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Abstract. Let 8 > 1 be a non-integer. We conside+expansions of the forf_7°; d; /B, where

the digits(d;); > are generated by means of a Borel nigpdefined or(0, 1N x [0, 1B1/(B — D).

We show thatk g has a unique mixing measurg of maximal entropy with marginal measure an
infinite convolution of Bernoulli measures. Furthermore, under the meaguttee digits(d;);>1

form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients,
the measure of maximal entropy is Markov. We also discuss the uniquengssxpansions.

Keywords. Greedy expansions, lazy expansions, Markov chains, measures of maximal entropy

1. Introduction

Let 8 > 1 be a non-integer. There are two well-known expansions of numbéns
[0, 1B]/(B — D)] of the form

o0
a;
X = ry
=P
with ¢; € {0,1,..., |B]}. The largest in lexicographical order is theeedy expansion

([P1, [R1], [R2]), and the smallest is thazy expansiof[JS], [EJK], [DK1]). The greedy
expansion is obtained by iterating theeedy transformatiod : [0, |8]/(8 — D] —
[0, |B1/(B — 1)], defined by

Bx(modl) O0=<x <1,
Bx— 18], 1=x=<|Bl/(B-D.

The lazy expansion is obtained by iterating gy transformatiorss : [0, [8]/(8 — 1)]
— [0, |B]/(B — D], defined by

Tg(x) = {

Sg(x) =px —d forx e A(d),
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Fig. 1. The greedy mafiy (left), and the lazy magy (right). Hereg = .

We denote by:g the extende®arry measurgsee[[P],[G]) on [0 8] /(8 — D] which is
absolutely continuous with respect to Lebesgue measure, and with density

1 o0
hp(x) = F(B) ”;ﬁl[osng’(l))(x), 0<x<1,
0 1<x<|Bl/(B-1D),

whereF (8) = fol(ZKT;;(l) 1/8") dx is a normalizing constant.
Definel : [0, |B]/(B — 1] — [0, [B]/(B — 1] by
L8]
ELLUC I
B—1
and consider théazy measureg defined on[0, [8]/(B — 1)] by pg(A) = ppgL(A))

for every measurable sdt It is easy to seel([DK1]) that is a measurable isomorphism
between([0, |B1/(8 — D). up. Tp) and([0, | B]/(B — D]. pp. Sp)-

0(x) =
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In order to produce other expansions in a dynamical way, agyeansformationk g
was introduced in[[DK2]. The expansions generated by iterating this map are random
mixtures of greedy and lazy expansions. This is done as follows. Superimpose the greedy
map and the corresponding lazy map on|[®|/(8 — 1)], one gets| B| overlapping re-
gions of the form

kLB k—l}
S = -, N k:]. ..... N
¢ [ﬂ BE-D B 4]

which one refers to aswitch regionsOn Sy, the greedy map assigns the digjtwhile

the lazy map assigns the digit- 1. Outside these switch regions both maps are identical,
and hence they assign the same digits. Now, define a new random expansiongrbyase
randomizing the choice of the map used in the switch regions. So, whenbedwngs to

a switch region flip a coin to decide which map will be applied tand hence which digit
will be assigned. To be more precise, partition the interval §3/(8 — 1)] into switch
regionsS; andequality regionsEy, where

i k—1k+1) (1 .
k_<ﬁ(ﬂ—1)+ g ) T

1 Bl 1Bl-1 LB }
Eog= 1|0, - |, E = s .
° [ ﬂ) L6) <ﬁ(ﬁ—1)+ p U B-1

Let
L8] L8]
S = U Sk, E = U Ex
k=1 k=0

and considef2 = {0, 1} with the product -algebraA. Leto : @ — S be the left shift,
and definekg : @ x [0, [B]/(B — D] — £ x [0, |B]/(B — D] by

(w, Bx — k), x€Ey, k=0,1,...,|8],
Kg(w,x) = § (0(w), Bx — k), xeSyandw1 =1, k=1,..., LB,
(o(w),Bx —k+1), xeSandw1=0,k=1,...,[B].

The elements of2 represent the coin tosses (“heads”1 and “tails” = 0) used every
time the orbit hits a switch region. Let

k ifxeEy, k=0,1,..., 8],
di=di(w,x) = or(w,x) e {wr=1} x S, k=1,..., 8],
k—1 if(w,x)e{wr=0}x58, k=1,..., LB1.

Then
(w, Bx — d1) if x e E,

Ko@) =1 (@) px—dy) ifxes.
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Setd, = d,(w,x) = dl(Kgfl(w,x)), and letmp @ Q x [0, |B]/(B — D] —
[0, LB]/(B — 1)] be the canonical projection onto the second coordinate. Then

m2(Kj(, %)) = p"x — B" " dy — -+ — Bdy1 — dy,
and rewriting yields
di 2 d m2(Kg(w, x))
X = — J— . e —_ R, A —
B B2 p" B"
Sinceng(Kg (w, x)) €0, |B]/(B — D], it follows that
Ndp m2(Kg(w, x))
P ,31 ,3"
This shows that for alb €  and for allx € [0, [8]/(8 — 1)] one has
o di e~ di(w,x)
X = Z E = Z 131' '

i=1 i=1

X — — 0 asn — oo.

The random procedure just described shows that to eaehQ corresponds an algo-
rithm that produces expansions in bgseFurther, if we identify the pointw, x) with
(w, (di(w, x), d2(w, x), .. .)), then the action oK 4 on the second coordinate corresponds
to the left shift.

In [DK2], the dynamical properties of the mafis were studied forg satisfying
B2 =nB+k(Wwithl <k <n)andg” = g" 1+ ... + B + 1. It was shown that
for these values o8, the underlying random-transformation is isomorphic to a mixing
Markov chain. However, the invariant measure considered in [DK2] is not the measure
of maximal entropy (see Sectiph 4, Remdrks 6(3)). In this paper, we study the dynamical
properties ofK g for anynon-integers > 1. In Sectior[?_, we show that the m#fy cap-
tures all possible expansions in bgsehich are lexicographically ordered by the natural
lexicographical ordering of. We also briefly discuss unique expansions. In Se¢fjon 3,
we prove that the maximal entropy & is log(1+4 | 8]). Further,K g has a unique mea-
surevg of maximal entropy under which the random digits), generated by the map
K g, form a uniform Bernoulli process. Moreover, the projection of the meaguos the
second coordinate is an infinite convolution of Bernoulli measures. In S¢gtion 4, we show
that if 1 has a finite greedy expansion of the forrb1/B + bo/B2 + - - - + b, /B" With
b; = 1fori =1,...,nandn > 2, then the measung is Markov, and the underlying
Markov chain is explicitly given.

2. Basic properties of randomg-transformations

Let <jex and <jex denote the lexicographical ordering on b&hand{0, 1, ..., [8]}Y.
For eachy € [0, | 8]/(B — 1)], consider the set

D, = {(d1(w,x),d2(w, x),...) . w e Q}.

We now show that the elements bf; are ordered by the lexicographical orderings@n
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Theorem 1. Suppose, o’ € Q are such thatv <jex @’. Then
(d]_((,(), X), dZ(ws .X), . ) S|EX (dl(a)/v -x)v dZ(CU/a .X), .. )

Proof. Leti be the first index where and«’ differ. Sincew <jex @', Wwe havew; = 0
andw! = 1. Notice thatnz(Ké(w, X)) = nz(Ké(a)/, x))forj=0,...,t, wherey; >0
is the time of the™ visit to the regionQ2 x S of the orbit of (w, x) underKg. Then
dj(w,x) =dj(e, x) forall j <.

If 4 = oo, thendj(w,x) = d;j(«/,x) for all j. If ; < oo, then Kg(a),x) =
K;" (@', x) €2 x S. Sincew; =0 andw| =1, it follows thatd,, +1 (', x) =d;, +1(w, x) + 1.
Hence,

(d1(w, x), da(, x), . ..) <iex (d1(@', x), da(@', x), ....). u]
The next theorem shows that for alle [0, | 8]/(8 — 1)], any representation of of the
formx =Y, a; /B with a; € {0,1, ..., 8]} can be generated by means of the map

K g by choosing an appropriate € Q.

Theorem 2. Letx € [0, [B]/(B—1)],and letx = > 72, ai /B witha; € {0,1, ..., 8]}
be a representation of in bases. Then there exists an € @ such thats; = d;(w, x).

For the proof we need the following lemma.

Lemma 1. Forx € [0, |B]/(B — 1)], one has

(|) If x € E; for somej € {0, ..., | 8]}, thena; = j.
(i) Ifx e S;forsomej € {1,..., B]} thenay € {j — 1, j}.

Proof. The proof is by contradiction.
(i) Supposer; # j.If a1 < j —1,thenj > 1 and

X =

g j-1 & i—1
MES%T+§£LJﬂ+mKLY
If ay > j+1,thenj < |B] —1andx > (j + 1)/B. In both cases ¢ E;.
(ii) Supposens ¢ {j — 1, j}. If ag < j — 2,thenj > 2 and
j — 2
r=1 ﬂﬁ@n
If ay > j+1,thenj < |B] —1andx > (j + 1)/B. In both cases ¢ S;. ]
Proof of Theorerﬁ]Z.Define the numbergy, :n € N} byx, =Y 72 a;4n—1/B". Notice

thatx; = x. Furthermore, we define a g¢t, (x) : n € N} that keeps track of the number
of times we flip a coin. More precisely,

() =) Ls(xi).
i=1

We use induction on the number of digits already determined.
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o If x € Ej, then{y(x) = 0 and by Lemma|lg; = j. We set; = Q.
o If x € S, thenty(x) = 1 and by Lemmg]lal e{j—1,;}

— lfar=j—1,weseQ) ={we Q:w =0}

— Ifag=j,wesetQ ={weQ:w =1}

It follows that Q21 is a cylinder of length¢1(x), anddi(w, x) = a1 for all ® € Q1. By

a cylinder of length 0 we mean of course the whole sgac8uppose we have obtained
Q, C .-+ C Q1 so thatQ, is a cylinder of lengtit,, (x) and for allw € 2, di(w, x) =
ais, ..., d,(w, x) = a,. Notice thatx, 11 = nz(Kg(a), x)) forallw € Q,.

o If x,41 € Ej, thend,1(x) = £,(x) and for allw € Q, dy1(w, x) = dl(Kg (w, x))
= j = ap+1, by Lemmd 1. We s, 11 = Q,.
o If x,41 € Sj, thent,,y1(x) = €,(x) +1anda,+1 € {j — 1, j} by Lemm:ﬂ..
— fapp1=j—1, wesetQ,11={we Q, :w,. , =0} Then, forallw € 2,1,
dpy1(@, x) = di(Kg(w,x)) = j — 1= any1.
— If ay41 = j, we setQ,1 = {w € Q, : wy
dpy1(w, x) = di(Kg(w, x)) = j = an41.

n+1

w1 = 1}. Then, for allw € 41,

In all cases we see th&, ;1 is a cylinder of length?,,;1(x), and for allw € 2,41,
di(w,x) =a1,...,d+1(w, x) = ap41.

If the mapK g hits the switch regions infinitely many times, thgr(x) — oo and, as
is well known,() 2, consists of a single point. If this happens only finitely many times,
then the sef?,(x) : n € N} is finite and(") 2, is exactly a cylinder set. In both cases
(N 2, is non-empty ana € () 2, satisfiesd;(w, x) = a; forall j > 1. O

Remark 1. Theoremg [l anfl]2 give another proof of the fact that among all possible
B-expansions of a point € [0, |8]/(8 — 1)], the greedy expansion is the largest in
lexicographical order (it corresponds to the largest elertierd, . . .) of ), and the lazy

one is the smallest (it corresponds to the smallest ele@eft . . .) of 2). Furthermore,
from Theorenj P, one sees thahas a unique representation in bgsef the form

L
X = —_—
i=1 ﬁl
with a; € {0,1,..., 8]} ifand only ifa; = d;(w,x) foralli > 1 andall ® € Q.
Equivalently, the greedy expansion .ofis the only representation af in baseg if and
only if x,, € E for all n > 1. In this case, we havg, = Tﬂ"_lx = Sg_lx foralln > 1.

RemarK ] gives in fact a characterization of unique expansion in terms of the greedy
expansion. Namely, if has an expansion of the form= a1/8 + a2/p% + - - -, thenx
has a unique expansion in basef and only if T;x € E,, , for alln > 0. We would
like to give other characterizations. Although some of the results are already known (see
[KL]), we give simple proofs for completeness. We first observe that 3,5, U E|g,
and 1€ E g ifandonlyif |[8]/(B — 1) — 1 € Ep. The following proposition gives a
characterization of the case<lE | g) using the greedy expansion of 1.
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Proposition 1. Supposd. has a greedy expansion of the folira= b1/ + ba/p% + - - -.

(i) If b; =0foralli > 3, thenl € Ep, if and only ifb, > 2. Moreover, ifb, = 1, then
1=8]/(B-1 —-1/B.

(i) If b; = 1for somei > 3, thenl € E, if and only ifb, > 1.

Proof. First observe thatg| = b1, and that

b b 1
1= Fl + ﬁ—zz + ?Tﬁzl.
This implies thatg? — b1 = bs + Tﬁzl. Now, by definition 1€ Ej, if and only if
1> b1/(B—1) —1/B, or equivalentlys?® — b1 > 1.
In case (i), we hav@ﬁzl = 0, which implies tha? — b1 = by. Hence, 1e Eyp, if
and only ifbo > 2. If by = 1, theng? — b1 = 1; equivalently, 1= [8]/(8 — 1) — 1/8.
In case (ii), we have &< 71 < 1. Hence 8% — b1 = by + TZ1 > 1 if and only if
by > 1. O

Before we proceed to the characterization of the uniqueness gFéx@ansion of, we
need the following simple lemma.

Lemma 2. Suppose: has a greedy expansion of the fosm= a1/8 + az/B% + ---. If
an1 > 1, thenTfx € E,,, ifand only if 7§ *1x > [B]/(8 - 1) — 1.

an+1

Proof. Notice that

1
Thix = % + ETg”x € Supi1 UEq,,
Thus,Tf;‘x € E,,, ifand only if
-1
Tox > L8] s Sy
BB -1 B
Rewriting one finds thalyx € E,,, if and only if Tg”x > Bl/(B—1 — 1. |

Note that ifa,+1 = 0, thenT7 x € Ej.

The following theorem is an immediate consequence of the above lemma. We remark
that a lexicographical version of this theorem was obtained independently for the case
x = 1, and via other methods in [KL, Theorem 3.1].

Theorem 3. Supposer has a greedy expansion of the fosm= a1/8 + az/p% + - - -
Thenx has a unique expansion in bagef and only ifTéH'lx > |Bl/(B—1) —1forall
n > 0witha, 1 > 1.

Corollary 1. Suppose: has a greedy expansion of the form= a1/8 + az/B% + - - -
witha; > 1for all i > 1. Thenx has a uniques-expansion.

Proof. Observe thaTé’x >1/(B—Dforalln >0,and ¥(8— 1) > |B]/(B—1) — 1.
The result follows from Theorefd 3. O
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Corollary 2. If 1 has a uniques-expansion, then there existska> 1 such that in the
greedy expansion df, every block of consecutive zeros consists of at mtsims.

Proof. Let 1= b1/B + ba/B%+-- - be the greedy expansion. By uniqueness i, so
b1/(B — 1) — 1 < 1/8. Hence, there existsia> 1 such that

1 by 1
_ﬁk+l§_‘3—l_1<ﬁ.
If b;_1b; ...b; is ablock withb;_1 > 1,b; =---=b; =0andj —i +1>k+ 1, then
; 1
Té’11<—§L—l,
,3k+1 B—1
contradicting Theorefn 3. o

Another immediate corollary of Theorgm 3 and Propositipn 1 is the following.

Corollary 3. Supposd. has an infinite greedy expansion of the fdtra: b1/8 + by/B?
+ --- with b > 1. Letk > 1 be the unique integer such that

1 b1 1

Bl g1 - Bk
If in the greedy expansion dfevery block of consecutive zeros contains at niostl
terms, therl has a uniques-expansion.

3. Measures of maximal entropy for randomg-expansions

In this section we show that the mdfy on Q x [0, [8]/(8 — 1] can be essentially
identified with the left shift o0, . .., | 8]}". This will enable us to prove tha s has a
unique measure of maximal entropy.

Let D = {0,..., |81} be equipped with the produet-algebraD and the uniform
product measur®. Let o’ be the left shift onD. On the set2 x [0, |8]/(B — 1)] we
consider the produet-algebrad x B, whereB3 is the Boreb -algebraon [0 8] /(8—1)],
and.A the productr-algebra o2. Define the functiory : Q x [0, |8]/(8B — 1] — D
by

o(w, x) = (d1(w, x), d2(w, x), ...).
It is easily seen thap is measurable, and o Kg = ¢’ o ¢. Furthermore, Theore@ 2
implies thaty is surjective. We will now show thap restricted to an appropriates-
invariant subset is in fact invertible. Let

Z={(w,x) e 2x]0,|B8]/(B—D]: Kg(w,x) € Q x S infinitely often},

&) . .
D' = {(alv az,...) €D Z ajlg%l € § for infinitely manyj’s}.
i=1

Theng(Z) = D/, Kﬂ_l(Z) = Z and(¢’)"1(D’) = D'. Let ¢’ be the restriction of the
mapg to Z.
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Lemma 3. The mapy’ : Z — D’ is a bimeasurable bijection.
Proof. For any sequencg, az, ...) € D', define recursively

o0 o
. aj]— . aji]—
r1=m|n{jzl:2 ’ngles}, r,~=m|n{j>r,-_1:§ ’leeS}.
=1

=1

If Z[’ilanﬂ_l/ﬂ’ € §; then, according to Lemn@ &, e{j—1 j} Ifa, =j—1,let
w; = 0, otherwise lety; = 1. Define(¢’)~1: D' — Z by

N\ — 0 ai
(QD ) 1((01, an, .. )) = (a)’ Z _1)
i=h
Itis easily checked thaty’) ! is measurable, and is the inversegf O
Lemma4. P(D") = 1.

Proof. For any sequenc@, ap, ...) € D andm > 1, define

1 ai ar

xm=E+W+W+---.

Clearlyx,, > 1/8. On the other hand,

1S 18 :1(1 L8] )
Xm = B + Z pgmti B + IBm—l(lg -1 :

i=1

Since 1+ % | 1asm — oo, there exists an intege¥ > 0 such that for all
m> N,

1 < A
B~ " T BB-D
i.e.x,;, € Syforallm > N. Let

D" ={(a1,a2,...) € D : ajaj41...aj+n-1 = 100...0 for infinitely many j}.

N-—1 zeros
From the above, we conclude that € D'. ClearlyP(D”) = 1, hencéP(D') =1. O

Now, consider th& g-invariant measureg defined ond x Bby vg(A) =P (¢(Z N A)).
The following theorem is a simple consequence of Lenmas $jand 4.

Theorem 4. Let8 > 1 be a non-integer. The dynamical systeifisx [0, | 8]/(8 — 1)],
A x B,vg, Kg) and(D, D, P, ') are measurably isomorphic.

Remark 2. The above theorem implies thaf, (Kz) = log(1 + [B]). Further, since”
is the unique measure of maximal entropyDnwe see thatg is the only K g-invariant
measure with suppoZ and maximal entropy lad + [8]), i.e. any othelk g-invariant
measure with suppo has entropy strictly less than Igg+ | 8]). We now investigate
the entropy ofK g-invariant measureg for which i (Z€) > 0.
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Lemma5. Let u be a Kg-invariant measure for whicu(Z¢) > 0. Thenh,(Kg) <
log(1+ [B]).

Proof. SinceZ andZ¢ are Kg-invariant, there exist &< « < 1 andKg-invariant mea-
suresu1, u2 concentrated o and Z¢ respectively, such that = au1 + (1 — a)u2.
Thenh, (Kg) = ahy, (Kg) + (1 — a)h,,(Kp). From Remark P, we have,, (Kp) <
log(1+ |B]). We now show thak,,,(Kg) < log(1+ [B8]). To this end, let

G ={x €[0, |B]/(B— D] : x has a uniqug-expansion

ThenQ x G C Kﬁ‘l(Q x G), and{ 72, K/;i(fz x G) = Z¢. From the above we see
that.2(Q2 x G) =1, hence it is enough to study the entropy of the nkgprestricted to
Q x G. On this setk g has the formig x Tg, wherelg, is the identity map o2, and7g
the greedy map restricted & On G we consider the Boret-algebraG N 5. Notice that
U2 o 7_[2—1 is aTg-invariant measure with suppa, hencdmzonfl(Tﬁ) <log§B.

Let F andG be any two measurable partitions@fandG respectively. For any > 1,
n—1 ) n—1 ) n—1 )
_\/OK;’(fxg); o x Tp) (FxG) =F x \/ T;'G

V Vv

0

modulo sets ofio-measure OHence,

HM(Q x Iy:Tﬁ‘ig) < HM2<§KEi(f x g))
< Hy,(F x G) + Hy, (sz x ;1\7 Tﬁ—ig).
i=0

Now, dividing byn and taking the limit aa — oo, we get

hu,(Kg, F x G) = h,,(Kg, 2 xG) =h 2_1(T,3, G) <log§p.

W20

SinceF andg are arbitrary partitions, we have
huy(Kp) < logp < log(l+ LB)).
Thereforej, (Kg) < log(1+ [B)). O
From Remark]2 and Lemnja 5 we arrive at the following theorem.
Theorem 5. The measureg is the uniquek g-invariant measure of maximal entropy.

An interesting consequence of the above theorems is tifatdf > 1 are non-integers,
then
1Bl =B’ ifandonlyif (Kg,vp)isisomorphictaKg,vg).

As before, letro : Q@ x [0, |8]/(8—1D] — [0, |8]/(B — 1] be the natural projection
m(w, x) = x. We are interested in identifying the projection of the measyren the
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second coordinate, that is, the measye n;l defined on [0 8]/(B — 1)]. To do that,
we consider the purely discrete measyies >1 defined orR as follows:

s(0h = ————, ..., § = :
(foh B+ 1 i{LBIB™'H 1
Let § be the corresponding infinite Bernoulli convolution,
§=1lim §1%...%3,.
n—oo

Theorem 6. vg o, * = 5.

Proof. Leth : D — [0, |B]/(B — 1)] be given byh(y) = Y2, yi/B', wherey =
(y1,¥2,...). Thenmy = ho g ands = P o h™L. SinceP = vg o ¢~ %, it follows that
vg o nz_l = 4. O

If B € (1,2) thens is an Erds measure on [A/(8 — 1)], and lots of things are already
known. For example, iB is a Pisot number, thehis singular with respect to Lebesgue
measure. ([E1], [E2Z], [S]). Further, for almost alB € (1, 2) the measuré is equiva-

lent to A ([Sd], [MS]). There are many generalizations of these results to the case of an
arbitrary digit set (see [P$S] for more references and results).

4. Finite greedy expansion ofl with positive coefficients, and the Markov property
of the random g-expansion

We now assume that the greedy expansion of 1 in |Basatisfies 1= b1/8 + ba/B% +
oo+ by /B withb; > 1fori =1,...,nandn > 2 (notice that 8] = b1). We show
that in this case the dynamics &f; can be identified with a subshift of finite type with
an irreducible adjacency matrix. As a result the unique measure of maximal emgopy
obtained in the previous section is Markov.

The analysis of the cag#? = b1 + 1 needs some adjustments. For this reason, we
assume here th#? # b1 + 1, and refer the reader to the end of this section (Remarks
@(2)) for the appropriate modifications needed for the @se b1 + 1.

We begin by a proposition that is an immediate consequence of Propddition 1 and
Lemma2, and which plays a crucial role in finding the Markov partition describing the
dynamics of the mai 4, as defined in Sectidr] 1.

Proposition 2. Supposd. has a finite greedy expansion of the fatra: b1/8 + b/ B2 +
<-4 by/B". If by > 1forl < j <n,then

() Tjl=S4le Ep,,,0<i<n—2
(i) 75 '1=S""1=by/B €S, Tj1=0andSil=1.

i bl i bl .
(|||) Tﬂ(ﬂTl —l) = Sﬂ(m — ) € Eblfbprl,ofl <n —2.
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; n—1 by _ on—-1 b1 _ _ b1 by — by,

0 752 -1) = 5721 - 2) = gt T S
af b1 _ bt Wf b1\ _ bk
B3t =5t 95

Moreover, by Proposition|1 and Leminja 2, one has

b1
-1

(b (b
Té(ﬂTll_l):Sk(ﬂ—ll_l><l foralli =1,...,n — 1

To find the Markov chain behind the méfy, one starts by refining the partition

T;;1=sj31> 1,

& ={Eo, S1, E1, ..., Spy, Epy}

of [0, b1/(B — D], using the orbits of 1 an#l; /(8 — 1) — 1 under the transformatiof.
We place the endpoints f together withT;1, T;(b1/(f — 1) — 1),i = 0,...,n — 2,
in increasing order. We use these points to form a new partitiaich is a refinement
of £, consisting of intervals. We writé as

C={Co,Cy,....CL}.

We choos€ to satisfy the following. For i <n — 2,

— T4l e C;ifand only if T;1 is a left endpoint ot;,
— T4(b1/(B—1) — 1) € C; ifand only if T4(b1/(8 — 1) — 1) is aright endpoint of’;.

Notice that this choice is possible, since the poiﬁ‘gﬂs, Té (b1/(B—1) —Dfor0<i<
n — 2 are all different.

Recall that the mag : [0, |8]/(B — 1] — [0, |B]/(B — 1)] defined byt(x) =
B1/(B—1) —x satisfiesTgof = £o0Sg. Thus, ifx € E; for somei, thenTgx = Sgx and
Tgl(x) = £Tg(x). From the dynamics oK g on this refinement, one reads the following
properties of’.

pl. Co=[0,b1/(B —1) —1]andCr = [1,b1/(B — D].

p2. Fori = 0,1,..., b1, E; can be written as a finite disjoint unidn; ., C; with
Mo, My, ..., My, disjoint subsets of0, 1, ..., L}. Further, the number of elements
in M; equals the number of elementsiify, _;.

p3. To eachs; there corresponds exactly oriec {0,1,..., L} \ UZLO M;. such that
S; = C;j. This is possible since thEs-orbits of 1 andby /(8 — 1) — 1 never hit the
interior ofoil S;.

p4. If C; C E;, thenTg(Cj) = Sg(C;) is a finite disjoint union of elements df, say
Tg(Cj) = G, U---UC;,. SinceE(Cj) =Cp_j C Ep,—i, it follows thatT,g(CL_j) =
Cr_yyU---UCpr_.

p5. If C; = §;, thenTg(C;) = CoandSg(C;) = Cy.
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Define the partitionP of Q@ x [0, b1/(8 — 1)] by

by
P=lQxCi:je|JMiullor=i}xS$:i=01 j=1... b
k=0

Fromp4 andp5 we conclude theaP is a Markov partition underlying the mafg.

To define the underlying subshift of finite type associated igh we consider the
(L+ 1 x (L+1) matrixA = (a; ;) with entries in{0, 1} defined by
1 ifi e UMy M andi(C; N Tg(Ch)) = A(C)),
0 ifieUioMiandC; NT;1C; =1,
1 ifief0...,L}\UltoMpandj =0, L,
0 ifiefo,....,L}\UlyMiandj #0, L.

1)

aj,j =

Remark 3. Because of our assumpti@? # b1 + 1, we haven(C; N T5(Ci)) = A(C))
ifand only if C; € Tg(C;). However, for the analysis of the cagé = b1 + 1, we need
the definition of the matrixi as given in equatior [1).

Let Y denote the topological Markov chain (or the subshift of finite type) determined
by the matrixA, thatis,Y = {y = (;) € {0,1,..., L} : ay,y, ., = 1}. We letoy be the

left shift onY. For ease of notation, we denoteday . . ., s;, the stateg € {0, ..., L} \
UZLO M, corresponding to the switch regioSis, . . ., S;, respectively.
To eachy e Y, we associate a sequengg) € {0,1,..., bl}N and a pointx €

[0, b1/(B — 1)] as follows. Let

i if yj € M,’,
ej =11 if y; =s;andyj41 =0, (2)
i—1 if yy=s;andyj1=1L.
Now set
00 ¢j
x = Z 5 (3)
j=1

Our aimistodefineamap : ¥ — Q x [0, b1/(B8 — 1] that intertwines the actions of

Kg andoy. Giveny € Y, equations[:(]2) andﬂs) describe what the second coordinate of
¥ should be. In order to be able to associatesaa 2, one needs thai; € {s1, ...sp,}
infinitely often. For this reason it is not possible to definen all of Y, but only on an
invariant subset. To be more precise, let

Y'={y=(wy2...) €Yy €{s1,....s) forinfinitely manyi's} .

Definey : Y/ — Q x [0, b1/(B — 1)] as follows. Lety = (y1, y2,...) € Y/, and define
x as in [3). To define a poind € Q corresponding t, we first locate the indices; =
n;(y) where the realization of the Markov chain is in state for somer € {1, ..., b1}.
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That is, letn1 < n2 < --- be the indices such that, = s, for somer = 1,..., bs.

Define .
W = 1 if ynj+l:Os
T 0 |f ynj+l = L.
Now setyr (y) = (w, x).
The following two lemmas reflect the fact that the dynamicKgfis essentially the

same as that of the Markov chdin These lemmas are generalizations of Lemmas 1 and 2
in [DK2], and the proofs are slight modifications of the arguments there.

Lemma6. Lety € Y’ be such that/(y) = (w, x). Then

(i) y1 =k forsomek e 2y M; = x € ;.

(i) yp=si,y2=0=x€eS; andwy =1fori =1,...,b1.
(i) yp=si,y2=L=x¢€ S andwy =0fori =1,...,b1.

Lemma 7. Fory € Y/, we have

Yooy(y) = Kgoy(y).

Remark 4. From Lemmag|6 ar{d 7 we have the followingylE Y’ with ¥/ (y) = (@, x),
then foranyi > 1andanyk € {0, 1, ..., L},

vi=k = m(Kj (0, x)) € Cr.

Having defined the mag with the above properties, we now consider the meadure
of maximal entropy orY. This measure is unique since the adjacency matri (a; ;),
as defined in[(1), is irreduciblé [W, Theorem 8.10]. In order to desagilexplicitly, we
first study the matrixA. From the dynamics oKz as well as propertigsl—p5 one easily
sees tha#t has the following properties:

0] aij=arp—[—j foralli, j=0,1,...,L,
(i) YFoai;j=hbi+1forallj=0,1,..., L.

By induction one can easily show thatAf = (al.(f‘/?), thenA* satisfies

(i) o) =a},, . foralli, j=01... L,
: k .
(iv) Zfzoaf’j) = (b1 + DFforall j=0,1,...,L.
SinceA is an irreducible, non-negative integral matrix, we calculate the topological en-
tropy h(Y) of Y by the formula

1
h(¥) = lim. p log|B, (Y)l,

whereB,, (Y) denotes the collection of blocks of lengthn the shift spacé&’. According

to property (iv) aboveB, (V)| = ¥, ; a") = (L+1)(b1+1)". Hencen(Y) = log(b1+1).
It follows that the Perron eigenvalug equalsh; + 1 (i.e. the largest positive eigenvalue

of the matrixA). To determine the measure of maximal entropy we need to find a positive
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left eigenvector and a positive right eigenvector According to property (i) above a left
eigenvector is given by = (1, 1, ..., 1). For the positive right eigenvector we choose

v to satisfyZI.L:O v; = 1. Using the technique developed by Parry, we show that the
measure) of maximal entropy is the Markov measure generated by the transition matrix
P = (p; ;), wherep; ; = a,-,j(bli—fl)vi, and stationary distributiop = v. We equip the
spaceY with theo -algebralt generated by the cylinders. We have the following theorem.

Theorem 7. The dynamical systemi& x [0, b1/(8 — 1], A x B, Q o ¥ 1, Kp) and
(Y, H, Q, oy) are measurably isomorphic.

Proof. We show that the map : Y’ — Z is the required isomorphism. From Lempja 7
we find thaty intertwines the actions akg andoy. Furthermore, it is easily checked
thaty : Y’ — Z is a bimeasurable bijection. The inverge! : Z — Y’ is given by
v Yo, x) = y, wherey; = k if nz(K/’S_l(a), x)) € Cy. o

Remark 5. The proof of the above theorem shows tigas 1 is aKg-invariant mea-

sure onQ2 x [0, b1/(B — 1)] with supportZ, and of maximal entropy ladd + |8]). By
Theorenﬂs it follows tha o 1 = vg. In Theorerrﬂs, the projection of this measure

on the second coordinate was identified as an infinite convolution of Bernoulli measures.

Letmr 1 Q x [0, [B]/(B— 1] — € be the canonical projection onto the first co-
ordinate. Consider the measu@® = vg o nl‘l on Q. ThenQ' = Q o a1, where
a=moy:Y — Q.

Theorem 8. The measure’ is the uniform Bernoulli measure df, 1}V.
Proof. Define the stopping timed;);>1 on Y’ recursively as follows:

Ty =min{m > 2:yu_1 € {s1,..., 55 }},

Ti=minfm > T;_1:yp_1€{s1,...,5}}, i>2

An application of the Strong Markov Property shows that the stopped progess.,. . . .
is also a Markov chain with state spal@e L} and transition probabilities given lay; =
1/2fori, j € {0, L}. Therefore, ifj1, ..., j; € {0, L}, then

OUyr, = ja,---ym = i) = /2.
Definey : {0, L} — {0, 1} by x(0) = 1, x(L) = 0. It follows that

0'(lw1 = x(1)s - v = x(UDH) = 0y = j1, -y =aH =12, o

Remarks 6. (1) If 1 has a finite greedy expansiond. b1/8 + - -- + b, /B" with some

of the coefficient®; equal to zero, then one is able to find examples of fislwhere

the mapKg has an underlying Markov partition similar to the one described above, i.e.
determined by the random orbits of 1 aind (8 — 1) — 1. On the other hand, one is also
able to find examples whetkg has no such Markov partition. For example, foe 2,

let B, € (1, 2) be the unique solution to the equation

ﬂn — ﬂn—l + 1
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Then 1 has a greedy expansion=11/(8) + 1/(8"). Forn = 2,3, 4,5, it is not hard

to see thakg has a natural underlying Markov partition (one might need to divide the
switch regions as well). However, farsufficiently large this is not the case. Forlin [EK]

it was shown that foeachp sufficiently close to 1, there exists a sequetgg of zeros
and ones satisfyind ;2; ¢;/8' = 1 and containing all possible finite variations of the
digits 0 and 1. Now, it is easy to check thiat | 1 asn — oo. Hence, ifg, is sufficiently
close to 1, then by Theoregm 2 there is@r Q such thak; = d;(w, 1) for eachi. Since
each block of zeros and ones appeargijtiw, 1));>1 this implies that

’ IBn -1

Hence, there is no underlying Markov partition (determined by the random orbits of 1 and
1/(B, — 1) — 1) for the mapKg.

Notice thatgs is the smallest Pisot number. One might conjecture thag fer(1, 8s),
one cannot construct a Markov partition similar to the one described in this section.

(2) We now consider the cagé = b18+1. Notice that = &, since 1 and1/(8—1)
— 1 are already endpoints of intervalsdn For ease of notation, we denote the alphabet
of Y by {eq, 51, €1, ..., sp,, ep, }. FOrany 1< i < by,

{nz(Kg;(a),l)):mZO}:[O 1 }

-1

As aresult, Lemmgg 6 afdl 7 do not hold for elements'inorresponding to endpoints of
elements of’. To be precise, for & i < by we define the sequence$’, y), ¢ and
r@ as follows.

— Let xD = (s, by, S1, €bys S1, .. .). Then v(xD) = 09,i/8), wherew©@ =
(0,0,0,...). We havengwrl =51 form > 1, while forj > 2,

() -2

— Lety® = (e, 51, €py, 51, €py, .- .). Then

. b1 i—1
0y — (O '
vo™) (‘“ "BE-D T ﬁ)

We haveyg; =51 form > 1, while forj > 1,

W o b1 i—1\\ b
”2<Kﬂ (‘” "BE-D B ))‘ﬂ—l’

— Letq® = (ei-1, 56y, €0, 5y, €0, .- )- Theny (V) = (@P,i/B), wherew™® =
(1,1,1,...).We hav&;é;)1 = sp, form > 1, while forj > 1,

ok (o, 2)) =0

_ _ b
Ts(S;) = Eo = [0, 1/8], S,s(S»:Ebl:[l, ! }
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— Letr® = (s;, e, Shy> €0, Shys -+ -)- Theny r@) = (0@, ﬂ(g i) + = v 1), We have for

m=1,rs) . = s, while for j > 2,

(g, (D) b1 i—-1 _
m2(Kg (0™, + ) =0

P B(B—-1 B
Except for these points, the analysis used in this section remains valid. So, the only
modification needed is the removal of a set of measure zero from the domaif of
namely all points whose orbit undey eventually equals @, y@ 4@ or @ for some
i=1...,h1

(3) Suppose in the switch regions we decide to flip a biased coin, witlPQHeads

= p < 1, in order to decide whether to use the greedy or the lazy map. The measure of
maximal entropy discussed in this section does not reflect this fact. A natural invariant
measure that preserves this property is obtained by considering the Markov m@asure
onY with transition probabilitiegp; ;, given by

ACi N Tﬂflcj)/)\(Ci) ifie Uzl:oMk’

p ifi €(0,1,...,L)\ Uy Mcandj =0,
i = !
R if i €{0,1,.... L}\ Uy M andj = L.
0 ifi €{0,1,...,L}\ Uy Myandj #0, L,

(as before). denotes Lebesgue measure) and initial distribution the corresponding station-
ary distribution (se€ [DK2]). Another interesting feature is that the projecti@yefy —1

on the second coordinate fpr= 1 is the Parry measuneg, and forp = 0 itis the lazy
measureyg (see Sectiop|1).
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