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Abstract. Let β > 1 be a non-integer. We considerβ-expansions of the form
∑

∞
i=1 di/β

i , where

the digits(di)i≥1 are generated by means of a Borel mapKβ defined on{0,1}
N

×[0, bβc/(β − 1)].
We show thatKβ has a unique mixing measureνβ of maximal entropy with marginal measure an
infinite convolution of Bernoulli measures. Furthermore, under the measureνβ the digits(di)i≥1
form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients,
the measure of maximal entropy is Markov. We also discuss the uniqueness ofβ-expansions.

Keywords. Greedy expansions, lazy expansions, Markov chains, measures of maximal entropy

1. Introduction

Let β > 1 be a non-integer. There are two well-known expansions of numbersx in
[0, bβc/(β − 1)] of the form

x =

∞∑
i=1

ai

βi

with ai ∈ {0,1, . . . , bβc}. The largest in lexicographical order is thegreedy expansion
([P], [R1], [R2]), and the smallest is thelazy expansion([JS], [EJK], [DK1]). The greedy
expansion is obtained by iterating thegreedy transformationTβ : [0, bβc/(β − 1)] →

[0, bβc/(β − 1)], defined by

Tβ(x) =

{
βx (mod 1), 0 ≤ x < 1,
βx − bβc, 1 ≤ x ≤ bβc/(β − 1).

The lazy expansion is obtained by iterating thelazy transformationSβ : [0, bβc/(β − 1)]
→ [0, bβc/(β − 1)], defined by

Sβ(x) = βx − d for x ∈ 1(d),
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where

1(0) =

[
0,

bβc

β(β − 1)

]
,

and

1(d) =

(
bβc

β − 1
−

bβc − d + 1

β
,

bβc

β − 1
−

bβc − d

β

]
=

(
bβc

β(β − 1)
+
d − 1

β
,

bβc

β(β − 1)
+
d

β

]
, d ∈ {1, . . . , bβc}.
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Fig. 1.The greedy mapTβ (left), and the lazy mapSβ (right). Hereβ = π.

We denote byµβ the extendedParry measure(see [P], [G]) on [0, bβc/(β − 1)] which is
absolutely continuous with respect to Lebesgue measure, and with density

hβ(x) =


1

F(β)

∞∑
n=0

1

βn
1[0,T nβ (1))

(x), 0 ≤ x < 1,

0, 1 ≤ x ≤ bβc/(β − 1),

whereF(β) =
∫ 1

0 (
∑
x<T nβ (1)

1/βn) dx is a normalizing constant.

Define` : [0, bβc/(β − 1)] → [0, bβc/(β − 1)] by

`(x) =
bβc

β − 1
− x,

and consider thelazy measureρβ defined on[0, bβc/(β − 1)] by ρβ(A) = µβ(`(A))

for every measurable setA. It is easy to see ([DK1]) that̀ is a measurable isomorphism
between([0, bβc/(β − 1)], µβ , Tβ) and([0, bβc/(β − 1)], ρβ , Sβ).
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In order to produce other expansions in a dynamical way, a newβ-transformationKβ
was introduced in [DK2]. The expansions generated by iterating this map are random
mixtures of greedy and lazy expansions. This is done as follows. Superimpose the greedy
map and the corresponding lazy map on [0, bβc/(β − 1)], one getsbβc overlapping re-
gions of the form

Sk =

[
k

β
,

bβc

β(β − 1)
+
k − 1

β

]
, k = 1, . . . , bβc,

which one refers to asswitch regions. On Sk, the greedy map assigns the digitk, while
the lazy map assigns the digitk−1. Outside these switch regions both maps are identical,
and hence they assign the same digits. Now, define a new random expansion in baseβ by
randomizing the choice of the map used in the switch regions. So, wheneverx belongs to
a switch region flip a coin to decide which map will be applied tox, and hence which digit
will be assigned. To be more precise, partition the interval [0, bβc/(β − 1)] into switch
regionsSk andequality regionsEk, where

Ek =

(
bβc

β(β − 1)
+
k − 1

β
,
k + 1

β

)
, k = 1, . . . , bβc − 1,

E0 =

[
0,

1

β

)
, Ebβc =

(
bβc

β(β − 1)
+

bβc − 1

β
,

bβc

β − 1

]
.

Let

S =

bβc⋃
k=1

Sk, E =

bβc⋃
k=0

Ek,

and consider� = {0,1}
N with the productσ -algebraA. Let σ : � → � be the left shift,

and defineKβ : �× [0, bβc/(β − 1)] → �× [0, bβc/(β − 1)] by

Kβ(ω, x) =


(ω, βx − k), x ∈ Ek, k = 0,1, . . . , bβc,

(σ (ω), βx − k), x ∈ Sk andω1 = 1, k = 1, . . . , bβc,

(σ (ω), βx − k + 1), x ∈ Sk andω1 = 0, k = 1, . . . , bβc.

The elements of� represent the coin tosses (“heads”= 1 and “tails” = 0) used every
time the orbit hits a switch region. Let

d1 = d1(ω, x) =


k if x ∈ Ek, k = 0,1, . . . , bβc,

or (ω, x) ∈ {ω1 = 1} × Sk, k = 1, . . . , bβc,

k − 1 if (ω, x) ∈ {ω1 = 0} × Sk, k = 1, . . . , bβc.

Then

Kβ(ω, x) =

{
(ω, βx − d1) if x ∈ E,

(σ (ω), βx − d1) if x ∈ S.



54 Karma Dajani, Martijn de Vries

Set dn = dn(ω, x) = d1(K
n−1
β (ω, x)), and let π2 : � × [0, bβc/(β − 1)] →

[0, bβc/(β − 1)] be the canonical projection onto the second coordinate. Then

π2(K
n
β (ω, x)) = βnx − βn−1d1 − · · · − βdn−1 − dn,

and rewriting yields

x =
d1

β
+
d2

β2
+ · · · +

dn

βn
+
π2(K

n
β (ω, x))

βn
.

Sinceπ2(K
n
β (ω, x)) ∈ [0, bβc/(β − 1)], it follows that

x −

n∑
i=1

di

βi
=
π2(K

n
β (ω, x))

βn
→ 0 asn → ∞.

This shows that for allω ∈ � and for allx ∈ [0, bβc/(β − 1)] one has

x =

∞∑
i=1

di

βi
=

∞∑
i=1

di(ω, x)

βi
.

The random procedure just described shows that to eachω ∈ � corresponds an algo-
rithm that produces expansions in baseβ. Further, if we identify the point(ω, x) with
(ω, (d1(ω, x), d2(ω, x), . . .)), then the action ofKβ on the second coordinate corresponds
to the left shift.

In [DK2], the dynamical properties of the mapKβ were studied forβ satisfying
β2

= nβ + k (with 1 ≤ k ≤ n) andβn = βn−1
+ · · · + β + 1. It was shown that

for these values ofβ, the underlying randomβ-transformation is isomorphic to a mixing
Markov chain. However, the invariant measure considered in [DK2] is not the measure
of maximal entropy (see Section 4, Remarks 6(3)). In this paper, we study the dynamical
properties ofKβ for anynon-integerβ > 1. In Section 2, we show that the mapKβ cap-
tures all possible expansions in baseβ which are lexicographically ordered by the natural
lexicographical ordering on�. We also briefly discuss unique expansions. In Section 3,
we prove that the maximal entropy ofKβ is log(1+ bβc). Further,Kβ has a unique mea-
sureνβ of maximal entropy under which the random digits(di), generated by the map
Kβ , form a uniform Bernoulli process. Moreover, the projection of the measureνβ on the
second coordinate is an infinite convolution of Bernoulli measures. In Section 4, we show
that if 1 has a finite greedy expansion of the form 1= b1/β + b2/β

2
+ · · · + bn/β

n with
bi ≥ 1 for i = 1, . . . , n andn ≥ 2, then the measureνβ is Markov, and the underlying
Markov chain is explicitly given.

2. Basic properties of randomβ-transformations

Let <lex and≤lex denote the lexicographical ordering on both� and{0,1, . . . , bβc}
N.

For eachx ∈ [0, bβc/(β − 1)], consider the set

Dx = {(d1(ω, x), d2(ω, x), . . .) : ω ∈ �} .

We now show that the elements ofDx are ordered by the lexicographical ordering on�.
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Theorem 1. Supposeω,ω′
∈ � are such thatω <lex ω

′. Then

(d1(ω, x), d2(ω, x), . . .) ≤lex (d1(ω
′, x), d2(ω

′, x), . . .).

Proof. Let i be the first index whereω andω′ differ. Sinceω <lex ω
′, we haveωi = 0

andω′

i = 1. Notice thatπ2(K
j
β(ω, x)) = π2(K

j
β(ω

′, x)) for j = 0, . . . , ti, whereti ≥ 0

is the time of theith visit to the region� × S of the orbit of (ω, x) underKβ . Then
dj (ω, x) = dj (ω

′, x) for all j ≤ ti .

If ti = ∞, then dj (ω, x) = dj (ω
′, x) for all j. If ti < ∞, thenK ti

β (ω, x) =

K
ti
β (ω

′, x)∈�×S. Sinceωi=0 andω′

i=1, it follows thatdti+1(ω
′, x)=dti+1(ω, x)+1.

Hence,
(d1(ω, x), d2(ω, x), . . .) <lex (d1(ω

′, x), d2(ω
′, x), . . .). ut

The next theorem shows that for allx ∈ [0, bβc/(β − 1)], any representation ofx of the
form x =

∑
∞

i=1 ai/β
i with ai ∈ {0,1, . . . , bβc} can be generated by means of the map

Kβ by choosing an appropriateω ∈ �.

Theorem 2. Letx ∈ [0, bβc/(β−1)], and letx =
∑

∞

i=1 ai/β
i with ai ∈ {0,1, . . . , bβc}

be a representation ofx in baseβ. Then there exists anω ∈ � such thatai = di(ω, x).

For the proof we need the following lemma.

Lemma 1. For x ∈ [0, bβc/(β − 1)], one has

(i) If x ∈ Ej for somej ∈ {0, . . . , bβc}, thena1 = j.

(ii) If x ∈ Sj for somej ∈ {1, . . . , bβc}, thena1 ∈ {j − 1, j}.

Proof. The proof is by contradiction.
(i) Supposea1 6= j . If a1 ≤ j − 1, thenj ≥ 1 and

x =

∞∑
i=1

ai

βi
≤
j − 1

β
+

∞∑
i=2

bβc

βi
=
j − 1

β
+

bβc

β(β − 1)
.

If a1 ≥ j + 1, thenj ≤ bβc − 1 andx ≥ (j + 1)/β. In both casesx 6∈ Ej .

(ii) Supposea1 6∈ {j − 1, j}. If a1 ≤ j − 2, thenj ≥ 2 and

x ≤
j − 2

β
+

bβc

β(β − 1)
.

If a1 ≥ j + 1, thenj ≤ bβc − 1 andx ≥ (j + 1)/β. In both casesx 6∈ Sj . ut

Proof of Theorem 2.Define the numbers{xn : n ∈ N} by xn =
∑

∞

i=1 ai+n−1/β
i . Notice

thatx1 = x. Furthermore, we define a set{`n(x) : n ∈ N} that keeps track of the number
of times we flip a coin. More precisely,

`n(x) =

n∑
i=1

1S(xi).

We use induction on the number of digits already determined.
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• If x ∈ Ej , then`1(x) = 0 and by Lemma 1,a1 = j . We set�1 = �.

• If x ∈ Sj , then`1(x) = 1 and by Lemma 1,a1 ∈ {j − 1, j}.
— If a1 = j − 1, we set�1 = {ω ∈ � : ω1 = 0}.

— If a1 = j , we set�1 = {ω ∈ � : ω1 = 1}.

It follows that�1 is a cylinder of length̀ 1(x), andd1(ω, x) = a1 for all ω ∈ �1. By
a cylinder of length 0 we mean of course the whole space�. Suppose we have obtained
�n ⊆ · · · ⊆ �1 so that�n is a cylinder of length̀ n(x) and for allω ∈ �n, d1(ω, x) =

a1, . . . , dn(ω, x) = an. Notice thatxn+1 = π2(K
n
β (ω, x)) for all ω ∈ �n.

• If xn+1 ∈ Ej , then`n+1(x) = `n(x) and for allω ∈ �n, dn+1(ω, x) = d1(K
n
β (ω, x))

= j = an+1, by Lemma 1. We set�n+1 = �n.

• If xn+1 ∈ Sj , then`n+1(x) = `n(x)+ 1 andan+1 ∈ {j − 1, j} by Lemma 1.
— If an+1 = j − 1, we set�n+1 = {ω ∈ �n : ω`n+1 = 0}. Then, for allω ∈ �n+1,

dn+1(ω, x) = d1(K
n
β (ω, x)) = j − 1 = an+1.

— If an+1 = j , we set�n+1 = {ω ∈ �n : ω`n+1 = 1}. Then, for allω ∈ �n+1,
dn+1(ω, x) = d1(K

n
β (ω, x)) = j = an+1.

In all cases we see that�n+1 is a cylinder of length̀ n+1(x), and for allω ∈ �n+1,
d1(ω, x) = a1, . . . , dn+1(ω, x) = an+1.

If the mapKβ hits the switch regions infinitely many times, then`n(x) → ∞ and, as
is well known,

⋂
�n consists of a single point. If this happens only finitely many times,

then the set{`n(x) : n ∈ N} is finite and
⋂
�n is exactly a cylinder set. In both cases⋂

�n is non-empty andω ∈
⋂
�n satisfiesdj (ω, x) = aj for all j ≥ 1. ut

Remark 1. Theorems 1 and 2 give another proof of the fact that among all possible
β-expansions of a pointx ∈ [0, bβc/(β − 1)], the greedy expansion is the largest in
lexicographical order (it corresponds to the largest element(1,1, . . .) of �), and the lazy
one is the smallest (it corresponds to the smallest element(0,0, . . .) of �). Furthermore,
from Theorem 2, one sees thatx has a unique representation in baseβ of the form

x =

∞∑
i=1

ai

βi

with ai ∈ {0,1, . . . , bβc} if and only if ai = di(ω, x) for all i ≥ 1 andall ω ∈ �.

Equivalently, the greedy expansion ofx is the only representation ofx in baseβ if and
only if xn ∈ E for all n ≥ 1. In this case, we havexn = T n−1

β x = Sn−1
β x for all n ≥ 1.

Remark 1 gives in fact a characterization of unique expansion in terms of the greedy
expansion. Namely, ifx has an expansion of the formx = a1/β + a2/β

2
+ · · · , thenx

has a unique expansion in baseβ if and only if T nβ x ∈ Ean+1 for all n ≥ 0. We would
like to give other characterizations. Although some of the results are already known (see
[KL]), we give simple proofs for completeness. We first observe that 1∈ Sbβc ∪ Ebβc,
and 1∈ Ebβc if and only if bβc/(β − 1) − 1 ∈ E0. The following proposition gives a
characterization of the case 1∈ Ebβc using the greedy expansion of 1.
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Proposition 1. Suppose1 has a greedy expansion of the form1 = b1/β + b2/β
2
+ · · · .

(i) If bi = 0 for all i ≥ 3, then1 ∈ Eb1 if and only ifb2 ≥ 2. Moreover, ifb2 = 1, then
1 = bβc/(β − 1)− 1/β.

(ii) If bi ≥ 1 for somei ≥ 3, then1 ∈ Eb1 if and only ifb2 ≥ 1.

Proof. First observe thatbβc = b1, and that

1 =
b1

β
+
b2

β2
+

1

β2
T 2
β 1.

This implies thatβ2
− b1β = b2 + T 2

β 1. Now, by definition 1∈ Eb1 if and only if

1> b1/(β − 1)− 1/β, or equivalentlyβ2
− b1β > 1.

In case (i), we haveT 2
β 1 = 0, which implies thatβ2

− b1β = b2. Hence, 1∈ Eb1 if

and only ifb2 ≥ 2. If b2 = 1, thenβ2
− b1β = 1; equivalently, 1= bβc/(β − 1)− 1/β.

In case (ii), we have 0< T 2
β 1 < 1. Hence,β2

− b1β = b2 + T 2
β 1 > 1 if and only if

b2 ≥ 1. ut

Before we proceed to the characterization of the uniqueness of theβ-expansion ofx, we
need the following simple lemma.

Lemma 2. Supposex has a greedy expansion of the formx = a1/β + a2/β
2

+ · · · . If
an+1 ≥ 1, thenT nβ x ∈ Ean+1 if and only ifT n+1

β x > bβc/(β − 1)− 1.

Proof. Notice that

T nβ x =
an+1

β
+

1

β
T n+1
β x ∈ San+1 ∪ Ean+1.

Thus,T nβ x ∈ Ean+1 if and only if

T nβ x >
bβc

β(β − 1)
+
an+1 − 1

β
.

Rewriting one finds thatT nβ x ∈ Ean+1 if and only if T n+1
β x > bβc/(β − 1)− 1. ut

Note that ifan+1 = 0, thenT nβ x ∈ E0.

The following theorem is an immediate consequence of the above lemma. We remark
that a lexicographical version of this theorem was obtained independently for the case
x = 1, and via other methods in [KL, Theorem 3.1].

Theorem 3. Supposex has a greedy expansion of the formx = a1/β + a2/β
2

+ · · · .
Thenx has a unique expansion in baseβ if and only ifT n+1

β x > bβc/(β − 1)− 1 for all
n ≥ 0 with an+1 ≥ 1.

Corollary 1. Supposex has a greedy expansion of the formx = a1/β + a2/β
2

+ · · ·

with ai ≥ 1 for all i ≥ 1. Thenx has a uniqueβ-expansion.

Proof. Observe thatT nβ x ≥ 1/(β − 1) for all n ≥ 0, and 1/(β − 1) > bβc/(β − 1)− 1.
The result follows from Theorem 3. ut
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Corollary 2. If 1 has a uniqueβ-expansion, then there exists ak ≥ 1 such that in the
greedy expansion of1, every block of consecutive zeros consists of at mostk terms.

Proof. Let 1 = b1/β + b2/β
2
+ · · · be the greedy expansion. By uniqueness 1∈ Eb1, so

b1/(β − 1)− 1< 1/β. Hence, there exists ak ≥ 1 such that

1

βk+1
≤

b1

β − 1
− 1<

1

βk
.

If bi−1bi . . . bj is a block withbi−1 ≥ 1, bi = · · · = bj = 0 andj − i + 1 ≥ k + 1, then

T i−1
β 1<

1

βk+1
≤

b1

β − 1
− 1,

contradicting Theorem 3. ut

Another immediate corollary of Theorem 3 and Proposition 1 is the following.

Corollary 3. Suppose1 has an infinite greedy expansion of the form1 = b1/β + b2/β
2

+ · · · with b2 ≥ 1. Letk ≥ 1 be the unique integer such that

1

βk+1
≤

b1

β − 1
− 1<

1

βk
.

If in the greedy expansion of1 every block of consecutive zeros contains at mostk − 1
terms, then1 has a uniqueβ-expansion.

3. Measures of maximal entropy for randomβ-expansions

In this section we show that the mapKβ on � × [0, bβc/(β − 1)] can be essentially
identified with the left shift on{0, . . . , bβc}

N. This will enable us to prove thatKβ has a
unique measure of maximal entropy.

Let D = {0, . . . , bβc}
N be equipped with the productσ -algebraD and the uniform

product measureP. Let σ ′ be the left shift onD. On the set� × [0, bβc/(β − 1)] we
consider the productσ -algebraA×B, whereB is the Borelσ -algebra on [0, bβc/(β−1)],
andA the productσ -algebra on�. Define the functionϕ : � × [0, bβc/(β − 1)] → D

by
ϕ(ω, x) = (d1(ω, x), d2(ω, x), . . .).

It is easily seen thatϕ is measurable, andϕ ◦ Kβ = σ ′
◦ ϕ. Furthermore, Theorem 2

implies thatϕ is surjective. We will now show thatϕ restricted to an appropriateKβ -
invariant subset is in fact invertible. Let

Z = {(ω, x) ∈ �× [0, bβc/(β − 1)] : Kn
β (ω, x) ∈ �× S infinitely often},

D′
=

{
(a1, a2, . . .) ∈ D :

∞∑
i=1

aj+i−1

βi
∈ S for infinitely manyj ’s

}
.

Thenϕ(Z) = D′, K−1
β (Z) = Z and(σ ′)−1(D′) = D′. Let ϕ′ be the restriction of the

mapϕ toZ.
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Lemma 3. The mapϕ′ : Z → D′ is a bimeasurable bijection.

Proof. For any sequence(a1, a2, . . .) ∈ D′, define recursively

r1 = min

{
j ≥ 1 :

∞∑
l=1

aj+l−1

β l
∈ S

}
, ri = min

{
j > ri−1 :

∞∑
l=1

aj+l−1

β l
∈ S

}
.

If
∑

∞

l=1 ari+l−1/β
l
∈ Sj then, according to Lemma 1,ari ∈ {j − 1, j}. If ari = j − 1, let

ωi = 0, otherwise letωi = 1. Define(ϕ′)−1 : D′
→ Z by

(ϕ′)−1((a1, a2, . . .)) =

(
ω,

∞∑
i=1

ai

βi

)
.

It is easily checked that(ϕ′)−1 is measurable, and is the inverse ofϕ′. ut

Lemma 4. P(D′) = 1.

Proof. For any sequence(a1, a2, . . .) ∈ D andm ≥ 1, define

xm =
1

β
+

a1

βm+1
+

a2

βm+2
+ · · ·.

Clearlyxm ≥ 1/β. On the other hand,

xm ≤
1

β
+

∞∑
i=1

bβc

βm+i
=

1

β

(
1 +

bβc

βm−1(β − 1)

)
.

Since 1+
bβc

βm−1(β−1)
↓ 1 asm → ∞, there exists an integerN > 0 such that for all

m ≥ N ,
1

β
≤ xm ≤

bβc

β(β − 1)
,

i.e.xm ∈ S1 for all m ≥ N. Let

D′′
= {(a1, a2, . . .) ∈ D : ajaj+1 . . . aj+N−1 = 100. . . 0︸ ︷︷ ︸

N−1 zeros

for infinitely manyj}.

From the above, we conclude thatD′′
⊆ D′. ClearlyP(D′′) = 1, henceP(D′) = 1. ut

Now, consider theKβ -invariant measureνβ defined onA×B by νβ(A) = P (ϕ(Z ∩ A)) .

The following theorem is a simple consequence of Lemmas 3 and 4.

Theorem 4. Letβ > 1 be a non-integer. The dynamical systems(�× [0, bβc/(β − 1)],
A× B, νβ ,Kβ) and(D,D,P, σ ′) are measurably isomorphic.

Remark 2. The above theorem implies thathνβ (Kβ) = log(1 + bβc). Further, sinceP
is the unique measure of maximal entropy onD, we see thatνβ is the onlyKβ -invariant
measure with supportZ and maximal entropy log(1 + bβc), i.e. any otherKβ -invariant
measure with supportZ has entropy strictly less than log(1 + bβc). We now investigate
the entropy ofKβ -invariant measuresµ for whichµ(Zc) > 0.
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Lemma 5. Let µ be aKβ -invariant measure for whichµ(Zc) > 0. Thenhµ(Kβ) <
log(1 + bβc).

Proof. SinceZ andZc areKβ -invariant, there exist 0≤ α < 1 andKβ -invariant mea-
suresµ1, µ2 concentrated onZ andZc respectively, such thatµ = αµ1 + (1 − α)µ2.

Thenhµ(Kβ) = αhµ1(Kβ) + (1 − α)hµ2(Kβ). From Remark 2, we havehµ1(Kβ) ≤

log(1 + bβc). We now show thathµ2(Kβ) < log(1 + bβc). To this end, let

G = {x ∈ [0, bβc/(β − 1)] : x has a uniqueβ-expansion}.

Then� × G ⊆ K−1
β (� × G), and

⋃
∞

i=0K
−i
β (� × G) = Zc. From the above we see

thatµ2(�×G) = 1, hence it is enough to study the entropy of the mapKβ restricted to
�×G. On this setKβ has the formI� × Tβ , whereI� is the identity map on�, andTβ
the greedy map restricted toG.OnG we consider the Borelσ -algebraG∩B. Notice that
µ2 ◦ π−1

2 is aTβ -invariant measure with supportG, henceh
µ2◦π

−1
2
(Tβ) ≤ logβ.

LetF andG be any two measurable partitions of� andG respectively. For anyn ≥ 1,

n−1∨
i=0

K−i
β (F × G) =

n−1∨
i=0

(I� × Tβ)
−i(F × G) = F ×

n−1∨
i=0

T −i
β G

modulo sets ofµ2-measure 0. Hence,

Hµ2

(
�×

n−1∨
i=0

T −i
β G

)
≤ Hµ2

( n−1∨
i=0

K−i
β (F × G)

)
≤ Hµ2(F ×G)+Hµ2

(
�×

n−1∨
i=0

T −i
β G

)
.

Now, dividing byn and taking the limit asn → ∞, we get

hµ2(Kβ ,F × G) = hµ2(Kβ , �× G) = h
µ2◦π

−1
2
(Tβ ,G) ≤ logβ.

SinceF andG are arbitrary partitions, we have

hµ2(Kβ) ≤ logβ < log(1 + bβc).

Therefore,hµ(Kβ) < log(1 + bβc). ut

From Remark 2 and Lemma 5 we arrive at the following theorem.

Theorem 5. The measureνβ is the uniqueKβ -invariant measure of maximal entropy.

An interesting consequence of the above theorems is that ifβ, β ′ > 1 are non-integers,
then

bβc = bβ ′
c if and only if (Kβ , νβ) is isomorphic to(Kβ ′ , νβ ′).

As before, letπ2 : �× [0, bβc/(β−1)] → [0, bβc/(β−1)] be the natural projection
π2(ω, x) = x. We are interested in identifying the projection of the measureνβ on the
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second coordinate, that is, the measureνβ ◦ π−1
2 defined on [0, bβc/(β − 1)]. To do that,

we consider the purely discrete measures{δi}i≥1 defined onR as follows:

δi({0}) =
1

bβc + 1
, . . . , δi({bβcβ−i

}) =
1

bβc + 1
.

Let δ be the corresponding infinite Bernoulli convolution,

δ = lim
n→∞

δ1 ∗ . . . ∗ δn.

Theorem 6. νβ ◦ π−1
2 = δ.

Proof. Let h : D → [0, bβc/(β − 1)] be given byh(y) =
∑

∞

i=1 yi/β
i, wherey =

(y1, y2, . . .). Thenπ2 = h ◦ ϕ andδ = P ◦ h−1. SinceP = νβ ◦ ϕ−1, it follows that
νβ ◦ π−1

2 = δ. ut

If β ∈ (1,2) thenδ is an Erd̋os measure on [0,1/(β − 1)], and lots of things are already
known. For example, ifβ is a Pisot number, thenδ is singular with respect to Lebesgue
measureλ ([E1], [E2], [S]). Further, for almost allβ ∈ (1,2) the measureδ is equiva-
lent toλ ([So], [MS]). There are many generalizations of these results to the case of an
arbitrary digit set (see [PSS] for more references and results).

4. Finite greedy expansion of1 with positive coefficients, and the Markov property
of the random β-expansion

We now assume that the greedy expansion of 1 in baseβ satisfies 1= b1/β + b2/β
2

+

· · · + bn/β
n with bi ≥ 1 for i = 1, . . . , n andn ≥ 2 (notice thatbβc = b1). We show

that in this case the dynamics ofKβ can be identified with a subshift of finite type with
an irreducible adjacency matrix. As a result the unique measure of maximal entropyνβ
obtained in the previous section is Markov.

The analysis of the caseβ2
= b1β + 1 needs some adjustments. For this reason, we

assume here thatβ2
6= b1β + 1, and refer the reader to the end of this section (Remarks

6(2)) for the appropriate modifications needed for the caseβ2
= b1β + 1.

We begin by a proposition that is an immediate consequence of Proposition 1 and
Lemma 2, and which plays a crucial role in finding the Markov partition describing the
dynamics of the mapKβ , as defined in Section 1.

Proposition 2. Suppose1 has a finite greedy expansion of the form1 = b1/β+ b2/β
2
+

· · · + bn/β
n. If bj ≥ 1 for 1 ≤ j ≤ n, then

(i) T iβ1 = Siβ1 ∈ Ebi+1, 0 ≤ i ≤ n− 2.

(ii) T n−1
β 1 = Sn−1

β 1 = bn/β ∈ Sbn , T
n
β 1 = 0, andSnβ1 = 1.

(iii) T iβ

(
b1

β − 1
− 1

)
= Siβ

(
b1

β − 1
− 1

)
∈ Eb1−bi+1, 0 ≤ i ≤ n− 2.
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(iv) T n−1
β

(
b1

β − 1
− 1

)
= Sn−1

β

(
b1

β − 1
− 1

)
=

b1

β(β − 1)
+
b1 − bn

β
∈ Sb1−bn+1,

T nβ

(
b1

β − 1
− 1

)
=

b1

β − 1
− 1, Snβ

(
b1

β − 1
− 1

)
=

b1

β − 1
.

Moreover, by Proposition 1 and Lemma 2, one has

T iβ1 = Siβ1>
b1

β − 1
− 1,

T iβ

(
b1

β − 1
− 1

)
= Siβ

(
b1

β − 1
− 1

)
< 1 for all i = 1, . . . , n− 1.

To find the Markov chain behind the mapKβ , one starts by refining the partition

E = {E0, S1, E1, . . . , Sb1, Eb1}

of [0, b1/(β − 1)], using the orbits of 1 andb1/(β − 1)− 1 under the transformationTβ .
We place the endpoints ofE together withT iβ1, T iβ(b1/(β − 1) − 1), i = 0, . . . , n − 2,
in increasing order. We use these points to form a new partitionC which is a refinement
of E , consisting of intervals. We writeC as

C = {C0, C1, . . . , CL}.

We chooseC to satisfy the following. For 0≤ i ≤ n− 2,

— T iβ1 ∈ Cj if and only if T iβ1 is a left endpoint ofCj ,

— T iβ(b1/(β − 1)− 1) ∈ Cj if and only if T iβ(b1/(β − 1)− 1) is a right endpoint ofCj .

Notice that this choice is possible, since the pointsT iβ1, T iβ(b1/(β − 1)− 1) for 0 ≤ i ≤

n− 2 are all different.
Recall that the map̀ : [0, bβc/(β − 1)] → [0, bβc/(β − 1)] defined by`(x) =

bβc/(β−1)−x satisfiesTβ ◦` = `◦Sβ . Thus, ifx ∈ Ei for somei, thenTβx = Sβx and
Tβ`(x) = `Tβ(x). From the dynamics ofKβ on this refinement, one reads the following
properties ofC.

p1. C0 = [0, b1/(β − 1)− 1] andCL = [1, b1/(β − 1)].
p2. For i = 0,1, . . . , b1, Ei can be written as a finite disjoint union

⋃
j∈Mi

Cj with
M0,M1, . . . ,Mb1 disjoint subsets of{0,1, . . . , L}. Further, the number of elements
in Mi equals the number of elements inMb1−i .

p3. To eachSi there corresponds exactly onej ∈ {0,1, . . . , L} \
⋃b1
k=0Mk such that

Si = Cj . This is possible since theTβ -orbits of 1 andb1/(β − 1) − 1 never hit the

interior of
⋃b1
i=1 Si .

p4. If Cj ⊂ Ei , thenTβ(Cj ) = Sβ(Cj ) is a finite disjoint union of elements ofC, say
Tβ(Cj ) = Ci1 ∪· · ·∪Cil . Since`(Cj ) = CL−j ⊂ Eb1−i , it follows thatTβ(CL−j ) =

CL−i1 ∪ · · · ∪ CL−il .

p5. If Cj = Si, thenTβ(Cj ) = C0 andSβ(Cj ) = CL.
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Define the partitionP of �× [0, b1/(β − 1)] by

P =

{
�× Cj : j ∈

b1⋃
k=0

Mk

}
∪ {{ω1 = i} × Sj : i = 0,1, j = 1, . . . , b1}.

Fromp4 andp5 we conclude thatP is a Markov partition underlying the mapKβ .
To define the underlying subshift of finite type associated withKβ , we consider the

(L+ 1)× (L+ 1) matrixA = (ai,j ) with entries in{0,1} defined by

ai,j =


1 if i ∈

⋃b1
k=0Mk andλ(Cj ∩ Tβ(Ci)) = λ(Cj ),

0 if i ∈
⋃b1
k=0Mk andCi ∩ T −1

β Cj = ∅,

1 if i ∈ {0, . . . , L} \
⋃b1
k=0Mk andj = 0, L,

0 if i ∈ {0, . . . , L} \
⋃b1
k=0Mk andj 6= 0, L.

(1)

Remark 3. Because of our assumptionβ2
6= b1β + 1, we haveλ(Cj ∩ Tβ(Ci)) = λ(Cj )

if and only ifCj ⊆ Tβ(Ci). However, for the analysis of the caseβ2
= b1β + 1, we need

the definition of the matrixA as given in equation (1).
Let Y denote the topological Markov chain (or the subshift of finite type) determined

by the matrixA, that is,Y = {y = (yi) ∈ {0,1, . . . , L}
N : ayiyi+1 = 1}. We letσY be the

left shift onY . For ease of notation, we denote bys1, . . . , sb1 the statesj ∈ {0, . . . , L} \⋃b1
k=0Mk corresponding to the switch regionsS1, . . . , Sb1 respectively.

To eachy ∈ Y , we associate a sequence(ei) ∈ {0,1, . . . , b1}
N and a pointx ∈

[0, b1/(β − 1)] as follows. Let

ej =


i if yj ∈ Mi,

i if yj = si andyj+1 = 0,

i − 1 if yj = si andyj+1 = L.

(2)

Now set

x =

∞∑
j=1

ej

βj
. (3)

Our aim is to define a mapψ : Y → � × [0, b1/(β − 1)] that intertwines the actions of
Kβ andσY . Giveny ∈ Y , equations (2) and (3) describe what the second coordinate of
ψ should be. In order to be able to associate anω ∈ �, one needs thatyi ∈ {s1, . . . sb1}

infinitely often. For this reason it is not possible to defineψ on all of Y , but only on an
invariant subset. To be more precise, let

Y ′
=

{
y = (y1, y2, . . .) ∈ Y : yi ∈ {s1, . . . , sb1} for infinitely manyi’s

}
.

Defineψ : Y ′
→ �× [0, b1/(β − 1)] as follows. Lety = (y1, y2, . . .) ∈ Y ′, and define

x as in (3). To define a pointω ∈ � corresponding toy, we first locate the indicesni =

ni(y) where the realizationy of the Markov chain is in statesr for somer ∈ {1, . . . , b1}.
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That is, letn1 < n2 < · · · be the indices such thatyni = sr for somer = 1, . . . , b1.
Define

ωj =

{
1 if ynj+1 = 0,
0 if ynj+1 = L.

Now setψ(y) = (ω, x).

The following two lemmas reflect the fact that the dynamics ofKβ is essentially the
same as that of the Markov chainY . These lemmas are generalizations of Lemmas 1 and 2
in [DK2], and the proofs are slight modifications of the arguments there.

Lemma 6. Lety ∈ Y ′ be such thatψ(y) = (ω, x). Then

(i) y1 = k for somek ∈
⋃b1
i=0Mi ⇒ x ∈ Ck.

(ii) y1 = si, y2 = 0 ⇒ x ∈ Si andω1 = 1 for i = 1, . . . , b1.

(iii) y1 = si, y2 = L ⇒ x ∈ Si andω1 = 0 for i = 1, . . . , b1.

Lemma 7. For y ∈ Y ′, we have

ψ ◦ σY (y) = Kβ ◦ ψ(y).

Remark 4. From Lemmas 6 and 7 we have the following. Ify ∈ Y ′ with ψ(y) = (ω, x),

then for anyi ≥ 1 and anyk ∈ {0,1, . . . , L},

yi = k ⇒ π2(K
i−1
β (ω, x)) ∈ Ck.

Having defined the mapψ with the above properties, we now consider the measureQ

of maximal entropy onY. This measure is unique since the adjacency matrixA = (ai,j ),
as defined in (1), is irreducible [W, Theorem 8.10]. In order to describeQ explicitly, we
first study the matrixA. From the dynamics ofKβ as well as propertiesp1–p5 one easily
sees thatA has the following properties:

(i) ai,j = aL−i,L−j for all i, j = 0,1, . . . , L,
(ii)

∑L
i=0 ai,j = b1 + 1 for all j = 0,1, . . . , L.

By induction one can easily show that ifAk = (a
(k)
i,j ), thenAk satisfies

(iii) a
(k)
i,j = a

(k)
L−i,L−j for all i, j = 0,1, . . . , L,

(iv)
∑L
i=0 a

(k)
i,j = (b1 + 1)k for all j = 0,1, . . . , L.

SinceA is an irreducible, non-negative integral matrix, we calculate the topological en-
tropyh(Y ) of Y by the formula

h(Y ) = lim
n→∞

1

n
log |Bn(Y )|,

whereBn(Y ) denotes the collection of blocks of lengthn in the shift spaceY . According
to property (iv) above|Bn(Y )| =

∑
i,j a

(n)
i,j = (L+1)(b1+1)n. Henceh(Y ) = log(b1+1).

It follows that the Perron eigenvalueλA equalsb1 + 1 (i.e. the largest positive eigenvalue
of the matrixA). To determine the measure of maximal entropy we need to find a positive
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left eigenvectoru and a positive right eigenvectorv. According to property (ii) above a left
eigenvector is given byu = (1,1, . . . ,1). For the positive right eigenvectorv, we choose
v to satisfy

∑L
i=0 vi = 1. Using the technique developed by Parry, we show that the

measureQ of maximal entropy is the Markov measure generated by the transition matrix
P = (pi,j ), wherepi,j = ai,j

vj
(b1+1)vi

, and stationary distributionp = v. We equip the
spaceY with theσ -algebraH generated by the cylinders. We have the following theorem.

Theorem 7. The dynamical systems(� × [0, b1/(β − 1)],A × B,Q ◦ ψ−1,Kβ) and
(Y,H,Q, σY ) are measurably isomorphic.

Proof. We show that the mapψ : Y ′
→ Z is the required isomorphism. From Lemma 7

we find thatψ intertwines the actions ofKβ andσY . Furthermore, it is easily checked
thatψ : Y ′

→ Z is a bimeasurable bijection. The inverseψ−1 : Z → Y ′ is given by
ψ−1(ω, x) = y, whereyi = k if π2(K

i−1
β (ω, x)) ∈ Ck. ut

Remark 5. The proof of the above theorem shows thatQ ◦ ψ−1 is aKβ -invariant mea-
sure on� × [0, b1/(β − 1)] with supportZ, and of maximal entropy log(1 + bβc). By
Theorem 5 it follows thatQ ◦ ψ−1

= νβ . In Theorem 6, the projection of this measure
on the second coordinate was identified as an infinite convolution of Bernoulli measures.

Let π1 : � × [0, bβc/(β − 1)] → � be the canonical projection onto the first co-
ordinate. Consider the measureQ′

= νβ ◦ π−1
1 on �. ThenQ′

= Q ◦ α−1, where
α = π1 ◦ ψ : Y ′

→ �.

Theorem 8. The measureQ′ is the uniform Bernoulli measure on{0,1}
N.

Proof. Define the stopping times(Ti)i≥1 onY ′ recursively as follows:

T1 = min{m ≥ 2 : ym−1 ∈ {s1, . . . , sb1}},

Ti = min{m > Ti−1 : ym−1 ∈ {s1, . . . , sb1}}, i ≥ 2.

An application of the Strong Markov Property shows that the stopped processyT1, yT2, . . .

is also a Markov chain with state space{0, L} and transition probabilities given byqij =

1/2 for i, j ∈ {0, L}. Therefore, ifj1, . . . , jl ∈ {0, L}, then

Q({yT1 = j1, . . . , yTl = jl}) = 1/2l .

Defineχ : {0, L} → {0,1} by χ(0) = 1, χ(L) = 0. It follows that

Q′({ω1 = χ(j1), . . . , ωl = χ(jl)}) = Q({yT1 = j1, . . . , yTl = jl}) = 1/2l . ut

Remarks 6. (1) If 1 has a finite greedy expansion 1= b1/β + · · · + bn/β
n with some

of the coefficientsbi equal to zero, then one is able to find examples of suchβ ’s where
the mapKβ has an underlying Markov partition similar to the one described above, i.e.
determined by the random orbits of 1 andb1/(β − 1)− 1. On the other hand, one is also
able to find examples whereKβ has no such Markov partition. For example, forn ≥ 2,
let βn ∈ (1,2) be the unique solution to the equation

βn = βn−1
+ 1.
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Then 1 has a greedy expansion 1= 1/(β) + 1/(βn). For n = 2,3,4,5, it is not hard
to see thatKβ has a natural underlying Markov partition (one might need to divide the
switch regions as well). However, forn sufficiently large this is not the case. For in [EK]
it was shown that foreachβ sufficiently close to 1, there exists a sequence(εi) of zeros
and ones satisfying

∑
∞

i=1 εi/β
i

= 1 and containing all possible finite variations of the
digits 0 and 1. Now, it is easy to check thatβn ↓ 1 asn → ∞. Hence, ifβn is sufficiently
close to 1, then by Theorem 2 there is anω ∈ � such thatεi = di(ω,1) for eachi. Since
each block of zeros and ones appears in(di(ω,1))i≥1 this implies that

{π2(K
m
βn
(ω,1)) : m ≥ 0} =

[
0,

1

βn − 1

]
.

Hence, there is no underlying Markov partition (determined by the random orbits of 1 and
1/(βn − 1)− 1) for the mapKβ .

Notice thatβ5 is the smallest Pisot number. One might conjecture that forβ ∈ (1, β5),
one cannot construct a Markov partition similar to the one described in this section.

(2) We now consider the caseβ2
= b1β+1. Notice thatC = E , since 1 andb1/(β−1)

− 1 are already endpoints of intervals inE . For ease of notation, we denote the alphabet
of Y by {e0, s1, e1, . . . , sb1, eb1}. For any 1≤ i ≤ b1,

Tβ(Si) = E0 = [0,1/β], Sβ(Si) = Eb1 =

[
1,

b1

β − 1

]
.

As a result, Lemmas 6 and 7 do not hold for elements inY ′ corresponding to endpoints of
elements ofE . To be precise, for 1≤ i ≤ b1 we define the sequencesx(i), y(i), q(i) and
r(i) as follows.

— Let x(i) = (si, eb1, s1, eb1, s1, . . .). Thenψ(x(i)) = (ω(0), i/β), whereω(0) =

(0,0,0, . . .). We havex(i)2m+1 = s1 for m ≥ 1, while forj ≥ 2,

π2

(
K
(j)
β

(
ω(0),

i

β

))
=

b1

β − 1
.

— Let y(i) = (ei, s1, eb1, s1, eb1, . . .). Then

ψ(y(i)) =

(
ω(0),

b1

β(β − 1)
+
i − 1

β

)
.

We havey(i)2m = s1 for m ≥ 1, while forj ≥ 1,

π2

(
K
(j)
β

(
ω(0),

b1

β(β − 1)
+
i − 1

β

))
=

b1

β − 1
.

— Let q(i) = (ei−1, sb1, e0, sb1, e0, . . .). Thenψ(q(i)) = (ω(1), i/β), whereω(1) =

(1,1,1, . . .). We haveq(i)2m = sb1 for m ≥ 1, while forj ≥ 1,

π2

(
K
(j)
β

(
ω(1),

i

β

))
= 0.
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— Let r(i) = (si, e0, sb1, e0, sb1, . . .). Thenψ(r(i)) = (ω(1),
b1

β(β−1) +
i−1
β
). We have for

m ≥ 1, r(i)2m+1 = sb1, while for j ≥ 2,

π2(K
(j)
β (ω(1),

b1

β(β − 1)
+
i − 1

β
)) = 0.

Except for these points, the analysis used in this section remains valid. So, the only
modification needed is the removal of a set of measure zero from the domain ofY ′,
namely all points whose orbit underσY eventually equalsx(i), y(i), q(i) or r(i) for some
i = 1, . . . , b1.

(3) Suppose in the switch regions we decide to flip a biased coin, with 0< P(Heads)
= p < 1, in order to decide whether to use the greedy or the lazy map. The measure of
maximal entropy discussed in this section does not reflect this fact. A natural invariant
measure that preserves this property is obtained by considering the Markov measureQλ

onY with transition probabilitiespi,j , given by

pi,j =


λ(Ci ∩ T −1

β Cj )/λ(Ci) if i ∈
⋃b1
k=0Mk,

p if i ∈ {0,1, . . . , L} \
⋃b1
k=0Mk andj = 0,

1 − p if i ∈ {0,1, . . . , L} \
⋃b1
k=0Mk andj = L,

0 if i ∈ {0,1, . . . , L} \
⋃b1
k=0Mk andj 6= 0, L,

(as before,λ denotes Lebesgue measure) and initial distribution the corresponding station-
ary distribution (see [DK2]). Another interesting feature is that the projection ofQλ◦ψ

−1

on the second coordinate forp = 1 is the Parry measureµβ , and forp = 0 it is the lazy
measureρβ (see Section 1).
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