a least-energy solutioftin(see Theorerp 13 below); in the
second part of the section we prove that such a ground state belongs indg&d(®" ).

Let us start by introducing the functional set up[lf (3) holds, then Thepfem 5 applies,
yielding

/ K |u@) P dx < 0o, Vu € H,. (18)
RN
Define

1 2 2 1 2 1 +1
I.(u) = = e\Vu(x)|“dx + = Vx)u (x)dx — —— K@) |u(x)|P™dx

2 JrN 2 JrN p+1J/ry

1

— z”””f - m . K(S)C)|u(x)|l7+ldx.

From [18) and V) it follows that I is well defined ori, for all ¢ > 0. Moreover,I, is
of classC? and

(I (u)|v)
= / [£2Vu(x) - Vo(x) + V(@©ux)vx) — K@) |u@) P tu(x)vx)] dx, Vv e H,.
RN
Hence any critical poini, € H, of I, is a weak solution of (NLIS).
Remark 12. By Remark (i), if V (x) ~ (1 + |x|*)"TandK (x) ~ (1 + |x|#)~L, with
0 < a < 2andB > 0, then the growth restriction < p < (N +2)/(N —2) is necessary

in order to work inH, with the functionall,. O

Critical points of I, can be found by the Mountain-Pass Theorem in a straightforward
way.

Theorem 13. Let (V), (K) hold with0 < « < 2, 8 > 0, respectively, and suppose that
p satisfieg3). Then

be = inf  max/.(¢
© 7 ueH,\(0) 120 o (tu)
is a critical level ofI,. Hence for alle > 0 the equation
—&2Av+ V(x)v=K@x)vP, xeRV, (19)

has a positive (classical) solutian € H.. Moreover, there exist§ > 0 such that

ve 12 < Cbe. (20)
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Proof. Let ¢ be a smooth positive function with compact supporiRifi. Then (recall
thatp > 1) one had,(t¢) — —oo ast — +oo. Hencel, has the M-P geometry. Since

H. is compactly embedded inb}'}“, standard arguments imply thiatis a M-P critical
level carrying a critical point, € H, of I. which is a weak solution of (NOS). Sindé
andK are smooth, local regularity implies that is in fact a classical solution. It is also
standard to see thaf > 0. From

—&2Ave + V(x)ve = K (x)v?

we infer that
/ [52|Vv8|2+V(x)U§]dx:/ K (x)vP tdx.
RN RN

Thus
1 1 1 1
be = I (ve) = (5 - p—+1> /RN[82|VU€|2 + V(x)vf] dx = (5 - p—+1>||v€||f.
This concludes the proof. O

Remark 14. (i) Assumption(V) includes potentials which are bounded away from
zero (that is, O< infry V < sugey V < 00). In this case, the spadé; is noth-
ing butw12(RN) and in order to recover compactness our approach reqgfiise®
(see Remark]6(i)). Let us recall that when, in addition, &sis bounded away from
zero (that is, O< infgy K < sugey K < 00), proving the existence of solutions
to (I9) requires appropriate assumptionsioand/orK (see the papers cited in the
Introduction and([4]). On the other hand, it is well known thag8 i O a necessary
condition for [NL$) to have a solution is tht v oy, V (x)u?(x)dx = 0. Moreover,
if (V) holds with O< « < 2 andK is bounded away from zero, then the critical level
b, (or the supremum considered in the statement of Propo§ition 15) is clearly equal
to oco. Of course, it is a different story if we look for solutions that are not ground
states. For example, it is proved n [6] 24] that ikOnfgy V < supey V < oo and
0 < infgwv K < suggnv K < oo, then a solution exists provideds sufficiently small
and the auxiliary potentiall has astablestationary point.

(ii) In[L8] Thm. 2] the authors consider tleggenvalue problem

—Au+ V(xDu = AK(IxDuP, x e RN,
ue CE,@RY), lim u(x)=0,
[x]—00

proving the existence of positive solutiofis, u)), u, € LT (RN) andu;, =
0@ Mm/2) y = |x|. Itis assumed tha¥ (r) > 0 andK(r) = O(r—#), p > 0.
In addition, if 8 < 2, itis required thap > (N +2—28)/(N — 2). Let us point out
that the last condition is stronger than oupsX o).

(i) Theorem[I3 follows from[[2D, Thm. 3.1] combined with Theorgm 5. Moreover, the
case in whichp = o or p = (N + 2)/(N — 2) is also studied in_[20, Thm. 3.2],
under some further restrictions é¢handk. O
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It is also worth pointing out that < p (here we take 6< 8 < «, otherwises = 1 and
p satisfies the usual growth assumptiah)has no Mountain-Pass solution.

Proposition 15. If eitherp <o or p > (N + 2)/(N — 2), then

s fRN K|M|p+l
u — 00
ueHsl\O{O} (Jrn[£21Vu|? + Vu?])(p+D/2

Proof. We can assume for simplicity that = 1. Let us consider a functio@¢ with
compact support, and let

ug(x) = WO.(x — &), [E]> LA = |g|7%2 (21)

From the definition ofi: and the conditions oh, & (see[(21L)), we easily find that

C—l
|Vug |2 = 227N [ |jvw)?, Vu? > w2
3 |§|0‘)»N
(22)

[ e < e [

Hence it follows that

p+1 —B4—N
S Kug - €177 — Cle |5V +D-pWN-D]-B _, o

(fRN[|VM§|2 + Vu?])(!’+l)/2 = T NjgeyetD/2 T

as|é| — oo, because < o.

On the other hand, also in the cgse- (N + 2)/(N — 2) it is standard to see that
the above supremum ts. It is sufficient for example to consider the family of functions
uy(x) = W(ix), with A — +o00. m]

In the second part of this section we will show that the Mountain-Pass solutidns of (NLS)
found above belong indeed W12(R"), provided 0< o < 2.

Theorem 16. Let(V), (K) holdwithO < @ < 2, 8 > 0, respectively, and suppose that
satisfie(3). Then the Mountain-Pass solutionfound in Theorerfi3is a ground state of
(NLS). In particular, v, € WH2(RV), v, € C2(RN), v:(x) > 0andlim | oo ve(x) = 0.

The proof of Theorem 16 requires some preliminary decay estimates, based upon the
results discussed in Sectiph 3. Let us point out that to establish the concentration phe-
nomena discussed in Sectiph 5, the decay is proved with estimates which are uniform
ine.

Inthese lemmas it is always understood that the assumptions of ThHedrem 16 hold true.

Lemma 17. Letv, be solutions of{I9) and suppose there exidts> 0 such that

lvell, <Te". (23)
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Then there exist®r > 0 such that for allR > Ry and all 2, . € RV \ Bg,

3
/ [€2|va|2 + V(x)vsz] dx < Z/ [82|va|2 + V(x)vsz] dx,
Qn+1‘x

Q)l.E
WhereQn’S =RV \ BRn,a and Ry = en?/@—a)

Proof. Let R, . be as in the statement, and jgt. () be piecewise affine functions such
that
Xn,s(r) =0, Vr< Rn,e, Xn,e(r) =1 Vr> Rn+1,e-

By the definition ofR, . it follows that

—1 (2—a)/2 p/2 1 pa/2
|[Rnt1e — Rnel = C &/ Rn—/i-l,s >C 8Rn_<_1’g~
Then
2 -2 — : .
3 |Rn+1,£ - Rn,s| =< Canng < C2|nf{V(x) . Rn,s <|x| =< Rn+1,£}»
and hence

EVine()? < V(x), VxeR" (24)
Let us test[(I0) o, .v.. Recalling thaty, . = 0 on Bg, . and thaty, . < 1, we get

f Xn.e[€21Vve|? 4+ Vo3 =f

Qe n,e

1 2
Xn,e KvPT —6/ Ve - VXneve

1
< [ kot get [ Ve )
Qn.g

Qn,s

Using [24) we infer that

82/ [|Vvs|2+|vXn,g|2v§]s/ [£2|Ve |2+ V(x)v2].
QVL.S

n,e

From the last two estimates, it follows that

/ [82|V1}5|2 + Vvsz] dx < / xn,8[82|Vv8|2 + vaz]
Qn+1‘s Qn.s
1
< / va"’l + —/ [£2|Vve|? + V(x)vgz].
Qe 2 Jq,.

Then, from Proposition 11, i > 0 is given andr is sufficiently large we deduce that

/ [£2|Vve|? + va] dx
Q;H—l,s

(r+D/2 4
< as—”’—l)N/z( / [€%|Vve ? + V (x)v7] dx) +5 / [e%Vve > + V (x)v7].
Qn,s Qn,s
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Now we write

(p+1)/2
(/Q [82|VU5|2 + V(x)vgz] dx)

(p=1/2
- (/ [£2|Vve|? + V(x)v?] dx> / [2|Vve|? + V (x)v?] dx.
Qn,s Qn,e
From [23) and the last two formulas it follows that

1
/ [82|va|2 + vaz] dx < <§ _|_5r(p—l)/2>/ [€2|Vve|2 + V(x)vf] dx.
Qn+l,s

n,e

Choosings sufficiently small (and hence fat large) we obtain the assertion. O

Lemma 18. Letv, be solutions offI9), and letl", R be as above. Then, for all > 2Ry,
/ (2| Ve |2 + V (x)v?] dx
[x|>p

1003
97

<CreV exp{—E

_ _ 2—a)/2
e 1(,0(2 a)/z_ng o)/ )}’ (25)

for some constant depending only off.
Proof. Givenp > 2Ry, letii > n be positive integers such that
Rie < Rr < Rut1e, Ri—1:<p < Rje.

From [I7), we deduce that

/ [£2|Vve |2 + V(x)v?] 5/ [£2|Vve |2 + V(x)v?]
[x|>p

x> Rii e

< (—) / [£21Vve | 4+ V (x)v?].
4 Ix|>Rr

Then [23) implies

/|| [2|Vve |2+ V(x)v?] < G) eV, (26)
X|>p

By our choices of, 71,

p ~ 2@ Wp2/@e) R 2 Rm)p2/2ma)
which implies

i—n> %e*l(p@*“)/z — RE/),
The estimate i (36) and the last formula conclude the proof. O
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Proof of Theorem) J6Heres > 0 is fixed and can be taken equal to 1 to simplify the
notation. Letv € H be any solution of (119) (witk = 1) and lety € R" be such that
|y| > 2. Then

1
/ V2 = / V(x)w? —— < c1|y|“/ V (x)v2.
Bi(y) Bi(y) Vix) Bi(y)

For R = 3|y| we have

/ V(x)vzsf V.
B1(y) RN\ Bg

From the preceding two estimates and Lenima 18 we get
2 a 1-«/2
[ vt cabyiexpl-Caly . iyl 1 (27)
B1(y)

Letm € Nandy; € RV, i = 1,...,m, be such thaBs \ B> C |J/_; B1(y;), and let
yik = 2Ky;. Then we get

o0
2 2 2
/N ve < E /k ve < E / ve.
RN\B; k=0 2*(Bs\B2) ik Y By (ik)

To estimate the right hand side, we Us€ (27)kop 1, which yields

f 12 < €3 Y Iyl expl—Calyic =3} < oo,
RN\BZ ik
since 0< « < 2. This shows that € L2(RM), whencev € WL2(RN). As already

pointed out in Theorefh 13, ¢ C2(RY) andv > 0. Finally, standard arguments show
that limy—. o v(x) = 0 (see for example_[22]). O

5. Semiclassical limits for (NLS)

In this section we study the behavior of some solutions of (NLS) &ds to 0, and in
particular of those obtained in Theor¢m 13. We always assumétha{K) hold true
with 0 < « < 2 andB > 0, and thaip satisfies[(B). However some results, as Lerhnja 19
below, hold even if O< « < 2.

The next lemma provides an upper bound for the critical vahyeim terms of the
auxiliary functionald = V¢ K ~2/(»=1 introduced in Theoref 3. It is worth pointing out
explicitly that, sincep > o, A(x) — oo as|x| — oo, and therefored has a global
minimum on all ofR".

Lemma 19. There exist€o > 0 such that for alle € RV and all ¢ sufficiently small,
e Vb, = NI.(v,) < CoAE) +0(1) ase — 0OF. (28)

In particular there exist&* > 0 such thath, < C*e" .
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Proof. For anyz € RV, let us define the functionad; on W1-2(RV) by setting

1 1 1
Few) =3 /RN Vul® + EV@)/RN u? — mK(E)fRN Jul

Let f(£) denote the Mountain-Pass critical level&f. It is well known that
= inf F ,
f&) N £ (1)

whereA is the Nehari manifold

N = {u e WH2®RM)\ (0} :/ |Vu|2+V<s)/ W2 = K(&)/ |u|f’“}.
RN RN RN
Let us point out thatt € N; if and only if

i(y) = KYP Vv Ye-Deuw-2E)y) e N,

whereN = {u € WE2(RN) 1 u # 0 and fpu (IVul? + u?) = [pn [ulP*1}). Hence, with a
direct calculation we find

1 1
=i =(Z- i ptl
F© =it (2 p+1)K(5)u'e%/RN'”' dx

11 X .
(1 L\ k20D p oD/ D-N 2y ing / P+ gy
(2 p+1) ®) ®) veN JrN vl Y

Let U denote the unique positive radial solution#h~2(R") of
—~AU+U=0" inR".

Since infepr fpv [v|P+1dy is achieved all, we get

£&) = [K(g)]2/<p1>[V(g)]<p+1>/<p1>1v/2<} _ L)/ 1P dx
2 p+ 1 RN

= CoA(%). (29)

Sincef (¢) is a Mountain-Pass level @, for all v > 0 there existsv € WL2(RN) such
that

fé) < rp>%XFg(tw) < f& +v.

Lety € C2(RN) be a cut-off function such that = 1 in a neighborhood af and define,
foranye > 0, w, € WL2(RN) by

we(x) = w(X)w<xT_E>-
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Since WL2(RN) ¢ ‘H,, we havew, € H, for anye; in particular it makes sense to
computel, (tw,), which yields

2 tp+1

t 2 1
L(tw,) = — — K Py,
(we) = 5w p+1/RN () |we P dx

By the change of variable = (x — &)/¢, we get
M=o [ 1Votey +6)Pu?0) dy

e [ Vw0 Vptey + Ou(ptey + ) dy

+ [ ey ovmmRay+ [ Ve +oter + oul)dy,
as well as

e /;RN K () |lwe (x) [P dx = /RN K (ey + &)lp(ey + E)w()|P ™ dy.
Putting together the preceding equations we deduce that
e NI (tw,) = Fe(tw) +0(1) ase — 0.

Hence

e NIL(vo) = inf  maxe NI.(tv)
veH\{0} >0

max/, (twg) < maxFe(tw) 4+ o(1)
t>0 >0

< fE) +v+o0l) = CoAE) + v+ o(l).

IA

A

Sincev > 0 is arbitrary, the estimate if (8) is proved. The last statement follows from
the fact that4 has a global minimum oR” sincep > o. O

Remark 20. To prove thath, < C*eN one could also argue as follows. Consider the
functionalsl,, I, : W-2(RY) — R defined by

R =5 [ v+ atlax = [ Ko,
2 Jry p+1Jry

I&‘(u) = —/ [|VM|2+ AMZ] dx — _/ K(S.X)|M|p+ldx,
2 RN P + 1 RN

Clearly,ug(x) isa crltlcal p0|nt ofI iff ue(x) = u.(x/¢) is a critical point ofIg, more-
over, I Uy) = ¢ I (u.). Let bg, resp. bg, denote the Mountain-Pass crmcal Ievellgf
resp.l,. Since suy/ < A andWl2(RY) c H,, one easily deduces that < b, = eVb,.
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On the other hand, critical points of can be found near those of thaperturbedunc-
tional Ip = I.—g. Up to translation, we can assume ti#&¢0) = maxK. Let U be the
unique positive radial solution of

—AU + AU = KO)UP, U e WH2@®RN).

Then, using[[L], one infers that has, fore > 0 small, a critical point, such that
u, — U ase — 0. In particular, from/, (u,) — Ip(U) it follows that there exist€ > 0

such thaﬁ;@;) < C for all ¢ > 0 small enough. Moreover, sinééis a Mountain-Pass
critical point ofﬁ), the same holds fat,. This implies tha@ < ﬁ(ﬁg), and the result

follows. O
Lemmd I9 and (20) yield
Corollary 21. For ¢ small there exist§ > 0 such that

lvellZ < Tev,

wherev, is given by Theorei{i3

The next lemma provides pointwise uniform decay estimates for the solutiohtere
0 < @ < 2is needed. We follow closely the method illustrated in [21, Appendix B].

Lemma 22. LetT, Rr and v, be as in LemmHA7 Then there exists a constafif de-
pending only o”, p and N, and a positive numbet > 0, depending o, p, @ andg,
such that

lve(x)] < Clx|9e™d exp{—%1 |og§ e (x| @®/2 _ RE""/Z)} for |x| > 2Rr + C.
(30)
Proof. The functionsv, satisfy the equation
—&2Av, + V(x)vp = K (x)vP. (31)

Givenxg € RY with |xo| > 2Rr + 2, we consider a smooth cut-off functigrsatisfying

{l forx € B1(xp),

T)(x) = O forx e RN \ BZ(XO)a |V17| =< 2 (32)

Letting for simplicity v = v, givenL > 0 ands > 0, we also define the function
¢ = ¢5.. = vmin{|v|®, L?}n?. Testing[[3L) orp we obtain

2 / Vol2minu?, L2}n?+ S e? / IV (ul?) 20?22t / v (oyvZn2min(u? L2)
2 Jyup<ry
< —282/1)7] min{|v|23,L2}Vv-Vn+/Kvp+ln2min{|v|2",L2}
1 _ , _ ‘
< 582/|Vv|2m|n{|v|25,L2}n2+C82/v2m|n{|v|2”‘,L2}|V;7|2

+/Kvp+1n2min{|v|2Y,L2}.
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Hence, if we set
w = nvmin{jv|*, L}, (33)

from the above inequality we get
/82|Vw|2+ Vx)w? < Cszfvzminﬂvlzs,Lz}—f-/Kvp+1n2min{|v|25,L2}. (34)

Next, givenM > 0, we divide the last integral into the two regidns< M} and{v > M}
to obtain

/ KvP T2 min{jv|%, L%}

< Mp’lfanvzmin{|v|2s,L2}+/ KvP~1n%v? min{|v|®, L?}.
{v>M}NB2(x0)

By the Holder and Sobolev inequalities we can write

2/N
/ KoP~tp?v? min{lo[*, L?) < ( / (Kvp—lw/z) 10117 -
{v>M}NB2(x0) {v>M}NB2(xp)

2/N
sc(/ (va'—1>N/2) /|Vv|2
{v>M}NBa(xg)

2/N
= 05—2</ (va’—l)N/Z) 52/ |Vul2.
{v>M}NB>(x0)

If we can makef(Kvl’_l)N/2 sufficiently small, then we can bring this term on the left-

hand side of[(34). We note that, sin|¢:e||i2* RY) < CeVN (by our assumptions), we have

MPNIN=2) 10 5 MY < / v < eV, andso |{v> M} < CeNMN/N=D)

Next, from the Hlder inequality we get

1/q , 1/q'
/ (KvP~HN/2 < (/ U(P—l)NfI/2> </ KNa /2>
{v>M}NB(x0) {v>M} {v>M}

If we choose; in such away thatp — 1)Ng/2 = 2N /(N — 2), that is, if
, 4
q = )
4—(p—1(N -2
from the above estimates it follows that

/82|Vw|2+ V(x)w?

< ngf UZY+2+Mp—1/ Kn2v2?+2+CS—2|x0|—ﬂM—4/(N—2)q’82/|Vv|2
Ba(x0) Ba(xo)

. 4=(p=DH(N=-2)
< C(E?+ MP Y xo| ™) VY2 4 Ce 2 xo| AMT T 2 82f V|2
Ba(x0)
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. 2y —p gy TN
Now we chooseM in such a way that™<|xg| "M N-2 is a small constant,

namely we take
N-2
M = C(e ?|xo| #)= 20D
with C sufficiently large. In this way, choosingin such a way that2+ 2 = p + 1, we
get

f [£2Vw|? + V(x)w?] < C(2 + x| PMP7Y 242
Ba(xp)

_ 2p-h(N-2)
< Ce” =W-20-1) / L an (35)
Ba(x0)

From our assumptions on the functions= v, and the Hblder inequality it follows that

w . 1-w w
o= )z )
Ba(xo) Ba(xo) Ba(x0) Ba(xo)

for somew € (0, 1). By Lemmg 18 and the last two estimates, we obtain

/ [z-:2|Vw|2 + V(x)wz]
]Rn

p+1
4

3
< Clxo|%e™% exp{— Iogz1

£ (|xg @02 — R(ﬁ‘“”)}, Ixo| > 2Rr + 2,

for some constan€ depending o, p and N, and some positive numbely > O,
depending oV, p, « andp.

We note at this point that the last estimate is independent of the numbethe
definition ofw. This implies thatv|**+* belongs toWI%)’CZ(R”), with some quantitative es-
timates on the integrals, which are given in the last formula. Then the Sobolev embedding
theorem implies € L\ TH%

Finally, proceeding in this way and using a bootstrap argument, we obtain the result

after a finite number of steps. O

Remark 23. Although we already proved that ligf, o v (x) = O for any fixeds > 0,
the preceding lemma is needed since it gives a pointwise ded&ymin ¢. O

Lemma 24. Letv, be solutions of{19) satisfying(23). Letx. denote any maximum point
of v,. Then there exists a constait> 0, C = C(I'), such thatjx.| < C for everye
sufficiently small.

Proof. Sincex, is a maximum point ob,, one hasAv, (x,) < 0. Therefore, from[(79) it
follows that
V(x) K txe) < vf (). (36)

From (V) and(K) it follows that there exists > 0 such that

claxe P < V(x) K 2xe). (37)
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From [39), [(3¥), and (30) we deduce thatif| > 2R, then

clxg P

1
< |xe [1P~Dg=dP=D exp{—zw -1

3 _
|OgZ E—(Z—a)/a(|x€|(2—a)/2 _ Rl("l 01)/2)}. (38)

This immediately implies thak, | stays bounded as— 0. Lemmg 2} is thereby proved.
|

Lemma 25. Let v, be as in Lemm@4 Then there exists a consta@t > 0 such that
vl > C~L for all & sufficiently small.

Proof. From [19) we get
el = [ [Avu e vend = [ keou (39)
RN RN
Let us fixs < I~(?~D/2, Then from Propositioh 11 there existssuch that
[ Kx)vPtdx < 8= NP=D/2) 1y p L, (40)
|x|>R
From(V) and(K) we have
k14 x|

Ko < ~
@) = TP

k
Vix) < -1+ R*)V(x) forany|x| <R,
a

hence

k k
K2 < ~(1+RY) Vot < ~(1+ R*)[lvg |12.

|x|<R
From this it follows that
_ k _
/ K(x)vPtt < P 1||Loo/ K(x)v? < =L+ R)[[vf Y vell2 (1)
[x|<R [x|<R a

From [39), [(4D), and (41) we get

N G- k _
lvell? = /R Kol < 8em PR 75 4 = (4 R0l T e e 2,

[x|<R

which yields
k
1< 8 NOTD2)p 27 4 =@+ RO [[v? Y 1o (42)
a

Since||ve||Z ™t < T(P=D/2gN(p=1/2 which follows from [Z3), the estimatBAZ) implies
~ k
1<8CP D24 Z(14 R vf e,
a

hence, for our choice &, we deduce that
a

—_— >
k(1+ R%)
which proves the lemma. O

-1 ~ _
loe |7 > (1 —8CP=D/2)

9

We are now in a position to characterize the ground states whemds to 0.
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Theorem 26. Let the assumptions of Theorédf] hold. Then(NLS) has a (classical,
positive) ground state. concentrating, ag — 0, at a global minimum poink* of
A=VIKk=2/P=D whered = (p +1)/(p — 1) — N/2. More preciselyp, has a unique
maximum poink, such thatc, — x* ase — 0, and

X — Xg

vs(x):U*( )—}—wg(x) ase — 0,

wherew, — 0in C%C(RN) and in L*(RV) ase — 0, andU* is the unique positive
radial solution of
—AU* 4+ V(x"HU* = K(x*)(U*P.

Proof. The proof is based upon the preceding lemmas and is rather standard (see e.g.
[12,124]). However, to keep the paper as self-contained as possible, we will carry out the
arguments in detail. Let, denote a global maximum point of (such a maximum exists
sincevg(x) — 0 as|x| — oo). From Lemmd 24, we know that, up to a subsequence,

xe — x* for somex* € RV. Set

Ve (x) 1= ve(ex + Xg).
Sincev, solves[(ID)/. satisfies
—AYe(x) + V(ex + xe)¥e(x) = K(ex + x) ¥l (x), x eRY. (43)
From Corollary 2]l and assumpti@i) it follows that

F>e V2=V /RN[82|VUS()C)|2 + V(x)v?(x)] dx

- 2 2 a 2
> NfRN [s Ve ()2 + 1+|x|av£(x):| dx

— [ v s — 2 ]d.
L [woots tmmvio|a
From Lemmé4 24 we infer thaty + x| < C(1+ |y|) and therefore

a
/RN [|wg<y>|2 T OE wfm} dy <C
where C’ is independent of. In particular{v}. is bounded inCgy,, uniformly with
respect toe, and we deduce that, converges irC%C(RN) to someU* € C%C(RN).
Furthermore, using arguments similar to those carried out in the proof of Lémma 22, one
infers thaty, — U* also inL>®(R"). Passing to the limit in equatiop (43), we find that
U* > 0is a classical solution to

—AU*(x) + V) U*(x) = K(*)UHP(x), xRV, (44)

Moreover, sincey, attains its maximum at 0, so do&$. Furthermore, Lemnia 25 shows
thaty, (0) = v, (x,) = ||lve |l > C~1 for some positive constant, and thus max* =
U*(0) > C~1 > 0. In particular,U* # 0 (henceU* > 0 by the maximum principle)
and is a radial function according to the Gidas—Ni—Nirenberg relsult [13]. Using again
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Corollary[2] we get, for any sequengg — oo,
/, [V ()17 + V(ex + xe)y2(0)] dx < eV |[vel|2 < T (45)
BRn

Sincey, — U*in Cl(ERn), the Dominated Convergence Theorem allows us to pass to
the limit in (43) asc — 0 to obtain

f, IVU*(x)2 + V() (U*)?(x)]dx <T.
BR,,

Letting nowR,, — oo, we infer thatU* € W1-2(RN).
To complete the proof of Theorgm|26, a further lemma is in order, which provides a
lower bound for, in terms ofU* andx*.

Lemma 27. Let F; be as in the proof of Lemnfi] Then

For(U*) < liminf eV I, (ve) = liminf e Vb,. (46)
e—0

e—0

Proof. One had, (v,) = &V [w he(x) dx, where
he(6) = 2V + 2V (ex + 10200 — ——K(ex + 1y ). (47)
2 2 : p+1 :

Let R > Oto be chosen later. In view of tig*-convergence of, to U* over the compact
sets ofRY we get

Iimf hedx
e—>0 /B,

1 1 1
- _/ IVU*2dx + V(&) | (U%dx — ——K&*) | WU"Pdx.
2 /By 2 Br p+1 Br

SinceU* € WL2(RN), for anyv > 0 we can choos& > 0 large enough such that

1 1 1
lim f hedx > / [—lVU*|2 + 2V U2 - —K(x*)(U*)”+l] dx — v
>0 )3, RV |2 2 p+1

= F+(U*) —v. (48)

Let now ng be a cut-off function such thatz = 0 in Bg_1, ng = 1 in RV \ Bp,
0 < nr <1,|Vnr| < C, with C independent oR. Testing [48) omr . we obtain

2
2[ he dx + <— —1)/ K(ex + 1)y dx + Eo =0,
RN\ Bg p+1 RN\ Bg

where

E. = / oy V¥ VOV +VGex + xR — K(ex +xe)nryl T da.
Br\Bgr-1
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Hence/g v, ,, he dx > —E./2. Again by the convergence ¢t in Cl toU*e WL2RN),
we deduce tﬁat foR large enough lim., o |E;| < v and hence

lim inf hedx > ——. (49)
e—>0 JRN\Bg 2

From [48) and[(49) we conclude that

. 3
liminf hedx > Fe«(U*) — —v
e—~>0 JRN 2

foranyv > 0, and[(46) follows. o

Proof of Theoren 26 completediet us first prove thak* is a minimum point of the
function f (£) = Co.A(£). Arguing by contradiction, we assume that there exists RV
such thatf (x*) > f(¢*). From [46) and[(28), it follows that

Fer(U*) < lim igf e NI (v,) < CoA®E), Ve eRN.

On the other hand, sindé* solves equatiorj (44),

Fee(U) = ueljn\;* Fos(u) = f(x*) > f(E") = CoA(E™).
which yields a contradiction.

It remains to show that, has at most one maximum point. The proofs relies on the
arguments carried out above and so we will be sketchy. By contradiction, assume that,
up to a subsequence, has two distinct maxima;, z.. From Lemma 24 it follows that
there existt*, z* € RY such thaty, — x* andz, — z*. Lety, andU* be as above.

The convergence of, to U* in C,%C and the properties di’* readily imply that there
existsr > 0 such thaty/ (x) < const< 0 for x € B, providede is small enough. Since
e~ 1(z; — x¢) is @ maximum point ofy,, two cases can occur.

Case 1:e 1(z, — x,) is bounded and hence, up to a subsequence, it converges to some
P € RV, Sincey, (¢ 1(z, —x,)) = maxy, converges to ma&* = U*(0), we conclude
that P = 0. Therefores~1(z, — x,) € B, for ¢ sufficiently small, which is impossible
since 0 is the only critical point of, in B;.

Case 2:¢ 1(z, — xp) i§ unbounded, and Qence it teDdSotQ uptoa subseq~uence. As
above, one shows thdit, Céc—converges td/*, wherey, := v.(ex + z,) andU* is the
unique positive radial solution i -2(R") of

—AU*(x) + V(EHU*(x) = K0P (x), xeRV.

Let us remark that, since~(z; — x,)] — oo, for any R the ballsBz and B® :=
Br(¢ 1(zs — x;)) are disjoint provided is small enough. Using this fact and repeating
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the arguments carried out above, we readily find that fonasy0 it is possible to choose
R > 0 large enough such that

lim / he > F(U*) — v, (50)
e—=0/JB°
as well as
liminf he > —v. (51)

e—0 RN\(BRUBE)
From [48), [(5D) and (81) we conclude that

liminf | he > Fes(U*) + Fox (U*) — 3.
RN

e—0

Sincev is arbitrary we find that

liminf e Vb, > Fex(U*) + Fo«(U%). (52)
e—0

From [28) and[(52) it follows thak,« (U*) 4 F,«(U*) < f(x*). Sincex* andz* are both
global minimum points off, we havef (x*) = f(z*) and hence, using the definition of
f, we deduce that

~ 1 1 ~
Fox(U*) + F+(U") < E(f(x*) + f(@) = E(Fx*(U*) + F+(U"),

which is not possible. The proof is now complete. O
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