J. Eur. Math. Soc. T, T3p-T72 © European Mathematical Society 2005

Jeremy Yirmeyahu KaminskiMichael Fryers Mina Teicher

Recovering an algebraic curve using its JEMS
projections from different points
Applications to static and dynamic computational vision

Received January 15, 2004 and in revised form February 18, 2004

Abstract. We study some geometric configurations related to projections of an irreducible alge-

braic curve embedded ifiP3 onto embedded projective planes. These configurations are motivated
by applications to static and dynamic computational vision.

More precisely, we study how an irreducible closed algebraic cinemnbedded irCP3, of
degreel and genug, can be recovered using its projections from points onto embedded projective
planes. The embeddings are unknown. The only input is the defining equation of each projected
curve. We show how both the embeddings and the CUN@Fif can be recovered modulo some
action of the group of projective transformationsGi3.

In particular in the case of two projections, we show how in a generic situation, a characteristic
matrix of the pair of embeddings can be recovered. In the process we address dimensional issues
and as a result find the minimal number of irreducible algebraic curves required to compute this
characteristic matrix up to a finite-fold ambiguity, as a function of their degrees and genus. Then
we use this matrix to recover the class of the couple of maps and as a consequence to recover the
curve. In a generic situation, two projections define a curve with two irreducible components. One
component has degreéd — 1) and the other has degréebeing the original curve.

Then we consider another problem projections, with known projection operators avigs 1,
are considered as an input and we want to recover the curve. The recovery can be done by linear
computations in the dual space and in the Grassmannian of lif@83nThose computations are
respectively based on the dual variety and on the variety of intersecting lines. In both cases a sim-
ple lower bound for the number of necessary projections is given as a function of the degree and
the genus. A closely related question is also considered. Each point of a finite closed subset of an
irreducible algebraic curve is projected onto a plane from a point. For each point the projection
center is different. The projection operators are known. We show when and how the recovery of the
algebraic curve is possible, in terms of the degree of the curve, and of the degree of the curve of
minimal degree generated by the projection centers.
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Finally, we show how these questions are motivated by applications to static and dynamic
computational vision. A second part of this work is devoted to several applications to this field.
The results in this paper solve a long standing problem in computer vision that could not be solved
without algebraic-geometric methods.

Keywords. Plane and space curves, projections, machine vision, structure from motion

1. Introduction
1.1. Problem definition

Consider an irreducible closed algebraic cukec CP3 (in what follows we simply
write P" for CPP"). This curve is projected onto several projective planes embedded in
P2 from several projection centers, s&9;}, i = 1,...,n. Each projection mapping,
denoted byr; : P2\ {O;} — P2, is represented by a8 4 matrixM; defined modulo
multiplication by a non-zero scalar. So each pdirdifferent fromO; is mapped byr;

to M;P. Each projection operator;, via its matrix, can be regarded as a poinfPi.

Let Y; = m;(X) be the different projections of the curye Below we always deal with
generic configurations, even when not mentioned explicitly.

When we consider the problem of recovering the projection maps from the projected
curves, we will show that the recovery is possible only modulo some action of the group
of projective transformations @2 on the set of projection maps. To define this action
we refer to a projection map as a pointlihl. Assume that we have projections, and

consider the projective variety » imes

—_—~~—
V=P"x...xPY,

Let Pr be the group of projective transformationsi®¥. We define an action of Rion
V as follows:6, : Pz — Mor(V, V), A — ((Q1,...,Qn) — (M1A~L ... M,A 1),
where each matri¥; is built from the coordinates d®; = [Q; 1, ..., Qi.12]” as fol-

lows:
Qi1 0i2 Qi3 Qia
M;=| Qis Qis Qi7 Qis
0i9 0i10 Qi1 0i12
The geometric meaning of this action is that if we change the projective baidinthe
transformationA, we need to change the projection maps accordingly for the projected
curves to be invariant.
We first investigate the case of two projections. Given the projected clif\vasd Y2
as the only data, our first problem is to compute the characteristic matrix (to be defined
below) of the two projection maps;; andny, up to a finite-fold ambiguity. It is shown
that this is equivalent to finding a necessary and sufficient conditioki éor the action
of 8, to have a finite number of orbits. Then we show that for each orbit we can recover
the curveX modulo Pg. More precisely each orbit induces a curve embeddeB?3in
containing two irreducible components, one of degiree— 1) and the other of degreg
The latter is the curve we are looking for.
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Then we turn to another problem. The projection mapsi = 1,...,n, are now
assumed to be known, in addition to the projected cuijedVe want to recover the
curve X. This can be performed by linear computations using either the dual variety or
the variety of lines intersecting. In both cases a simple lower bound on the minimal
number of projections is deduced.

With the variety of lines intersecting another problem is also handled. Consider a
set of N points inP3 and letX be the curve generated by these points. Each of these points
is projected on a different plane by a different projection operatomhose projection
operators are known. We want to recoveby linear computations. Lef be the curve,
of minimal degree, generated by the projection centers. We give a formula for the number
of constraints obtained ok as a function of the degree &f.

1.2. Applications to computational vision

All the problems above are directly related to applications in computer vision.

In order to define what are the contributions of our research to computer vision, we
shall first recall a rough and common classification of vision algorithms. Three kinds of
processes are generally identified in computer vision: early or low-level vision, middle-
level vision and high-level vision [12].

Low-level vision deals with feature extraction and matching. It is strongly related to
image processing. Given geometric features, that is, primitives extracted from images,
and correspondences between these primitives over several images, a set of more sophis-
ticated computations are possible. They are generally defined in a mathematical language
and constitute what is commonly called middle-level vision. One can mention examples
like camera motion recovery, three-dimensional structure recovery, trajectory recovery of
moving points etc. Finally, one aspires to develop a complete artificial vision system that
is able to accomplish high-level tasks, like object recognition, classification etc.

Our work belongs to middle-level vision. It gives a mathematical modelization of what
can be computed from primitives like algebraic curves. We also discuss implementation
issues.

However, we assume that the extraction of the curves from the images as well as the
correspondences between them has been done in a pre-process. The question of detection
and fitting of algebraic curves has its own complexity and is not treated here. We refer to
[27,128)4] for more details.

The contributions of our work can be summarized as follows:

1. Given two images of the same algebraic curve, we show how to compute the camera
matrices defined in Sectiops b.2 5.3. We give a necessary and sufficient condition
on the degree and the genus of the curve, for the camera matrices to be defined up to a
finite-fold ambiguity.

2. Given the camera matrices, we show how to reconstruct the space curve from two
views. In that case, we show that the two viewing cones define, in a generic situation, a
curve with two irreducible components. One of these components is the right solution
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of the reconstruction problem and can be extracted if the degree of the curve is at least
three.

3. Given the camera matrices of a sequence of images of the same algebraic curve, we
show that the reconstruction can be done linearly either in the dual space or using the
variety of lines which intersect the curve in space. We give simple lower bounds on the
number of necessary images as functions of the degree and genus of the curve.

4. Given the camera matrices of a sequence of images of a moving point, we show how
to recover linearly the trajectory of the point. The trajectory is regarded as a piecewise
algebraic curve. We also address a theoretical analysis, and get a necessary and suffi-
cient condition on the trajectory of the camera center, enabling the complete trajectory
triangulation of the moving point.

In the past two decades, geometric computer vision, namely the theory of multiple-
view, has been considerably developed. A large body of research has been devoted to the
case of a scene consisting of point and line features. A summary of the past decade of
work in this area can be found in/[8.]16].

The theory is somewhat sparse and fragmented when it comes to curve features. Our
work presents a coherent theory of multiple-view geometry for algebraic curves. More-
over it paves the way for a more comprehensive use of extremely rich and powerful tools
of algebraic geometry in computer vision.

Typically the first three contributions of our work (mentioned above) can be used
for the reconstruction of hand-made objects. The fourth contribution has a wide field
of applications. It allows the triangulation of the trajectory of a moving point while the
camera centers are also moving along arbitrary trajectories. While computer vision has
reached significant achievemerit$ [[8] 16] in the context of static scenes, the results on
dynamic scenes are very sparse and our work solves a long standing problem, namely
general trajectory triangulation.

1.3. Paper organization

The paper is organized as follows. Sections 2, 3 and 4 contain the mathematical results
and present the theoretical contributions of our work in the theory of multiple-view geom-
etry of algebraic curves. Section 5 concerns applications in vision, with many examples
demonstrating the practical potential of our approach.

Since our computations will occur iP?, we fix [X, ¥, Z, T]T as homogeneous coor-
dinates, and” = 0 as the plane at infinity.

2. Projection operators

Let = be a projection operator froif® to an embedded projective plan€?) from a
point O. This projection can be represented by a @ matrixM. It has several simple,
but very useful properties. The kernelldfis exactly the projection center. The transpose
of M maps a line in (P?) to the plane it defines together with the projection center, given
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as a point of the dual spa@&*. This can be deduced by a duality argument and a simple
computation. R

There exists a matrik, a polynomial function oM, which maps a point in(P?) to
the Plcker coordinates of the line it generates together with the projection cehter [8]. If
the matrixM is decomposed as follows:

then forp = [x, y,z]7, the lineL, = Mp is given by the extensdrp = xA A © +
yO AT +zI' A A, wheren denotes the meet operator in the Grassmann-Cayley algebra
(see[[2]). By duality, the matriki = M7 maps lines i3 to lines ini (P2).

Consider now two projection operatotg andno. Let O1 andO» be the projection
centers andy (P?) andi»(IP?) the projection planes. L&} be the point of intersection of
i;(P?) with the line010,. Leto (€2) be the pencil of lines it (P?) throughe,. It is easy
to define a map fromy (P2) \ {e1} to o (&) as follows. Each pom is sent to the line given
by ma(my L(p)). This map is linear and its matrix & = MoMy. Following the standard
terminology used in computational vision, we will call the matfixhe fundamental
matrix of the pair of projections1 andx,, and the pointg; andey will be respectively
called thefirst and thesecond epipoleThe lines in the first (second) projection plane
passing through the first (second) epipole are callecpigolar lines ClearlyFe; = 0
andel F = 0.

Proposition 1. The knowledge of the fundamental matfixof a couple of projection
operators allows the recovery of the matriddg and M of the projections modulo the
action 62. More precisely, the coupléM 1, M) is equivalent to([l; O], [H; e2]), where
H = —([&]/lle2]2F and the matriey] is defined to be (e2), wherer maps any vector
x of C2 to the matrix that represents the cross-produckbyVe have

0 —x3 x2
tX)=[X]=| x3 0 —x1 |,
—x2 x1 O

andx = [x1, x2, x3].
Proof. We are looking for a matriA € Pr3 such that
M1=[I;00A7Y, Mz=[H:g]A ™"

Let us writeB = A1 as follows:
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Let us writeM; = [M;, m;]. Then it follows immediately from the definition d¥ that

F = [ez]mzmgl. Using the following algebraic identity for any two vectorsandy

in C3: (xTy)l = xy” — [x][y], it is easy to prove that it is sufficient to take

s 1
lle2|2

1
Q=M;, u=mg, VvV=_—5Me,
llez]]

(elmy—elHmy). o

This shows that in order to characterize a couple of projections modulo the agtiwe
only need to compute the fundamental matrix. In what follows we show how to recover
F from two projections of an algebraic curve.

3. Two projections with unknown projection operators

In this section we deal with the first problem. A smooth and irreducible ckreenbed-

ded inP2 is projected onto two generic planes from two generic points. The projection
operatorsr, andsxrp are unknown. First we want to recover the fundamental matrix of the
couple(mry, m2) from the projected curveg; = 71(X) andY2 = m2(X).

3.1. Single projection

We mention a few well known facts about generic projections.X.dte a smooth irre-
ducible algebraic curve embeddedH#, andY its projection on a generic plane from a
centerO.

1. The curveY will always contain singularities. Furthermore, for a generic position of
the projection center, the only singularities}ofvill be nodes.

2. Theclassof a planar curve is defined to be the degree of its dual curvenlst the
class ofY. Thenm is constant for a generic position of the projection center.

3. If d andg are the degree and genusXfthey are respectively, for a generic position
of O, the degree and the genusltfand the Ricker formula yields

m =d(d — 1) — 2(tnodes,
_@d-DHd -2
=D

wheregnodes denotes the number of nhodeoHence the genus, degree and class
are related by

— (nodes,

m=2d+2g—2.

3.2. Fundamental matrix construction

We are now ready to investigate the recovery of the fundamental matrix of a couple of
projections(ir1, r2) when we only know the projections of a smooth irreducible curve.
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As before, letX be a smooth irreducible curve embeddedPth which cannot be
embedded in a plane. The degreeXis d > 3. LetM;, i = 1, 2, be the projection
matrices. Let, e andey be as defined before. We will need to consider the following

two mappingsp RN, p andp »i Fp, wherev is the join operator 2], which is
equivalent to the cross-product in that case. Both maps are defined on the first projection
plane.

Let Y1 andY> be the projected curves. Assume that they are defined by the polynomi-
als f1 and f>. Let Y7 andY; denote the dual curves, whose polynomials are respectively
¢1 andey.

Theorem 1. For a generic position of the projection centers with respect to the cirve
there exists a non-zero scalarsuch that for all pointg in the projection plane, the
following equality holds:

$2(6(P)) = Aga(y (P)). @

For reasons that will be clear later, we shall call this equationgdreeralized Kruppa
equation

Proof. Lete; be the set of epipolar lines tangent to the curve in imayfée start with the
following lemma:

Lemma 1. The two setg; ande; are projectively equivalent. Moreover for each corre-
sponding pair of epipolar lined, I') € €1 x €2, the multiplicities ofl andl’ as points of
Y] andY; are the same.

Proof. Consider the following three pencils:

e o(L) &~ PL, the pencil ofepipolar planesthat is, planes containing the baseline joining
the two projection centers,

e o(ey) ~ P, the pencil of epipolar lines in the first projection plane,

e o (&) ~ PL, the pencil of epipolar lines in the second projection plane.

Thus we have; C o(g). Moreover ifE is the set of planes i (L) tangent to the curve
in space, then there exists a one-to-one mapping betwesd each; which leaves the
multiplicities unchanged. This completes the proof. O

This lemma implies that both sides of equatiph (1) define the same algebraic set, that is,
the union of epipolar lines tangent 4. Since¢; andg,, in the generic case, have the
same degree (as stated in|3.1), each side can be factorized as follows:

$1(y (x, ¥, 2) = [ [(enix + a2y + azi2)®,

1

$2(6(x, v, 2) = [ [ Milowix + aziy + ezi2)”,

where) . a; = Zj b; = m. By the previous lemma we also have= b; for all i. O

By eliminating the scalak from the generalized Kruppa equati¢n (1) we obtain a set of
bi-homogeneous equationsfnande;. Hence they define a variety B x P8. We now

turn to the dimensional analysis of this variety. We wish to exhibit conditions under which
this variety is discrete.
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3.3. Dimensional analysis

Let {E; (F, e1)}; be the set of bi-homogeneous equation$-ande;, extracted from the
generalized Kruppa equatidn (1). Our first concern is to determine whether all solutions
of equation|(lL) are admissible, that is, whether they satisfy the usual con&eaisat 0.
Indeed, we prove the following statement:

Proposition 2. As long as there are at least two distinct lines throughangent toY;,
equation() implies thatrankF = 2 andFe; = 0.

Proof. The variety defined by (y(p)) is then a union of at least two distinct lines
throughe;. If equation[(1) holdsg- (¢ (p)) must define the same variety.

There are two cases to exclude: If rdhk= 3, then the curve defined yp(£(p)) is
projectively equivalent to the curve defined ¢y, which isY3. In particular, it is irre-
ducible.

If rankF < 2, or rank- = 2 andFe; # 0, then there is soma, not a multiple ofey,
such thatFa = 0. Then the variety defined by (£(p)) is a union of lines througla.

In neither case can this variety contain two distinct lines throeiglso we must have
rankF = 2 andFe; = 0. ]

As a result, in a generic situation every solutior Bf (F, e1)}; is admissible. LeV be the
subvariety ofP? x P8 x P2 defined by the equatior&; (F, e1)}; together withFe; = 0
and%F = 0”. We next compute a lower bound on the dimensioi pkfter which we
will be ready for the calculation itself.

Proposition 3. If V is non-empty, the dimension &fis at least7 — m.

Proof. Choose any lin¢in P? and restrice; to the affine piec®? \ I. Let (x, y) be ho-
mogeneous coordinates brif Fe; = 0, the two sides of equatio](1) are both unchanged
upon replacing by p + «e1. So equation(1) will hold for alp if it holds for all p € I.
Therefore equatior [1) is equivalent to the equality of two homogeneous polynomials of
degreem in x andy, which in turn is equivalent to the equality of + 1 coefficients.
After eliminating, we haven algebraic conditions o(er, F, ) in addition toFe; = 0,

ezTF =0T,
The space of all epipolar geometries, that is, solutionsep = 0, %F =07, is
irreducible of dimension 7. Therefor®, is at leas{7 — m)-dimensional. O

For the calculation of the dimension &fwe introduce some additional notations. Given
atriplet(er, F, &) € P2 x P8 x P?, let{q1,(€1)} (respectively{qa, (€2)}) be the tangency
points of the epipolar lines through (respectivelyey) to the first (respectively second)
projected curve. Le, (e1, €2) be the 3D points projected ontqi, (1)} and{go, (€2)}.

Let L be the baseline joining the two projection centers. We next provide a sufficient
condition forV to be discrete.

Proposition 4. For a generic position of the projection centers, the varigtywill be
discrete if, for any pointes, F, &) € V, the union ofL and the point%), (e1, &) is not
contained in any quadric surface.



Recovering an algebraic curve using its projections 153

Proof. For generic projections, there will be distinct points{qi, (e1)} and{gz,(€2)},
and we can regargy,, gz, locally as smooth functions &, e>.

We letW be the affine variety i€ x C? x C2 defined by the same equationslas
Let ® = (e1, F, &) be a point of W corresponding to a non-isolated point 6f Then
there is a tangent vecter = (v, ®, V') to W at ® with ® not a multiple offF.

If x is a function onW, thenVg » (x) will denote the derivative of in the direction
defined by at®. For

Xo (€1, F, €) = 2y (&2) Fue (€1),

the generalized Kruppa equation implies thatvanishes identically o/, so its deriva-
tive must also vanish. This yields

Vo.» (Xa) = (Vo5 (020)) Fll1e + 05, P10 + 05,F (Vo9 Q1) =0.  (2)

We shall prove thaVg »(diy) is in the linear span of1, ande;. Considerx(t) =
f(Qiwe(e1 + tv)), where f is the polynomial defining the image curvg. Since
g1« (€1 + tv) € Y1, we havex = 0, so the derivative:’(0) is 0. On the other hand,
K'(0) = Vo9 (f(Q10)) = grady, (/) Ve s (01a).

Thus we have gr%(f)TV@,ﬂ(qla) = 0. But also graﬁila(f)qua = 0 and
graqqla(f)Tel = 0. Since gragl (f) # 0 (quw. is not a singular point of the curve),
this shows thaVe » (Q1«), 014, andes are linearly dependent. Ag, ande; are linearly
independentVe s (q1,) Must be in their linear span.

We haveq} Fe = g} Fai, = 0, s0q} FVe »(dw) = 0, i.e. the third term 01]]2)
vanishes. In a similar way, the first term of equatign (2) vanishes, leaving

02 PU10 = O. 3)
The derivative ofy (e1, F, &) = Fe; must also vanish, which yields
e} de; = 0. (4)
From [3), we deduce that for eve@,, we have
QIMIoeM1Q, = 0.
From [4), we deduce that every poldtying on the baseline must satisfy
PTMIoMP =0.

The fact thatb is not a multiple ofF implies thatM §<I>M 1 # 0, so together the last two
equations mean that the unibru {Q,} lies on a quadric surface. Thus if there is no such
guadric surface, every point i must be isolated. O

Observe that this result is consistent with the previous proposition, since there always
exists a quadric surface containing a given line and six given points. However, in general
there is no quadric containing a given line and seven given points. Therefore we can
deduce the following theorem.
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Proposition 5. For a generic position of the projection centers, there is no quadric con-
taining the lineL and the tangency poin@, (€1, €)o=1,...m-

Proof. First, observe that when the geng®f X is equal to or greater than 2, then the
result is obvious. Indeed, the intersection of a quadric Erfths at most 2 points (by
Bézout's theorem) and there awe > 2d points of tangency, which are distinct for a
generic lineL.

To handle the general case, let us introduce some notations. Consider the product of
m copies ofP3: H = P3 x - .. x P2, Then amm-tuple(Q1, ..., On) € H is such that the
pointsQ; lie on a quadric if the matri¥V has rank at most 9, where

2 a2 T

X1Y1 -+ XmYm

X121 - -+ XmZm

X111 ... Xmin
wo| 2R

Y121 -+ Ymim

yifa ... Ymlm
2 ... 2

Z1f1 ... Zmim
L2 12

and [x;, yi, zi, t;] are the homogeneous coordinategkf This defines a closed subvari-
ety of H, which we shall denote by.
Consider now the following set:

T ={(L,Q1er, &),...,Qu(er, &) € G(1,3) x H},

whereG (1, 3) is the Grassmannian of linesit¥. The set> of course depends on both
(that is, on the projection center) aid Let us show thak is an algebraic variety.

A point O e P2 is a tangency point of a plane containihgvith X if and only if the
following two conditions are satisfied: () € X and (ii) the tangent t& at Q intersects
L (in projective space).

The Plicker coordinates of the tangefip to X at Q are homogeneous polynomial
functions of the coordinates @f (given by the Gauss magy intersectd if and only if
the joinTy v L vanishes([2], which yields a bi-homogeneous equation on the coordinates
of 0 and of those of.. We shall denote this equation By Q, L) = 0.

For a polynomialF € R[X, Y, Z, T], whereR is some ring, we writdé; for the poly-
nomial in R[X;, Y;, Z;, T;], obtained fromF by substituting the variableX, Y, Z, T
by X;,Y;, Z;, T;. Then the se®® is formed by the common zeros of the polynomi-
alsFit, ..., Fr1, ...y Fun, ooy Frm, @1, ..., ¢, WhereFy, ..., F, are the polynomials
definingX. ThusX can be viewed as a closed subvarietyz@l, 3) x H.

Let 71 andm, be the canonical projections; : ¥ — G(1,3) andn : & — H.
Therefore for a lineL, if there exists a quadric containing and the tangency points
Qi(e, ), ...,Qu(e, &) thennz(nl‘l(L)) is included in the closed subvariefyde-
fined above.
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Thus a lineL for which there exists a quadric containifigand the tangency points
must lie in nl(nz_l(S)). This is a subset of a proper closed subvarietyz01, 3). This
completes the proof. O

We conclude this section with the following corollary.

Corollary 1. For a generic position of the projection centers, the generalized Kruppa
equation defines the epipolar geometry up to a finite-fold ambiguity if and only-if7.

Since different curves in generic position give rise to independent equations, this result
means that the sum of the classes of the projected curves must be at leagtto toe a
finite set.

3.4. Recovering the curve

Let the projection matrices id 1 andM . Hence the two cones defined by the projected
curves and the projection centers are givei\ayP) = f1(M1P) andA2(P) = f2(M2P).
The reconstruction is defined as the curve whose equations;ate0 andA; = 0. This
curve has two irreducible components as the following theorem states.

Theorem 2. For a generic position of the projection centers, namely when no epipolar
plane is tangent twice to the curvg, the curve defined biyA; = 0, A2 = 0} has two
irreducible components. One has deg#ieend is the actual solution of the reconstruction.
The other one has degreéd — 1).

Proof. For a lineL c P2, we writeo (L) for the pencil of planes containing. For a
pointp e P2, we writes (p) for the pencil of lines througp. There is a natural isomor-
phism betweew (g), the epipolar lines in imagg ando (L), the planes containing both
projection centers. Consider the following coversdf

1. x L o (L) = P, taking a pointc € X to the epipolar plane that it defines together
with the projection centers.

2.1 5 o(e) = o(L) = P, taking a pointy € Yi to its epipolar line in the first
projection plane.

3. Y, & o(e) = o(L) = P, taking a pointy € Y» to its epipolar line in the second
projection plane.

If p; is the projectionX — Y;, thenn = n;p;. Let B the union of the sets of branch
points ofyy andns. It is clear that the branch points gflie in B. Let S = P*\ B, pick

t € S, and writeXs = n~1(S), X, = n~1(t). Let ux, be the monodromy; (S, 1) —
Perm(X,), where PerniZ) is the group of permutations of a finite sét(see [22]). It is
well known that the path-connected componentXdare in one-to-one correspondence
with the orbits of the action of iffiex ;) on X,. SinceX is assumed to be irreducible, it has
only one component and i x ;) acts transitively orX,. Then ifim(nx) is generated by
transpositions, this will imply that i x;) = Perm(X;). In order to show that iffu x ;)

is actually generated by transpositions, consider a lod} ibased at, sayl,. If I, does
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not go round any branch point, thénis homotopic to the constant path $hand then
wx,([;]) = 1. Now in B, there are three types of branch points:

1. branch points that come from nodestaf these are not branch pointsgf

2. branch points that come from nodeslef these are not branch pointsmgf

3. branch points that come from epipolar lines tangent eithéf tor to Y»: these are
genuine branch points of

If the loop!; goes round a point of the first two types, then it is still true that([/;]) = 1.
Now suppose that goes round a genuine branch pointiefsayb (and goes round no
other points inB). By genericity,b is a simple two-fold branch point, henge ([/;]) is

a transposition. This shows that () is actually generated by transpositions and so
im(pxg) = PermX,).

Now consider the curv& defined by{A; =0, A, = 0}. By Bézout's theorenX has
degreedz. Leti € X. Itis projected onto a poing; in Y; such thaty1(y1) = n2(y2).
HenceX = v xp1 Yo, restricting to the inverse image of the sgtwe haveXy =
Xs x5 Xs. We can therefore identifi; with X, x X;. The monodromyLXS can then
be given byu,XS(x, ¥) = (uxs(x), uxs(y). Since imux,) = PermX,), the action of
im(u;(S) on X; x X, has two orbits, namel{{x, x)} = X, and{(x, y) | x # y}. Hence
X has two irreducible components. One has degtemd is X, the other has degree
d?2—d=d(d-1). O

This result provides a way to find the right solution for the recovery in a generic configu-
ration, except in the case of conics, where the two components of the reconstruction are
both admissible.

4. The N > 1 projections problem with known projection operators

.....

,,,,,

gebraic curve are also provided. The problem is to recover the original curve by linear
computations as much as possible.

4.1. Curve presentation in the dual space

Let X* be the dual variety oK. SinceX is supposed not to be a line, the dual varigty
must be a hypersurface of the dual space [15]. Our first concern is to determine the degree
of X*.

Proposition 6. The degree ok™ is m, that is, the common degree of the dual projected
curves.

Proof. Since X* is a hypersurface oP®, its degree is the number of points where a
generic line inP3* meetsX*. By duality it is the number of planes in a generic pencil
that are tangent t&. Hence it is the degree of the dual projected curve. Another way to
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express the same fact is the observation that the dual projected curve is the intersection of
X* with a generic plane ii#3*. Note that this provides a new proof that the degree of the
dual projected curve is constant for a generic position of the projection center. 0O

For the recovery oX* from multiple projections, we will need to consider the mapping
from a linel of the projection plane to the plane that it defines together with the projection
center. Letu : | — MT1 denote this mapping. Ler be a generator of the ideal af*.
There exists a link betweet, © and ¢, the polynomial of the dual projected curve:
T(u()) = 0 wheneverp(l) = 0. Since these two polynomials have the same degree
(becauseu is linear) andp is irreducible, there exists a scalasuch that

T(und) = re)
for all lines| e P?. Eliminating 1, we get(’",;:z) — 1 linear equations off'. Since the

number of coefficients ifY is (’";3), we can state the following result:

Proposition 7. The recovery in the dual space can be done linearly using at least

2
m<+6m+11 ; :
Em+3 prOJECtIOﬂS.

4.2. Curve presentation in the Grassmannian of lineB3n

LetG(1, 3) be the Grassmannian of linesiAd. Consider the set of lines iP? intersecting

the curveX of degreed. This defines a subvariety &f(1, 3) which is the intersection of

G(1, 3) with a hypersurface of degredn P°, given by a homogeneous polynomiglde-

fined modulo thelth graded piecé (G(1, 3)), of the ideal ofG (1, 3) and modulo scalars.
However, picking one representative of this equivalence class is sufficient to recover the
curve X entirely without any ambiguity. In our context, we shall call any representative
of this class theChow polynomiabf the curve. We need to compute the clasd"ah

the homogeneous coordinate ring®(1, 3), or more precisely in itgth graded piece,
S(G(1, 3))q, whose dimension i8/; = (+°) — (*725?).

Let f be the polynomial defining the projected cur¥e,Consider the mapping that
associates to a point in the projection plane the line it generates together with the projec-
tion centerv : p — I\A/Ip. The polynomiall’ (v(p)) vanishes whenevef (p) does. Since
they have the same degree ands irreducible, there exists a scakasuch that for every
pointp € P2, we have

L (v(p)) = Af ().
This yields(?+?) — 1 linear equations of.
Hence a similar statement to that in Proposifibn 7 can be made:

Proposition 8. The recovery inG(1,3) can be done linearly using at leagt >
%’m&’zﬂ projections.
4.3. Family of projection operators and finite closed subsets of points

Consider now a finite collection of poinB in 3. Each point is projected by a different
projection map. TheV projection maps are known and so are the projected points.
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Let X be the smooth irreducible curve generated by the p&intandY be the smooth
irreducible curve, of minimal degree, generated by the projection centers.

Each projected poim; yields one linear equation on the variety of intersecting lines
of X, namelyl“(ni‘l(pi)) = 0, whererl is the Chow polynomial ok as before.

Let d andd’ be respectively the degrees &fand Y. We compute the number of
constraints obtained oR from the projected points as a function@fandd’. In other
words, we want to compute the maximal number of constraints that one can extract on a
smooth irreducible curv& embedded ifP3 from a finite number of lines in the join of
X with a known curvey.

Proposition 9. The maximal number of constraints is
Ny — (h%(Ops(d — d')) — h%(Ops(d —d' — 2)) + 1),

whereN,; = dim(S(G(1, 3)),) is the dimension of thé-th graded piece of the homoge-
neous coordinate ring d (1, 3).

Proof. Each projected point generates a line together with the projection center. Let
Li,....,L, be these: lines joining X andY. LetI'y andI'y be the Chow polynomi-

als of X andY respectively. We shall denote tB(I'y) and Z(I'y) the sets where they
vanish. LetV = Z(T'x) N Z(T'y) N G(1, 3). Forn > 1, we have

(U e HO(P®, Ops(d)) : T(Li) =0,i=1,...,n}
={I' e H(P®, Ops(d)) : Ty =0} = I, ps(d).

So, we want to compute diffy, ps(d)), or equivalentlyr®(V, Oy (d)) = h%(Ops(d)) —
dim(Iy ps(d)). SinceV is a complete intersection of degreé d’, 2) in P, the dimen-
sion of Iy, ps(d) should be equal to

h2(Ops(d — 2)) + h%(Ops(d — d')) — h°%(Ops(d — d' — 2)) + 1.
As a consequence,

ROV, Oy (d)) = Ng — (h°(Ops(d — d')) — h%(Ops(d — d' — 2)) + 1). o

5. Applications to static and dynamic computational vision

The results obtained above were motivated by some applications to computational vision.
We now proceed to show how these results can be applied to this field. We start by a quick
survey on linear computational vision. More details can be found|in [7,116, 8]. Some of
the terminology was introduced before in Secfipn 2.

L As usual h%(Ops (k) denotes the dimension of the cohomology gratfXP®, Ops (k) (see
[271]).
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5.1. Foundations of linear computational vision

Projective algebraic geometry provides a natural framework to geometric computer vi-
sion. However, one has to keep in mind that the geometric entities to be considered are
in fact embedded in the physical three-dimensional Euclidean space. Euclidean space is
provided with three structures defined by three groups of transformations: the orthogonal
group Eug (which defines the Euclidean structure and which is included in the affine
group), Affs (defining the affine structure and itself included in the projective group), and
Pr3 (defining the projective structure). We fiX[ Y, Z, T]” as homogeneous coordinates,
and7 = 0 as the plane at infinity.

5.2. A single camera system

Computational vision starts with images captured by cameras. The camera components
are the following:

e aplaneR, called theretinal planeor image plane
e apointO, called theoptical centeior camera centemwhich does not lie on the plarie.

The planeR is regarded as a two-dimensional projective space embeddeEFinttence
it is also denoted by (P?). The camera is a projection machine: : P2\ {0} —
i(P?),P — OP N i(P?). The projectionr is determined (up to a scalar) by ax34
matrixM (the image oP beingAMP).

The physical properties of a camera imply tMatan be decomposed as follows:

f s uo
M= 0af vo | [R;1],
00 1

where(f, a, s, ug, vg) are the so-called internal parameters of the camera, whereas the
rotationR and the translatiohare the external parameters.
It is easy to see that:

e The camera centd is given byMO = 0.

e The matrixm” maps a line iri (P2) to the unique plane containing both the line &hd

e There exists a matrikl € Mgx3(R), which is a polynomial function df1, that maps
a pointp € i(P?) to the lineOp (optical ray), represented by itsiRker coordinates
in P, If the camera matrix is decomposed as follows:

then forp = [x, y,z]?, the optical rayLp = Mp is given by the extensdr, =
XA ANO+yO AT 4+ zI' A A, wherea denotes the meet operator in the Grassmann—
Cayley algebra (se€|[2]).

e The matrixM = M7 maps lines irP? to lines ini (P?).
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Moreover we will need to consider the projection of tilesolute conionto the image
plane. The absolute conic is simply defined by the following equations:
X24yv%2427%2=0,
T =0.
By definition, the absolute conic is left invariant under Euclidean transformations. There-

fore its projection onto the image plane, defined by the mairiis a function of the
internal parameters only. By Cholesky decompositioa LU, whereL (respectivelyJ)

is a lower (respectively an upper) triangular matrix. Hence it is easy to sed Haaﬁfl,
whereM is the 3x 3 matrix of the internal parameters Mgf.

5.3. A system of two cameras

Given two cameragO;, i;(P?));1 2 are their components whetg(P?) andi»(P?) are
two generic projective planes embedded itpandO; andO, are two generic points in
P2 notlying on the above planes. AJinb.2,4gt: P3\{O;} — i;(P?), P > O;PNi; (P?),
be the respective projections. The camera matriceMare = 1, 2.

5.3.1. Homography between two images of the same pla@ensider the case where
the two cameras are looking at the same plane in space, denoted ey

be the camera matrices, decomposed as aboveR bet a point lying onA. We shall
denote the projections &by p; = [x;, vi, z:/]7 = M;P, where= means equality modulo
multiplication by a non-zero scalar.

The optical ray generated Ipy is given byl p, = x1A1A@1+y101AT 14211 A A7
HenceP =Lp, AA = x1A1AO1AA+y1O01AT1AA+z1ITIA AL A A SOp2 = M2P
is given by the expressiqmp = Hap1, where

FT(A1A®1AA) TIO1ATIAA) TET1AALAA)
Ho= | AZ(A1A®1AA) AL@1AT1AA) ATT1AALAA)

OL(ALABLAA) BFO©1ATIAA) B T1AALAA)

This yields the expression of the collineatidn, between two images of the same plane.

Definition 1. The previous collineation is called th@mographybetween the two im-
ages, through the plana.

5.3.2. Epipolar geometry

Definition 2. Let (O, i;(P?),M;);=12 be as defined before. Given a pajy1, p2) €
i1(PY) x i»(P?), we say that it is a pair oforrespondin@r matching pointsf there exists
P e P® such thap; = r;(P) for j = 1, 2.
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Consider a poinp € i1(P?). Thenp can be the image of any point lying on the fiber
nl_l(p). The matching point in the second image must Iier@(nl_l(p)), which is, for a
generic poinp, a line on the second image. Sinegandx, are both linear, there exists
a matrixF € Msx3(R) such that(p) = 7T2(7T1_l(p)) = Fp for all but one point in the
firstimage.

Definition 3. The matrixF is called thefundamental matrixwhereas the ling, = Fp is
called theepipolar lineof p.

Lete; = 010,Ni1(P?) ande; = 0102Ni»(P2). Those two points are respectively called
thefirst and thesecond epipoldt is easy to see th&te; = 0, sincenfl(el) = 0107 and
12(010,) = . Observe that by symmetfy is the fundamental matrix of the reverse
couple of images. Hende! e, = 0. Since the only point in the first image that is mapped
to zero byF is the first epipolef has rank 2.

Now we want to deduce an expressionfofis a function of the camera matrices.
By the previous analysis, it is clear thiat= MM 1. Moreover we have the following
properties:

Proposition 10. For any planeA, not passing through the camera centers, the following
equalities hold:

(i)
F= [eZ] X HA,
where[e;] « is the matrix associated with the cross-product as follows: for any vec-
tor p, & x p = [e2]xp- Hence
0 —ex3 e
[&2lx=| &3 0 —ex
—€»p €1 O
In particular, F = [e2] xHoo, WhereH o is the homography between the two images
through the plane at infinity.
(ii)

HAF+F Ha =0. (5)

Proof. The first equality is clear from its geometric meaning. Given a pointthe first
image,Fp is its epipolar line in the second image. The optical kgypassing trougip
meets the pland in a pointQ whose projection in the second imageHis p. Hence the
epipolar line must be, v Hap. This gives the required equality. The second equality is
easily deduced from the first one by a short calculation. O

Proposition 11. For a generic planep,
Hael E e

Proof. The image ofe; by the homography must be the projection on the second image
of the point defined as the intersection of the optical ray generategddayd the plane\.
HenceHaer = Ma(Le A A). ButLe, = O102. Thus the result must bd ;0 (except
when the plane is passing throu@h), that is, the second epipoég. O
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5.3.3. Canonical stratification of the reconstructionThree-dimensional reconstruction

can be achieved from a system of two cameras, once the camera matrices are known.
However, a typical situation is that the camera matrices are unknown. Then we face a
double problem: recovering the camera matrices and the actual object. There exists an
inherent ambiguity. Consider a pair of camera matrigds, M»). If you change the

world coordinate system by a transformatiéne Pr3, the camera matrices are mapped

to (M1V~1, MoV —1). Therefore we define the following equivalence relation:

Definition 4. Given a group of transformation§, two pairs of camera matrices, say
(M1, M) and (N1, N»), are said to beequivalent modulds if there existsV € G such
thatM1 = VN1 andM> = VN».

Note that this definition is similar to that 66 below. Any reconstruction algorithm will
always vyield a reconstruction modulo some group of transformations. More precisely
there exist three levels of reconstruction according to the information that can be extracted
from the two images and from a priori knowledge of the world.

Projective stratum. When the only available information is the fundamental matrix, the
reconstruction is done modulof1indeed, fromF, the so-called intrinsic homography
S= —(ey/|le2|)F is computed and the camera matrices are equivalgfit;to], [S; e2]),

as shown in Propositidr 1.

Affine stratum. When, in addition to the epipolar geometry, the homography between
the two images through the plane at infinity, denotedHly, can be computed, the recon-
struction can be done modulo the group of affine transformations. Then the two camera
matrices are equivalent (@l ; 0], [Ho; €]) (seel8]).

Euclidean stratum. The Euclidean stratum is obtained by the data of the projection of

the absolute coni€ onto the image planes, which allows the recovery of the internal
parameters of the cameras. Once these parameters of the cameras are known, the relative
motion between the cameras expressed by a rot&®i@md a translation can be ex-

tracted from the fundamental matrix. However, only the directioty obt the norm, can

be recovered. Then the camera matrices are equivalent, modulo the group of similarity
transformations, tgM1[1; 0], M[R; t]), whereM; andM are the matrices of internal
parameters (sekl[8]).

Note that the projection of the absolute conic on the image can be computed using
some a priori knowledge of the world. Moreover there exists a famous equation linking
w1 andwy, the two matrices defining the projection of the absolute conic onto the images,
when the epipolar geometry is given. This is the so-callegppa equationdefined in
the following proposition.

Proposition 12. The projections of the absolute conic onto two images are related as
follows. There exists a non-zero scalasuch that

[e1]Lwiler]x = AFT wiF,

where[e;] . is the matrix representing the cross-produce@yndw? is the adjoint matrix
of ;.
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Lete; be the tangents te; (2) throughe;. The Kruppa equation simply states thatind
€2 are projectively isomorphic.

5.4. Applications of the previous results to computational vision

As mentioned in the introduction, the mathematical material presented in this paper was
motivated by applications to static and dynamic configurations in computer vision. Ap-
plications of the previous results (Sectigphs 3 ghd 4) are related to different contexts:

1. The recovery of the epipolar geometry from two images of the same smooth irreducible
curve. Theorem]1 generalizes the Kruppa equation to algebraic curves. $ection 3.3
provides a necessary and sufficient condition on the degree of the curve for the epipolar
geometry to be defined up to finite-fold ambiguity. Note that the case of conic sections
was first introduced in [18, 19].

2. The 3D reconstruction of a curve from two images is possible in a generic situation as
shown in Propositiop]2. The case of conics was also treatéd in [19, 23, 24]. Note that
[11] presents an algorithm for curve reconstruction using a blow-up of the projected
curve. This nice result, however, does not provide any information about the relative
position of the curve iP® with respect to other elements of the scene. On the other
hand, our approach based on two images allows reconstructing the curve in the context
of the whole scene. Furthermore the problem of curve reconstruction was also con-
sidered in[[3] from the point of view of global optimization and bundle adjustment.
Our approach, on the contrary, is based on looking at algebraic curves for which the
representation is more compact.

3. The 3D reconstruction of a curve fromi >> 1 projections is linear using the dual
space or the Grassmannian of lin@él, 3) (Sectiong 41 and 4.2). The formalism of
the dual space in the case of conics or quadrics was also used in[13, 20].

4. The trajectory recovery of a moving point viewed by a moving camera whose matrix
is known over time is a linear problem when using the variety of intersecting lines of
the curve generated by the motion of the point. Moreover this gives rise to the problem
of counting the number of constraints that can be obtained. This is done in Proposi-
tion[d. Note that our algorithm for trajectory recovery or triangulation is a complete
generalization of [11].

5.5. Experiments and discussion

Now we are in a position to perform some experiments relating to different applications
mentioned above. The algorithms induced by our theoretical analysis involve either solv-
ing systems of polynomial equations or estimating high-dimensional parameters that ap-
pear linearly in equations built also from noisy data.

Solving a system of polynomial equations is a hard task when the system has many
variables or the equation has high degree. There are roughly three methods to handle this
problem: (i) computing a Gbner basis of the ideal defined by the equation,
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(i) proceeding in the dual space of the coordinate ring of an affine piece of the variety via
computation of resultants (se€ [6] for a detailed presentation), (iii) building a homotopy
that defines the deformation from a system of polynomial equations whose solutions are
known to the system you need to solve][25]. In our work the computations were done
using Gibbner basis methods.

Note that numerical optimization tools like Newton—Raphson or Levenberg—Marquet
optimization are not considered here because (i) zero-dimensional polynomial systems
which are not overdetermined have more than one root and these optimization methods
are designed to extract a single solution, (ii) the convergence to a solution with these tools
is well behaved only when one starts in a small enough neighborhood of the solution.

The use of symbolic tools (either &sner bases or resultants) for computer vision ap-
plications is not without challenges. First, symbolic computations require large amounts
of computational and memory resources. There is the issue of computational efficiency,
scalability to large problems and the question of effectiveness in the presence of measure-
ment errors. The full answer to these questions is far beyond the scope of this work. The
field of symbolic computations for solving polynomial systems is a very active field of
research where major progress has been made in the past decade [6, 14, 26]. For example,
throughout this paper, the experiments were performed with one of the latest symbolic
tools “FastGB” developed by Jean-Charles Feregfor efficient and robust @bner ba-
sis computation. With those latest tools, one can achieve a high degree of scalability and
efficiency in the computations.

A second challenging problem is the sensitivity to noise (approximate polynomial
equations). It is related to perturbation theory. It is necessary to note that since the com-
putations are symbolic, they do not add any perturbation to the solution. Therefore, as
opposed to numerical methods, there is no additional error due to possible truncation
during the computations. However, there is very little research on measurement error sen-
sitivity and their propagation throughout symbolic computations. Such research would be
of great interest to the computer vision community and more generally for applications of
algebraic geometry, but this topic is largely open. However, the development of interval
arithmetic constitutes a first step toward both a theoretical and practical approach to this
issue.

The second question, mentioned above, in connection to experiments, is related to the
estimation of high-dimensional parameters, which appear linearly in equation built from
noisy data. This is a typical case of heteroscedastic estimation [21] and will be discussed
below.

Recovering epipolar geometry from a rational cubic and two conics.We proceed to
a synthetic experiment, where the epipolar geometry is computed from a rational cubic
and two conics. The curves are randomly chosen, as are the cameras.

The cubic is defined by the following system:

2265666659564526 26X — 19148549932360861&9" — 791130248041963297Z
—1198609868087508022 + 8934681696755278 4T + 2859405018489194272
—179632615056970090 + 2779600382264726%6 = 0,
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5559200764529453 K% + 6564944204577656 14X — 175515597354514873%
— 17491544508000749%4 4 984240461094724954T — 613095658641795%0"
— 180258891200735629F + 29131974577679547% = 0,

111184015290589062%4 — 2905335341664005486 — 7938503525637380Y7Z
+12868901614348436%8 + 1713207647519936008 — 248798847306328202"
—29423493610642843%3 + 39881438695158513%# = 0.

The first and the second conic are respectively defined by:

25X + 9Y + 40Z + 61T = 0,
40X2 — 78XY +62ZX + 11XT +88Y2+YZ +30YT + 81722 — 52T — 2872 =0,

and

4X — 11Y + 10Z + 57T =0,
—82X2 - 48XY —11ZX +38XT —7Y2+58YZ —94YT — 6822+ 14ZT — 3572 = 0.

The camera matrices are

—87 79 43 -66 —76 —65 25 28
M;=] -53-61-23-37|, Mz=|-61-60 9 29
31 —34-42 88 —66 —32 78 39

Then we form the extended Kruppa equations for each curve. From the computational
point of view, it is crucial to enforce the constraint that eacls different from zero.
Mathematically this means that the computation is done in the localization with respect
to eachi.

As expected, we get a zero-dimensional variety of degree one. Thus there is a single
solution to the epipolar geometry given by the following fundamental matrix:

_ 511443 _ 2669337 _ 998290
13426 13426 6713

F= 84845 23737631 14061396
- 2329 114121 114121

1691905 3426650 8707255
228242 114121 228242

Recovering epipolar geometry from points and conics.We proceed to the recovery of

the epipolar geometry from conics and point correspondences extracted from real images.
The extraction has been done manually and the conics were fitted by classical least square
optimization.

The recovery of the epipolar geometry has been done using four conics and one point.
First the fundamental matrix is computed using three conics and one point, which leads to
a finite number of solutions. Then the additional conic is used to select the right solution.

The images used for the experiments together with results and comments are pre-
sented in Figurg]1.
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A

Fig. 1. The two images that were used. The epipoles and the corresponding epipolar lines tangent
to the conics are drawn on the images.

Reconstruction of a spatial quartic in P2, Consider the curve, drawn in Figurg P,
defined by the following equations:

Fi(x,y,z,0) = x*+y* = 1%,

Fao(x, y,z,1) = xt — (z — 100)°.

The curveX is smooth and irreducible, and has degree 4 and genus 1. We define two
camera matrices:

100 5 10 0 —-10
Mi=|001-2|, M2=]00-1 0
0-10-10 01 0 -10

Then the curve is reconstructed from the two projections. As expected there are two ir-
reducible components. One has degree 4 and is the original curve, while the other has
degree 12.

Reconstruction using the Grassmannian.For the next experiment, we consider six
images of an electric wire—one of the views is shown in Figyre 3 and the image curve
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Fig. 2. A spatial quartic.

after segmentation and thinning is shown in Fidure 4. Hence for each of the images, we
extract a set of points lying on the thread. No fitting is performed in the image space.
For each image, the camera matrix is calculated using the calibration pattern. Then we
compute the Chow polynomidl of the curve in space. The curdehas degree 3. Once

I" is computed, a reprojection is easily performed, as shown in Higure 5.

Fig. 3. One of the six views of an electric thread that were used to perform the reconstruction.

The computation of the Chow polynomial involves an estimation problem. Moreover
as mentioned above, the Chow polynomial is not uniquely defined. In order to get a unique
solution, we have to add some constraints to the estimation problem which do not distort
the geometric meaning of the Chow polynomial. This is done by requiring the Chow poly-
nomial to vanish ove#, additional arbitrary points aP®> which do not lie onG(1, 3).

The number of additional points necessary to get a unique solutidp is (djs) — Ny,
whered is the degree of the Chow polynomial.
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Fig. 5. Reprojection on a new image.

We shall see that the estimation of the Chow polynomial is a typical case of het-
eroscedastic estimation. Every 2D measurerpestcorrupted by additive noise, which
we assume to be an isotropic Gaussian ngiS@, o). The variance is estimated to be
about 2 pixels. R

For each 2D poinp, we form the optical ray it generatds,= Mp. Then the esti-
mation of the Chow polynomial is made using the optical ray$n order to avoid the
problem of scale, the Btker coordinates of each line are normalized in such a way that
the last coordinate is equal to one. Hence the lines are represented by vectors in a five-
dimensional affine space, denotedlhy. Hence ifd is a vector containing the coefficient
of the Chow polynomial’, thené is the solution of the following problem:

Z(L,)T6 =0 for all optical rays

with |6]] = 1 andZ(L,) is a vector whose coordinates are monomials generated by the
coordinates of ,. Following [5,[21], in order to obtain a reliable estimate, the solufion

is computed using a maximum likelihood estimator. This allows us to take into account
the fact that eacz (L ,) has a different covariance matrix, or in other terms that the noise
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is heteroscedastidviore precisely, eac (L) has the following covariance matrix:
e 00 R
CL=1J3J,M | 050 |M"IIIE,
000

whereM is the camera matrix and, andJ, are respectively the Jacobian matrices
of the normalization ol and of the map sending, to Z(L,). That is, forL(t) =
[L1, Lo, L3, La, Ls, Lg]”, we have
1/Lg 0 0 0 O —Ly/L2
0 1/Lg¢ 0 O 0 —Lp/L2
o= 0 0 YLsg O O —Lg/L3|,

0 0 0 YLe O —La/L2

0 0 0 O YLe-Ls/L2
andJy is similarly computed. Then we use the method presented in [5] to perform the
estimation. It is worth noting that the estimation is reliable because the initial guess of
the algorithm was well chosen and because the number of measurements is very large.
It is necessary to use a very large number of measurements for two reasons. First, the
dimension of the parameter space is quite high, and secondly, the measurements are con-
centrated on a part of the space (over the Grassmafhiars)).

Synthetic trajectory triangulation. LetP e P2 be a point moving on a cubic, as follows:

3

23 4 32
Brr24r4+1
B2+ 42
It is viewed by a moving camera. At each instant a picture is made, we get a 2D point
m{ (HP(x) mJ (r)P(t)T
mi ()P()" m(1)P()

P@) =

p(t) = [x(1), y»)]" = [

whereM” (r) = [m1(r), ma(r), m3(¢)] is the transpose of the camera matrix at time
Then we build the set of optical rays generated by the sequence. The Chow polynomial
is then computed and given below:
I'(Ly,...,Le) = —72L3L3+ L3 —5L1L4Ls

—18L1L3Lg+ 57LoL3Ls + 48LoLaLs — 43L1LoLg
—10L1L3Ls5+ 21L1LsLg — 30L1L4Le — 108LoL3Lg
+41L1LoLs + 69L1LLe — 26L1LoL3 — 36LL5
— 21LL2 4+ 3L3L% — 9L3L5 — 12L5L5 + 6L4L%
+4L2L4+ 20L3 — 1313 + 8L3 — L3+ 108L3L6
— 120L3Ls + 27L3Le — 25L3Lg + 57LL3
+84L3L4 + 7L1L3 — L2Ls+ 31L1L%
+5L3Lg+ L1L% — 11L2L, + TL1L2.
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From the Chow polynomial, one can extract directly the locations of the moving point at
each time instant an image was made. This is done by a two-step computation. The first
step consists in giving a parametric representation of the optical ray generated by the 2D
measurement. During the second step, the pencil of lines passing through a generic point
on the optical ray is considered. For this generic point to be on the trajectory, the Chow
polynomial must vanish over the pencil. This yields a polynomial system in one variable,
whose root gives the location of the 3D moving point. We show in Figlure 6 the recovered
discrete locations of the point in 3D.

Fig. 6. The 3D locations of the point.

Trajectory triangulation from real images. A point is moving over a conic section.
Four static non-synchronized cameras are looking at it. We show in Higure 7 one image
of one sequence.

Fig. 7. A moving point over a conic section.
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The camera matrices are computed using the calibration pattern. Every 2D measure-
mentp(¢) is corrupted by additive noise, which we assume to be an isotropic Gaussian
noise\ (0, o). The variance is estimated to be about 2 pixels.

As before the estimation is done from the set of optical rays generated by the 2D mov-
ing point. The estimation is also a case of heteroscedastic estimation, which was handled
with the method presented inl[5]. The result is stable when starting with a good initial
guess. In order to handle a more general situation we further stabilize it by incorporating
some extra constraints that come from auriori knowledge of the form of the solution.

The final result is presented in Figife 8.
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Fig. 8. The trajectory rendered in the calibration pattern.
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