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Abstract. We study some geometric configurations related to projections of an irreducible alge-
braic curve embedded inCP3 onto embedded projective planes. These configurations are motivated
by applications to static and dynamic computational vision.

More precisely, we study how an irreducible closed algebraic curveX embedded inCP3, of
degreed and genusg, can be recovered using its projections from points onto embedded projective
planes. The embeddings are unknown. The only input is the defining equation of each projected
curve. We show how both the embeddings and the curve inCP3 can be recovered modulo some
action of the group of projective transformations ofCP3.

In particular in the case of two projections, we show how in a generic situation, a characteristic
matrix of the pair of embeddings can be recovered. In the process we address dimensional issues
and as a result find the minimal number of irreducible algebraic curves required to compute this
characteristic matrix up to a finite-fold ambiguity, as a function of their degrees and genus. Then
we use this matrix to recover the class of the couple of maps and as a consequence to recover the
curve. In a generic situation, two projections define a curve with two irreducible components. One
component has degreed(d − 1) and the other has degreed, being the original curve.

Then we consider another problem.N projections, with known projection operators andN � 1,
are considered as an input and we want to recover the curve. The recovery can be done by linear
computations in the dual space and in the Grassmannian of lines inCP3. Those computations are
respectively based on the dual variety and on the variety of intersecting lines. In both cases a sim-
ple lower bound for the number of necessary projections is given as a function of the degree and
the genus. A closely related question is also considered. Each point of a finite closed subset of an
irreducible algebraic curve is projected onto a plane from a point. For each point the projection
center is different. The projection operators are known. We show when and how the recovery of the
algebraic curve is possible, in terms of the degree of the curve, and of the degree of the curve of
minimal degree generated by the projection centers.
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Finally, we show how these questions are motivated by applications to static and dynamic
computational vision. A second part of this work is devoted to several applications to this field.
The results in this paper solve a long standing problem in computer vision that could not be solved
without algebraic-geometric methods.

Keywords. Plane and space curves, projections, machine vision, structure from motion

1. Introduction

1.1. Problem definition

Consider an irreducible closed algebraic curveX ⊂ CP3 (in what follows we simply
write Pn for CPn). This curve is projected onto several projective planes embedded in
P3 from several projection centers, say{Oi}, i = 1, . . . , n. Each projection mapping,
denoted byπi : P3

\ {Oi} → P2, is represented by a 3× 4 matrix M i defined modulo
multiplication by a non-zero scalar. So each pointP different fromOi is mapped byπi

to M iP. Each projection operatorπi , via its matrix, can be regarded as a point inP11.
Let Yi = πi(X) be the different projections of the curveX. Below we always deal with
generic configurations, even when not mentioned explicitly.

When we consider the problem of recovering the projection maps from the projected
curves, we will show that the recovery is possible only modulo some action of the group
of projective transformations ofP3 on the set of projection maps. To define this action
we refer to a projection map as a point inP11. Assume that we haven projections, and
consider the projective variety

V =

n times︷ ︸︸ ︷
P11

× · · · × P11 .

Let Pr3 be the group of projective transformations ofP3. We define an action of Pr3 on
V as follows:θn : Pr3 → Mor(V, V), A 7→ ((Q1, . . . , Qn) 7→ (M1A−1, . . . , MnA−1)),
where each matrixM i is built from the coordinates ofQi = [Qi,1, . . . ,Qi,12]T as fol-
lows:

M i =

Qi,1 Qi,2 Qi,3 Qi,4
Qi,5 Qi,6 Qi,7 Qi,8
Qi,9 Qi,10 Qi,11 Qi,12

 .

The geometric meaning of this action is that if we change the projective basis inP3 by the
transformationA, we need to change the projection maps accordingly for the projected
curves to be invariant.

We first investigate the case of two projections. Given the projected curvesY1 andY2
as the only data, our first problem is to compute the characteristic matrix (to be defined
below) of the two projection maps,π1 andπ2, up to a finite-fold ambiguity. It is shown
that this is equivalent to finding a necessary and sufficient condition onX for the action
of θ2 to have a finite number of orbits. Then we show that for each orbit we can recover
the curveX modulo Pr3. More precisely each orbit induces a curve embedded inP3

containing two irreducible components, one of degreed(d −1) and the other of degreed.
The latter is the curve we are looking for.
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Then we turn to another problem. The projection mapsπi , i = 1, . . . , n, are now
assumed to be known, in addition to the projected curvesYi . We want to recover the
curveX. This can be performed by linear computations using either the dual variety or
the variety of lines intersectingX. In both cases a simple lower bound on the minimal
number of projections is deduced.

With the variety of lines intersectingX another problem is also handled. Consider a
set ofN points inP3 and letX be the curve generated by these points. Each of these points
is projected on a different plane by a different projection operatorπi . Those projection
operators are known. We want to recoverX by linear computations. LetZ be the curve,
of minimal degree, generated by the projection centers. We give a formula for the number
of constraints obtained onX as a function of the degree ofZ.

1.2. Applications to computational vision

All the problems above are directly related to applications in computer vision.
In order to define what are the contributions of our research to computer vision, we

shall first recall a rough and common classification of vision algorithms. Three kinds of
processes are generally identified in computer vision: early or low-level vision, middle-
level vision and high-level vision [12].

Low-level vision deals with feature extraction and matching. It is strongly related to
image processing. Given geometric features, that is, primitives extracted from images,
and correspondences between these primitives over several images, a set of more sophis-
ticated computations are possible. They are generally defined in a mathematical language
and constitute what is commonly called middle-level vision. One can mention examples
like camera motion recovery, three-dimensional structure recovery, trajectory recovery of
moving points etc. Finally, one aspires to develop a complete artificial vision system that
is able to accomplish high-level tasks, like object recognition, classification etc.

Our work belongs to middle-level vision. It gives a mathematical modelization of what
can be computed from primitives like algebraic curves. We also discuss implementation
issues.

However, we assume that the extraction of the curves from the images as well as the
correspondences between them has been done in a pre-process. The question of detection
and fitting of algebraic curves has its own complexity and is not treated here. We refer to
[27, 28, 4] for more details.

The contributions of our work can be summarized as follows:

1. Given two images of the same algebraic curve, we show how to compute the camera
matrices defined in Sections 5.2 and 5.3. We give a necessary and sufficient condition
on the degree and the genus of the curve, for the camera matrices to be defined up to a
finite-fold ambiguity.

2. Given the camera matrices, we show how to reconstruct the space curve from two
views. In that case, we show that the two viewing cones define, in a generic situation, a
curve with two irreducible components. One of these components is the right solution
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of the reconstruction problem and can be extracted if the degree of the curve is at least
three.

3. Given the camera matrices of a sequence of images of the same algebraic curve, we
show that the reconstruction can be done linearly either in the dual space or using the
variety of lines which intersect the curve in space. We give simple lower bounds on the
number of necessary images as functions of the degree and genus of the curve.

4. Given the camera matrices of a sequence of images of a moving point, we show how
to recover linearly the trajectory of the point. The trajectory is regarded as a piecewise
algebraic curve. We also address a theoretical analysis, and get a necessary and suffi-
cient condition on the trajectory of the camera center, enabling the complete trajectory
triangulation of the moving point.

In the past two decades, geometric computer vision, namely the theory of multiple-
view, has been considerably developed. A large body of research has been devoted to the
case of a scene consisting of point and line features. A summary of the past decade of
work in this area can be found in [8, 16].

The theory is somewhat sparse and fragmented when it comes to curve features. Our
work presents a coherent theory of multiple-view geometry for algebraic curves. More-
over it paves the way for a more comprehensive use of extremely rich and powerful tools
of algebraic geometry in computer vision.

Typically the first three contributions of our work (mentioned above) can be used
for the reconstruction of hand-made objects. The fourth contribution has a wide field
of applications. It allows the triangulation of the trajectory of a moving point while the
camera centers are also moving along arbitrary trajectories. While computer vision has
reached significant achievements [8, 16] in the context of static scenes, the results on
dynamic scenes are very sparse and our work solves a long standing problem, namely
general trajectory triangulation.

1.3. Paper organization

The paper is organized as follows. Sections 2, 3 and 4 contain the mathematical results
and present the theoretical contributions of our work in the theory of multiple-view geom-
etry of algebraic curves. Section 5 concerns applications in vision, with many examples
demonstrating the practical potential of our approach.

Since our computations will occur inP3, we fix [X, Y,Z, T ]T as homogeneous coor-
dinates, andT = 0 as the plane at infinity.

2. Projection operators

Let π be a projection operator fromP3 to an embedded projective planei(P2) from a
point O. This projection can be represented by a 3× 4 matrixM . It has several simple,
but very useful properties. The kernel ofM is exactly the projection center. The transpose
of M maps a line ini(P2) to the plane it defines together with the projection center, given
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as a point of the dual spaceP3∗. This can be deduced by a duality argument and a simple
computation.

There exists a matrix̂M , a polynomial function ofM , which maps a point ini(P2) to
the Pl̈ucker coordinates of the line it generates together with the projection center [8]. If
the matrixM is decomposed as follows:

M =

 0T

3T

2T

 ,

then forp = [x, y, z]T , the lineLp = M̂p is given by the extensorLp = x3 ∧ 2 +

y2 ∧ 0 + z0 ∧ 3, where∧ denotes the meet operator in the Grassmann–Cayley algebra
(see [2]). By duality, the matrix̃M = M̂T maps lines inP3 to lines ini(P2).

Consider now two projection operatorsπ1 andπ2. Let O1 andO2 be the projection
centers andi1(P2) andi2(P2) the projection planes. Letej be the point of intersection of
ij (P2) with the lineO1O2. Let σ(e2) be the pencil of lines ini2(P2) throughe2. It is easy
to define a map fromi1(P2)\{e1} toσ(e2) as follows. Each pointp is sent to the line given
by π2(π

−1
1 (p)). This map is linear and its matrix isF = M̃2M̂1. Following the standard

terminology used in computational vision, we will call the matrixF the fundamental
matrix of the pair of projectionsπ1 andπ2, and the pointse1 ande2 will be respectively
called thefirst and thesecond epipole. The lines in the first (second) projection plane
passing through the first (second) epipole are called theepipolar lines. ClearlyFe1 = 0
andeT

2 F = 0T .

Proposition 1. The knowledge of the fundamental matrixF of a couple of projection
operators allows the recovery of the matricesM1 andM2 of the projections modulo the
action θ2. More precisely, the couple(M1, M2) is equivalent to([I ; 0], [H; e2]), where
H = −([e2]/‖e2‖

2)F and the matrix[e2] is defined to beτ(e2), whereτ maps any vector
x of C3 to the matrix that represents the cross-product byx. We have

τ(x) = [x] =

 0 −x3 x2
x3 0 −x1

−x2 x1 0

 ,

andx = [x1, x2, x3].

Proof. We are looking for a matrixA ∈ Pr3 such that

M1 = [I ; 0]A−1, M2 = [H; e2]A−1.

Let us writeB = A−1 as follows:

B =

 Ω
... u

. . . . . . . . .

vT
... 0
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Let us writeM i = [M i, mi ]. Then it follows immediately from the definition ofF that

F = [e2]M2M
−1
1 . Using the following algebraic identity for any two vectorsx and y

in C3: (xT y)I = xyT
− [x][y], it is easy to prove that it is sufficient to take

Ω = M1, u = m1, v =
1

‖e2‖
2
M2e2, λ =

1

‖e2‖
2
(eT

2 m2 − eT
2 Hm1). ut

This shows that in order to characterize a couple of projections modulo the actionθ2, we
only need to compute the fundamental matrix. In what follows we show how to recover
F from two projections of an algebraic curve.

3. Two projections with unknown projection operators

In this section we deal with the first problem. A smooth and irreducible curveX embed-
ded inP3 is projected onto two generic planes from two generic points. The projection
operatorsπ1 andπ2 are unknown. First we want to recover the fundamental matrix of the
couple(π1, π2) from the projected curvesY1 = π1(X) andY2 = π2(X).

3.1. Single projection

We mention a few well known facts about generic projections. LetX be a smooth irre-
ducible algebraic curve embedded inP3, andY its projection on a generic plane from a
centerO.

1. The curveY will always contain singularities. Furthermore, for a generic position of
the projection center, the only singularities ofY will be nodes.

2. Theclassof a planar curve is defined to be the degree of its dual curve. Letm be the
class ofY . Thenm is constant for a generic position of the projection center.

3. If d andg are the degree and genus ofX, they are respectively, for a generic position
of O, the degree and the genus ofY , and the Pl̈ucker formula yields

m = d(d − 1) − 2(]nodes),

g =
(d − 1)(d − 2)

2
− (]nodes),

where]nodes denotes the number of nodes ofY . Hence the genus, degree and class
are related by

m = 2d + 2g − 2.

3.2. Fundamental matrix construction

We are now ready to investigate the recovery of the fundamental matrix of a couple of
projections(π1, π2) when we only know the projections of a smooth irreducible curve.
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As before, letX be a smooth irreducible curve embedded inP3, which cannot be
embedded in a plane. The degree ofX is d ≥ 3. Let M i , i = 1, 2, be the projection
matrices. LetF, e1 ande2 be as defined before. We will need to consider the following

two mappings:p
γ
7→ e1 ∨ p andp

ξ
7→ Fp, where∨ is the join operator [2], which is

equivalent to the cross-product in that case. Both maps are defined on the first projection
plane.

Let Y1 andY2 be the projected curves. Assume that they are defined by the polynomi-
alsf1 andf2. Let Y ?

1 andY ?
2 denote the dual curves, whose polynomials are respectively

φ1 andφ2.

Theorem 1. For a generic position of the projection centers with respect to the curveX,
there exists a non-zero scalarλ such that for all pointsp in the projection plane, the
following equality holds:

φ2(ξ(p)) = λφ1(γ (p)). (1)

For reasons that will be clear later, we shall call this equation thegeneralized Kruppa
equation.

Proof. Let εi be the set of epipolar lines tangent to the curve in imagei. We start with the
following lemma:

Lemma 1. The two setsε1 andε2 are projectively equivalent. Moreover for each corre-
sponding pair of epipolar lines(l, l′) ∈ ε1 × ε2, the multiplicities ofl and l′ as points of
Y ?

1 andY ?
2 are the same.

Proof. Consider the following three pencils:

• σ(L) ≈ P1, the pencil ofepipolar planes, that is, planes containing the baseline joining
the two projection centers,

• σ(e1) ≈ P1, the pencil of epipolar lines in the first projection plane,
• σ(e2) ≈ P1, the pencil of epipolar lines in the second projection plane.

Thus we haveεi ⊂ σ(ei). Moreover ifE is the set of planes inσ(L) tangent to the curve
in space, then there exists a one-to-one mapping betweenE and eachεi which leaves the
multiplicities unchanged. This completes the proof. ut

This lemma implies that both sides of equation (1) define the same algebraic set, that is,
the union of epipolar lines tangent toY1. Sinceφ1 andφ2, in the generic case, have the
same degree (as stated in 3.1), each side can be factorized as follows:

φ1(γ (x, y, z)) =

∏
i

(α1ix + α2iy + α3iz)
ai ,

φ2(ξ(x, y, z)) =

∏
i

λi(α1ix + α2iy + α3iz)
bi ,

where
∑

i ai =
∑

j bj = m. By the previous lemma we also haveai = bi for all i. ut

By eliminating the scalarλ from the generalized Kruppa equation (1) we obtain a set of
bi-homogeneous equations inF ande1. Hence they define a variety inP2

× P8. We now
turn to the dimensional analysis of this variety. We wish to exhibit conditions under which
this variety is discrete.
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3.3. Dimensional analysis

Let {Ei(F, e1)}i be the set of bi-homogeneous equations onF ande1, extracted from the
generalized Kruppa equation (1). Our first concern is to determine whether all solutions
of equation (1) are admissible, that is, whether they satisfy the usual constraintFe1 = 0.
Indeed, we prove the following statement:

Proposition 2. As long as there are at least two distinct lines throughe1 tangent toY1,
equation(1) implies thatrankF = 2 andFe1 = 0.

Proof. The variety defined byφ1(γ (p)) is then a union of at least two distinct lines
throughe1. If equation (1) holds,φ2(ξ(p)) must define the same variety.

There are two cases to exclude: If rankF = 3, then the curve defined byφ2(ξ(p)) is
projectively equivalent to the curve defined byφ2, which isY ?

2 . In particular, it is irre-
ducible.

If rankF < 2, or rankF = 2 andFe1 6= 0, then there is somea, not a multiple ofe1,
such thatFa = 0. Then the variety defined byφ2(ξ(p)) is a union of lines througha.
In neither case can this variety contain two distinct lines throughe1, so we must have
rankF = 2 andFe1 = 0. ut

As a result, in a generic situation every solution of{Ei(F, e1)}i is admissible. LetV be the
subvariety ofP2

× P8
× P2 defined by the equations{Ei(F, e1)}i together withFe1 = 0

andeT
2 F = 0T . We next compute a lower bound on the dimension ofV , after which we

will be ready for the calculation itself.

Proposition 3. If V is non-empty, the dimension ofV is at least7 − m.

Proof. Choose any linel in P2 and restricte1 to the affine pieceP2
\ l. Let (x, y) be ho-

mogeneous coordinates onl. If Fe1 = 0, the two sides of equation (1) are both unchanged
upon replacingp by p + αe1. So equation (1) will hold for allp if it holds for all p ∈ l.
Therefore equation (1) is equivalent to the equality of two homogeneous polynomials of
degreem in x andy, which in turn is equivalent to the equality ofm + 1 coefficients.
After eliminatingλ, we havem algebraic conditions on(e1, F, e2) in addition toFe1 = 0,
eT

2 F = 0T .
The space of all epipolar geometries, that is, solutions toFe1 = 0, eT

2 F = 0T , is
irreducible of dimension 7. Therefore,V is at least(7 − m)-dimensional. ut

For the calculation of the dimension ofV we introduce some additional notations. Given
a triplet(e1, F, e2) ∈ P2

×P8
×P2, let {q1α(e1)} (respectively{q2α(e2)}) be the tangency

points of the epipolar lines throughe1 (respectivelye2) to the first (respectively second)
projected curve. LetQα(e1, e2) be the 3D points projected onto{q1α(e1)} and{q2α(e2)}.
Let L be the baseline joining the two projection centers. We next provide a sufficient
condition forV to be discrete.

Proposition 4. For a generic position of the projection centers, the varietyV will be
discrete if, for any point(e1, F, e2) ∈ V , the union ofL and the pointsQα(e1, e2) is not
contained in any quadric surface.



Recovering an algebraic curve using its projections 153

Proof. For generic projections, there will bem distinct points{q1α(e1)} and{q2α(e2)},
and we can regardq1α, q2α locally as smooth functions ofe1, e2.

We letW be the affine variety inC3
× C9

× C3 defined by the same equations asV .
Let 2 = (e1, F, e2) be a point ofW corresponding to a non-isolated point ofV . Then
there is a tangent vectorϑ = (v, 8, v′) to W at2 with 8 not a multiple ofF.

If χ is a function onW , then∇2,ϑ (χ) will denote the derivative ofχ in the direction
defined byϑ at2. For

χα(e1, F, e2) = q2α(e2)
T Fq1α(e1),

the generalized Kruppa equation implies thatχα vanishes identically onW , so its deriva-
tive must also vanish. This yields

∇2,ϑ (χα) = (∇2,ϑ (q2α))T Fq1α + qT
2α8q1α + qT

2αF(∇2,ϑ (q1α)) = 0. (2)

We shall prove that∇2,ϑ (q1α) is in the linear span ofq1α and e1. Considerκ(t) =

f (q1α(e1 + tv)), where f is the polynomial defining the image curveY1. Since
q1α(e1 + tv) ∈ Y1, we haveκ ≡ 0, so the derivativeκ ′(0) is 0. On the other hand,
κ ′(0) = ∇2,ϑ (f (q1α)) = gradq1α

(f )T ∇2,ϑ (q1α).
Thus we have gradq1α

(f )T ∇2,ϑ (q1α) = 0. But also gradq1α
(f )T q1α = 0 and

gradq1α
(f )T e1 = 0. Since gradq1α

(f ) 6= 0 (q1α is not a singular point of the curve),
this shows that∇2,ϑ (q1α), q1α, ande1 are linearly dependent. Asq1α ande1 are linearly
independent,∇2,ϑ (q1α) must be in their linear span.

We haveqT
2αFe1 = qT

2αFq1α = 0, soqT
2αF∇2,ϑ (q1α) = 0, i.e. the third term of (2)

vanishes. In a similar way, the first term of equation (2) vanishes, leaving

qT
2α8q1α = 0. (3)

The derivative ofχ(e1, F, e2) = Fe1 must also vanish, which yields

eT
2 8e1 = 0. (4)

From (3), we deduce that for everyQα, we have

QT
α MT

2 8M1Qα = 0.

From (4), we deduce that every pointP lying on the baseline must satisfy

PT MT
2 8M1P = 0.

The fact that8 is not a multiple ofF implies thatMT
2 8M1 6= 0, so together the last two

equations mean that the unionL ∪ {Qα} lies on a quadric surface. Thus if there is no such
quadric surface, every point inV must be isolated. ut

Observe that this result is consistent with the previous proposition, since there always
exists a quadric surface containing a given line and six given points. However, in general
there is no quadric containing a given line and seven given points. Therefore we can
deduce the following theorem.
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Proposition 5. For a generic position of the projection centers, there is no quadric con-
taining the lineL and the tangency pointsQα(e1, e2)α=1,...,m.

Proof. First, observe that when the genusg of X is equal to or greater than 2, then the
result is obvious. Indeed, the intersection of a quadric andX has at most 2d points (by
Bézout’s theorem) and there arem > 2d points of tangency, which are distinct for a
generic lineL.

To handle the general case, let us introduce some notations. Consider the product of
m copies ofP3: H = P3

× · · ·× P3. Then anm-tuple(Q1, . . . ,Qm) ∈ H is such that the
pointsQi lie on a quadric if the matrixW has rank at most 9, where

W =



x2
1 . . . x2

m

x1y1 . . . xmym

x1z1 . . . xmzm

x1t1 . . . xmtm
y2

1 . . . y2
m

y1z1 . . . ymzm

y1t1 . . . ymtm
z2

1 . . . z2
m

z1t1 . . . zmtm
t2
1 . . . t2

m


and [xi, yi, zi, ti ] are the homogeneous coordinates ofQi . This defines a closed subvari-
ety ofH , which we shall denote byS.

Consider now the following set:

6 = {(L, Q1(e1, e2), . . . , Qm(e1, e2)) ∈ G(1, 3) × H },

whereG(1, 3) is the Grassmannian of lines inP3. The set6 of course depends on bothL
(that is, on the projection center) andX. Let us show that6 is an algebraic variety.

A point Q ∈ P3 is a tangency point of a plane containingL with X if and only if the
following two conditions are satisfied: (i)Q ∈ X and (ii) the tangent toX atQ intersects
L (in projective space).

The Pl̈ucker coordinates of the tangentTQ to X at Q are homogeneous polynomial
functions of the coordinates ofQ (given by the Gauss map).TQ intersectsL if and only if
the joinTQ ∨L vanishes [2], which yields a bi-homogeneous equation on the coordinates
of Q and of those ofL. We shall denote this equation byφ(Q, L) = 0.

For a polynomialF ∈ R[X, Y,Z, T ], whereR is some ring, we writeFi for the poly-
nomial in R[Xi, Yi, Zi, Ti ], obtained fromF by substituting the variablesX, Y,Z, T

by Xi, Yi, Zi, Ti . Then the set6 is formed by the common zeros of the polynomi-
alsF11, . . . , Fr1, . . . , F1m, . . . , Frm, φ1, . . . , φm, whereF1, . . . , Fr are the polynomials
definingX. Thus6 can be viewed as a closed subvariety ofG(1, 3) × H .

Let π1 andπ2 be the canonical projections:π1 : 6 → G(1, 3) andπ2 : 6 → H .
Therefore for a lineL, if there exists a quadric containingL and the tangency points
Q1(e1, e2), . . . , Qm(e1, e2) thenπ2(π

−1
1 (L)) is included in the closed subvarietyS de-

fined above.
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Thus a lineL for which there exists a quadric containingL and the tangency points
must lie inπ1(π

−1
2 (S)). This is a subset of a proper closed subvariety ofG(1, 3). This

completes the proof. ut

We conclude this section with the following corollary.

Corollary 1. For a generic position of the projection centers, the generalized Kruppa
equation defines the epipolar geometry up to a finite-fold ambiguity if and only ifm ≥ 7.

Since different curves in generic position give rise to independent equations, this result
means that the sum of the classes of the projected curves must be at least 7 forV to be a
finite set.

3.4. Recovering the curve

Let the projection matrices beM1 andM2. Hence the two cones defined by the projected
curves and the projection centers are given by11(P) = f1(M1P) and12(P) = f2(M2P).
The reconstruction is defined as the curve whose equations are11 = 0 and12 = 0. This
curve has two irreducible components as the following theorem states.

Theorem 2. For a generic position of the projection centers, namely when no epipolar
plane is tangent twice to the curveX, the curve defined by{11 = 0, 12 = 0} has two
irreducible components. One has degreed and is the actual solution of the reconstruction.
The other one has degreed(d − 1).

Proof. For a lineL ⊂ P3, we writeσ(L) for the pencil of planes containingL . For a
point p ∈ P2, we writeσ(p) for the pencil of lines throughp. There is a natural isomor-
phism betweenσ(ei), the epipolar lines in imagei, andσ(L), the planes containing both
projection centers. Consider the following covers ofP1:

1. X
η

−→ σ(L) ∼= P1, taking a pointx ∈ X to the epipolar plane that it defines together
with the projection centers.

2. Y1
η1

−→ σ(e1) ∼= σ(L) ∼= P1, taking a pointy ∈ Y1 to its epipolar line in the first
projection plane.

3. Y2
η2

−→ σ(e2) ∼= σ(L) ∼= P1, taking a pointy ∈ Y2 to its epipolar line in the second
projection plane.

If ρi is the projectionX → Yi , thenη = ηiρi . Let B the union of the sets of branch
points ofη1 andη2. It is clear that the branch points ofη lie in B. Let S = P1

\ B, pick
t ∈ S, and writeXS = η−1(S), Xt = η−1(t). Let µXS

be the monodromyπ1(S, t) →

Perm(Xt ), where Perm(Z) is the group of permutations of a finite setZ (see [22]). It is
well known that the path-connected components ofX are in one-to-one correspondence
with the orbits of the action of im(µXS

) onXt . SinceX is assumed to be irreducible, it has
only one component and im(µXS

) acts transitively onXt . Then if im(µXS
) is generated by

transpositions, this will imply that im(µXS
) = Perm(Xt ). In order to show that im(µXS

)

is actually generated by transpositions, consider a loop inP1 based att , saylt . If lt does
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not go round any branch point, thenlt is homotopic to the constant path inS and then
µXS

([lt ]) = 1. Now inB, there are three types of branch points:

1. branch points that come from nodes ofY1: these are not branch points ofη,
2. branch points that come from nodes ofY2: these are not branch points ofη,
3. branch points that come from epipolar lines tangent either toY1 or to Y2: these are

genuine branch points ofη.

If the looplt goes round a point of the first two types, then it is still true thatµXS
([lt ]) = 1.

Now suppose thatlt goes round a genuine branch point ofη, sayb (and goes round no
other points inB). By genericity,b is a simple two-fold branch point, henceµXS

([lt ]) is
a transposition. This shows that im(µXS

) is actually generated by transpositions and so
im(µXS

) = Perm(Xt ).
Now consider the curvẽX defined by{11 = 0, 12 = 0}. By Bézout’s theorem̃X has

degreed2. Let x̃ ∈ X̃. It is projected onto a pointyi in Yi such thatη1(y1) = η2(y2).
HenceX̃ ∼= Y1 ×P1 Y2; restricting to the inverse image of the setS, we haveX̃S

∼=

XS ×S XS . We can therefore identifỹXt with Xt × Xt . The monodromyµ
X̃S

can then
be given byµ

X̃S
(x, y) = (µXS

(x), µXS
(y)). Since im(µXS

) = Perm(Xt ), the action of
im(µ

X̃S
) on Xt × Xt has two orbits, namely{(x, x)} ∼= Xt and{(x, y) | x 6= y}. Hence

X̃ has two irreducible components. One has degreed and isX, the other has degree
d2

− d = d(d − 1). ut

This result provides a way to find the right solution for the recovery in a generic configu-
ration, except in the case of conics, where the two components of the reconstruction are
both admissible.

4. TheN � 1 projections problem with known projection operators

Now we turn to the second problem.N � 1 projection maps{πi}i=1,...,N given byN

matrices{M i}i=1,...,N are known. ThereforeN projections of an irreducible smooth al-
gebraic curve are also provided. The problem is to recover the original curve by linear
computations as much as possible.

4.1. Curve presentation in the dual space

Let X? be the dual variety ofX. SinceX is supposed not to be a line, the dual varietyX?

must be a hypersurface of the dual space [15]. Our first concern is to determine the degree
of X?.

Proposition 6. The degree ofX? is m, that is, the common degree of the dual projected
curves.

Proof. SinceX? is a hypersurface ofP3?, its degree is the number of points where a
generic line inP3? meetsX?. By duality it is the number of planes in a generic pencil
that are tangent toX. Hence it is the degree of the dual projected curve. Another way to
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express the same fact is the observation that the dual projected curve is the intersection of
X? with a generic plane inP3?. Note that this provides a new proof that the degree of the
dual projected curve is constant for a generic position of the projection center. ut

For the recovery ofX? from multiple projections, we will need to consider the mapping
from a linel of the projection plane to the plane that it defines together with the projection
center. Letµ : l 7→ MT l denote this mapping. Letϒ be a generator of the ideal ofX?.
There exists a link betweenϒ , µ and φ, the polynomial of the dual projected curve:
ϒ(µ(l)) = 0 wheneverφ(l) = 0. Since these two polynomials have the same degree
(becauseµ is linear) andφ is irreducible, there exists a scalarλ such that

ϒ(µ(l)) = λφ(l)

for all lines l ∈ P2?. Eliminatingλ, we get
(
m+2
m

)
− 1 linear equations onϒ . Since the

number of coefficients inϒ is
(
m+3
m

)
, we can state the following result:

Proposition 7. The recovery in the dual space can be done linearly using at leastk ≥

m2
+6m+11

3(m+3)
projections.

4.2. Curve presentation in the Grassmannian of lines inP3

Let G(1, 3) be the Grassmannian of lines inP3. Consider the set of lines inP3 intersecting
the curveX of degreed. This defines a subvariety ofG(1, 3) which is the intersection of
G(1, 3) with a hypersurface of degreed in P5, given by a homogeneous polynomial0, de-
fined modulo thedth graded pieceI (G(1, 3))d of the ideal ofG(1, 3) and modulo scalars.
However, picking one representative of this equivalence class is sufficient to recover the
curveX entirely without any ambiguity. In our context, we shall call any representative
of this class theChow polynomialof the curve. We need to compute the class of0 in
the homogeneous coordinate ring ofG(1, 3), or more precisely in itsdth graded piece,
S(G(1, 3))d , whose dimension isNd =

(
d+5
d

)
−

(
d−2+5
d−2

)
.

Let f be the polynomial defining the projected curve,Y . Consider the mapping that
associates to a point in the projection plane the line it generates together with the projec-
tion center:ν : p 7→ M̂p . The polynomial0(ν(p)) vanishes wheneverf (p) does. Since
they have the same degree andf is irreducible, there exists a scalarλ such that for every
pointp ∈ P2, we have

0(ν(p)) = λf (p).

This yields
(
d+2
d

)
− 1 linear equations on0.

Hence a similar statement to that in Proposition 7 can be made:

Proposition 8. The recovery inG(1, 3) can be done linearly using at leastk ≥

1
6

d3
+5d2

+8d+4
d

projections.

4.3. Family of projection operators and finite closed subsets of points

Consider now a finite collection of pointsPi in P3. Each point is projected by a different
projection map. TheN projection maps are known and so are the projected points.
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LetX be the smooth irreducible curve generated by the pointsPi , andY be the smooth
irreducible curve, of minimal degree, generated by the projection centers.

Each projected pointpi yields one linear equation on the variety of intersecting lines
of X, namely0(π−1

i (pi)) = 0, where0 is the Chow polynomial ofX as before.
Let d and d′ be respectively the degrees ofX andY . We compute the number of

constraints obtained on0 from the projected points as a function ofd andd′. In other
words, we want to compute the maximal number of constraints that one can extract on a
smooth irreducible curveX embedded inP3 from a finite number of lines in the join of
X with a known curveY .

Proposition 9. The maximal number of constraints is

Nd − (h0(OP5(d − d ′)) − h0(OP5(d − d ′
− 2)) + 1), 1

whereNd = dim(S(G(1, 3))d) is the dimension of thed-th graded piece of the homoge-
neous coordinate ring ofG(1, 3).

Proof. Each projected point generates a line together with the projection center. Let
L1, . . . ., Ln be thesen lines joiningX andY . Let 0X and0Y be the Chow polynomi-
als ofX andY respectively. We shall denote byZ(0X) andZ(0Y ) the sets where they
vanish. LetV = Z(0X) ∩ Z(0Y ) ∩ G(1, 3). Forn � 1, we have

{0 ∈ H 0(P5,OP5(d)) : 0(Li) = 0, i = 1, . . . , n}

= {0 ∈ H 0(P5,OP5(d)) : 0V ≡ 0} = IV,P5(d).

So, we want to compute dim(IV,P5(d)), or equivalently,h0(V ,OV (d)) = h0(OP5(d)) −

dim(IV,P5(d)). SinceV is a complete intersection of degree(d, d ′, 2) in P5, the dimen-
sion ofIV,P5(d) should be equal to

h0(OP5(d − 2)) + h0(OP5(d − d ′)) − h0(OP5(d − d ′
− 2)) + 1.

As a consequence,

h0(V ,OV (d)) = Nd − (h0(OP5(d − d ′)) − h0(OP5(d − d ′
− 2)) + 1). ut

5. Applications to static and dynamic computational vision

The results obtained above were motivated by some applications to computational vision.
We now proceed to show how these results can be applied to this field. We start by a quick
survey on linear computational vision. More details can be found in [7, 16, 8]. Some of
the terminology was introduced before in Section 2.

1 As usual,h0(OP5(k)) denotes the dimension of the cohomology groupH0(P5,OP5(k)) (see
[17]).
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5.1. Foundations of linear computational vision

Projective algebraic geometry provides a natural framework to geometric computer vi-
sion. However, one has to keep in mind that the geometric entities to be considered are
in fact embedded in the physical three-dimensional Euclidean space. Euclidean space is
provided with three structures defined by three groups of transformations: the orthogonal
group Euc3 (which defines the Euclidean structure and which is included in the affine
group), Aff3 (defining the affine structure and itself included in the projective group), and
Pr3 (defining the projective structure). We fix [X, Y,Z, T ]T as homogeneous coordinates,
andT = 0 as the plane at infinity.

5.2. A single camera system

Computational vision starts with images captured by cameras. The camera components
are the following:

• a planeR, called theretinal planeor image plane;
• a pointO, called theoptical centeror camera center, which does not lie on the planeR.

The planeR is regarded as a two-dimensional projective space embedded intoP3. Hence
it is also denoted byi(P2). The camera is a projection machine:π : P3

\ {O} →

i(P2), P 7→ OP ∩ i(P2). The projectionπ is determined (up to a scalar) by a 3× 4
matrixM (the image ofP beingλMP).

The physical properties of a camera imply thatM can be decomposed as follows:

M =

f s u0
0 αf v0
0 0 1

 [R; t],

where(f, α, s, u0, v0) are the so-called internal parameters of the camera, whereas the
rotationR and the translationt are the external parameters.

It is easy to see that:

• The camera centerO is given byMO = 0.
• The matrixMT maps a line ini(P2) to the unique plane containing both the line andO.
• There exists a matrix̂M ∈M6×3(R), which is a polynomial function ofM , that maps

a pointp ∈ i(P2) to the lineOp (optical ray), represented by its Plücker coordinates
in P5. If the camera matrix is decomposed as follows:

M =

 0T

3T

2T

 ,

then for p = [x, y, z]T , the optical rayLp = M̂p is given by the extensorLp =

x3 ∧ 2 + y2 ∧ 0 + z0 ∧ 3, where∧ denotes the meet operator in the Grassmann–
Cayley algebra (see [2]).

• The matrixM̃ = M̂T maps lines inP3 to lines ini(P2).
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Moreover we will need to consider the projection of theabsolute coniconto the image
plane. The absolute conic is simply defined by the following equations:{

X2
+ Y 2

+ Z2
= 0,

T = 0.

By definition, the absolute conic is left invariant under Euclidean transformations. There-
fore its projection onto the image plane, defined by the matrixω, is a function of the
internal parameters only. By Cholesky decompositionω = LU , whereL (respectivelyU)

is a lower (respectively an upper) triangular matrix. Hence it is easy to see thatU = M
−1

,
whereM is the 3× 3 matrix of the internal parameters ofM .

5.3. A system of two cameras

Given two cameras,(Oj , ij (P2))j=1,2 are their components wherei1(P2) andi2(P2) are
two generic projective planes embedded intoP3, andO1 andO2 are two generic points in
P3 not lying on the above planes. As in 5.2, letπj : P3

\{Oj } → ij (P2), P 7→ Oj P∩ij (P2),
be the respective projections. The camera matrices areM i , i = 1, 2.

5.3.1. Homography between two images of the same plane.Consider the case where
the two cameras are looking at the same plane in space, denoted by1. Let

M i =

 0T
i

3T
i

2T
i


be the camera matrices, decomposed as above. LetP be a point lying on1. We shall
denote the projections ofP by pi = [xi, yi, zi ]T ∼= M iP, where∼= means equality modulo
multiplication by a non-zero scalar.

The optical ray generated byp1 is given byLp1 = x131∧21+y121∧01+z101∧31.
HenceP = Lp1 ∧1 = x131 ∧21 ∧1+y121 ∧01 ∧1+z101 ∧31 ∧1. Sop2 ∼= M2P
is given by the expressionp2 ∼= H1p1, where

H1 =


0T

2 (31 ∧ 21 ∧ 1) 0T
2 (21 ∧ 01 ∧ 1) 0T

2 (01 ∧ 31 ∧ 1)

3T
2 (31 ∧ 21 ∧ 1) 3T

2 (21 ∧ 01 ∧ 1) 3T
2 (01 ∧ 31 ∧ 1)

2T
2 (31 ∧ 21 ∧ 1) 2T

2 (21 ∧ 01 ∧ 1) 2T
2 (01 ∧ 31 ∧ 1)

 .

This yields the expression of the collineationH1 between two images of the same plane.

Definition 1. The previous collineation is called thehomographybetween the two im-
ages, through the plane1.

5.3.2. Epipolar geometry

Definition 2. Let (Oj , ij (P2), Mj )j=1,2 be as defined before. Given a pair(p1, p2) ∈

i1(P1)× i2(P2), we say that it is a pair ofcorrespondingor matching pointsif there exists
P ∈ P3 such thatpj = πj (P) for j = 1, 2.
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Consider a pointp ∈ i1(P2). Thenp can be the image of any point lying on the fiber
π−1

1 (p). The matching point in the second image must lie onπ2(π
−1
1 (p)), which is, for a

generic pointp, a line on the second image. Sinceπ1 andπ2 are both linear, there exists
a matrixF ∈ M3×3(R) such thatξ(p) = π2(π

−1
1 (p)) = Fp for all but one point in the

first image.

Definition 3. The matrixF is called thefundamental matrix, whereas the linelp = Fp is
called theepipolar lineof p.

Let e1 = O1O2∩i1(P2) ande2 = O1O2∩i2(P2). Those two points are respectively called
thefirst and thesecond epipole. It is easy to see thatFe1 = 0, sinceπ−1

1 (e1) = O1O2 and
π2(O1O2) = e2. Observe that by symmetryFT is the fundamental matrix of the reverse
couple of images. HenceFT e2 = 0. Since the only point in the first image that is mapped
to zero byF is the first epipole,F has rank 2.

Now we want to deduce an expression ofF as a function of the camera matrices.
By the previous analysis, it is clear thatF = M̃2M̂1. Moreover we have the following
properties:

Proposition 10. For any plane1, not passing through the camera centers, the following
equalities hold:

(i)
F ∼= [e2]×H1,

where[e2]× is the matrix associated with the cross-product as follows: for any vec-
tor p, e2 × p = [e2]×p. Hence

[e2]× =

 0 −e23 e22
e23 0 −e21

−e22 e21 0

 .

In particular, F = [e2]×H∞, whereH∞ is the homography between the two images
through the plane at infinity.

(ii)

HT
1F + FT H1 = 0. (5)

Proof. The first equality is clear from its geometric meaning. Given a pointp in the first
image,Fp is its epipolar line in the second image. The optical rayLp passing troughp
meets the plane1 in a pointQ whose projection in the second image isH1p. Hence the
epipolar line must bee2 ∨ H1p. This gives the required equality. The second equality is
easily deduced from the first one by a short calculation. ut

Proposition 11. For a generic plane1,

H1e1 ∼= e2.

Proof. The image ofe1 by the homography must be the projection on the second image
of the point defined as the intersection of the optical ray generated bye1 and the plane1.
HenceH1e1 = M2(Le1 ∧ 1). But Le1 = O1O2. Thus the result must beM2O1 (except
when the plane is passing throughO2), that is, the second epipolee2. ut
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5.3.3. Canonical stratification of the reconstruction.Three-dimensional reconstruction
can be achieved from a system of two cameras, once the camera matrices are known.
However, a typical situation is that the camera matrices are unknown. Then we face a
double problem: recovering the camera matrices and the actual object. There exists an
inherent ambiguity. Consider a pair of camera matrices(M1, M2). If you change the
world coordinate system by a transformationV ∈ Pr3, the camera matrices are mapped
to (M1V−1, M2V−1). Therefore we define the following equivalence relation:

Definition 4. Given a group of transformationsG, two pairs of camera matrices, say
(M1, M2) and (N1, N2), are said to beequivalent moduloG if there existsV ∈ G such
thatM1 = VN1 andM2 = VN2.

Note that this definition is similar to that ofθ2 below. Any reconstruction algorithm will
always yield a reconstruction modulo some group of transformations. More precisely
there exist three levels of reconstruction according to the information that can be extracted
from the two images and from a priori knowledge of the world.

Projective stratum. When the only available information is the fundamental matrix, the
reconstruction is done modulo Pr3. Indeed, fromF, the so-called intrinsic homography
S = −(e2/‖e2‖)F is computed and the camera matrices are equivalent to([I ; 0], [S; e2]),
as shown in Proposition 1.

Affine stratum. When, in addition to the epipolar geometry, the homography between
the two images through the plane at infinity, denoted byH∞, can be computed, the recon-
struction can be done modulo the group of affine transformations. Then the two camera
matrices are equivalent to([I ; 0], [H∞; e2]) (see [8]).

Euclidean stratum. The Euclidean stratum is obtained by the data of the projection of
the absolute conic� onto the image planes, which allows the recovery of the internal
parameters of the cameras. Once these parameters of the cameras are known, the relative
motion between the cameras expressed by a rotationR and a translationt can be ex-
tracted from the fundamental matrix. However, only the direction oft, not the norm, can
be recovered. Then the camera matrices are equivalent, modulo the group of similarity
transformations, to(M1[I ; 0], M2[R; t]), whereM1 andM2 are the matrices of internal
parameters (see [8]).

Note that the projection of the absolute conic on the image can be computed using
some a priori knowledge of the world. Moreover there exists a famous equation linking
ω1 andω2, the two matrices defining the projection of the absolute conic onto the images,
when the epipolar geometry is given. This is the so-calledKruppa equation, defined in
the following proposition.

Proposition 12. The projections of the absolute conic onto two images are related as
follows. There exists a non-zero scalarλ such that

[e1]T×ω∗

1[e1]× = λFT ω∗

2F,

where[e1]× is the matrix representing the cross-product bye1 andω∗

i is the adjoint matrix
of ωi .
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Let εi be the tangents toπi(�) throughei . The Kruppa equation simply states thatε1 and
ε2 are projectively isomorphic.

5.4. Applications of the previous results to computational vision

As mentioned in the introduction, the mathematical material presented in this paper was
motivated by applications to static and dynamic configurations in computer vision. Ap-
plications of the previous results (Sections 3 and 4) are related to different contexts:

1. The recovery of the epipolar geometry from two images of the same smooth irreducible
curve. Theorem 1 generalizes the Kruppa equation to algebraic curves. Section 3.3
provides a necessary and sufficient condition on the degree of the curve for the epipolar
geometry to be defined up to finite-fold ambiguity. Note that the case of conic sections
was first introduced in [18, 19].

2. The 3D reconstruction of a curve from two images is possible in a generic situation as
shown in Proposition 2. The case of conics was also treated in [19, 23, 24]. Note that
[11] presents an algorithm for curve reconstruction using a blow-up of the projected
curve. This nice result, however, does not provide any information about the relative
position of the curve inP3 with respect to other elements of the scene. On the other
hand, our approach based on two images allows reconstructing the curve in the context
of the whole scene. Furthermore the problem of curve reconstruction was also con-
sidered in [3] from the point of view of global optimization and bundle adjustment.
Our approach, on the contrary, is based on looking at algebraic curves for which the
representation is more compact.

3. The 3D reconstruction of a curve fromN � 1 projections is linear using the dual
space or the Grassmannian of linesG(1, 3) (Sections 4.1 and 4.2). The formalism of
the dual space in the case of conics or quadrics was also used in [13, 20].

4. The trajectory recovery of a moving point viewed by a moving camera whose matrix
is known over time is a linear problem when using the variety of intersecting lines of
the curve generated by the motion of the point. Moreover this gives rise to the problem
of counting the number of constraints that can be obtained. This is done in Proposi-
tion 9. Note that our algorithm for trajectory recovery or triangulation is a complete
generalization of [1].

5.5. Experiments and discussion

Now we are in a position to perform some experiments relating to different applications
mentioned above. The algorithms induced by our theoretical analysis involve either solv-
ing systems of polynomial equations or estimating high-dimensional parameters that ap-
pear linearly in equations built also from noisy data.

Solving a system of polynomial equations is a hard task when the system has many
variables or the equation has high degree. There are roughly three methods to handle this
problem: (i) computing a Gröbner basis of the ideal defined by the equation,
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(ii) proceeding in the dual space of the coordinate ring of an affine piece of the variety via
computation of resultants (see [6] for a detailed presentation), (iii) building a homotopy
that defines the deformation from a system of polynomial equations whose solutions are
known to the system you need to solve [25]. In our work the computations were done
using Gr̈obner basis methods.

Note that numerical optimization tools like Newton–Raphson or Levenberg–Marquet
optimization are not considered here because (i) zero-dimensional polynomial systems
which are not overdetermined have more than one root and these optimization methods
are designed to extract a single solution, (ii) the convergence to a solution with these tools
is well behaved only when one starts in a small enough neighborhood of the solution.

The use of symbolic tools (either Gröbner bases or resultants) for computer vision ap-
plications is not without challenges. First, symbolic computations require large amounts
of computational and memory resources. There is the issue of computational efficiency,
scalability to large problems and the question of effectiveness in the presence of measure-
ment errors. The full answer to these questions is far beyond the scope of this work. The
field of symbolic computations for solving polynomial systems is a very active field of
research where major progress has been made in the past decade [6, 14, 26]. For example,
throughout this paper, the experiments were performed with one of the latest symbolic
tools “FastGB” developed by Jean-Charles Faugère for efficient and robust Gröbner ba-
sis computation. With those latest tools, one can achieve a high degree of scalability and
efficiency in the computations.

A second challenging problem is the sensitivity to noise (approximate polynomial
equations). It is related to perturbation theory. It is necessary to note that since the com-
putations are symbolic, they do not add any perturbation to the solution. Therefore, as
opposed to numerical methods, there is no additional error due to possible truncation
during the computations. However, there is very little research on measurement error sen-
sitivity and their propagation throughout symbolic computations. Such research would be
of great interest to the computer vision community and more generally for applications of
algebraic geometry, but this topic is largely open. However, the development of interval
arithmetic constitutes a first step toward both a theoretical and practical approach to this
issue.

The second question, mentioned above, in connection to experiments, is related to the
estimation of high-dimensional parameters, which appear linearly in equation built from
noisy data. This is a typical case of heteroscedastic estimation [21] and will be discussed
below.

Recovering epipolar geometry from a rational cubic and two conics.We proceed to
a synthetic experiment, where the epipolar geometry is computed from a rational cubic
and two conics. The curves are randomly chosen, as are the cameras.

The cubic is defined by the following system:

226566665956452626ZX − 1914854993236086169ZT − 791130248041963297YZ

− 1198609868087508022Z2
+ 893468169675527814XT + 285940501848919422T 2

− 179632615056970090YT + 277960038226472656Y 2
= 0,
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555920076452945312XY + 656494420457765614ZX − 1755155973545148735YZ

− 1749154450800074954Z2
+ 984240461094724954XT − 61309565864179510YT

− 1802588912007356295ZT + 291319745776795474T 2
= 0,

1111840152905890624X2
− 2905335341664005486ZX − 793850352563738017YZ

+ 1286890161434843658Z2
+ 1713207647519936006XT − 248798847306328202YT

− 2942349361064284313ZT + 398814386951585134T 2
= 0.

The first and the second conic are respectively defined by:

25X + 9Y + 40Z + 61T = 0,

40X2
− 78XY + 62ZX + 11XT + 88Y 2

+ YZ + 30YT + 81Z2
− 5ZT − 28T 2

= 0,

and

4X − 11Y + 10Z + 57T = 0,

−82X2
−48XY −11ZX +38XT −7Y 2

+58YZ −94YT −68Z2
+14ZT −35T 2

= 0.

The camera matrices are

M1 =

−87 79 43 −66
−53 −61 −23 −37
31 −34 −42 88

 , M2 =

−76 −65 25 28
−61 −60 9 29
−66 −32 78 39

 .

Then we form the extended Kruppa equations for each curve. From the computational
point of view, it is crucial to enforce the constraint that eachλ is different from zero.
Mathematically this means that the computation is done in the localization with respect
to eachλ.

As expected, we get a zero-dimensional variety of degree one. Thus there is a single
solution to the epipolar geometry given by the following fundamental matrix:

F =


−

511443
13426 −

2669337
13426 −

998290
6713

84845
2329

23737631
114121

14061396
114121

1691905
228242

3426650
114121

8707255
228242

 .

Recovering epipolar geometry from points and conics.We proceed to the recovery of
the epipolar geometry from conics and point correspondences extracted from real images.
The extraction has been done manually and the conics were fitted by classical least square
optimization.

The recovery of the epipolar geometry has been done using four conics and one point.
First the fundamental matrix is computed using three conics and one point, which leads to
a finite number of solutions. Then the additional conic is used to select the right solution.

The images used for the experiments together with results and comments are pre-
sented in Figure 1.
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Fig. 1. The two images that were used. The epipoles and the corresponding epipolar lines tangent
to the conics are drawn on the images.

Reconstruction of a spatial quartic in P3. Consider the curveX, drawn in Figure 2,
defined by the following equations:

F1(x, y, z, t) = x2
+ y2

− t2,

F2(x, y, z, t) = xt − (z − 10t)2.

The curveX is smooth and irreducible, and has degree 4 and genus 1. We define two
camera matrices:

M1 =

1 0 0 5
0 0 1 −2
0 −1 0 −10

 , M2 =

1 0 0 −10
0 0 −1 0
0 1 0 −10

 .

Then the curve is reconstructed from the two projections. As expected there are two ir-
reducible components. One has degree 4 and is the original curve, while the other has
degree 12.

Reconstruction using the Grassmannian.For the next experiment, we consider six
images of an electric wire—one of the views is shown in Figure 3 and the image curve
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Fig. 2. A spatial quartic.

after segmentation and thinning is shown in Figure 4. Hence for each of the images, we
extract a set of points lying on the thread. No fitting is performed in the image space.
For each image, the camera matrix is calculated using the calibration pattern. Then we
compute the Chow polynomial0 of the curve in space. The curveX has degree 3. Once
0 is computed, a reprojection is easily performed, as shown in Figure 5.

Fig. 3. One of the six views of an electric thread that were used to perform the reconstruction.

The computation of the Chow polynomial involves an estimation problem. Moreover
as mentioned above, the Chow polynomial is not uniquely defined. In order to get a unique
solution, we have to add some constraints to the estimation problem which do not distort
the geometric meaning of the Chow polynomial. This is done by requiring the Chow poly-
nomial to vanish overWd additional arbitrary points ofP5 which do not lie onG(1, 3).
The number of additional points necessary to get a unique solution isWd =

(
d+5
d

)
− Nd ,

whered is the degree of the Chow polynomial.
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Fig. 4. An electric thread after segmentation and thinning.

Fig. 5. Reprojection on a new image.

We shall see that the estimation of the Chow polynomial is a typical case of het-
eroscedastic estimation. Every 2D measurementp is corrupted by additive noise, which
we assume to be an isotropic Gaussian noiseN (0, σ ). The variance is estimated to be
about 2 pixels.

For each 2D pointp, we form the optical ray it generates,L = M̂p . Then the esti-
mation of the Chow polynomial is made using the optical raysL . In order to avoid the
problem of scale, the Plücker coordinates of each line are normalized in such a way that
the last coordinate is equal to one. Hence the lines are represented by vectors in a five-
dimensional affine space, denoted byLa . Hence ifθ is a vector containing the coefficient
of the Chow polynomial0, thenθ is the solution of the following problem:

Z(La)
T θ = 0 for all optical rays,

with ‖θ‖ = 1 andZ(La) is a vector whose coordinates are monomials generated by the
coordinates ofLa . Following [5, 21], in order to obtain a reliable estimate, the solutionθ

is computed using a maximum likelihood estimator. This allows us to take into account
the fact that eachZ(La) has a different covariance matrix, or in other terms that the noise
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is heteroscedastic. More precisely, eachZ(La) has the following covariance matrix:

CL = JφJnM̂

σ 0 0
0 σ 0
0 0 0

 M̂T JT
n JT

φ ,

whereM is the camera matrix andJn and Jφ are respectively the Jacobian matrices
of the normalization ofL and of the map sendingLa to Z(La). That is, forL(t) =

[L1, L2, L3, L4, L5, L6]T , we have

Jn =


1/L6 0 0 0 0 −L1/L

2
6

0 1/L6 0 0 0 −L2/L
2
6

0 0 1/L6 0 0 −L3/L
2
6

0 0 0 1/L6 0 −L4/L
2
6

0 0 0 0 1/L6 −L5/L
2
6

 ,

andJφ is similarly computed. Then we use the method presented in [5] to perform the
estimation. It is worth noting that the estimation is reliable because the initial guess of
the algorithm was well chosen and because the number of measurements is very large.
It is necessary to use a very large number of measurements for two reasons. First, the
dimension of the parameter space is quite high, and secondly, the measurements are con-
centrated on a part of the space (over the GrassmannianG(1, 3)).

Synthetic trajectory triangulation. Let P ∈ P3 be a point moving on a cubic, as follows:

P(t) =


t3

2t3
+ 3t2

t3
+ t2

+ t + 1
t3

+ t2
+ t + 2

 .

It is viewed by a moving camera. At each instant a picture is made, we get a 2D point

p(t) = [x(t), y(t)]T =

[
mT

1 (t)P(t)

mT
3 (t)P(t)

,
mT

2 (t)P(t)

mT
3 (t)P(t)

]T

,

whereMT (t) = [m1(t), m2(t), m3(t)] is the transpose of the camera matrix at timet .
Then we build the set of optical rays generated by the sequence. The Chow polynomial

is then computed and given below:

0(L1, . . . , L6) = −72L2
2L3 + L3

1 − 5L1L4L5
− 18L1L3L6 + 57L2L3L5 + 48L2L4L5 − 43L1L2L4
− 10L1L3L5 + 21L1L5L6 − 30L1L4L6 − 108L2L3L6

+ 41L1L2L5 + 69L1L2L6 − 26L1L2L3 − 36L2L
2
4

− 21L2L
2
5 + 3L3L

2
5 − 9L2

3L5 − 12L2
4L5 + 6L4L

2
5

+ 4L2
1L4 + 20L3

2 − 13L3
3 + 8L3

4 − L3
5 + 108L2

2L6

− 120L2
2L5 + 27L2

3L6 − 25L2
1L6 + 57L2L

2
3

+ 84L2
2L4 + 7L1L

2
3 − L2

1L5 + 31L1L
2
2

+ 5L2
1L3 + L1L

2
5 − 11L2

1L2 + 7L1L
2
4.
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From the Chow polynomial, one can extract directly the locations of the moving point at
each time instant an image was made. This is done by a two-step computation. The first
step consists in giving a parametric representation of the optical ray generated by the 2D
measurement. During the second step, the pencil of lines passing through a generic point
on the optical ray is considered. For this generic point to be on the trajectory, the Chow
polynomial must vanish over the pencil. This yields a polynomial system in one variable,
whose root gives the location of the 3D moving point. We show in Figure 6 the recovered
discrete locations of the point in 3D.
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Fig. 6. The 3D locations of the point.

Trajectory triangulation from real images. A point is moving over a conic section.
Four static non-synchronized cameras are looking at it. We show in Figure 7 one image
of one sequence.

Fig. 7. A moving point over a conic section.
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The camera matrices are computed using the calibration pattern. Every 2D measure-
mentp(t) is corrupted by additive noise, which we assume to be an isotropic Gaussian
noiseN (0, σ ). The variance is estimated to be about 2 pixels.

As before the estimation is done from the set of optical rays generated by the 2D mov-
ing point. The estimation is also a case of heteroscedastic estimation, which was handled
with the method presented in [5]. The result is stable when starting with a good initial
guess. In order to handle a more general situation we further stabilize it by incorporating
some extra constraints that come from oura priori knowledge of the form of the solution.
The final result is presented in Figure 8.
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Fig. 8. The trajectory rendered in the calibration pattern.
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