

Karma Dajani · Martijn de Vries

Measures of maximal entropy for random β -expansions

Received September 11, 2003 and in revised form January 26, 2004

Abstract. Let $\beta > 1$ be a non-integer. We consider β -expansions of the form $\sum_{i=1}^{\infty} d_i / \beta^i$, where the digits $(d_i)_{i\geq 1}$ are generated by means of a Borel map K_β defined on $\{0, 1\}^{\mathbb{N}} \times [0, \lfloor\beta\rfloor/(\beta - 1)]$. We show that K_β has a unique mixing measure ν_β of maximal entropy with marginal measure an infinite convolution of Bernoulli measures. Furthermore, under the measure ν_β the digits $(d_i)_{i\geq 1}$ form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov. We also discuss the uniqueness of β -expansions.

Keywords. Greedy expansions, lazy expansions, Markov chains, measures of maximal entropy

1. Introduction

Let $\beta > 1$ be a non-integer. There are two well-known expansions of numbers x in $[0, \lfloor \beta \rfloor / (\beta - 1)]$ of the form

$$x = \sum_{i=1}^{\infty} \frac{a_i}{\beta^i}$$

with $a_i \in \{0, 1, \dots, \lfloor\beta\rfloor\}$. The largest in lexicographical order is the *greedy expansion* ([P], [R1], [R2]), and the smallest is the *lazy expansion* ([JS], [EJK], [DK1]). The greedy expansion is obtained by iterating the *greedy transformation* $T_{\beta} : [0, \lfloor\beta\rfloor/(\beta - 1)] \rightarrow [0, \lfloor\beta\rfloor/(\beta - 1)]$, defined by

$$T_{\beta}(x) = \begin{cases} \beta x \pmod{1}, & 0 \le x < 1, \\ \beta x - \lfloor \beta \rfloor, & 1 \le x \le \lfloor \beta \rfloor / (\beta - 1). \end{cases}$$

The lazy expansion is obtained by iterating the *lazy transformation* $S_{\beta} : [0, \lfloor \beta \rfloor / (\beta - 1)] \rightarrow [0, \lfloor \beta \rfloor / (\beta - 1)]$, defined by

$$S_{\beta}(x) = \beta x - d$$
 for $x \in \Delta(d)$,

Mathematics Subject Classification (2000): 28D05

K. Dajani: Universiteit Utrecht, Fac. Wiskunde en Informatica and MRI, Budapestlaan 6, P.O. Box 80.000, 3508 TA Utrecht, the Netherlands; e-mail: dajani@math.uu.nl

M. de Vries: Vrije Universiteit Amsterdam, Faculty of Exact Sciences, de Boelelaan 1081, 1081 HV Amsterdam, the Netherlands; e-mail: mdvries@cs.vu.nl

where

$$\Delta(0) = \left[0, \frac{\lfloor \beta \rfloor}{\beta(\beta - 1)}\right]$$

and

$$\Delta(d) = \left(\frac{\lfloor\beta\rfloor}{\beta-1} - \frac{\lfloor\beta\rfloor - d + 1}{\beta}, \frac{\lfloor\beta\rfloor}{\beta-1} - \frac{\lfloor\beta\rfloor - d}{\beta}\right]$$
$$= \left(\frac{\lfloor\beta\rfloor}{\beta(\beta-1)} + \frac{d-1}{\beta}, \frac{\lfloor\beta\rfloor}{\beta(\beta-1)} + \frac{d}{\beta}\right], \quad d \in \{1, \dots, \lfloor\beta\rfloor\}.$$

Fig. 1. The greedy map T_{β} (left), and the lazy map S_{β} (right). Here $\beta = \pi$.

We denote by μ_{β} the extended *Parry measure* (see [P], [G]) on $[0, \lfloor\beta\rfloor/(\beta-1)]$ which is absolutely continuous with respect to Lebesgue measure, and with density

$$h_{\beta}(x) = \begin{cases} \frac{1}{F(\beta)} \sum_{n=0}^{\infty} \frac{1}{\beta^n} \mathbb{1}_{[0, T_{\beta}^n(1))}(x), & 0 \le x < 1, \\ 0, & 1 \le x \le \lfloor \beta \rfloor / (\beta - 1), \end{cases}$$

where $F(\beta) = \int_0^1 (\sum_{x < T_{\beta}^n(1)} 1/\beta^n) dx$ is a normalizing constant. Define $\ell : [0, \lfloor \beta \rfloor/(\beta - 1)] \to [0, \lfloor \beta \rfloor/(\beta - 1)]$ by

$$\ell(x) = \frac{\lfloor \beta \rfloor}{\beta - 1} - x,$$

and consider the *lazy measure* ρ_{β} defined on $[0, \lfloor \beta \rfloor / (\beta - 1)]$ by $\rho_{\beta}(A) = \mu_{\beta}(\ell(A))$ for every measurable set A. It is easy to see ([DK1]) that ℓ is a measurable isomorphism between $([0, \lfloor \beta \rfloor/(\beta - 1)], \mu_{\beta}, T_{\beta})$ and $([0, \lfloor \beta \rfloor/(\beta - 1)], \rho_{\beta}, S_{\beta})$.

In order to produce other expansions in a dynamical way, a new β -transformation K_{β} was introduced in [DK2]. The expansions generated by iterating this map are random mixtures of greedy and lazy expansions. This is done as follows. Superimpose the greedy map and the corresponding lazy map on $[0, \lfloor \beta \rfloor / (\beta - 1)]$, one gets $\lfloor \beta \rfloor$ overlapping regions of the form

$$S_k = \left[\frac{k}{\beta}, \frac{\lfloor \beta \rfloor}{\beta(\beta-1)} + \frac{k-1}{\beta}\right], \quad k = 1, \dots, \lfloor \beta \rfloor,$$

which one refers to as *switch regions*. On S_k , the greedy map assigns the digit k, while the lazy map assigns the digit k - 1. Outside these switch regions both maps are identical, and hence they assign the same digits. Now, define a new random expansion in base β by randomizing the choice of the map used in the switch regions. So, whenever x belongs to a switch region flip a coin to decide which map will be applied to x, and hence which digit will be assigned. To be more precise, partition the interval $[0, \lfloor \beta \rfloor/(\beta - 1)]$ into switch regions S_k and *equality regions* E_k , where

$$E_{k} = \left(\frac{\lfloor\beta\rfloor}{\beta(\beta-1)} + \frac{k-1}{\beta}, \frac{k+1}{\beta}\right), \quad k = 1, \dots, \lfloor\beta\rfloor - 1,$$
$$E_{0} = \left[0, \frac{1}{\beta}\right), \quad E_{\lfloor\beta\rfloor} = \left(\frac{\lfloor\beta\rfloor}{\beta(\beta-1)} + \frac{\lfloor\beta\rfloor - 1}{\beta}, \frac{\lfloor\beta\rfloor}{\beta-1}\right].$$

Let

$$S = \bigcup_{k=1}^{\lfloor \beta \rfloor} S_k, \quad E = \bigcup_{k=0}^{\lfloor \beta \rfloor} E_k,$$

and consider $\Omega = \{0, 1\}^{\mathbb{N}}$ with the product σ -algebra \mathcal{A} . Let $\sigma : \Omega \to \Omega$ be the left shift, and define $K_{\beta} : \Omega \times [0, \lfloor \beta \rfloor / (\beta - 1)] \to \Omega \times [0, \lfloor \beta \rfloor / (\beta - 1)]$ by

$$K_{\beta}(\omega, x) = \begin{cases} (\omega, \beta x - k), & x \in E_k, \ k = 0, 1, \dots, \lfloor \beta \rfloor, \\ (\sigma(\omega), \beta x - k), & x \in S_k \text{ and } \omega_1 = 1, \ k = 1, \dots, \lfloor \beta \rfloor, \\ (\sigma(\omega), \beta x - k + 1), & x \in S_k \text{ and } \omega_1 = 0, \ k = 1, \dots, \lfloor \beta \rfloor. \end{cases}$$

The elements of Ω represent the coin tosses ("heads" = 1 and "tails" = 0) used every time the orbit hits a switch region. Let

$$d_{1} = d_{1}(\omega, x) = \begin{cases} k & \text{if } x \in E_{k}, \ k = 0, 1, \dots, \lfloor \beta \rfloor, \\ & \text{or } (\omega, x) \in \{\omega_{1} = 1\} \times S_{k}, \ k = 1, \dots, \lfloor \beta \rfloor, \\ & k - 1 & \text{if } (\omega, x) \in \{\omega_{1} = 0\} \times S_{k}, \ k = 1, \dots, \lfloor \beta \rfloor. \end{cases}$$

Then

$$K_{\beta}(\omega, x) = \begin{cases} (\omega, \beta x - d_1) & \text{if } x \in E, \\ (\sigma(\omega), \beta x - d_1) & \text{if } x \in S. \end{cases}$$

Set $d_n = d_n(\omega, x) = d_1(K_{\beta}^{n-1}(\omega, x))$, and let $\pi_2 : \Omega \times [0, \lfloor \beta \rfloor / (\beta - 1)] \rightarrow [0, \lfloor \beta \rfloor / (\beta - 1)]$ be the canonical projection onto the second coordinate. Then

$$\pi_2(K^n_\beta(\omega,x)) = \beta^n x - \beta^{n-1} d_1 - \dots - \beta d_{n-1} - d_n$$

and rewriting yields

$$x = \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \dots + \frac{d_n}{\beta^n} + \frac{\pi_2(K^n_\beta(\omega, x))}{\beta^n}$$

Since $\pi_2(K^n_\beta(\omega, x)) \in [0, \lfloor\beta\rfloor/(\beta - 1)]$, it follows that

$$x - \sum_{i=1}^{n} \frac{d_i}{\beta^i} = \frac{\pi_2(K_{\beta}^n(\omega, x))}{\beta^n} \to 0 \quad \text{as } n \to \infty.$$

This shows that for all $\omega \in \Omega$ and for all $x \in [0, \lfloor \beta \rfloor / (\beta - 1)]$ one has

$$x = \sum_{i=1}^{\infty} \frac{d_i}{\beta^i} = \sum_{i=1}^{\infty} \frac{d_i(\omega, x)}{\beta^i}.$$

The random procedure just described shows that to each $\omega \in \Omega$ corresponds an algorithm that produces expansions in base β . Further, if we identify the point (ω, x) with $(\omega, (d_1(\omega, x), d_2(\omega, x), \ldots))$, then the action of K_β on the second coordinate corresponds to the left shift.

In [DK2], the dynamical properties of the map K_{β} were studied for β satisfying $\beta^2 = n\beta + k$ (with $1 \le k \le n$) and $\beta^n = \beta^{n-1} + \cdots + \beta + 1$. It was shown that for these values of β , the underlying random β -transformation is isomorphic to a mixing Markov chain. However, the invariant measure considered in [DK2] is not the measure of maximal entropy (see Section 4, Remarks 6(3)). In this paper, we study the dynamical properties of K_{β} for *any* non-integer $\beta > 1$. In Section 2, we show that the map K_{β} captures all possible expansions in base β which are lexicographically ordered by the natural lexicographical ordering on Ω . We also briefly discuss unique expansions. In Section 3, we prove that the maximal entropy of K_{β} is $\log(1 + \lfloor \beta \rfloor)$. Further, K_{β} has a unique measure ν_{β} of maximal entropy under which the random digits (d_i) , generated by the map K_{β} , form a uniform Bernoulli process. Moreover, the projection of the measure ν_{β} on the second coordinate is an infinite convolution of Bernoulli measures. In Section 4, we show that if 1 has a finite greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \cdots + b_n/\beta^n$ with $b_i \ge 1$ for i = 1, ..., n and $n \ge 2$, then the measure ν_{β} is Markov, and the underlying Markov chain is explicitly given.

2. Basic properties of random β -transformations

Let $<_{\text{lex}}$ and \leq_{lex} denote the lexicographical ordering on both Ω and $\{0, 1, \dots, \lfloor \beta \rfloor\}^{\mathbb{N}}$. For each $x \in [0, \lfloor \beta \rfloor/(\beta - 1)]$, consider the set

$$D_x = \{ (d_1(\omega, x), d_2(\omega, x), \ldots) : \omega \in \Omega \}.$$

We now show that the elements of D_x are ordered by the lexicographical ordering on Ω .

Theorem 1. Suppose $\omega, \omega' \in \Omega$ are such that $\omega <_{\text{lex}} \omega'$. Then

 $(d_1(\omega, x), d_2(\omega, x), \ldots) \leq_{\text{lex}} (d_1(\omega', x), d_2(\omega', x), \ldots).$

Proof. Let *i* be the first index where ω and ω' differ. Since $\omega <_{\text{lex}} \omega'$, we have $\omega_i = 0$ and $\omega'_i = 1$. Notice that $\pi_2(K^j_\beta(\omega, x)) = \pi_2(K^j_\beta(\omega', x))$ for $j = 0, \ldots, t_i$, where $t_i \ge 0$ is the time of the *i*th visit to the region $\Omega \times S$ of the orbit of (ω, x) under K_β . Then $d_j(\omega, x) = d_j(\omega', x)$ for all $j \le t_i$.

If $t_i = \infty$, then $d_j(\omega, x) = d_j(\omega', x)$ for all *j*. If $t_i < \infty$, then $K_{\beta}^{t_i}(\omega, x) = K_{\beta}^{t_i}(\omega', x) \in \Omega \times S$. Since $\omega_i = 0$ and $\omega'_i = 1$, it follows that $d_{t_i+1}(\omega', x) = d_{t_i+1}(\omega, x) + 1$. Hence,

$$(d_1(\omega, x), d_2(\omega, x), \ldots) <_{\text{lex}} (d_1(\omega', x), d_2(\omega', x), \ldots).$$

The next theorem shows that for all $x \in [0, \lfloor \beta \rfloor/(\beta - 1)]$, any representation of *x* of the form $x = \sum_{i=1}^{\infty} a_i/\beta^i$ with $a_i \in \{0, 1, \dots, \lfloor \beta \rfloor\}$ can be generated by means of the map K_β by choosing an appropriate $\omega \in \Omega$.

Theorem 2. Let $x \in [0, \lfloor \beta \rfloor/(\beta - 1)]$, and let $x = \sum_{i=1}^{\infty} a_i / \beta^i$ with $a_i \in \{0, 1, \dots, \lfloor \beta \rfloor\}$ be a representation of x in base β . Then there exists an $\omega \in \Omega$ such that $a_i = d_i(\omega, x)$.

For the proof we need the following lemma.

Lemma 1. For $x \in [0, \lfloor \beta \rfloor/(\beta - 1)]$, one has

(i) If x ∈ E_j for some j ∈ {0,..., [β]}, then a₁ = j.
(ii) If x ∈ S_i for some j ∈ {1,..., [β]}, then a₁ ∈ {j − 1, j}.

Proof. The proof is by contradiction.

(i) Suppose $a_1 \neq j$. If $a_1 \leq j - 1$, then $j \geq 1$ and

$$x = \sum_{i=1}^{\infty} \frac{a_i}{\beta^i} \le \frac{j-1}{\beta} + \sum_{i=2}^{\infty} \frac{\lfloor \beta \rfloor}{\beta^i} = \frac{j-1}{\beta} + \frac{\lfloor \beta \rfloor}{\beta(\beta-1)}.$$

If $a_1 \ge j + 1$, then $j \le \lfloor \beta \rfloor - 1$ and $x \ge (j + 1)/\beta$. In both cases $x \notin E_j$. (ii) Suppose $a_1 \notin \{j - 1, j\}$. If $a_1 \le j - 2$, then $j \ge 2$ and

If $a_1 \ge j + 1$, then $j \le \lfloor \beta \rfloor - 1$ and $x \ge (j + 1)/\beta$. In both cases $x \notin S_j$.

Ĵ

$$x \leq \frac{j-2}{\beta} + \frac{\lfloor \beta \rfloor}{\beta(\beta-1)}.$$

Proof of Theorem 2. Define the numbers $\{x_n : n \in \mathbb{N}\}$ by $x_n = \sum_{i=1}^{\infty} a_{i+n-1}/\beta^i$. Notice that $x_1 = x$. Furthermore, we define a set $\{\ell_n(x) : n \in \mathbb{N}\}$ that keeps track of the number of times we flip a coin. More precisely,

$$\ell_n(x) = \sum_{i=1}^n \mathbf{1}_S(x_i).$$

We use induction on the number of digits already determined.

- If $x \in E_j$, then $\ell_1(x) = 0$ and by Lemma 1, $a_1 = j$. We set $\Omega_1 = \Omega$.
- If $x \in S_j$, then $\ell_1(x) = 1$ and by Lemma 1, $a_1 \in \{j 1, j\}$. — If $a_1 = j - 1$, we set $\Omega_1 = \{\omega \in \Omega : \omega_1 = 0\}$.
 - If $a_1 = j$, we set $\Omega_1 = \{ \omega \in \Omega : \omega_1 = 1 \}$.

It follows that Ω_1 is a cylinder of length $\ell_1(x)$, and $d_1(\omega, x) = a_1$ for all $\omega \in \Omega_1$. By a cylinder of length 0 we mean of course the whole space Ω . Suppose we have obtained $\Omega_n \subseteq \cdots \subseteq \Omega_1$ so that Ω_n is a cylinder of length $\ell_n(x)$ and for all $\omega \in \Omega_n$, $d_1(\omega, x) = a_1, \ldots, d_n(\omega, x) = a_n$. Notice that $x_{n+1} = \pi_2(K_{\beta}^n(\omega, x))$ for all $\omega \in \Omega_n$.

- If $x_{n+1} \in E_j$, then $\ell_{n+1}(x) = \ell_n(x)$ and for all $\omega \in \Omega_n$, $d_{n+1}(\omega, x) = d_1(K^n_\beta(\omega, x))$ = $j = a_{n+1}$, by Lemma 1. We set $\Omega_{n+1} = \Omega_n$.
- If $x_{n+1} \in S_j$, then $\ell_{n+1}(x) = \ell_n(x) + 1$ and $a_{n+1} \in \{j 1, j\}$ by Lemma 1.
- If $a_{n+1} = j 1$, we set $\Omega_{n+1} = \{\omega \in \Omega_n : \omega_{\ell_{n+1}} = 0\}$. Then, for all $\omega \in \Omega_{n+1}$, $d_{n+1}(\omega, x) = d_1(K^n_\beta(\omega, x)) = j - 1 = a_{n+1}$.
- If $a_{n+1} = j$, we set $\Omega_{n+1} = \{\omega \in \Omega_n : \omega_{\ell_{n+1}} = 1\}$. Then, for all $\omega \in \Omega_{n+1}$, $d_{n+1}(\omega, x) = d_1(K^n_\beta(\omega, x)) = j = a_{n+1}$.

In all cases we see that Ω_{n+1} is a cylinder of length $\ell_{n+1}(x)$, and for all $\omega \in \Omega_{n+1}$, $d_1(\omega, x) = a_1, \ldots, d_{n+1}(\omega, x) = a_{n+1}$.

If the map K_{β} hits the switch regions infinitely many times, then $\ell_n(x) \to \infty$ and, as is well known, $\bigcap \Omega_n$ consists of a single point. If this happens only finitely many times, then the set $\{\ell_n(x) : n \in \mathbb{N}\}$ is finite and $\bigcap \Omega_n$ is exactly a cylinder set. In both cases $\bigcap \Omega_n$ is non-empty and $\omega \in \bigcap \Omega_n$ satisfies $d_j(\omega, x) = a_j$ for all $j \ge 1$.

Remark 1. Theorems 1 and 2 give another proof of the fact that among all possible β -expansions of a point $x \in [0, \lfloor \beta \rfloor / (\beta - 1)]$, the greedy expansion is the largest in lexicographical order (it corresponds to the largest element (1, 1, ...) of Ω), and the lazy one is the smallest (it corresponds to the smallest element (0, 0, ...) of Ω). Furthermore, from Theorem 2, one sees that *x* has a unique representation in base β of the form

$$x = \sum_{i=1}^{\infty} \frac{a_i}{\beta^i}$$

with $a_i \in \{0, 1, ..., \lfloor \beta \rfloor\}$ if and only if $a_i = d_i(\omega, x)$ for all $i \ge 1$ and all $\omega \in \Omega$. Equivalently, the greedy expansion of x is the only representation of x in base β if and only if $x_n \in E$ for all $n \ge 1$. In this case, we have $x_n = T_{\beta}^{n-1}x = S_{\beta}^{n-1}x$ for all $n \ge 1$.

Remark 1 gives in fact a characterization of unique expansion in terms of the greedy expansion. Namely, if x has an expansion of the form $x = a_1/\beta + a_2/\beta^2 + \cdots$, then x has a unique expansion in base β if and only if $T_{\beta}^n x \in E_{a_{n+1}}$ for all $n \ge 0$. We would like to give other characterizations. Although some of the results are already known (see [KL]), we give simple proofs for completeness. We first observe that $1 \in S_{\lfloor\beta\rfloor} \cup E_{\lfloor\beta\rfloor}$, and $1 \in E_{\lfloor\beta\rfloor}$ if and only if $\lfloor\beta\rfloor/(\beta - 1) - 1 \in E_0$. The following proposition gives a characterization of the case $1 \in E_{\lfloor\beta\rfloor}$ using the greedy expansion of 1.

Proposition 1. Suppose 1 has a greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \cdots$.

- (i) If $b_i = 0$ for all $i \ge 3$, then $1 \in E_{b_1}$ if and only if $b_2 \ge 2$. Moreover, if $b_2 = 1$, then $1 = \lfloor \beta \rfloor / (\beta 1) 1 / \beta$.
- (ii) If $b_i \ge 1$ for some $i \ge 3$, then $1 \in E_{b_1}$ if and only if $b_2 \ge 1$.

Proof. First observe that $\lfloor \beta \rfloor = b_1$, and that

$$1 = \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \frac{1}{\beta^2} T_{\beta}^2 1.$$

This implies that $\beta^2 - b_1\beta = b_2 + T_{\beta}^2 1$. Now, by definition $1 \in E_{b_1}$ if and only if $1 > b_1/(\beta - 1) - 1/\beta$, or equivalently $\beta^2 - b_1\beta > 1$.

In case (i), we have $T_{\beta}^2 1 = 0$, which implies that $\beta^2 - b_1\beta = b_2$. Hence, $1 \in E_{b_1}$ if and only if $b_2 \ge 2$. If $b_2 = 1$, then $\beta^2 - b_1\beta = 1$; equivalently, $1 = \lfloor \beta \rfloor / (\beta - 1) - 1/\beta$. In case (ii), we have $0 < T_{\beta}^2 1 < 1$. Hence, $\beta^2 - b_1\beta = b_2 + T_{\beta}^2 1 > 1$ if and only if

$$b_2 \ge 1.$$

Before we proceed to the characterization of the uniqueness of the β -expansion of x , we

need the following simple lemma. **Lemma 2.** Suppose x has a greedy expansion of the form $x = a_1/\beta + a_2/\beta^2 + \cdots$. If $a_{n+1} \ge 1$, then $T^n_\beta x \in E_{a_{n+1}}$ if and only if $T^{n+1}_\beta x > \lfloor \beta \rfloor / (\beta - 1) - 1$.

Proof. Notice that

$$T_{\beta}^{n}x = \frac{a_{n+1}}{\beta} + \frac{1}{\beta}T_{\beta}^{n+1}x \in S_{a_{n+1}} \cup E_{a_{n+1}}.$$

Thus, $T^n_\beta x \in E_{a_{n+1}}$ if and only if

$$T_{\beta}^{n}x > \frac{\lfloor \beta \rfloor}{\beta(\beta-1)} + \frac{a_{n+1}-1}{\beta}$$

Rewriting one finds that $T_{\beta}^{n}x \in E_{a_{n+1}}$ if and only if $T_{\beta}^{n+1}x > \lfloor\beta\rfloor/(\beta-1) - 1$. Note that if $a_{n+1} = 0$, then $T_{\beta}^{n}x \in E_{0}$.

The following theorem is an immediate consequence of the above lemma. We remark that a lexicographical version of this theorem was obtained independently for the case x = 1, and via other methods in [KL, Theorem 3.1].

Theorem 3. Suppose x has a greedy expansion of the form $x = a_1/\beta + a_2/\beta^2 + \cdots$. Then x has a unique expansion in base β if and only if $T_{\beta}^{n+1}x > \lfloor\beta\rfloor/(\beta-1) - 1$ for all $n \ge 0$ with $a_{n+1} \ge 1$.

Corollary 1. Suppose x has a greedy expansion of the form $x = a_1/\beta + a_2/\beta^2 + \cdots$ with $a_i \ge 1$ for all $i \ge 1$. Then x has a unique β -expansion.

Proof. Observe that $T_{\beta}^{n} x \ge 1/(\beta - 1)$ for all $n \ge 0$, and $1/(\beta - 1) > \lfloor \beta \rfloor/(\beta - 1) - 1$. The result follows from Theorem 3.

Corollary 2. If 1 has a unique β -expansion, then there exists a $k \ge 1$ such that in the greedy expansion of 1, every block of consecutive zeros consists of at most k terms.

Proof. Let $1 = b_1/\beta + b_2/\beta^2 + \cdots$ be the greedy expansion. By uniqueness $1 \in E_{b_1}$, so $b_1/(\beta - 1) - 1 < 1/\beta$. Hence, there exists a $k \ge 1$ such that

$$\frac{1}{\beta^{k+1}} \le \frac{b_1}{\beta - 1} - 1 < \frac{1}{\beta^k}.$$

If $b_{i-1}b_i \dots b_j$ is a block with $b_{i-1} \ge 1$, $b_i = \dots = b_j = 0$ and $j - i + 1 \ge k + 1$, then

$$T_{\beta}^{i-1} 1 < \frac{1}{\beta^{k+1}} \le \frac{b_1}{\beta - 1} - 1,$$

contradicting Theorem 3.

Another immediate corollary of Theorem 3 and Proposition 1 is the following.

Corollary 3. Suppose 1 has an infinite greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \cdots$ with $b_2 \ge 1$. Let $k \ge 1$ be the unique integer such that

$$\frac{1}{\beta^{k+1}} \le \frac{b_1}{\beta - 1} - 1 < \frac{1}{\beta^k}.$$

If in the greedy expansion of 1 every block of consecutive zeros contains at most k - 1 terms, then 1 has a unique β -expansion.

3. Measures of maximal entropy for random β -expansions

In this section we show that the map K_{β} on $\Omega \times [0, \lfloor \beta \rfloor/(\beta - 1)]$ can be essentially identified with the left shift on $\{0, \ldots, \lfloor \beta \rfloor\}^{\mathbb{N}}$. This will enable us to prove that K_{β} has a unique measure of maximal entropy.

Let $D = \{0, ..., \lfloor\beta\rfloor\}^{\mathbb{N}}$ be equipped with the product σ -algebra \mathcal{D} and the uniform product measure \mathbb{P} . Let σ' be the left shift on D. On the set $\Omega \times [0, \lfloor\beta\rfloor/(\beta - 1)]$ we consider the product σ -algebra $\mathcal{A} \times \mathcal{B}$, where \mathcal{B} is the Borel σ -algebra on $[0, \lfloor\beta\rfloor/(\beta - 1)]$, and \mathcal{A} the product σ -algebra on Ω . Define the function $\varphi : \Omega \times [0, \lfloor\beta\rfloor/(\beta - 1)] \to D$ by

$$\varphi(\omega, x) = (d_1(\omega, x), d_2(\omega, x), \ldots).$$

It is easily seen that φ is measurable, and $\varphi \circ K_{\beta} = \sigma' \circ \varphi$. Furthermore, Theorem 2 implies that φ is surjective. We will now show that φ restricted to an appropriate K_{β} -invariant subset is in fact invertible. Let

$$Z = \{(\omega, x) \in \Omega \times [0, \lfloor\beta\rfloor/(\beta - 1)] : K^n_\beta(\omega, x) \in \Omega \times S \text{ infinitely often}\},\$$
$$D' = \left\{(a_1, a_2, \ldots) \in D : \sum_{i=1}^{\infty} \frac{a_{j+i-1}}{\beta^i} \in S \text{ for infinitely many } j\text{'s}\right\}.$$

Then $\varphi(Z) = D'$, $K_{\beta}^{-1}(Z) = Z$ and $(\sigma')^{-1}(D') = D'$. Let φ' be the restriction of the map φ to Z.

Lemma 3. The map $\varphi' : Z \to D'$ is a bimeasurable bijection.

Proof. For any sequence $(a_1, a_2, \ldots) \in D'$, define recursively

$$r_1 = \min\left\{j \ge 1 : \sum_{l=1}^{\infty} \frac{a_{j+l-1}}{\beta^l} \in S\right\}, \quad r_i = \min\left\{j > r_{i-1} : \sum_{l=1}^{\infty} \frac{a_{j+l-1}}{\beta^l} \in S\right\}.$$

If $\sum_{l=1}^{\infty} a_{r_i+l-1}/\beta^l \in S_j$ then, according to Lemma 1, $a_{r_i} \in \{j-1, j\}$. If $a_{r_i} = j-1$, let $\omega_i = 0$, otherwise let $\omega_i = 1$. Define $(\varphi')^{-1} : D' \to Z$ by

$$(\varphi')^{-1}((a_1, a_2, \ldots)) = \left(\omega, \sum_{i=1}^{\infty} \frac{a_i}{\beta^i}\right).$$

It is easily checked that $(\varphi')^{-1}$ is measurable, and is the inverse of φ' .

Lemma 4. $\mathbb{P}(D') = 1$.

Proof. For any sequence $(a_1, a_2, \ldots) \in D$ and $m \ge 1$, define

$$x_m = \frac{1}{\beta} + \frac{a_1}{\beta^{m+1}} + \frac{a_2}{\beta^{m+2}} + \cdots$$

Clearly $x_m \ge 1/\beta$. On the other hand,

$$x_m \leq \frac{1}{\beta} + \sum_{i=1}^{\infty} \frac{\lfloor \beta \rfloor}{\beta^{m+i}} = \frac{1}{\beta} \left(1 + \frac{\lfloor \beta \rfloor}{\beta^{m-1}(\beta-1)} \right).$$

Since $1 + \frac{\lfloor \beta \rfloor}{\beta^{m-1}(\beta-1)} \downarrow 1$ as $m \to \infty$, there exists an integer N > 0 such that for all $m \ge N$,

$$\frac{1}{\beta} \le x_m \le \frac{\lfloor \beta \rfloor}{\beta(\beta-1)},$$

i.e. $x_m \in S_1$ for all $m \ge N$. Let

$$D'' = \{(a_1, a_2, \ldots) \in D : a_j a_{j+1} \ldots a_{j+N-1} = \underbrace{100 \ldots 0}_{N-1 \text{ zeros}} \text{ for infinitely many } j\}.$$

From the above, we conclude that $D'' \subseteq D'$. Clearly $\mathbb{P}(D'') = 1$, hence $\mathbb{P}(D') = 1$. \Box

Now, consider the K_{β} -invariant measure ν_{β} defined on $\mathcal{A} \times \mathcal{B}$ by $\nu_{\beta}(A) = \mathbb{P}(\varphi(Z \cap A))$. The following theorem is a simple consequence of Lemmas 3 and 4.

Theorem 4. Let $\beta > 1$ be a non-integer. The dynamical systems $(\Omega \times [0, \lfloor \beta \rfloor/(\beta - 1)], \mathcal{A} \times \mathcal{B}, \nu_{\beta}, K_{\beta})$ and $(D, \mathcal{D}, \mathbb{P}, \sigma')$ are measurably isomorphic.

Remark 2. The above theorem implies that $h_{\nu_{\beta}}(K_{\beta}) = \log(1 + \lfloor \beta \rfloor)$. Further, since \mathbb{P} is the unique measure of maximal entropy on D, we see that ν_{β} is the only K_{β} -invariant measure with support Z and maximal entropy $\log(1 + \lfloor \beta \rfloor)$, i.e. any other K_{β} -invariant measure with support Z has entropy strictly less than $\log(1 + \lfloor \beta \rfloor)$. We now investigate the entropy of K_{β} -invariant measures μ for which $\mu(Z^c) > 0$.

Lemma 5. Let μ be a K_{β} -invariant measure for which $\mu(Z^c) > 0$. Then $h_{\mu}(K_{\beta}) < \log(1 + \lfloor \beta \rfloor)$.

Proof. Since *Z* and *Z^c* are K_{β} -invariant, there exist $0 \le \alpha < 1$ and K_{β} -invariant measures μ_1, μ_2 concentrated on *Z* and *Z^c* respectively, such that $\mu = \alpha \mu_1 + (1 - \alpha)\mu_2$. Then $h_{\mu}(K_{\beta}) = \alpha h_{\mu_1}(K_{\beta}) + (1 - \alpha)h_{\mu_2}(K_{\beta})$. From Remark 2, we have $h_{\mu_1}(K_{\beta}) \le \log(1 + \lfloor \beta \rfloor)$. We now show that $h_{\mu_2}(K_{\beta}) < \log(1 + \lfloor \beta \rfloor)$. To this end, let

$$G = \{x \in [0, \lfloor \beta \rfloor / (\beta - 1)] : x \text{ has a unique } \beta \text{-expansion}\}$$

Then $\Omega \times G \subseteq K_{\beta}^{-1}(\Omega \times G)$, and $\bigcup_{i=0}^{\infty} K_{\beta}^{-i}(\Omega \times G) = Z^c$. From the above we see that $\mu_2(\Omega \times G) = 1$, hence it is enough to study the entropy of the map K_{β} restricted to $\Omega \times G$. On this set K_{β} has the form $I_{\Omega} \times T_{\beta}$, where I_{Ω} is the identity map on Ω , and T_{β} the greedy map restricted to *G*. On *G* we consider the Borel σ -algebra $G \cap \mathcal{B}$. Notice that $\mu_2 \circ \pi_2^{-1}$ is a T_{β} -invariant measure with support *G*, hence $h_{\mu_2 \circ \pi_2^{-1}}(T_{\beta}) \leq \log \beta$.

Let \mathcal{F} and \mathcal{G} be any two measurable partitions of Ω and G respectively. For any $n \ge 1$,

$$\bigvee_{i=0}^{n-1} K_{\beta}^{-i}(\mathcal{F} \times \mathcal{G}) = \bigvee_{i=0}^{n-1} (I_{\Omega} \times T_{\beta})^{-i}(\mathcal{F} \times \mathcal{G}) = \mathcal{F} \times \bigvee_{i=0}^{n-1} T_{\beta}^{-i} \mathcal{G}$$

modulo sets of μ_2 -measure 0. Hence,

$$\begin{aligned} H_{\mu_2}\Big(\Omega\times\bigvee_{i=0}^{n-1}T_{\beta}^{-i}\mathcal{G}\Big) &\leq H_{\mu_2}\Big(\bigvee_{i=0}^{n-1}K_{\beta}^{-i}(\mathcal{F}\times\mathcal{G})\Big) \\ &\leq H_{\mu_2}(\mathcal{F}\times G) + H_{\mu_2}\Big(\Omega\times\bigvee_{i=0}^{n-1}T_{\beta}^{-i}\mathcal{G}\Big).\end{aligned}$$

Now, dividing by *n* and taking the limit as $n \to \infty$, we get

$$h_{\mu_2}(K_\beta, \mathcal{F} \times \mathcal{G}) = h_{\mu_2}(K_\beta, \Omega \times \mathcal{G}) = h_{\mu_2 \circ \pi_2^{-1}}(T_\beta, \mathcal{G}) \le \log \beta$$

Since \mathcal{F} and \mathcal{G} are arbitrary partitions, we have

$$h_{\mu_2}(K_{\beta}) \le \log \beta < \log(1 + \lfloor \beta \rfloor).$$

Therefore, $h_{\mu}(K_{\beta}) < \log(1 + \lfloor \beta \rfloor)$.

From Remark 2 and Lemma 5 we arrive at the following theorem.

Theorem 5. The measure v_{β} is the unique K_{β} -invariant measure of maximal entropy.

An interesting consequence of the above theorems is that if β , $\beta' > 1$ are non-integers, then

 $\lfloor \beta \rfloor = \lfloor \beta' \rfloor$ if and only if (K_{β}, ν_{β}) is isomorphic to $(K_{\beta'}, \nu_{\beta'})$.

As before, let $\pi_2 : \Omega \times [0, \lfloor \beta \rfloor / (\beta - 1)] \to [0, \lfloor \beta \rfloor / (\beta - 1)]$ be the natural projection $\pi_2(\omega, x) = x$. We are interested in identifying the projection of the measure ν_β on the

second coordinate, that is, the measure $\nu_{\beta} \circ \pi_2^{-1}$ defined on $[0, \lfloor \beta \rfloor/(\beta - 1)]$. To do that, we consider the purely discrete measures $\{\delta_i\}_{i \ge 1}$ defined on \mathbb{R} as follows:

$$\delta_i(\{0\}) = \frac{1}{\lfloor \beta \rfloor + 1}, \quad \dots, \quad \delta_i(\{\lfloor \beta \rfloor \beta^{-i}\}) = \frac{1}{\lfloor \beta \rfloor + 1}.$$

Let δ be the corresponding infinite Bernoulli convolution,

$$\delta = \lim_{n \to \infty} \delta_1 * \ldots * \delta_n.$$

Theorem 6. $\nu_{\beta} \circ \pi_2^{-1} = \delta$.

Proof. Let $h: D \to [0, \lfloor \beta \rfloor/(\beta - 1)]$ be given by $h(y) = \sum_{i=1}^{\infty} y_i/\beta^i$, where $y = (y_1, y_2, \ldots)$. Then $\pi_2 = h \circ \varphi$ and $\delta = \mathbb{P} \circ h^{-1}$. Since $\mathbb{P} = v_\beta \circ \varphi^{-1}$, it follows that $v_\beta \circ \pi_2^{-1} = \delta$.

If $\beta \in (1, 2)$ then δ is an Erdős measure on $[0, 1/(\beta - 1)]$, and lots of things are already known. For example, if β is a Pisot number, then δ is singular with respect to Lebesgue measure λ ([E1], [E2], [S]). Further, for almost all $\beta \in (1, 2)$ the measure δ is equivalent to λ ([S0], [MS]). There are many generalizations of these results to the case of an arbitrary digit set (see [PSS] for more references and results).

4. Finite greedy expansion of 1 with positive coefficients, and the Markov property of the random β -expansion

We now assume that the greedy expansion of 1 in base β satisfies $1 = b_1/\beta + b_2/\beta^2 + \cdots + b_n/\beta^n$ with $b_i \ge 1$ for $i = 1, \ldots, n$ and $n \ge 2$ (notice that $\lfloor \beta \rfloor = b_1$). We show that in this case the dynamics of K_β can be identified with a subshift of finite type with an irreducible adjacency matrix. As a result the unique measure of maximal entropy ν_β obtained in the previous section is Markov.

The analysis of the case $\beta^2 = b_1\beta + 1$ needs some adjustments. For this reason, we assume here that $\beta^2 \neq b_1\beta + 1$, and refer the reader to the end of this section (Remarks 6(2)) for the appropriate modifications needed for the case $\beta^2 = b_1\beta + 1$.

We begin by a proposition that is an immediate consequence of Proposition 1 and Lemma 2, and which plays a crucial role in finding the Markov partition describing the dynamics of the map K_{β} , as defined in Section 1.

Proposition 2. Suppose 1 has a finite greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \cdots + b_n/\beta^n$. If $b_j \ge 1$ for $1 \le j \le n$, then

(i)
$$T_{\beta}^{i} 1 = S_{\beta}^{i} 1 \in E_{b_{i+1}}, \ 0 \le i \le n-2.$$

(ii) $T_{\beta}^{n-1} 1 = S_{\beta}^{n-1} 1 = b_{n}/\beta \in S_{b_{n}}, \ T_{\beta}^{n} 1 = 0, \ and \ S_{\beta}^{n} 1 = 1.$
(iii) $T_{\beta}^{i} \left(\frac{b_{1}}{\beta-1} - 1\right) = S_{\beta}^{i} \left(\frac{b_{1}}{\beta-1} - 1\right) \in E_{b_{1}-b_{i+1}}, \ 0 \le i \le n-2.$

(iv)
$$T_{\beta}^{n-1}\left(\frac{b_1}{\beta-1}-1\right) = S_{\beta}^{n-1}\left(\frac{b_1}{\beta-1}-1\right) = \frac{b_1}{\beta(\beta-1)} + \frac{b_1-b_n}{\beta} \in S_{b_1-b_n+1},$$

 $T_{\beta}^n\left(\frac{b_1}{\beta-1}-1\right) = \frac{b_1}{\beta-1} - 1, \quad S_{\beta}^n\left(\frac{b_1}{\beta-1}-1\right) = \frac{b_1}{\beta-1}.$

Moreover, by Proposition 1 and Lemma 2, one has

$$T_{\beta}^{i} 1 = S_{\beta}^{i} 1 > \frac{b_{1}}{\beta - 1} - 1,$$

$$T_{\beta}^{i} \left(\frac{b_{1}}{\beta - 1} - 1\right) = S_{\beta}^{i} \left(\frac{b_{1}}{\beta - 1} - 1\right) < 1 \quad \text{for all } i = 1, \dots, n - 1$$

To find the Markov chain behind the map K_{β} , one starts by refining the partition

$$\mathcal{E} = \{E_0, S_1, E_1, \dots, S_{b_1}, E_{b_1}\}$$

of $[0, b_1/(\beta - 1)]$, using the orbits of 1 and $b_1/(\beta - 1) - 1$ under the transformation T_β . We place the endpoints of \mathcal{E} together with $T_\beta^i 1$, $T_\beta^i (b_1/(\beta - 1) - 1)$, i = 0, ..., n - 2, in increasing order. We use these points to form a new partition \mathcal{C} which is a refinement of \mathcal{E} , consisting of intervals. We write \mathcal{C} as

$$\mathcal{C} = \{C_0, C_1, \ldots, C_L\}.$$

We choose C to satisfy the following. For $0 \le i \le n-2$,

− T^i_{β} 1 ∈ C_j if and only if T^i_{β} 1 is a left endpoint of C_j ,

 $- T_{\beta}^{i}(b_1/(\beta-1)-1) \in C_j^{i} \text{ if and only if } T_{\beta}^{i}(b_1/(\beta-1)-1) \text{ is a right endpoint of } C_j.$

Notice that this choice is possible, since the points $T_{\beta}^{i}1$, $T_{\beta}^{i}(b_{1}/(\beta - 1) - 1)$ for $0 \le i \le n - 2$ are all different.

Recall that the map ℓ : $[0, \lfloor\beta\rfloor/(\beta-1)] \rightarrow [0, \lfloor\beta\rfloor/(\beta-1)]$ defined by $\ell(x) = \lfloor\beta\rfloor/(\beta-1) - x$ satisfies $T_{\beta} \circ \ell = \ell \circ S_{\beta}$. Thus, if $x \in E_i$ for some *i*, then $T_{\beta}x = S_{\beta}x$ and $T_{\beta}\ell(x) = \ell T_{\beta}(x)$. From the dynamics of K_{β} on this refinement, one reads the following properties of C.

p1. $C_0 = [0, b_1/(\beta - 1) - 1]$ and $C_L = [1, b_1/(\beta - 1)]$.

- **p2.** For $i = 0, 1, ..., b_1$, E_i can be written as a finite disjoint union $\bigcup_{j \in M_i} C_j$ with $M_0, M_1, ..., M_{b_1}$ disjoint subsets of $\{0, 1, ..., L\}$. Further, the number of elements in M_i equals the number of elements in M_{b_1-i} .
- **p3.** To each S_i there corresponds exactly one $j \in \{0, 1, ..., L\} \setminus \bigcup_{k=0}^{b_1} M_k$ such that $S_i = C_j$. This is possible since the T_β -orbits of 1 and $b_1/(\beta 1) 1$ never hit the interior of $\bigcup_{i=1}^{b_1} S_i$.
- **p4.** If $C_j \subset E_i$, then $T_{\beta}(C_j) = S_{\beta}(C_j)$ is a finite disjoint union of elements of C, say $T_{\beta}(C_j) = C_{i_1} \cup \cdots \cup C_{i_l}$. Since $\ell(C_j) = C_{L-j} \subset E_{b_1-i}$, it follows that $T_{\beta}(C_{L-j}) = C_{L-i_1} \cup \cdots \cup C_{L-i_l}$.
- **p5.** If $C_j = S_i$, then $T_\beta(C_j) = C_0$ and $S_\beta(C_j) = C_L$.

Define the partition \mathcal{P} of $\Omega \times [0, b_1/(\beta - 1)]$ by

$$\mathcal{P} = \left\{ \Omega \times C_j : j \in \bigcup_{k=0}^{b_1} M_k \right\} \cup \{ \{ \omega_1 = i \} \times S_j : i = 0, 1, j = 1, \dots, b_1 \}$$

From **p4** and **p5** we conclude that \mathcal{P} is a Markov partition underlying the map K_{β} .

To define the underlying subshift of finite type associated with K_{β} , we consider the $(L + 1) \times (L + 1)$ matrix $A = (a_{i,j})$ with entries in {0, 1} defined by

$$a_{i,j} = \begin{cases} 1 & \text{if } i \in \bigcup_{k=0}^{b_1} M_k \text{ and } \lambda(C_j \cap T_\beta(C_i)) = \lambda(C_j), \\ 0 & \text{if } i \in \bigcup_{k=0}^{b_1} M_k \text{ and } C_i \cap T_\beta^{-1}C_j = \emptyset, \\ 1 & \text{if } i \in \{0, \dots, L\} \setminus \bigcup_{k=0}^{b_1} M_k \text{ and } j = 0, L, \\ 0 & \text{if } i \in \{0, \dots, L\} \setminus \bigcup_{k=0}^{b_1} M_k \text{ and } j \neq 0, L. \end{cases}$$
(1)

Remark 3. Because of our assumption $\beta^2 \neq b_1\beta + 1$, we have $\lambda(C_j \cap T_\beta(C_i)) = \lambda(C_j)$ if and only if $C_j \subseteq T_\beta(C_i)$. However, for the analysis of the case $\beta^2 = b_1\beta + 1$, we need the definition of the matrix *A* as given in equation (1).

Let *Y* denote the topological Markov chain (or the subshift of finite type) determined by the matrix *A*, that is, $Y = \{y = (y_i) \in \{0, 1, ..., L\}^{\mathbb{N}} : a_{y_i y_{i+1}} = 1\}$. We let σ_Y be the left shift on *Y*. For ease of notation, we denote by $s_1, ..., s_{b_1}$ the states $j \in \{0, ..., L\} \setminus \bigcup_{k=0}^{b_1} M_k$ corresponding to the switch regions $S_1, ..., S_{b_1}$ respectively.

To each $y \in Y$, we associate a sequence $(e_i) \in \{0, 1, \dots, b_1\}^{\mathbb{N}}$ and a point $x \in [0, b_1/(\beta - 1)]$ as follows. Let

$$e_{j} = \begin{cases} i & \text{if } y_{j} \in M_{i}, \\ i & \text{if } y_{j} = s_{i} \text{ and } y_{j+1} = 0, \\ i - 1 & \text{if } y_{j} = s_{i} \text{ and } y_{j+1} = L. \end{cases}$$
(2)

Now set

$$x = \sum_{j=1}^{\infty} \frac{e_j}{\beta^j}.$$
(3)

Our aim is to define a map $\psi : Y \to \Omega \times [0, b_1/(\beta - 1)]$ that intertwines the actions of K_β and σ_Y . Given $y \in Y$, equations (2) and (3) describe what the second coordinate of ψ should be. In order to be able to associate an $\omega \in \Omega$, one needs that $y_i \in \{s_1, \ldots, s_{b_1}\}$ infinitely often. For this reason it is not possible to define ψ on all of *Y*, but only on an invariant subset. To be more precise, let

$$Y' = \{ y = (y_1, y_2, \ldots) \in Y : y_i \in \{s_1, \ldots, s_{b_1}\} \text{ for infinitely many } i's \}.$$

Define $\psi : Y' \to \Omega \times [0, b_1/(\beta - 1)]$ as follows. Let $y = (y_1, y_2, ...) \in Y'$, and define *x* as in (3). To define a point $\omega \in \Omega$ corresponding to *y*, we first locate the indices $n_i = n_i(y)$ where the realization *y* of the Markov chain is in state s_r for some $r \in \{1, ..., b_1\}$.

That is, let $n_1 < n_2 < \cdots$ be the indices such that $y_{n_i} = s_r$ for some $r = 1, \dots, b_1$. Define

$$\omega_j = \begin{cases} 1 & \text{if } y_{n_j+1} = 0, \\ 0 & \text{if } y_{n_j+1} = L \end{cases}$$

Now set $\psi(y) = (\omega, x)$.

The following two lemmas reflect the fact that the dynamics of K_{β} is essentially the same as that of the Markov chain Y. These lemmas are generalizations of Lemmas 1 and 2 in [DK2], and the proofs are slight modifications of the arguments there.

Lemma 6. Let $y \in Y'$ be such that $\psi(y) = (\omega, x)$. Then

- (i) $y_1 = k$ for some $k \in \bigcup_{i=0}^{b_1} M_i \Rightarrow x \in C_k$. (ii) $y_1 = s_i, y_2 = 0 \Rightarrow x \in S_i$ and $\omega_1 = 1$ for $i = 1, ..., b_1$.
- (iii) $y_1 = s_i, y_2 = L \Rightarrow x \in S_i$ and $\omega_1 = 0$ for $i = 1, \dots, b_1$.

Lemma 7. For $y \in Y'$, we have

$$\psi \circ \sigma_Y(y) = K_\beta \circ \psi(y).$$

Remark 4. From Lemmas 6 and 7 we have the following. If $y \in Y'$ with $\psi(y) = (\omega, x)$, then for any $i \ge 1$ and any $k \in \{0, 1, \dots, L\}$,

$$y_i = k \implies \pi_2(K_\beta^{i-1}(\omega, x)) \in C_k.$$

Having defined the map ψ with the above properties, we now consider the measure Q of maximal entropy on Y. This measure is unique since the adjacency matrix $A = (a_{i,j})$, as defined in (1), is irreducible [W, Theorem 8.10]. In order to describe Q explicitly, we first study the matrix A. From the dynamics of K_{β} as well as properties **p1–p5** one easily sees that A has the following properties:

- (i) $a_{i,j} = a_{L-i,L-j}$ for all i, j = 0, 1, ..., L, (ii) $\sum_{i=0}^{L} a_{i,j} = b_1 + 1$ for all j = 0, 1, ..., L.

By induction one can easily show that if $A^k = (a_{i,i}^{(k)})$, then A^k satisfies

(iii) $a_{i,j}^{(k)} = a_{L-i,L-j}^{(k)}$ for all i, j = 0, 1, ..., L, (iv) $\sum_{i=0}^{L} a_{i,j}^{(k)} = (b_1 + 1)^k$ for all j = 0, 1, ..., L.

Since A is an irreducible, non-negative integral matrix, we calculate the topological entropy h(Y) of Y by the formula

$$h(Y) = \lim_{n \to \infty} \frac{1}{n} \log |B_n(Y)|,$$

where $B_n(Y)$ denotes the collection of blocks of length *n* in the shift space *Y*. According to property (iv) above $|B_n(Y)| = \sum_{i,j} a_{i,j}^{(n)} = (L+1)(b_1+1)^n$. Hence $h(Y) = \log(b_1+1)$. It follows that the Perron eigenvalue λ_A equals $b_1 + 1$ (i.e. the largest positive eigenvalue of the matrix A). To determine the measure of maximal entropy we need to find a positive left eigenvector u and a positive right eigenvector v. According to property (ii) above a left eigenvector is given by u = (1, 1, ..., 1). For the positive right eigenvector v, we choose v to satisfy $\sum_{i=0}^{L} v_i = 1$. Using the technique developed by Parry, we show that the measure Q of maximal entropy is the Markov measure generated by the transition matrix $P = (p_{i,j})$, where $p_{i,j} = a_{i,j} \frac{v_j}{(b_1+1)v_i}$, and stationary distribution p = v. We equip the space Y with the σ -algebra \mathcal{H} generated by the cylinders. We have the following theorem.

Theorem 7. The dynamical systems $(\Omega \times [0, b_1/(\beta - 1)], \mathcal{A} \times \mathcal{B}, Q \circ \psi^{-1}, K_\beta)$ and $(Y, \mathcal{H}, Q, \sigma_Y)$ are measurably isomorphic.

Proof. We show that the map $\psi : Y' \to Z$ is the required isomorphism. From Lemma 7 we find that ψ intertwines the actions of K_{β} and σ_Y . Furthermore, it is easily checked that $\psi : Y' \to Z$ is a bimeasurable bijection. The inverse $\psi^{-1} : Z \to Y'$ is given by $\psi^{-1}(\omega, x) = y$, where $y_i = k$ if $\pi_2(K_{\beta}^{i-1}(\omega, x)) \in C_k$.

Remark 5. The proof of the above theorem shows that $Q \circ \psi^{-1}$ is a K_β -invariant measure on $\Omega \times [0, b_1/(\beta - 1)]$ with support *Z*, and of maximal entropy $\log(1 + \lfloor \beta \rfloor)$. By Theorem 5 it follows that $Q \circ \psi^{-1} = \nu_\beta$. In Theorem 6, the projection of this measure on the second coordinate was identified as an infinite convolution of Bernoulli measures.

Let $\pi_1 : \Omega \times [0, \lfloor \beta \rfloor / (\beta - 1)] \to \Omega$ be the canonical projection onto the first coordinate. Consider the measure $Q' = \nu_\beta \circ \pi_1^{-1}$ on Ω . Then $Q' = Q \circ \alpha^{-1}$, where $\alpha = \pi_1 \circ \psi : Y' \to \Omega$.

Theorem 8. The measure Q' is the uniform Bernoulli measure on $\{0, 1\}^{\mathbb{N}}$.

Proof. Define the stopping times $(T_i)_{i \ge 1}$ on Y' recursively as follows:

$$T_1 = \min\{m \ge 2 : y_{m-1} \in \{s_1, \dots, s_{b_1}\}\},\$$

$$T_i = \min\{m > T_{i-1} : y_{m-1} \in \{s_1, \dots, s_{b_1}\}\}, \quad i \ge 2.$$

An application of the Strong Markov Property shows that the stopped process $y_{T_1}, y_{T_2}, ...$ is also a Markov chain with state space $\{0, L\}$ and transition probabilities given by $q_{ij} = 1/2$ for $i, j \in \{0, L\}$. Therefore, if $j_1, ..., j_l \in \{0, L\}$, then

$$Q(\{y_{T_1} = j_1, \dots, y_{T_l} = j_l\}) = 1/2^l$$

Define $\chi : \{0, L\} \rightarrow \{0, 1\}$ by $\chi(0) = 1, \chi(L) = 0$. It follows that

$$Q'(\{\omega_1 = \chi(j_1), \dots, \omega_l = \chi(j_l)\}) = Q(\{y_{T_1} = j_1, \dots, y_{T_l} = j_l\}) = 1/2^l. \quad \Box$$

Remarks 6. (1) If 1 has a finite greedy expansion $1 = b_1/\beta + \cdots + b_n/\beta^n$ with some of the coefficients b_i equal to zero, then one is able to find examples of such β 's where the map K_β has an underlying Markov partition similar to the one described above, i.e. determined by the random orbits of 1 and $b_1/(\beta - 1) - 1$. On the other hand, one is also able to find examples where K_β has no such Markov partition. For example, for $n \ge 2$, let $\beta_n \in (1, 2)$ be the unique solution to the equation

$$\beta^n = \beta^{n-1} + 1.$$

Then 1 has a greedy expansion $1 = 1/(\beta) + 1/(\beta^n)$. For n = 2, 3, 4, 5, it is not hard to see that K_β has a natural underlying Markov partition (one might need to divide the switch regions as well). However, for *n* sufficiently large this is not the case. For in [EK] it was shown that for *each* β sufficiently close to 1, there exists a sequence (ϵ_i) of zeros and ones satisfying $\sum_{i=1}^{\infty} \epsilon_i / \beta^i = 1$ and containing all possible finite variations of the digits 0 and 1. Now, it is easy to check that $\beta_n \downarrow 1$ as $n \to \infty$. Hence, if β_n is sufficiently close to 1, then by Theorem 2 there is an $\omega \in \Omega$ such that $\epsilon_i = d_i(\omega, 1)$ for each *i*. Since each block of zeros and ones appears in $(d_i(\omega, 1))_{i>1}$ this implies that

$$\overline{\{\pi_2(K^m_{\beta_n}(\omega,1)):m\geq 0\}} = \left[0,\frac{1}{\beta_n-1}\right].$$

Hence, there is no underlying Markov partition (determined by the random orbits of 1 and $1/(\beta_n - 1) - 1$) for the map K_β .

Notice that β_5 is the smallest Pisot number. One might conjecture that for $\beta \in (1, \beta_5)$, one cannot construct a Markov partition similar to the one described in this section.

(2) We now consider the case $\beta^2 = b_1\beta + 1$. Notice that $C = \mathcal{E}$, since 1 and $b_1/(\beta - 1) - 1$ are already endpoints of intervals in \mathcal{E} . For ease of notation, we denote the alphabet of *Y* by $\{e_0, s_1, e_1, \ldots, s_{b_1}, e_{b_1}\}$. For any $1 \le i \le b_1$,

$$T_{\beta}(S_i) = \overline{E}_0 = [0, 1/\beta], \quad S_{\beta}(S_i) = \overline{E}_{b_1} = \left[1, \frac{b_1}{\beta - 1}\right]$$

As a result, Lemmas 6 and 7 do not hold for elements in Y' corresponding to endpoints of elements of \mathcal{E} . To be precise, for $1 \le i \le b_1$ we define the sequences $x^{(i)}$, $y^{(i)}$, $q^{(i)}$ and $r^{(i)}$ as follows.

- Let $x^{(i)} = (s_i, e_{b_1}, s_1, e_{b_1}, s_1, \ldots)$. Then $\psi(x^{(i)}) = (\omega^{(0)}, i/\beta)$, where $\omega^{(0)} = (0, 0, 0, \ldots)$. We have $x_{2m+1}^{(i)} = s_1$ for $m \ge 1$, while for $j \ge 2$,

$$\pi_2\left(K_{\beta}^{(j)}\left(\omega^{(0)},\frac{i}{\beta}\right)\right) = \frac{b_1}{\beta - 1}$$

— Let $y^{(i)} = (e_i, s_1, e_{b_1}, s_1, e_{b_1}, \ldots)$. Then

$$\psi(\mathbf{y}^{(i)}) = \left(\omega^{(0)}, \frac{b_1}{\beta(\beta-1)} + \frac{i-1}{\beta}\right).$$

We have $y_{2m}^{(i)} = s_1$ for $m \ge 1$, while for $j \ge 1$,

$$\pi_2\left(K_{\beta}^{(j)}\left(\omega^{(0)}, \frac{b_1}{\beta(\beta-1)} + \frac{i-1}{\beta}\right)\right) = \frac{b_1}{\beta-1}$$

- Let $q^{(i)} = (e_{i-1}, s_{b_1}, e_0, s_{b_1}, e_0, \ldots)$. Then $\psi(q^{(i)}) = (\omega^{(1)}, i/\beta)$, where $\omega^{(1)} = (1, 1, 1, \ldots)$. We have $q_{2m}^{(i)} = s_{b_1}$ for $m \ge 1$, while for $j \ge 1$,

$$\pi_2\bigg(K_{\beta}^{(j)}\bigg(\omega^{(1)},\frac{i}{\beta}\bigg)\bigg)=0.$$

- Let $r^{(i)} = (s_i, e_0, s_{b_1}, e_0, s_{b_1}, \ldots)$. Then $\psi(r^{(i)}) = (\omega^{(1)}, \frac{b_1}{\beta(\beta-1)} + \frac{i-1}{\beta})$. We have for $m \ge 1, r_{2m+1}^{(i)} = s_{b_1}$, while for $j \ge 2$,

$$\pi_2(K_{\beta}^{(j)}(\omega^{(1)}, \frac{b_1}{\beta(\beta-1)} + \frac{i-1}{\beta})) = 0$$

Except for these points, the analysis used in this section remains valid. So, the only modification needed is the removal of a set of measure zero from the domain of Y', namely all points whose orbit under σ_Y eventually equals $x^{(i)}$, $y^{(i)}$, $q^{(i)}$ or $r^{(i)}$ for some $i = 1, ..., b_1$.

(3) Suppose in the switch regions we decide to flip a biased coin, with $0 < \mathbb{P}(\text{Heads}) = p < 1$, in order to decide whether to use the greedy or the lazy map. The measure of maximal entropy discussed in this section does not reflect this fact. A natural invariant measure that preserves this property is obtained by considering the Markov measure Q_{λ} on *Y* with transition probabilities $p_{i,j}$, given by

$$p_{i,j} = \begin{cases} \lambda(C_i \cap T_{\beta}^{-1}C_j)/\lambda(C_i) & \text{if } i \in \bigcup_{k=0}^{b_1} M_k, \\ p & \text{if } i \in \{0, 1, \dots, L\} \setminus \bigcup_{k=0}^{b_1} M_k \text{ and } j = 0, \\ 1-p & \text{if } i \in \{0, 1, \dots, L\} \setminus \bigcup_{k=0}^{b_1} M_k \text{ and } j = L, \\ 0 & \text{if } i \in \{0, 1, \dots, L\} \setminus \bigcup_{k=0}^{b_1} M_k \text{ and } j \neq 0, L, \end{cases}$$

(as before, λ denotes Lebesgue measure) and initial distribution the corresponding stationary distribution (see [DK2]). Another interesting feature is that the projection of $Q_{\lambda} \circ \psi^{-1}$ on the second coordinate for p = 1 is the Parry measure μ_{β} , and for p = 0 it is the lazy measure ρ_{β} (see Section 1).

References

- [DK1] Dajani, K., Kraaikamp, C.: From greedy to lazy expansions, and their driving dynamics. Expo. Math. 20, 315–327 (2002) Zbl 1030.11035 MR 2003h:11089
- [DK2] Dajani, K., Kraaikamp, C.: On random β -expansions. Ergodic Theory Dynam. Systems 23, 461–479 (2003)
- [E1] Erdős, P.: On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61, 974–976 (1939) Zbl 0022.35402 MR 0000311
- [E2] Erdős, P.: On the smoothness properties of Bernoulli convolutions. Amer. J. Math. 62, 180–186 (1940) Zbl 66.0511.02 MR 0000858
- [EJK] Erdős, P., Joó, I., Komornik, V.: Characterization of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems. Bull. Soc. Math. France **118**, 377–390 (1990) Zbl 0721.11005 MR 91j:11006
- [EK] Erdős, P., Komornik, V.: Developments in non-integer bases. Acta Math. Hungar. 79, 57–83 (1998) Zbl 0906.11008 MR 99e:11132
- [G] Gel'fond, A. O.: A common property of number systems. Izv. Akad. Nauk SSSR Ser. Mat. 23, 809–814 (1959) (in Russian) MR 0109817
- [JS] Joó, I., Schnitzer, F. J.: Expansions with respect to non-integer bases. Grazer Math. Berichte **329** (1996) Zbl 0941.11003 MR 98e:11090

- [KL] Komornik, V., Loreti, P.: Subexpansions, superexpansions and uniqueness properties in non-integer bases. Period. Math. Hungar. 44, 197–218 (2002) Zbl 1017.11008 MR 2003i:11019
- [MS] Mauldin, R. D., Simon, K.: The equivalence of some Bernoulli convolutions to Lebesgue measure. Proc. Amer. Math. Soc. 126, 2733–2736 (1998) Zbl 0912.28004 MR 98i:26009
- [P] Parry, W.: On the β -expansions of real numbers. Acta Math. Acad. Sci. Hungar. **11**, 401–416 (1960) Zbl 0099.28103 MR 0142719
- [PSS] Peres, Y., Schlag, W., Solomyak, B.: Sixty years of Bernoulli convolutions. In: Fractal Geometry and Stochastics II, Progr. Probab. 46, Birkhäuser, 39–65 (1998) Zbl 0961.42006 MR 2001m:42020
- [R1] Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493. MR 0097374
- [R2] Rényi, A.: On algorithms for the generation of real numbers. Magyar Tud. Akad. Mat. Fiz. Oszt. Kzl. 7, 265–293 (1957) MR 0097645
- [S] Salem, R.: Algebraic Numbers and Fourier Analysis. Heath (1963) Zbl 0126.07802 MR 0157941
- [So] Solomyak, B.: On the random series $\sum \pm \lambda^i$ (an Erdős problem). Ann. of Math. **142**, 611–625 (1995) Zbl 0837.28007 MR 97d:11125
- [W] Walters, P.: An Introduction to Ergodic Theory. Springer, New York (1982) Zbl 0475.28009 MR 84e:28017