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Abstract. This paper is devoted to some nonlinear propagation phenomena in periodic and more
general domains, for reaction-diffusion equations with Kolmogorov—Petrovsky—Piskunov (KPP)
type nonlinearities. The case of periodic domains with periodic underlying excitable media is a
follow-up of the article [[T]. It is proved that the minimal speed of pulsating fronts is given by

a variational formula involving linear eigenvalue problems. Some consequences concerning the
influence of the geometry of the domain, of the reaction, advection and diffusion coefficients are
given. The last section deals with the notion of asymptotic spreading speed. The main properties
of the spreading speed are given. Some of them are based on some new Liouville type results for
nonlinear elliptic equations in unbounded domains.
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Introduction

This paper is the first in a series of two in which we address spreading and propaga-
tion properties connected with reaction-diffusion type equations in a general framework.
We consider reaction terms of the type associated with Fisher or KPP (for Kolmogorov,
Petrovsky and Piskunov) equations. These properties are well understood in the homoge-
neous framework which we recall below. Here and in part Il we congid&rogeneous
problems. Part Il will be devoted to propagation properties in very general domains. The
present paper deals with the periodic case where both the equation and the domain have
periodic structures. The precise setting and assumptions will be given shortly. But before
that, let us recall some of the basic features of the homogeneous equations.

Consider the Fisher-KPP equation

ur — Au= f(u) inRN, (0.1)

It has been introduced in the celebrated papers of Fisher (1937) and KPP (1937) originally
motivated by models in biology. Here the main assumption is fhatsay aC* function
satisfying

fO)=f1)=0, f 1) <0, f(0)>0, f>0in(0,1), f <O0in(l, +o0), (0.2)
f(s) < f'(0)s, Vs [0, 1]. (0.3)

Archetypes of such nonlinearities afés) = s(1 — s) or f(s) = s(1— s2).

Two fundamental features of this equation account for its success in representing
propagation (or invasion) and spreading. First, this equation has a family of planar travel-
ling fronts. These are solutions of the form

u(t,x)=U(x-e—ct), (0.4)

wheree is a fixed vector of unit norm which is the direction of propagation, and0 is
the speed of the front. Helé : R — R is given by

" / H
U'—cU = f(U) inR, ©.5)
U(—0) =1, U(+oo)=0.
In the original paper of Kolmogorov, Petrovsky and Piskunov, it was proved that, under
the above assumptions, there is a threshold vatue- 2,/ f/(0) > 0 for the speed.
Namely, no fronts exist for < ¢*, and, for eaclr > ¢*, there is a unique front of the
type [0.4£0.5). Uniqueness is up to shift in space or time variables.

Another fundamental property of this equation was established mathematically by
Aronson and Weinberger (1978). It deals with the asymptotic speed of spreading. Namely,
if ug is a nonnegative continuous function®Y with compact support angy = 0, then
the solutionu(z, x) of (0.1) with initial conditionuo at timet = O spreads with speed
¢* in all directions for large times: as— +o0, maXy|<¢ lu(t, x) — 1| — 0 for each
c € [0, c*), and max > u(t, x) — 0 for eachc > c*.
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In this paper, we consider a general heterogeneous periodic framework extending
(0.1). The heterogeneous character arises both in the equation and in the underlying do-
main. The types of equations we consider here are:
uy — V- (AX)Vu) + g(x) - Vu = f(x,u) inQ, ©.6)
v-AVu =0 o0naQ, '

wherev denotes the outward unit normal €. It will be assumed throughout this paper

that the matrixA (x), the vectog (x) and the reaction terryi(x, u) as well as the geometry

of Q are periodic. Precise assumptions will be described shortly. Note that even equation
(0.7), if set in a periodic domain (e.g. the space with a periodic array of holes), acquires
the features of a non-homogeneous equation. That equation will be considered in general
(non-periodic) domains in Part [L[10].

Here, in the periodic setting, we address three types of questions.

1) What is the speed of generalized travelling fronts in periodic structures (we recall
the definition of such fronts below)? A formula which we announcedlin [7] is proved here.

2) Using a formula of @rtner and Freidlin [39], we relate the asymptotic speed of
spreading in a periodic domain to that of the minimal speed of propagation. In contrast to
the homogeneous equation, as we will see on an example, these two speeds may not be
the same.

3) We then proceed to derive several important consequences on the minimal speed
of propagation and on the asymptotic spreading speed. Effects of stirring, of reaction, and
of geometry will be established here rigorously. These formulas indeed allow us to prove
properties of the following kind. The presence of holes or of an undulating boundary
always hinders the progression or the spreading. On the contrary, any stirring by a flow
always increases that speed.

In the next section we introduce the general setting with precise assumptions and we
state the main results of this paper. Their proofs take up the remaining sections.

1. The periodic framework and main results
1.1. Speed of propagation of pulsating travelling fronts in periodic domains

This section deals with pulsating fronts travelling in a given unbounded periodic domain
under the effects of diffusion, reaction and possibly advection by a given underlying flow.
One of the most important issues in this context is the determination of the speed of prop-
agation of fronts. A variational formula for the minimal speed of propagation is derived.
This notion of propagation of travelling fronts for the homogeneous equatign (0.1) can
be extended to that gfulsatingtravelling fronts in a more general classp#riodic do-
mains and for a more general class of reaction-diffusion-advection equations in periodic
excitable media.
We now describe the general periodic framework. Net= 1 be the space dimen-
sion and letd be an integer such that ¥ d < N. Setx = (x1,...,x4) andy =
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(X441, ..., xn). LetLy, ..., Ly bed positive numbers and I& be aC® nonempty con-
nected open subset Bf¥ such that

IR >0, V(x,y) € 2, |yl =R,

4 (1.1)
Yk, ..., kg) € L1Z x -+ x LgZ, Q:Q—i—Zk,-ei, '

i=1
where(e;)1<; < is the canonical basis @& . Let C be the set defined by
C={(x,y)eQ:x€(0,L1) x---x(0, Ly}

Sinced > 1, @ is unbounded and’ is its periodicity cell. In all what follows, a field
w Is said to beL-periodic with respect tox in Q if w(x1 + k1,...,x4 + ka,y) =
w(xy, ..., xq, y) almost everywhere iR, for all k = (k1, ..., kq) € L1Z x - -+ x L4Z.
Before going further on, let us point out that this framework includes several types
of simpler geometrical configurations. The case of the whole spaceorresponds to
d = N, whereLy, ..., Ly are any positive numbers. The case of the whole sfdte
with a periodic array of holes can also be considered. The £asel corresponds to
domains which have only one unbounded dimension, namely infinite cylinders which may
be straight or have oscillating periodic boundaries, and which may or not have periodic
holes. The case 2 d < N — 1 corresponds to infinite slabs.
We are interested in propagation phenomena for the following reaction-diffusion-
advection equation, with unknown set in the periodic domait:

up =V - (Alx, )Vu) +qx,y) - Vu+ f(x,y,u), teR, (x,y) €, (1.2)

VAVu(x,y) =0, teR, (x,y) € 0. '
Such equations arise especially in simple combustion models for flame propagation [75],
[90], [95], as well as in models in biology and for population dynariics [30], [69], [81].
The passive quantity typically stands for the temperature or a concentration which dif-
fuses and is transported in a periodic excitable medium.

Let us now detail the assumptions on the coefficignt@ (1.2). First, the diffusion

matrix A(x, y) = (A;j(x, ¥))1<i j<n IS @ symmetriaC2%(Q) (with § > Oﬂ matrix field
satisfying

A is L-periodic with respect t@,

_ N , , (13)
0 <y <ap, Y(x,y) € 2, V& e RY,  a1lé]° < A;j(x, y)&i& < aolé|

1 The smoothness assumptions4ras well as oy and £ below, are made to ensure the appli-
cability of some a priori gradient estimates for solutions of some approximating elliptic equations
obtained from) (se@.Q) in Sect@n 2). These gradient estimates are obtained for fipoth (
solutions through a Bernstein-type methdd [8]. We however believe that the smoothness assump-
tions onA, as well as ory and f, could be relaxed, by approximatinty ¢ and f by smoother
coefficients.
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(we use the usual summation convention with<li, j < N). The boundary term
vAVu(x, y) stands fow; (x, y)A;; (x, y)dy,u(t, x, y) andv denotes the unit outward nor-
mal to Q. When A is the identity matrix, the boundary condition reduces to the usual
Neumann condition.

The underlying advectiog (x, y) = (q1(x, y),...,gn(x,y)) is a CH3(Q) (with
8 > 0) vector field satisfying

q is L-periodic with respect ta,
V.g=0 ingQ,
g-v=0 o0nog, (1.4)

Vi<i<d, /q,-dxdy:O.
c

The divergence-free assumption means that the underlying flow is incompressible. The
vector fieldg is tangent td 2 and its firstd components have been normalized. The flow
g may represent some turbulent fluctuations with respect to a mean field.

Lastly, let f (x, y,u) be a nonnegati@unction defined ir2 x [0, 1], such that

f >0, fis L-periodic with respect ta and of clas (2 x [0, 1)),

Vx,y) €Q, f(x,y0=/f(xy1=0,

3pe0,1),Vx,y») e, Vi-p<s=<s'<1 f(x,y,9) > f(x,y,s), (L5
Vs € (0,1), 3(x,y) € 2, f(x,vy,5) >0,

Y(x,y) €2,  fi(x,y,0) :=Ilim,_o+ f(x,y,u)/u > 0.

The simplest case of such a monostable functfan, y, u) satisfying [1.5) is when
f(x,y,u) = g(u) and theCt? function g satisfiesg(0) = g(1) = 0,¢ > 0on(0, 1),
g'(0) > 0andg’(1) < 0. Such nonlinearities arise in combustion and biological mod-
els (see Fishel [30], Kolmogorov, Petrovsky and Piskuhol [57], Aronson and Weinberger
[@]). Another example of such a functionis f(x, y,u) = h(x, y) f (u) where f is as
before and: is L-periodic with respect t@, Lipschitz-continuous and positive iR.

This section is concerned with special solutions, which are called pulsating travel-
ling fronts (or periodic travelling fronts, see [82]), and which are classical time-global
solutionsu of (1.7) satisfying O< » < 1 and

d

— k-

Vk € | |L,~Z, V(t,x,y) e R x Q, u(t — —e,x,y) =u(t,x +k,vy),

! c
i=1

u(taX,Y) — 07 U(Z,xy,Y) — 13
X-e—>1+00 X-e—>—00

(1.6)

2 In [7], this assumption off being nonnegative was explicit in formula (1.7) for a function
f = f(u) depending only om. However, although this assumption was obviously also used for
the general periodic nonlinearit§(x, y, u) described in([7], it was not mentioned there explicitly.
An extension to divergence-type equations witvhich may change sign is proved [n11].
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where the above limits hold locally inand uniformly iny and in the directions aR¢
which are orthogonal te. Here,e = (¢2, ..., ¢) is a given unit vector ilR¢. Such a so-
lution satisfying[(1.p) is then calledmulsating travelling fronpropagating in directioa.
We say that is theeffectiveunknown speed; # 0. Let us mention here that, without the
uniformity of the limits in [1.§), many other fronts may exist, whose level sets may for
instance have conical shapes (see e.d. [19], [42], [43]).

Under the above assumptions, the first two authors proved|in [7] that there exists
c¢*(e) > 0 such that pulsating travelling fronisin direction e with speedc exist if
and only if¢ > c¢*(e); furthermore, all such pulsating fronts are increasing in time
(other results with more general nonlineariti€éswere proved in[[7], see below). The
following theorem gives a variational characterization of this minimal sp&ed under
an additional assumption on the nonlinearjty

Assume thaf2, A andg satisfy [1.1),[(1.B) and (I.4), and thAtsatisfies[(1}5) and

Y(x,y,5) € 2x(0,1), O0< f(x,y,s) < fi(x,y,0s. 1.7)
Sets(x, y) = fi(x,y,0) andé = e ...,¢%,0,...,0)0 e RV,

Theorem 1.1. Under the above assumptions, ¢é&te) be the minimal speed of pulsating
travelling fronts propagating in directioa and solving(I.7) and (1.6). Then
. k(A)
*(e) = - 1.8
c*(e) I;Eg o (1.8)
wherek (1) is the principal eigenvalue of the operator

Ly i= V- (AVY) — 206AVY 4+ q - Vi +[—AV - (Aé) — Aq - & + A%EAé + L]y (1.9)

acting on the seE = {y € C%(Q): ¥ is L-periodic with respect tac and vAVy =
A(VAZ)Y ondQ).

Before studying the consequences of Thedrerh 1.1, let us briefly explain the formula for
the minimal speed* and mention some earlier results about front propagation, starting
from the simplest case of planar fronts in homogeneous media.

Assumption[(1.]7) is often called the Fisher-KPP assumption (see Fisher [32] and Kol-
mogorov, Petrovsky and Piskunav [57]). It is in particular satisfied for the canonical ex-
ample f (u) = u(1 — u), or more generally wherf = f(u) is aC? concave function
on [0, 1], positive on(0, 1). Thus, under the KPP assumpti¢n {1.7), the minimal speed
c*(e) can be explicitly given in terms of, the domain, the coefficienty; and A, and
fi(, -, 0). We point out that the dependencecdfe) on the functionf is only through
the u-derivative of f atu = 0. WhenQ = RY, A = I,¢q = O andf = f(u) (with
f@) < f'(Ou in [0, 1]), formula [1.8) then reduces to the well-known KPP formula
c*(e) = 2,/ f(0) for the minimal speed of planar fronts for the reaction-diffusion equa-
tionu, = Au+ f(u) in RV,

A planar frontis a solution of the typeé (x - e — ct), where the planar profil¢ solves
¢" + c¢d’ + f(¢) = 0inR with limiting conditions¢ (—oo) = 1 and¢ (+00) = 0. Such
a solution propagates with constant speed directione and its shape is invariant in
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the frame moving with speedin directione. Many papers were devoted to such planar
fronts, also for other classes of nonlinear functigii®) (see e.g.[[1],[[15],[130], [31],
[52]). For a detailed study of planar fronts for systems of reaction-diffusion equations, we
refer to the book of Volpert, Volpert and Volpelrt [87] and to the references therein.
Equations with periodic nonlinearitie&(x, u) in space dimension 1, without advec-
tion, were first considered by Shigesada, Kawasaki and Teramdto [82], and by Hudson
and Zinner [[50]. The notion of travelling fronts propagating with constant speeal
longer holds in general and has to be replaced with the more general one of pulsating
travelling fronts, as defined ifi (1.6) (sée|[82]). The profile of such a front is not invariant
anymore, but, in one space dimension, the profile is periodic in time in the frame moving
with speedc along the direction of propagation. In_[50], a formula similar to the right-
hand side of[(1.]4) in dimension 1 was given and it was proved that for any speed not
smaller than the right-hand side §f (11.14), pulsating travelling fronts exist. The case of a
periodic nonlinearityf (x, u) changing sign with respect tq based on a patch invasion
model in ecology, was considered in [81] ahd|[82], and recently revisited from a rigorous
mathematical and more general point of view in/[11] &nd [12] in dimensions 1 and higher,
and for more general reaction terms. Lastly, the case of periodic diffusion with bistable
type nonlinearity (se¢ (1.11) below) was investigated by Nakarhura [71] in dimension 1.
The case of shear flows= («(y), 0, ..., 0) in straight infinite cylinder§2 = R x w
was dealt with by Berestycki, Larrouturou and Liohs|[13], and Berestycki and Nirenberg
[17]. Under the assumption that the coefficients of equafiof (1.2) do not depend.an the
variable, the period.1 can be an arbitrary positive number and pulsating travelling fronts
reduce in this case to travelling fronggx; — cz, y) which move with constant instanta-
neous speed and keep a constant shape. Formpla (1.13) was derived in this framework
in [17] for the minimal speed of travelling fronts with a nonlinearjty= f(u) satisfy-
ing (1.3) and[(1]7). Other nonlinearitiggu) were treated i [17]: for a combustion-type
nonlinearity f such that

36 € (0, 1) (called ignition temperaturg)
f=0on[0AlU{l}, f=>00n@®,1, f@A<0 (110

(seel[52)), there exists a unique speehd a unique (up to shift in time, or equivalently
in x1) travelling front¢ (x1 — ct, y); for a bistable nonlinearity” such that

30 € (0,1), f(O=fO)=f~1=0,
f<0on(0,6), f>00n®,1, f©<0 f(@)<0 (L11

there still exists a unique speednd a unique (up to shift) travelling front, under the ad-
ditional assumption that the secti@of the cylinder is convex. Min-max type variational
formulas—involving the values of () for all u € (0, 1)—for the unique or minimal
speeds of propagation of these travelling fronts were obtained by Hamel [41] and Heinze,
Papanicolaou and Stevens|[49], generalizing some results for equations [40] or systems
[54], [87] in dimension 1 (see also Benguria and Depadsier [5] for integral formulations in
dimension 1, and Coutinho and Fernandez [26], Harris, Hudson and Zinher [45] for sim-
ilar problems with discrete diffusion). Several lower and upper bounds for the speeds of
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travelling fronts in infinite cylinders, as well as some asymptotics for large advection and
for other regimes, were derived by Audoly, Berestycki and Pomeau [3], Berestycki [6],
Constantin, Kiselev and Ryzhik [25], [66] and Heinzel[48] for combustion-type and/or
general positive nonlinearities(x). Rotating flows were also considered|in [3] and [56],
and percolating-type flows were dealt with [in [56], where estimates for the more general
notion of bulk burning rate (se& [24]) are given. Dirichlet type boundary conditions on
9, instead of Neumann conditions, were dealt with by Gardndr [38] and Vega [86] in
infinite cylinders. Let us also mention here that a formula similaf td (1.8) for a nonlinear
source termf (u) of the KPP type[(1]7) has recently been obtained by Schwetlick for a
similar hyperbolictransport equation [80].

Whereas usual travelling fronts of the typéx, — ct, y) exist in straight infinite
cylinders in the case of shear flows (assuming that all coefficienfs ih (1.2) are invariant
with respect to the variable;), this is not the case anymore in infinite cylindé§is=
{(x1,¥) : ¥y € w(x1)} with oscillating boundaries( being periodic inx1), even, say, for
the equationi; = Au + f(u) without advection. Such a geometrical configuration was
first considered for a bistable nonlinearifyby Matano [66], and the case of ondulating
cylinders whose boundaries have small spatial periods with small amplitudes was recently
dealt with by Lou and Matano [61].

The case of the whole spaBg’ with periodic diffusion and advection was first con-
sidered by Xin[[91],[[9B] for a combustion-type nonlinearjtgatisfying [1.1D), for which
the speed of propagation of the pulsating fronts was proved to be unique in any given di-
rection. Note that usual travelling fronts propagating with constant speed and constant
shape do not exist anymore for general advection or diffusion and one has to extend
these notions. The homogenization limitR with coefficients having small periods
was investigated by Caffarelli, Lee and Mellgt [21], Freid(inl[35], Heirizg [46], Majda
and Souganidis [63], and Xin [94]. Heinze also considered the case of the whole space
with small periodic holes [47]. Freidlin_[35] and Xih_[94] also studied questions related
to front propagation in random media.

The more general framework of periodic domains and periodic excitable media was
considered by the first two authors of this papefin [7]. It was in particular proved that for
a nonnegative combustion-type nonlinearjtyr, y, u) satisfying the following assump-
tions, more general thap (1]10):

f is L-periodic with respect te,

f is globally Lipschitz-continuous and &4 with respect ta: for somes > 0,
360 € (0,1), V(x,y) € Q, Vs €[0,0]U{1}, f(x,vy,5)=0,

Jpe(0,1-0), V(x,») €2, Vi-p<s<s' <1 f(x,y.5)> f(x,y.5),

Vse(0,1), 3(x,y) €2, f(x,y,s) >0,
(1.12)
and for a given direction of R?, there exists a unique effective speed of propagatien
and a unique (up to shift in time) pulsating travelling fransatisfying [(1.2) and (1]6).
As already emphasized, paper [7] also gives the proof of the existence of a minimal speed
c*(e) of propagation of pulsating fronts for a functighsatisfying [(1.5). Furthermore,
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under the notations of Theor¢m|l.1, the inequality
. k(A
c*(e) > min k@)
A>0 A
holds as soon ag satisfies[(15) (see Remark 1.16lih [7]). However, the question of the

uniqueness, up to shift, of the fronts for any given effective speedc*(e) is still an
open problem.

Remark 1.2 (Equivalent formulas)lt can be easily checked in the general framework
described above that formula ([L.8) can be rewritten in the following equivalent formula-
tions:

c*(e) =min{c:3Ix > 0, k(L) = Ac) (1.13)
and .

c*(e) = min min  max M

A>0 VeF (rypeq AY(X,Y)

whereF = {y € E : ¢ > 0inQ}. Formula[(1.1}) is deduced frofn (1.8) and from some
characterizations of principal eigenvalues of elliptic operators ([1L8], [74]). We also refer
to [7] for a detailed study of the above eigenvalue problems with periodic and Neumann
type boundary conditions. Such operatagsalso arise in Bloch eigenvalue problems in
homogenization theory (see [22], [23], [58]).

The proof of formula[(1]8), which was announced(ih [7], is based on the methods de-
veloped in[[7] and[17] (sub- and supersolutions, regularizing approximations in bounded
domains). We also mention that a formula equivalent id (1.8) was recently obtained inde-
pendently with different tools by Weinbergér [89] for similar problems.

(1.14)

1.2. Influence of the geometry of the domain and of the underlying medium

As we have just seen, several equivalent variational formulas for the minimal speed of
propagation of pulsating travelling fronts in general periodic excitable media have been
given. We now analyze the influence of the geometry of the domain and of the coefficients
of the medium (reaction, diffusion and advection coefficients) on the minimal speed of
propagation. Since the influence of these data may be opposite, we shall investigate each
of them separately.

Let us first study the influence of the geometry of the domain. Under the assumptions
of the previous subsection, it easily follows from formula (].13) that even for a homoge-
neous equation, due to the geometry, the minimal sp&@d depends continuously an
in the unit spheres?=1 of R?. Note thatc*(e) does depend on the directierin general
because of the geometry of the domain and because of the spatial heterogeneity of the
coefficients of equatiof (1].2). This is in contrast with the homogeneous equation

ur = Au+ f(u) (1.15)

in the whole spac&”", for which pulsating travelling fronts are actually planar travelling
fronts and the minimal speed has the same valtie) = 2,/f/(0) in all directionse
in RV,
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Let us now consider the above homogeneous equatien Au + f(u), but now set
in a periodic domair2 ¢ RY satisfying ). Assume that satisfies) an.?).
If @ = RV, thenc*(e) = 2,/f7(0) for all ¢ € RY with |¢| = 1. The following state-
ment shows that this valug2f’(0) is always an upper bound whateweiis (provided it
satisfies[(1]1)), and is optimal in some sense:

Theorem 1.3. Let 2 c RY satisfy(L.1)and letf = f(u) satisfy(L.5) and (L.7). Let

e = (e}, ..., e%) e RY be such thate] = 1. Letc*(e) be the minimal speed of pul-
sating travelling fronts satisfyin¢f.15) and (1.6) together with the Neumann boundary
conditionsd,u = 0on 3. Then

0 < c*(e) <2 f(0),

and c*(e) = 2,/ f’(0) if and only if the domair2 is invariant in directione, that is,
Q+r1é=Q forall r € R, whereé = (¢*,...,¢?,0,...,0) e RV,

In other words, Theorein 1.3 implies that the presence of holes (perforations) in the do-
main always hinders the propagation, compared to the case of the whole space. Similarly,
the fronts propagate strictly less rapidly in an infinite cylinder with oscillating boundaries
than in a straight infinite cylinder. The homogenization limit of small holes with a com-
bustion type nonlinearity was dealt with by Heinzel[47] (see &lsb [72] for homogenization
of linear diffusion equations with small holes).

After having proved that holes make the propagation of pulsating fronts slower than
in the case of the whole spa8, it is now natural to wonder whether the bigger the
holes, the smaller the minimal spe€fde). Actually, the answer is no in general:

Theorem 1.4. Let N > 2 ande be any unit direction irRY. Let f = f(u) satisfy)
and (1.7). Then there exist some positive numbeis. . ., Ly, a family (Q4)o<a <1 Of
domains satisfyingl.I)withd = N and

Qo=RY, Q,D>Qy foral0<a<do <1,
[ Q=Qn forall0<e <1, (1.16)

O<a<a’

such that, it, denotes the minimal speegd = ¢*(e, ©2,) of the pulsating fronts satisfying
(I.15) and (1.6) in 2, with Neumann boundary conditions @1%2,, then the function
a — ¢, is continuous o0, 1), co = 2,/ f(0), ¢4 < 2,/f'(0) for all « € (0, 1) and
cq = 2/ f'(0)asa — 1.

Theoren{ 1.4 says that the minimal speed of propagation for the homogeneous equation
(L.15) may not be monotone with respect to the size of the holes. Furthermore, under the
notations of Theorein 1.4, one can say that there exists at least one vaiyénaD, 1)

for which the minimal speed of pulsating fronts is minimafig, among all the domains
Qufor0<a < 1.
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Remark 1.5. Theoren{ 1.3 no longer holds for equations with periduiterogeneous
coefficients even if the equation is invariant in directirFor instance, le@’ ¢ RV-1

be a periodic domain satisfyin@.l) with< N — 1, and such tha® # RN-1, Let
Q=0 xR={x= " xy):x €, xy € R}. Let f(x, u) be a function satisfying
(1.9) and[(1.]7), and assume thatr, u) is written asf(x,u) = h(x')f(u), where f
satisfies|(1]7), 0< h(x’) < 1inRY1 h(x’) = 1inQ andh # 1inRV 1. Lete = ey

be the unit vector in they-direction. Then the minimal speed of propagation of pulsating
fronts solving

Uy = Au+ f(x,u)

and ) inQ2, together witho,u = 0 onad <, is equal to %/ £'(0). But the minimal speed

for the same equation set in the whole sp&?&is strictly less than g/ /(0) (see the
proof of Theoren 1]6 below for more details).

Let us now investigate the influence of the reaction coefficients on the minimal speed
of propagation.

Theorem 1.6. Under the assumption. 1)), (1.3) and (L.4), let f = f(x, y.u), resp.

g = g(x, y,u), be a nonnegative nonlinearity satisfyif§5) and (1.7). Lete be a unit
direction inR< and letc*(e, f), resp.c*(e, g), be the minimal speed of propagation of
pulsating fronts solvingI.Z) and (I.6) with nonlinearity f, resp.g.

@ If fi(x,y,00 < g,(x,y,0 forall (x,y) € Q, thenc*(e, f) < c*(e, g), and if
moreoverf, (x, y, 0) # g/ (x,y,0), thenc*(e, f) < c*(e, g).

(b) If ¢*(e, Bf) denotes the minimal speed for the nonlineaity, with B > 0, then
c*(e, Bf) is increasing inB and

*
lim supw < +00

B— 400 \/E

Furthermore, ifQ = RY orif vAé = 0 on 3%, thenliminfz_, o c*(e, Bf)/JE
> 0.

Part (a) of Theoreth 1.6 follows immediately from Theoifenj 1.1 (note that similar mono-
tonicity results also hold for equations with nonlinearities changing sign|_see([11], [12]).
Notice that the inequality*(e, /) < c¢*(e, ) holds as soon ag andg satisfy [1.5) and
f < g, evenif f or g does not satisfyf (1] 7) (this inequality follows from the construction
of the minimal speed by approximation of speeds of fronts with combustion-type nonlin-
earities satisfying (1.12), seel[7] and RemarK 1.7 below). However, the strict inequality
c*(e, f) < c(e, g) does not hold in general if < g and f # g, even if f andg satisfy
(1.5) and[(1]): indeed, under these assumptions, the dependerfcefdahe minimal
speed* (e, f) is only through its derivative,, (x, y, 0) atu = 07.

The conditiorwAe = 0 ona2 holds in particular ifA¢ is constant and if2 is invariant
in this directionAe (for instance A = I and<2 is a straight infinite cylinder in directio#).
Notice that parts (a) and (b) of Theor¢m|1.6 obviously hold for the KPP foraiula
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2,/Bf’(0) in the case of the homogeneous equal.lﬁanith nonlinearity Bf .
However, the precise asymptotic behaviouttfe, Bf)/+B asB — +oc is not known
in general.

Lastly, part (b) also holds good if the nonlinearRy is replaced by a nonlinearity of

the typeBf + fo, with given f and fo satisfying [1.5) and (1]7).

Remark 1.7. Similar comparison properties to those in Theofen 1.6 also hold for the
unique speeds(e, f) andc(e, g) of the pulsating fronts solving (1.2) arjd ([L.6) in the case
where the nonnegative nonlinearitigs= f(x, y,u) andg = g(x, y, u) satisfy [1.1P)

and are ordered. Namely, jf < ¢ in Q x [0, 1], thenc(e, f) < c(e, g). Furthermore, in

this framework, one hage, f) < c(e, g) if f < gandf # g. These facts follow easily
from the proofs in[[7]. However, the behaviour @f, Bf) for large B is not known in

this case.

The influence of advection on the speed of propagation is more difficult to analyze,
because of possible interaction between the stream lines and the geometry of the domain,
especially the holes. However, at least in the case where the domain is invariant in direc-
tion e, with isotropic diffusion, one can compare the speeds of propagation in direction
when there is, or not, a drift term in the equation.

Theorem 1.8. LetQ c R be a domain satisfyin@) andQ +re =Qforall r € R,
wheree is a unit vector ofR?. Assume tha#t = I and thatf = f(u) satisfie)
and(1.4), and thaty satisfieq(1.4). Letcj (e) be the minimal speed of the pulsating fronts
solving(T.7) and (1.6), with advection coefficient. Then

cg(@) = cgle) = 2/ f'(0)
and equality holds if and only if - ¢ = 0in Q.

Under the above assumptions, Theofen 1.8 means that the advection, or stirring, makes
the propagation faster, whether the flow is a shear flow or not. Roughly speaking, the
presence of turbulence in the medium increases the speed of propagation of the pulsating
fronts. Furthermore, the influence of advection on the speed of propagation is minimal if
and only if the advection is orthogonal to the direction of propagation.

The influence of large periodic advection, wheis replaced withBg with large B,
is analyzed by the authors inl[9]. The behaviourcf (e) is always at most linear in
B for large B, in a general domaif which satisfies|(1]1) but may not be invariant in
directione. A necessary and sufficient condition fgf  (e) to be at least linear imB is
given in [9], involving the first integrals of the velocity fieid

Remark 1.9. It is not clear in general whether, under the assumptions of Theorém 1.8,
ch 4 is nondecreasing with respectBo> 0. However, in the case of a shear flow=
a(x2,...,xy)e1in astraight cylindef2 = R x w in directiones, with, say,w bounded in
RY~1 o % 0 of classC* and with zero average, the first author proved n [6] thgt(e1)

is increasing inB > 0, c};q(el)/B is decreasing iB > 0 andcgq(el)/B — p>0as

B — +o0.
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As far as the influence of the diffusion coefficients is concerned, one can compare
the minimal speed of propagation in the case of heterogeneous diffusion with that of a
homogeneous diffusion in a given directienThe following theorem also gives a result
on monotonicity of the speed of propagation with respect to the intensity of diffusion:

Theorem 1.10. Under the assumptior@.1), (1.3), (1.§)and (1.7), letq = 0. Lete be a

unit direction inR<.

(1) We have

c*(e) <2/ MoM, (1.17)

whereMo = max, g ¢(x,y) and M = max, , .o €A(x, y)e. Furthermore,
equality holds i)if and only if¢ andéAé are constanty - (A¢) = 0in  and
vAé = 00ndQ (if 9Q # ¥).

(2) Assume furthermore thgt = f(u) depends on alone. Let;} (e) denote the minimal
speed of pulsating fronts in directienwith diffusion matrixy A, wherey > 0. Then
ci(e) < cZ(e) if0<a<§B.

As a special case df (1]L7) we see thate) < C./a for all « > 0, whereC does not
depend orw > 0. Furthermore, part (2) implies that a larger diffusion speeds up the
propagation.

Remark 1.11. The assumptiog = 0 was made for the sake of simplicity in the deriva-
tion of the upper bound (1.17). However, more general bounds can be obtained when

g # 0. Namely, under the assumptiofs (1.[[), (1.3),](1[4)] (1.5)[anfl (1.7), one gets as in
the proof of Theorerp 1.70

c*(e) <2 MoM + max (—q(x,y) - é),

(x,y)eQ

whereMp andM are as in Theorefn 1.1L0.
Lower bounds can be obtained as well, but are more restrictive. Namely, under the

assumptions] (1]1)[ (1.3), (1.4}, (L.5) afd [1.7), assume furthermorenthat RN or

vAe =00ndQif Q2 # @. Then

c*(e) > min(mom/b, —b + 2\/mom), (1.18)
under the convention thatom /b = +oo if b = 0, wheremg = min ryeq &y, m =
min , g éA(x, y)éandb = ||V-(A8)l| L) +lg-€llL=g). The bound8) is proved
in Sectior{ 3.p. It implies in particular that,4f- ¢ = 0, then liminf_ ¢+ i (e)/\/z > 0,

wherec} (e) denotes the minimal speed of pulsating fronts in directiawth diffusion
matrix e A.

1.3. Spreading speed in periodic domains

The question of stability of travelling fronts and the asymptotic convergence to travelling
fronts for the solutions of Cauchy problems of the type](1.2) with “front-like” initial con-
ditions has been thoroughly studied since the pioneering paper by Kolmogorov, Petrovsky
and Piskunovi[57] in the one-dimensional case (seele.gl[1], [20], [28], [31], [37], [52],
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[59], [67], [78], [79], [83], [85] for other stability results in the homogeneous 1d case, [2]
for the homogeneous multidimensional case| of [14], [44], [65], [T6], [77] for the case of
infinite cylinders with shear flows). However, few results ($eé [60], [70], [92]) have so far
been obtained about the stability of pulsating travelling fronts in periodic media.
Another important notion is that of asymptotic speed of propagation, or spreading
(see below for the precise meaning), for solutions of Cauchy problemgTiKe (1.2) with
nonnegative continuous compactly supported initial conditipn# 0. The spreading
for the homogeneous equati.lSIRP( was computed by Aronson and Weinberger
[2]. They proved that, under the above assumptions@and if f satisfies[(1}5) and
liminf,_o+ f(u)/u*?"N > ofthen

minu(t,z) -1 if0<c<c* and maxu(t,z) - 0 ifc>c*, ast— +oo,
|z]<ct |z|<ct
wherec* is the minimal speed of planar fronts. The spe&dan then also be viewed as
a spreading speed (see [1], [2], [31].[51].][53].][78] for similar results with other non-
linearities f (1) in dimensions 1 or higher). These spreading properties were generalized
by Mallordy and Roquejoffre: [65] [17] for equations with shear flows in straight infinite
cylinders.

The case of a reaction-diffusion equatipn [1.2) without advection in the whole space
RN with periodic coefficients was considered in the important work aft@Ger and Frei-
dlin [39] and later by Freidlin[34] in the case with advectip(the proofs in[[39] and [34]
used probabilistic tools). Namely, under the assumptions$ (1.3), (L.4)ff|@ng){1.7), if
ug is nonnegative, continuous and compactly supported, then the salutian of (1.2)
in RN with initial conditionug is such that, for any unit vectarin RY,

u(t,z+cte) > 1 if0<c<w*e),

ast , 1.19
u(t,z +cte) = 0 ifc > w*(e), e ( )

locally in x € RY. Furthermore, @rtner and Freidlin derive a formula which we call the
Gartner—Freidlin formula .
. k(A
w*(e) = min q( ), (1.20)
re>0A-e

wherex € RN andk(X) is the first eigenvalue of the operator
L; :=V-(AV) —=25AV 4+ q -V +[-V-(AX) —q - A+ A Ak + (]

with L-periodicity condition (as a consequenaé(+1) = c*(£1) in dimensionNV = 1).

The speedv*(e) can then be viewed as a ray speed in directioh follows from (1.8)

that w*(e) < c*(e). Notice that the latter can also be easily obtained friom {1.19) and
the parabolic maximum principle, putting below a pulsating front moving with speed
¢*(e) in directione, even if it means changing into a function / such thatf > f,

f!(z,0) = f,(z,0) and [1.}) holds for).

3 The latter is fulfilled if f satisfies[(1]7) as well.
4 The functionf = f(z, u) was actually assumed in [34] to be positivefifi x (0, 1).
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Let us also mention that several works have dealt with the solutions of Cauchy prob-
lems for equations of the typp (1.2), with small diffusiartogether with large reaction
e~1f, or with slowly varying flows of the type (sz), or for equations involving more
general spatio-temporal scales. Typically, the solutions of such Cauchy problems con-
verge ag — 0™ to two-phase solutions of Hamilton—Jacobi type equations, separated by
interfaces (see e.d. [B3], [35], [36], [63], [64]). The determination of the asymptotic speed
of propagation was also studied for nonlinear integral equations in dimension Ll(see [4],
[27], [68], [84]), or for systems of reaction-diffusion equations in dimension 1 [see [81]).

Recently, Weinbergef_[89] extended the results é@ft@er and Freidlin to the gen-
eral periodic framework described in [7] and here, with possible time-discrete equations.
Under assumption$ (1.1], (1.3), (1.4), (1.5) and](1.7), it is proved_ih [89] that, for any
unit directione in R?, there existav*(e) > 0 such that, if«(z, x, y) solves ) with a
nonnegative, continuous and compactly supported initial conditgog 0, then

{”(t’x"'”e’y)_’l T0=<ec<w™e) a5 400 (1.21)

u(t,x +cte,y) > 0 ifc > w*(e),
locally in (x, y) with respect to the point&:, y) such thaix +cre, y) € Q. Furthermore,
(p:6esT L 0<p<w'@))={xeR:x-£<c"§forallg e 971}, (1.22)

I.e.w*(e) = MiNgcpa (g0 c*(§)/e- &, OF
w*(e) = min X(g’ (1.23)

r-e>0

with % € R andk(%) being the principal eigenvalue of the operafgr:= V - (AV) —
20AV +q -V +[-V - (AL) — q - L+ LAk + ¢] acting on the seE = {y_ € CA(Q) :
Y is L-periodic with respectt® andvAVy = (vAL)Y ondQ} (weseth = (4,0,...,0)
e RM).

Remark 1.12. As already emphasized, it is clear from the parabolic maximum principle
thatw*(e) < c*(e) for all e € $?~1. The latter could also be viewed as a consequence
of (1.8) and|(1.20) in the case of equatipn [1.2)R#, or from [1.22[-1.23) in the general
periodic case.

The equalityw™(e) = c¢*(e) holds for the homogeneous isotropic equatign=
Au + f(u) in RV, for any directione, but it does not hold in general. Indeed, consider
the equation

Uy = a%uyyxy + bPttyyn, + f(u) iNR2,

wherea > 0 andb > 0 are two given constants, arfd= f («) satisfies[(15) and (1.7).
From the above formulas fap*(e) or c*(e), it is easy to see that, for el € R and
e = (cosY, sing),

212
w*(e) = 2‘/f/(0)\/ 5 ah c*(e) = 2,/]”/(0)\/412 coL 0 + b2sirt o
a

Sint 6 + b2cof o’
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(notice that the formula fow*(e) could also be deduced from the case of isotropic
diffusion after scaling). Hence, the equality*(e) = c*(e) holds here if and only if

e = (£1,0) or (0, £1), or if @ = b (isotropic diffusion). In other words, in the case of
anisotropic diffusion{ # b), the asymptotic spreading speed is less than the minimal
speed of pulsating fronts in any direction which is not an eigenvector of the diffusion
matrix. Notice also that the curvgd) = w*(cosd, sin) in polar coordinates is an el-
lipse, while the curve (9) = c¢*(cosd, sind) is not an ellipse in general (but the curve
r(0) = (c*(cosd, sinf))~Lis an ellipse).

Some numerical simulations with isotropic but heterogeneous diffusion have been
performed in [[55], confirming that the radial spead(e) may be less than the mini-
mal speed*(e) of pulsating fronts. We conjecture that, by analogy, the strict inequality
w*(e) < c*(e) may also occur in some directioasn some domains with holes. How-
ever, a condition for the equality*(e) = c*(e) to hold or not is not known in general in
the periodic setting.

In what follows, we discuss some properties of the spreading apéeq in periodic
domains. As for the minimal speed of pulsating fronts, we study the influence on the
speedw*(e) of all the phenomena involved in problem (1.2).

As in Theorenj 13, let us first consider the case of the homogeneous eqpation (1.15)
in a periodic domair®2. Sincew*(e) < c¢*(e) for any unit directiore € S¢-1, it follows
from Theore thatv*(e) < 2,/f/(0) and that, ifw*(e) = 2,/ f/(0), thenQ is a
straight infinite cylinder in directio@. Conversely, ifQ2 is a straight infinite cylinder in
directione, thenc*(e) = 2/ f/(0) by Theore ; furthermore, the last equality holds
for w*(e) as well;

Theorem 1.13. Under the assumption.1)) for @ (with d > 1), and (L.5) and (1.7)
for f = f(u), lete be a unit direction inR¢ and u(z, x, y) be the solution o&)
with a given initial conditionug # 0 which is nonnegative, continuous and compactly
supported. Them*(e) < 2,/f'(0), and equality holds if and only & is invariant in
directione.

Theorenj 1.13 rests on the following Liouville type result:

Proposition 1.14. Let Q2 satisfy(1.1). Letg : [0, +00) — R be aC? function such that
g(0)=g(1)=0,5'(0) >0,¢g>0in(0,1) andg < 0in (1, +00), and letb € RN be
such thatb| < 2,/¢’(0). Letu be a classical bounded solution of

Au+b-Vu+gu)=0 ingQ,
u=>0 in Q, (1.24)
ou=20 onoS.

Thenu =0oru = 1.

This result, which is of independent interest, is a Liouville type result for some solutions
of semilinear elliptic equations in periodic domainsu livere assumed to bie-periodic
and not identically equal to 0, then the conclusios: 1 would follow immediately from



The speed of propagation for KPP type problems. I: Periodic framework 189

the strong maximum principle, sineewould then be bounded from below by a positive
constant (see case 1 of the proof of Proposition]|1.14 in Section 4). The difficultly here
is thatu is not assumed to be-periodic a priori. Let us also mention that the conclu-
sion of Propositio4 was known in the ca3e= R, and was proved by Aronson

and Weinbergetr [2] by using parabolic tools (see also Refafk 4.3 below). The proof of
Propositior] I.T4 given in Sectign 4 rests on some sliding arguments and on the elliptic
maximum principle.

The influence of all other phenomena (reaction, diffusion and advection) is summa-
rized in the following propositions, most of which are consequences of the results stated
in Sectior L.P.

Let us start with the dependence on the reaction terms.

Proposition 1.15. Under the assumption.]), ), (T-4), let e be a unit direction in
R4 and let f and g be two functions satisfyin )an). Denote byw*(e, f) and
w*(e, g) the spreading speeds in directierfor problem(L.3) with nonlinearitiesf and
g respectively. Iff/(x, y, 0) < g/ (x, y,0) forall (x, y) € Q, then

wie, f) S w(e, 8,

and if moreoverf; (x, y,0) # g, (x, y, 0), thenw*(e, f) < w*(e, g). Hencew*(e, Bf)
is increasing inB > 0. Furthermore,

lim supw <

B—+o00 \/E
Lastly, if2 = RY, thenliminf g_, 4o w*(e, Bf)/~B > O.

+00

The next result is about the influence of stirring on propagation.

Proposition 1.16. Let @ = RV, A = I and assume thaf = f(x) satisfies(1.§) and
). For any unit vector in RY, denote bywy () the spreading speed in directian
with advection terny satisfying(L.4). Then

wy(e) > wg(e) = 2/ f(0),
and the equality; (e) = 2/f(0) holds if and only iy - e = 0in RN,

The last proposition is concerned with the influence of the diffusion on the asymptotic
spreading speed.

Proposition 1.17. Under the assumption§l.T), (I.3), (I.5) and (1.7), let ¢ be a unit
direction inR?. Assume moreover that= 0. Then

w*(e) < 2/ MoM.

Furthermore, if2 = RY, then

w*(e) > min(moa1/b, —b + 2\/moa1),
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whereas was given in(1.3), mo = min,gw £, (x, 0) and

S

= max |V (A@)@)|/|i] + max|q(x)l.
xeRN, ieRN | 140 xeRN
Lastly, if f = f(u) andw} (e) denotes the spreading speed in directiomvith diffusion
matrixy A, then
wy(e) < w;;(e) if 0 <a<g.

The proofs of the above propositions are sketched in RerparKs 3.2-3.4 in $éction 3 below.

2. Variational formula for the minimal speed of pulsating travelling fronts

This section is devoted to the proof of formula {1.8) of Theoferm 1.1. We assume all the
hypotheses of Theorem 1.1, andenotes a unit vector iR“.
Let us first collect some useful properties of the first eigenva(ig of the operator

L; givenin [1.9).

Lemma 2.1. The functiom. — k(1) is a convex function of. Furthermore, there exists
a convex functiotg such thatko(0) = k;(0) = 0 and

VieR, O0<ming <ming +ko(h) < k(A) < max¢ + ko(A). (2.1)
Q Q Q

Proof. Up to a change of notationg (nto —¢g, ande into —e) in the equations of|7], the
first eigenvalue (1) of the operatolL, corresponds to the eigenvalugs, (1) + Ay of
the operatol, ; 4+ Ay in Proposition 5.7 ofi[[7]. From parts (ii) and (iii) of Proposition
5.7 of [{], it follows that

YA eR, ming +ko(A) < k(X)) < max¢ +ko(A),
Q Q

whereko(1) is the first eigenvalue of the operatby — ¢, andko(0) = k,(0) = 0 (ko(A)
corresponds te-z(2) in Proposition 5.7 of [[7]). It follows from{[7] that the functidty is
convex. As a consequendg,is nonnegative, anf (3.1) follows.

Furthermore, as in [7], the first eigenvalbig.) can be rewritten as

(v (AVY) +q -V
V(x,y)

whereF = {y € C2(Q) : v is L-periodic with respect ta, vVAVY = A(vA&)y on o
andy > 0in Q}, and

F={(,y) > ¥, 0)e ™y € F) ) ) _
= {y € C3(Q) : Y is L-periodic inx, vAVYy = 0 ondQ andy > 0in Q}.

. Ly .
k() = minmax—— = min max
veF VeF (x,)eQ

e y>), (2.2)

It follows from the last expression fan(A) in (2.3), as in Proposition 5.7 of][7], that the
functionk is convex with respect ta. O

The main result of this section is the following



The speed of propagation for KPP type problems. I: Periodic framework 191

Proposition 2.2. If ¢ € R satisfies
c>inf{y e R:3x > 0, k(A) = Ay},

thenc > 0 and there exists a solutianz, x, y) of (1.4)and(1.§), namelyx is a pulsating
travelling front propagating in directior with effective speed

This proposition is proved at the end of this section. Let us now turn to the

Proof of Theorerpi I]1As already emphasized, it follows from Remark 1.16 and Section
6.4 of [7] that, for every pulsating travelling front propagating in directpmith speed
¢ > c*(e), there exists. > 0 such thak(A) = Ac. Therefore,

c*(e) > inf{c:3In > 0, k(A) = Ac}. (2.3)

From Propositiof 2]2 above, inequalify (2.3) turns out to be an equality. Furthermore,
the infimum is reached since for= c*(e), there still exists\* > 0 such thak(L*) =
A*c*(e). Finally, one concludes that

k() ] _ e kO
)ILEfOT =inf{c:3A >0, k(L) = Ac} =c¥(e) = e

whencec*(e) = min,~ok(1)/A. That completes the proof of Theorém]1.1. O

’

Remark 2.3. Sincec*(e) > 0, it follows from the above proof and Lemra]2.1 that the
functioni +— k(X)/A is continuous orR* and
k(L)

k(A L
k) — 400 asr— 0", and liminf—= > 0.
A rA—+00 A

Proof of Propositiof 2]2.The proof follows the lines of [7] and [17], together with the
additional assumptiof (1.7), and we just outline it.

Let ¢ be as in Propositign 2.2 and l€t< ¢ and)’ > 0 be such that(1') = 1'c’. Let
Y’ € E be the unique (up to multiplication) positive principal eigenfunction of

Ly =kO)y'  inQ.

Observe thak(1) is positive from Lemmfp 2|1, wheneéandc are positive as well.
Finding a classical’2(R x Q) solutionu(z, x, y) of (1.9) and[(1.p) is the same, up to
the change of variables

X-e—S
ult,x,y) =¢x-e—ct,x,y), ¢(s,x,y) =u< ,x,y),
C

as proving the existence of a functipne C2(R x ) solving
Lo+ f(x,y,¢) = Vi (Avx,y¢) + (eAe)pys + Vi (Aedy) + av(éAXx,y‘f’)
+q-Viyo+(@g-e+0)ps+ fx,y,¢) =0 inR x ,
¢(—00,-,) =1, ¢(+00,-,-) =0 (uniform limitsin(x, y) € Q),
¢ is L-periodic with respect ta,
VA(Vy y¢ +8¢p) =0 onR x 9.
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The existence of a solutiaf of the above problem will be proved by solving regularized
elliptic equations of the type

L'¢ + f(x,y,¢) = Lo+ edss + f(x,y,¢) =0,

wheree > 0, in cylinders of the typ&, = {(s, x, y) : —a < s < a, (x,y) € Q} which
are bounded in the variabte One then passes to the limits> +oco ande — 0T.

To this end, first fixa > 0. The numbege > 0 will be chosen later. Extend by
setting f(x, y,u) = O forallu > 1 and(x, y) € Q. Forr € R, letv, be the function
defined by

vr(s, x,y) = e MOy (x, y)

for all (s, x, y) € R x Q. This functionu, is a supersolution far > 0 small enough and
forall » € R, in the sense that, frorp (3.7) and from the definition.odnd v/,

Lfv, + f(x, y,v,) <[V (AVY) + W)2@A&) Y — 2VEAVY — 1A'V - (Aé)y'
+q-VY =N (g -4+ Y + )Y e 6 4o r(x, v,
< [k(V) = W+ e@)?y/e 0
< )»/(C/ B C+8)L/)w/ef)»’(s+r) <0

as soonas & ¢ < (c — ")/ (thisis possible since’ < c andA’ > 0). Furthermorey,
satisfies

VA(Vy v 4 E050,) = [VAVY — X (0A&) Y ]e ™ ¢ =0  onR x 4Q

because of the definition gf’. Lastly, the function,. := min(v,, 1) is therefore a super-
solution in the above sense as well.
For allr € R, let i, be the positive constant defined by

0<h,:= min_v.(a,x,y) < 1
(x,y)eQ

The constant function, clearly satisfied.¢h, + f (x, v, h,) = f(x, y,h) > 0IiNR x Q,
together Wi_tth(Vx’yh, + édsh,) = 0 onR x 9. Furthermoreh, < v/.(s, x, y) for all
(s,x,y) € X, sincev.. is nonincreasing with respect o

From the general results of Berestycki and Nirenbgrg [16] (see also Lemma 5.1 in
[7]), there exists a solutiom, € C(T,) N C3(T, \ {#a} x L) of
Lfw, + f(x,y,w;) =0 inXq,
VA(Vyyw, +édsw,) =0 on(—a,a) x 09,
w, is L-periodic with respect ta, (2.9)
w,(—a, x,y) = v.(—a,x,y) forall (x,y) € , '

wr(av K ) = hrs

0<hr <we(s,x,y) <v.(s,x,y) forall(s,x,y) e >4

as soon as & ¢ < (¢ — ¢)/A. Furthermore, since. is nonincreasing with respect to
and the coefficients af? - 4+ f (x, y, -) do not depend o, it follows that the functiorw,
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is actually unique and nonincreasing with respeact fohis can be done as in Lemma 5.2
of [7], by using the same sliding method aslini[16]. Lastly, the same device as in Lemma
5.3 of [7] shows thatv, is nonincreasing with respect tpand that the function — w,
is continuous with respect toin cﬁ(;g(fa \ {#a} x 9Q) (forall 0 < o < 1) and in
C(Xa). . .

Since 0< h, < w, <v. <1inX, andk, — 1 (resp.v, — 0) uniformly in X, as
r — —oo (resp.r — +00), one finally concludes that, for eaehe (0, (¢ — ¢’)/A'] and
for all a > 0, there exists a uniqug , € R such that the function®“ := w,, , satisfies
(2:4) and

max_ w*“(0, x,y) = 1/2.
(x,y)eQ

Lete € (0, (c — ¢')/A'] be fixed and consider a sequenge — +oo. From the

standard elliptic estimates up to the boundary, the functigifs converge, up to taking

a subsequence, 'tﬂ,zo’g‘(R x Q) (forall 0 < « < 1) to a functionw? solving

Léw® + f(x,y,w®) =0 inR x Q,
VA(Vy w® +éd;w®) =0 onR x 9L,

w* is L-periodic with respect ta, (2.5)
0<wf® <1, max w®(0, x, y) = 1/2.
(x,y)e§

Furthermorew? is nonincreasing with respect to
From the monotonicity ofv® with respect ta and from the standard elliptic estimates,
it follows thatw? (s, x, y) — ¢+(x, y) in C%%(Q) ass — oo, where the functiong..
satisfy
V- (AVs) +q-Vé++ f(x,y,¢+) =0 inQ,
VAV¢pL =0 o0nog,
¢+ is L-periodic with respect t@,

O<¢r <¢_<1.

(2.6)

Integrating by parts over the cell leads to
/C fx.y, ¢+(x,y))dxdy =0,

whencef (x, y, ¢+(x, y)) = 0 in by continuity. Now multiply the first equation of
(2.9) by¢ and integrate by parts oveér. It follows that

/ V¢LAVeL =0
c

and thatp. are constants. From the monotonicitywf and the normalization of® on
the section{0} x 2, together with assumptio@.?), one concludes that

¢+ =0 and ¢_ =1
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Let us now come back to the variablesx, y). Fore € (0, (c —¢’)/1/), the functions
u® defined by
ub(t,x,y) =w(x-e—ct,x,y) forall(t,x,y) e RxQ
satisfy

& . —
u; =V (AVyyu®) + zuft +q-Veyu®+ f(x,y,u?) iNRxQ,
VAV, yu® =0 onR x 0%,
_ k-
Vk € L1iZ x---x LgZ, V(t,x,y) € Rx €, u8<t——e,x,y) =u®(t,x+k, y),
c

max u®(t,x,y) =1/2.
x-e=ct, (t,x,y)ERxQ (27)

Furthermore, each® is nondecreasing inandu® (¢, x, y) — 1 (resp.—~ 0) ast — +o0
(resp.t — —00) in C2.().

As in Lemma 5.11 of([7], by multiplying the first equation pf (R.5) byuf, anda, w*
and integrating by parts ov@& x C, it follows that, for every compact sé& c €, there
exists a constant (K) independent of such that

2
%—FZ max F(x,y,l)),
2001 (x,y)eQ
whereF (x, y,t) = fé f(x,y,1)dt andag comes from).
Let (ex)n € (O, (c — ¢’)/2'] be a sequence converging td.0There exists a function
u e HI%)C(IR{ x ) such that, up to taking a subsequence, the functiGhonverge,
strongly inL2 (R x ), weakly in HI})C(]R x ) and almost everywhere iR x , to a

loc
functionu. From parabolic regularity, the functionis then a classical solution of

[+ v Praraxay < c<1<>(
RxK

up =V - (AVyyu) +q - Veyu+ f(x,y,u) inR x Q,

VAV, yu =0 onR x 3L,

Vk € L1Z x --- x LgZ, ¥(t,x,y) € R x Q, u(t—kc%e,x,y>=u(t,x+k,y),
O<u<1l and u,>0 inRx Q.

Furthermore, from the normalization of on the sefx - ¢ = ¢t} and from the mono-
tonicity of u® in ¢z, one has

u(t,x,y) <1/2 forall (¢, x, y) such that - e < cr. (2.8)

On the other hand[ (2.7) is an elliptic regularization of a parabolic equation. From
Theorem A.1 of ['ﬁ] (it is easy to check that the assumptions are satisfied, in particular
the functionsu® are of classC3(R x ) from the regularity assumptions and from the
standard elliptic estimates), the following gradient estimates hold:

||vx,yue||L00(RX§) <C, (2.9)
where(C is independent of.

5 We also refer to Theorem 1.6 6f [8] for more general estimates for a class of elliptic regulariza-
tions of degenerate equations.



The speed of propagation for KPP type problems. I: Periodic framework 195

Since max..—q u®(t, x,y) = 1/2 andu®(t —k-e/c, x, y) = uf(t,x+k, y)inRx Q
forall k € L1Z x --- x LgZ, there exists a sequence of poilits, x,, y,) € R x C
such thaty, - e = ct, andu®(t,, x,, y,) = 1/2. Therefore, the sequencg, x,,, y), is
bounded and converges, up to taking a subsequence, to a(painy) € R x C such
thatx - e = cf. Choose any; > 0. From the uniform gradient estimat2.9), there exists
r > 0 such that®»(1,, x, y) > 1/2 — n for all n and for all(x, y) € B,(x,, y,) N Q,
whereB, (x,, y,) denotes the euclidean closed balRf of radiusr and centrdx,,, y,).
Since each® is nondecreasing in it follows that, forn large enough,

u(t,x,y)>1/2—n

forallr > 1, and(x, y) € B,j2(x,y) N Q. Sinceu® converges to the continuous function
u almost everywhere, one gets

u(t,x,y)>1/2—n

forallz > 7 and for all(x, y) € B,/2(¥,y) N Q. Sincen > 0 was arbitrary, it follows that
u(f,x,y) > 1/2. From [2.8) and the, x) periodicity ofu, one concludes that
max u(t,x,y)=1/2. (2.10)

x-e=ct, (t,x,y)ERxQ

Lastly, the standard parabolic estimates together with the monotonicitywith re-
spect tar imply thatu(z, x, y) — u+(x, y) in Cl%C(Q) ast — +o00, where the functions
u- satisfy o

V- (AVug) +q-Vug + f(x,y,us) =0 ing,
vAVuyr =0 o0nog,
uy areL-periodic with respect ta,

and are such that & u_ < uy < 1. As explained earlier for the functiors. solv-
ing (2.8), one can easily prove that the functions are actually constant and_satisfy
f(x,y,us) = 0forall (x,y) € Q. Furthermore, 0< u_ < 1/2 < u; < 1 from {2.10)
andu, > 0. One concludes from (1.7) that = 0 andu = 1.

Finally, the functionu is a classical solution of (1].2) and (IL.6). Indeed, because of
the (¢, x) periodicity ofu, the limitsu(z, x, y) — 0 (resp.—~ 1) asx - e — +oo (resp.
x -e — —o0) hold locally in(z, y) and uniformly in thex variables which are orthogonal
toe.

That completes the proof of Propositjon]2.2. O

3. Influence of the geometry of the domain and of the coefficients of the medium
3.1. Influence of the geometry of the domain: proofs of Thedrerns 1[3@nd 1.4
This subsection deals with the influence of the geometry of the domain on the speed

of propagation of pulsating fronts for the homogeneous equdtion|(1.15) in periodic do-
mains<2. Namely, we will prove Theorenjs 1.3 and]1.4.
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Proof of Theorem 1]3First recall that the minimal speed(e) of the pulsating fronts
solving [1.1%) and (1]6) is positive (séé [7]). Furthermore, from Theprem 1.1,

% k()
c*(e) = min —,
>0 A

wherek()) is the first eigenvalue of the problem

Ay — 28 -V + W2 + Oy = k()Y InQ (3.1)
andv, is positive inQ, L-periodic with respect ta, and satisfies, y, = A(v - &)y, on
082.

Multiply the above equation by, and integrate by parts over the céll It follows
from the boundary and periodicity conditions that

- / VU2 + 024 £1O) / W2 = k(0 / 2. (3.2)
C C C

Therefore,
VA >0, k(A <%+ f(0) (3.3)
andc*(e) = minysok(X)/A < 2,/ f(0).
Assume now that the domaim is invariant in directiore. Thenv - ¢ = 0 onaQ2 and
a (unique up to multiplication) solutiott, of the eigenvalue problem (3.1) is, = 1.
Thereforek(r) = A2+ f/(0) for all » > 0. Thus,c*(e) = 2,/f/(0).

Conversely, assume that(e) = 2,/ f(0). SetA* = / f/(0). We claim thatc(1L*) =
(A2 + f7(0). If not, thenk(A*) < (A*)2 + f7(0) from (3.3) and

kOF 2* 2 20)
0= < IR =270,
which contradicts our assumption. Therefdré,*) = (1*)2 + f/(0) and it follows from

(3.9) thaty;- is constant. As a consequence,¢ = 0 ond2. Hence £ is invariant in
directione. o

Proof of Theoren I]4Up to a rotation of the frame, one can assume that e; =
(1,0, ...,0). Furthermore, if there is a famil§€2,)o<y <1 of domains inR?2 such that the
conclusion of Theorern 1.4 holds witki = 2 ande = e1, then the family of domains
(2)0<a<1 = (Rq X RN*Z)ofad satisfies the conclusion of Theor1.4 in higher
dimensionsV with e = ej.

Therefore, it is enough to deal with the caée= 2 ande = e¢1 = (1,0). Fix L1 =
Ly =1,and O< 8 < 1/2. Let now(£24)o<«<1 be a family of smooth open connected

subsets oR? satisfying [(1.1) with.; = L, = 1, satisfying|(1.16) and such that
VO<a<1/3, R*\QyCZ’°+(1/2—a,1/24a) x (1/2—a,1/2+a)
and

V2/3<a <1,
l-a 14+«
20 2

Zz—i—(l—a,a)x[ﬂ,l—,B]CRz\QaCZ2+< )x[,B,l—ﬁ].
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One also assumes that, for eaghe (0, 1), there exists > 0 such that the se®, are
€2 uniformly with respect te € (ag — r, ag + r).

Let us prove that this family of domains satisfies the conclusion of Thelorgm 1.4 with
N = 2 ande = e;.

First observe that, for eaehe (0, 1), the domairt, is not invariant in directior1,
whencec, < 2,/ f/(0) from Theore.

The other statements of Theorém|1.4 are proved in Steps 2, 3 and 4 below. Step 1 is
concerned with the derivation of inequalify (3.5) below.

Step 1. Letfirsta € [0, 1) be fixed. The minimal speeq, = c*(e1, 2) of the pulsating
fronts satisfying[(1.15) and (1.6) if2, with Neumann boundary conditions @2, is
given by the formula

k
Cy = Min a(®)
A>0 A
wherek, (1) is the first eigenvalue of the problem
Ao s — 2010 + O + [ (ODVar = ke ¥ar N Q (3.4)

andi,, is positive iNQq, (1, 1)-periodic with respect taxy, x»), and satisfies, V) =
A(v - e1)¥q.2 ON 32, Wherev stands for the unit exterior normal £@,. Observe now
that, from the monotonicity of the domain®,,), one has

Qo DR x (-8, B).

Therefore, it follows from the maximum principle (see|[18] for more details)ihét) >
k(2) for all A > 0, wherex (1) (resp.y;.) is the first eigenvalue (resp. eigenfunction) of

APy — 20095 + W2+ f/(O) Y = kWY INR x (=B, B),
V>0 inRx (=8, B),

Yo =0 onR x {£},

Y, is 1-periodic with respect te;.

By uniqueness, the functiog; does not depend amy, whencex (L) = A% + f/(0) —
(1/(2p))2. It follows that

2

Va €[0,1), VA >0, ko(h) =22+ f'(0) — (271_;3) . (3.5)
Step 2. Leta be fixed in(0, 1) and let us now prove that the functiom> ¢, is continu-
ous atx. If not, there exists > 0 and a sequende;, ),y — « such thatc,, — cq| > ¢
for all n. Up to taking a subsequence, two cases may occur:

Case licy, < ¢y —eforalln. Foreach, leti, > 0be such that,, = k4, (An)/1s (the
existence of such,, follows from Theorenj 1]1), and let, = ¥, 5, SOlve [3.4) inQ, .
The functionsy, are positive inQ,,, (1, 1)-periodic in (x1, x2) and satisfyd, v, =
An(v - en) Y, 0N, . Up to normalization, one can assume tiat0, 0) = 1.
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Since 0< ¢y, = ko, An)/An < cq — &, it fOllows from @) that the sequencg,,)
is bounded. On the other hand,, (x,) > f/(0) from Lemmg[ 2.]L. Therefor&p,) is
bounded from below by a positive constant, so one can assumg,thati € (0, +00)
asn — +o00. On the other hand, one can also assumedfjat> ¢ € [0,cy — €] @s
n — 4o00.

Furthermore, since the domaiK&,,) are uniformly C3, the functionsy, satisfy
uniform €24 bounds in,, up to the boundary. Up to taking a subsequence, the functions
Y, converge irC,%C(Qa) to a solutiorm) of

Ay — 2009 + (A2 + £ ODY = cAas  iN Q.

which can be extended to @ function in @, such thatd,y = A(v - e1)¥ on 9€2,.
Furthermorey is nonnegative(l, 1)-periodic, and satisfieg (0, 0) = 1. From the strong
maximum principle, the functiony is positive. It is therefore the first eigenfunction of
problem [[3.4) with the above periodicity and boundary condition. Hetices & (A).
Formula [I.1B) implies that > ¢, which contradicts the fact that< ¢, — ¢. In other
words, Case 1 is ruled out.

Case 2:cy, > ¢g — ¢ foralln. Let nowi > 0 be such that, = ky(1)/2. From [3.3)
and [1.8), one has

A2+ f1(0) > kg, (M) > Acy, > A(cq + ©). (3.6)

One can assume th&f, (1) — k > 0 asn — +o0, and that the functiong,,, ., nor-
malized byy,, 1 (0, 0) = 1, converge locally irf2, to a positive(l, 1)-periodicC?(2y)
solutiony of

AY — 200y + A2+ OV = ke iN Qe
Yy =Av- ey 0NI,.

One concludes that = k4 (1), whenceky (1) > A(cy + €) from (3.8). This contradicts
the definition ofi.. Therefore, Case 2 is ruled out as well.
That proves the continuity of the map— ¢, in (0, 1).

Step 3. Let us now prove that, — 2,/ f/(0) asa — 0. Assume not. Since & ¢, <
2,/ f(0) for all « € [0, 1) by Theore, there exists a sequeage—~ 0" such that
¢y, = ¢ €[0,2,/f'(0)) asn — +o00. On the other hand, there exists a sequenge
such thatc,, = ko, (An)/A, for eachn. As in Case 1 of Step 2 above, one can prove
that the sequenag.,) is bounded from below and above by two positive constants. From
(3.3) and Lemmp 2]1, it follows thak,, (1,)) is itself bounded from below and above by
two positive constants. Therefoke> 0.

For eachn, let u,(z, x1, x2) be a pulsating travelling front solvin§ (1.6) with speed
¢q, and such that

{ (un)r = Auy + f(uy) INR x Qa,,’ (37)

du, =0 ONR x 99, .
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Furthermore, each, satisfies O< u,, < 1and(u,); > 0inRx €, . Up to normalization,
one can assume thaf (0, 0, 0) = 1/2.

Owing to the construction of the domails,, and from standard parabolic esti-
mates, the functions, converge, up to taking a subsequence, to a classical solution
u = u(t, x1, x2) of

up=Au+ fw inRx R\ (Z%+ (1/2,1/2)))

such that 0< u < 1. The singularities on the liné& x (Z2 + (1/2,1/2)) in (¢, x1, x2)
variables are then removable and the functiazan be extended to a classical solution
of u; = Au+ f(u) in R x R2, On the other hand, satisfies

k
c

for all (¢, x1,x2) € R x R? and (k1, ko) € Z2. Furthermorey, > 0 in R x R? and
u(0,0,0) = 1/2. By passing to the limit — +o0, one can prove as inl[7] thatz, x1, x2)
— 0 (resp. 1) ag — —oo (resp.r — +o00) locally in (x1, x2).

Finally, u is a pulsating travelling front, solvin§ (1.6) with= e1, and [1.1}5) inR x
RR?, with speed:. But the minimal speed for this problem ig/Z’(0) (from Theore;
the domainR? is invariant in directiore1). Thereforec > 2,/77(0), which contradicts
our assumption.

As a consequence, the functien— ¢, is continuous at 0.

Step 4. Let us now prove that, — 2,/f’(0) ase — 1. Assume not. As above, there
exists a sequenag, — 1~ such that,, — ¢ € (0,2,/f/(0)) asn — +oo. Letu, =
un(t, x1, x2) be a pulsating travelling front solving (3.7) and (1.6) with spegd Up to
normalization, one can assume that0, 0, 0) = 1/2. Consider now the restrictions, still
calledu,, ofu, toR x R x [—p, B]. Owing to the construction of the domaig,, the
functionsu,, converge, up to taking a subsequence, to a classical solution;, x2) of

up=Au+ f(w) INRx@Rx[=p,B]\Zx {£B}),
du=0 OnRxR\Zx [£8)

such that O< u < 1. The singularities on the lind® x Z x {+8} in (¢, x1, x2) variables
are removable andcan be extended to a classical solutioof (I.13) inR x R x [—8, ]
such that,u = 0 onR x R x {£A}. On the other hand,

k
u <l _ _1’xl’ xZ> =u(t, x1+ k1, x2)
C

for all (¢, x1,x2) € R x [-B, 8] andk1 € Z. Furthermorey; > 0 in R x R? and
1(0,0,0) = 1/2. By passing to the limit — +o00, one can prove that(z, x1, x2) — 0
(resp. 1) a3 — —oo (resp.t — +o0) locally in (x1, x2).

Finally, u is a pulsating travelling front, solving (1J15) i x R x [—8, B], together
with Neumann boundary conditions @ x R x {+8}. The functionu satisfies[(16)
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with e = e1 and speed. Since the domaifR x [—g, B] is invariant in directiores, the
minimal speed of such travelling fronts ig/Z’(0). One then gets a contradiction with

our assumption that < 2,/ f/(0).
Thereforec, — 2,/ f’(0) asa — 1~ and the proof of Theore@A is completex

Remark 3.1. Let the family (€24)0<«<1 Of domains inR?2 be given as above. Letbe

a unit direction inR? such thate # +e1, and letck (e) be the minimal speed of pulsat-
ing fronts solving [(1.6) and (1.15) iR, with Neumann boundary conditions @2, .

As above, the functioa — c;,(e) is continuous on [01), with cj(e) = 2,/ f/(0) and
ci(e) < 2,/ f(0) for all « € (0, 1). With the same arguments as above, it easily follows
than liminf,_1- ¢ (e) > 2/f/(0)|e!|, wheree! is thex;-component of the direction
Nevertheless, the limit, if any, af (¢) asa — 1~ still remains to be determined.

3.2. Influence of the coefficients of the medium: proofs of The¢repjs 1.6, 1.8 and 1.10

This subsection is devoted to the study of the influence of the coefficients of the medium
(reaction, advection and diffusion terms) on the speed of propagation of pulsating travel-
ling fronts.

Let us first investigate the dependence on the reaction ferm

Proof of Theorer 1|6(a) Let f andg satisfy [1.5) and (1]7) and assume tifatx, y, 0)
< g,(x,y,0) for all (x,y) € Q. Foranyix > 0, letk(x, f) (resp.k(x, g)) be the first

eigenvalue of9) witlt (x, y) = f,(x,y,0) (resp.c(x,y) = g, (x,y,0). It follows
from the monotonicity properties of the first eigenvalue of elliptic problems (see [18])
thatk(x, f) < k(x, g). Hence, Theorein 1.1 yield$ (e, f) < c*(e, g).

Assume furthermore thaf, (x, y, 0) # g/ (x,y,0). Let 1o > 0 be chosen so that
c*(e, g) = k(ro, g)/*0. We claim that (Ao, ) < k(1g, g). If this holds, then

k(ro, f) - k(*o,8)
Ao Ao -

cle, f) < c*(e, 8)

and we are done. Suppose then théty, /) > k(io, g). Let Yy (resp.y,) be a pos-
itive first eigenvalue of9) with. = Xp and¢(x,y) = f)(x,y,0) (resp.¢(x,y) =
g, (x,y,0). Lett > 0 be such thatyy < v, in Q with equality somewhere (such a
T > 0 exists since botlyr and, are continuous, positive arfckperiodic with respect
to x in Q). The functionz := ¥y — Ty, satisfies

V- (AVz) —200¢AVz+q-Vz+[—1oV - (A8) —hoq-é+156AE+ f1(x, ¥, 0)—k(ho, )]z
= (k(ro, f) —k(ro, )TV + (g, (x,y,0) — fu(x,y,0)TYe >, #0 inQ (3.8

from our assumptions. On the other hand< 0 in Q with equality somewhere, and
VAVz = Ag(vAe)z on 2. The strong maximum principle and Hopf lemma imply that
z = 0in Q. But the left-hand side 0.8) is not identically zero. This contradiction yields
k(*o, f) < k(%o, &)
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(b) Let f satisfy [1.5) and[(1]7). First, it follows from part (a) that the function
B +— c*(e, Bf) is increasing with respect t8 > 0. For anyA > 0 andB > O,
let (A, B) and v,z be the first eigenvalue and eigenfunction of operdtor] (1.9) with
¢(x,y) = Bf,(x, y,0). Multiply the equationL, v, g = k(A, B)Y, g by ¥ p and inte-
grate by parts ovef to get

k(.. B) / W2, = - / Vi s AVYsp — / (g EW2 5 +22 / @ADY2,
C C C C

+/(:Bflﬁ(x,y,0)w5,3-
It follows that
k(h, B) < Allq - €lloo + A2[16A&]| 00 + Bl £, O lloo-

Hence,
=0KWB) asB— +.

*(e, Bf) = min k(. B)
c (e =
’ >0 A

Assume now tha® = R orvA - ¢ = 0 ond<. In both cases, integrating overthe
equationL, ¥, g = k(x, B)y; p With ¢ (x, y) = Bf,(x, y, 0) leads to
kB [ =2 [ V- Uonn = [ @ vnn+32 [ @A
C C C c

+/CBfu/(x,)’»O)l/f;\,B-

Hence,

k(r, B) = =V - (Ad)lloo — Al - Elloe + A%a1 + B min_ fi(x, y,0),
(x,y)eQ

wherea; > 0 is given in ). Since mip g f,(x, ¥, 0) > O, it follows that there
existsy > 0 such that

. __k(x, B)
Bf) = min > yvB
c”(e, Bf) mn——zv
for B large enough. That completes the proof of Thedrern 1.6. O

Remark 3.2. With the same tools as above, it can easily be seen that part (a) of The-
orem[1.6 extends to the ray speed(e), as defined in Sectidn 1.3 and [n (1.23). Sim-
ilarly, with obvious notationsw*(e, Bf) < c*(e, Bf) = O(~/B) asB — +o0, and
liminfz_ 400 w*(e, Bf)/v/B > 0if Q =RV,

That corresponds to Propositipn 1].15.

Proof of Theorerp 1|8Under the assumptions of Theorgm|1.8, oneihad = 0 on <2,
andc;; (e) is given by the formula
kg ()

* .
c (e) =min—-—,
q( ) >0 A
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wherek, (1) andy,, , denote the unique eigenvalue and posifivperiodic eigenfunction
of

AV g —20&-VY g +q- VUi g +—2q-e+22+ f Oy = kyM¥ng inQ (3.9

with v - Vi, , = 0 ona<. Divide the following formula byy; , and integrate by parts
overC. It follows from (1.4) and the.-periodicity ofg andy; , that

/' Vgl + 02+ F1O)IC] = kgWIC], (3.10)

whence
kg(h) = 22+ f/(0) = ko). (3.11)

Thereforec;(e) > 2,/ f(0) = cj(e).

If ¢ - = 0, thenys; , is constant for each > 0, whencek, (A) = A% + f’(0) and
cg(e) =2/ f'(0) = cp(e).

Assume now thatj (e) = cy(e) = 2,/ f/(0). LetA* > 0 be such that

kg (A
ci(e) = ( ).

Thenk, (A*) = 24,/ f'(0), Whereasml) yieldg, (A*) > (A*)2 + f/(0). Therefore,

= /£(0) andk, (A*) = (A*)? + f'(0). From (3.1(), one finds that;- , is constant,
and from 3.9) one concludes thaté = 0 in Q. O

Remark 3.3. With the same arguments as above and with obvious notations, one can
deduce from[(1.90) that, 2 = RY, A = I and f = f(u) satisfies[(1) and (1.7),
thenwj]‘ (e) > wg(e) = 2,/ f/(0) for every unit vectoe of RN . Furthermore, the equality

wy(e) = 2/ f'(0) holds if and only ifg - e = 0. That corresponds to Proposit.16.

Proof of Theorenj T.J0Under the assumptions of Theor¢m 1.10,4ét) and ¥, be
the first eigenvalue and eigenfunction of the operdtordefined in[(1.p). Multiply the
equationL; vy, = k(L)Y by v, and integrate ovef. One gets

k() / y2=— f Vs AV + 22 / GAz Y2+ / £ 2. (3.12)
c c c c
Hence,
k(x) < max_ ¢(x,y) + A% max_ 2A(x, y)é, (3.13)
(x,y)eR (x,y)eQ

and [1.I7) follows from[(T18).
Assume now thatA(x, y)é = M and¢(x,y) = Mg are constant i, and that
V. (A¢) =0inQ andvAé = 0 ondL (if 3Q # ). Theny; is constant for each > 0,
whencek (L) = Mg + A2M andc*(e) = 2/MoM.
Assume now that*(e) = 2/MoM, where My = max, g ¢, y) and M

max, , cq éA(x, y)é. Let A* = /Mo/M > 0. It follows from ) thatk(1*)

v
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c*(e)A* = 2Mp. On the other handk(A*) < Mo + (A*)2M = 2My from (3.13).
Therefore k(\*) = 2Mg = Mo + (A*)2M. One deduces fr02) and the equation
Ly = k(A*)yn« thaty,« is constant (x, y) = Mo, eA(x, y)e = M,V - (Ae) = 0,
andvAe = 0 ondg2.
Assume now that & o < g, and letc (e) (resp.c/’g (e)) denote the minimal speed of

pulsating fronts in directiol with diffusion« A (resp.8A). By (1.8), one has
k(1) kP (1)

A A

*(e) = min and cf(e) = min 3.14
ca(€) = min cpe) = min ; (3.14)
wherek® (1) (respk? (1)) is the first eigenvalue of the operatok; + f(0) (resp.8L; +
f/(0)) and L, is the operatol, = V - (AV) — 2h6AV — AV - (A&) + 126 Aé acting on
the setf (E has been defined in Theor¢m]|1.1). Under the notations of L§mrig24],
is the first eigenvalue af, , whence

k(1) = ako(h) + f'(0) and kP (1) = ko(A) + £(0)

for all A > 0. On the other hand, it follows from Lemnia R.1 that the functigris
nonnegative. Thereforé” (1) < k(1) and ) yields (e) < cj(e). That completes
the proof of Theorerp 1.10. O

Proof of the lower bound (1.18)Under the notations in Remdrk 1|11, integrate the equa-
tion Ly, = k(M) overC. It follows that

k(x)/m=A/v(Aé)W—A/q~ém+x2/éAém+/c<x,ym.
C C C C C

Thereforek (1) > —Ab 4 A2m + mo. On the other hand, Lemnha .1 yieldg.) > mo.
Now (1.1I8) easily follows fron{(1]8). o

Remark 3.4. Under the assumptions and notations of Thedrem| WwtQ¢) < c*(e) <
2/MoM for all unit vectorse in R?. Furthermore, under the additional assumption that
f = f(u), the ray speed} (e) in directione for problem ) with diffusion matriy A
(y > 0) is given by R
Y
w;j (e) = _ min kﬁ ()L),
1€R4 je>0 A-e

WherelEV(X) = Vko,i/|i|(|;‘|) + £/(0) and, for all unit vectorg’ in R? and allx > 0,
ko () denotes the first eigenvalue of the operator (AVy) — 2u ¢AVYy —
uV-(Ae')y+u2e’ Ae'yr acting on the space d@f-periodic functions) such thav AVy =
w(vAe )y ond. Lemm yieldgo (1) > 0. Thereforew;(e) < wi(e) if 0 < «
<B.

Lastly, if @ = RV, then with the same arguments as above, it easily follows from
) thatw*(e) > min(moa1/b, —b + 2./moa1), Wherea; was given in )mo =
min, cry fu/(x’ 0) andb = MaX,cRN  jieRN, ji£0 IV - (A )|/l + max.cgn |g(x)|.
That corresponds to Proposition 1.17.
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4. Spreading speed

This section is devoted to the proof of Theolfem 1.13. Itis based on the following auxiliary
Lemmag 4.]l and 4.2, and on Proposifion IL.14.

Lemma4.1. LetQ satisfy(L.J)withd > 1. Leti be the first eigenvalue, antr be the
first eigenfunction of

—AYRr = ARVR in N Bg,

Yr>0 in QN Bg,

Yr=0 onQ N Bk, (4.1)
Yr=0 ond2 N Bg,

lVrllL>@nBr) = 1,
where By is the open euclidean ball of radiu® > 0 and centre0. Thenig — 0 as
R — +o0.

Proof. It follows from the maximum principle thaty is decreasing with respect ®.
Furthermorej y has the following variational representation:

2
. JongIVVI
AR = min —_fr
YeHLQ@NBRNO)L Vignas, =0 Jorp, ¥

Let& be a givenC>®(RY) function such that = 1in By2 andé = 0inRY \ By. Taking
the functiony (z) = £(z/R) as a test function leads to
2 2
g < R™4||VE|5 12 N BR|
|20 Bry2|

But |2 N Bg|/|S2 N Bg/2| is bounded a® — +oc because of (1]1), whenag — 0*
asRkR — +oo. [}

Lemma 4.2. Let Q satisfy(1.1) with ¢ > 1, lete be in $~1, and assume tha® is
invariant in directioné. Let f : [0, +00) — R be a function of clas€?! such that
f(0) = 0and f/(0) > 0, and letc be such thatc| < 2,/ f/(0). Then there exisk > 0
andeg > 0such that, for alls € (0, g), there is a functiorw satisfying

AxywHce-Vyyw+ f(w) >0 inQN Bg,

w>0 in QN Bg,
w=0 on2 N dBg, (4.2)
dw =0 ono2 N Bg,

lwllz=@nag) < €.
Proof. Let R be fixed large enough so that the first eigenvalgef (4.1) satisfies
Ak < f(0) — ¢?/4.
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The latter is possible by Lemn@.l and since< 2,/f/(0). It then follows that the
functionw(x, y) = se~“*/2yp(x, y) satisfies

Aw +cé-Vuw + f(w) = flee ™ ?Yp(x, y)) — (c2/4+ Ag)ee ™ /2yp(x,y) > 0

in N By for ¢ > 0 small enough. On the other hand, the functiorns positive on
Q N Bg, vanishes o2 N d B, has smallL>° (2 N Bg) norm fore small enough, and it
satisfies the Neumann boundary conditipmw = 0 ond2 N Bi because so doefsg and
Q is invariant in directiore. That completes the proof of Lemrpa}4.2. O

Proof of Propositior] I.74 First of all, one can assume without loss of generality that
u # 0, whence the strong maximum principle yields- 0 in Q. If Q is bounded (this
corresponds to the cage= 0), then the minimum of u in Q is reached and positive,
and, sinceg is positive in(0, 1), the strong maximum principle and Hopf lemma yield
m > 1. Similarly, sinceg is negative in(1, +oc0), the maximumM of u satisfiesM < 1.
Thereforeu = 1.

Let us now consider the general case of a dorsaimhich is unbounded, i.el > 1.
Two cases may occur:

Case 1:m = infgu > 0. Let (x,, y»)nen b€ a sequence of points @ such that
u(x,, o) — m asn — +oo. If m is reached, then the points,, y,) may be assumed
to be bounded. In the general case, there exist some pgirtsL1Z x --- x LyZ such
that (x, — X,, y,) € C (remember thaC is the periodicity cell of2). Up to taking a
subsequence, one can assume that- %,,, y,) — (x,y) € C asn — +o0.

Setu,(x, y) = u(x + %, y). The functionst, are defined irf2, by L-periodicity of
Q, and they satisfy the same equatipn (1.24)aBrom standard elliptic estimates and
Sobolev injections, the functioms converge, up to taking asubsequenceﬂlﬁj () (for
all0 < § < 1) to afunctiornu solving [1.24). Furthermore,, > m anduo (¥, y) = m.
If m < 1, theng(m) > 0 and one gets a contradiction with the strong maximum principle
and Hopf lemma. Thereforey > 1. Similarly, one can prove thaf = supgsu < 1.
Henceu = 1.

Case 2:m = infgu = 0. Remember thate;)1<; <4 denotes the canogical basis®f.
SinceS2 satisfies|(1.1), the functiotx, y) — u(x+ L1e1, y) is defined in&2. On the other
hand, Harnack type inequalities imply that the function

u(x + Lie1,y)

Y = Ty

is globally bounded i2. SetM1 = limsup,, ;) .o (.ycq v and let(x,, y,) € Q be
such thatu(x,, y,) — 0 andv(x,, y,) — My asn — +oo. Letx, € L1Z x --- X
L47 be such thatx, — %,, y,) € C. Up to taking a subsequence, one can assume that
(Xp — Xny yn) = (x,5) € C asn — +oo.

For eachn € N, letu,, be the function defined i by

u(x + Xp, y)

u,(x,y) =
n®.) u(Xp, Yn)



206 Henri Berestycki et al.

From the Harnack inequalities, the functiansare locally bounded iif2. On the other
hand, the functionéx, y) — u(x+x,, y) satisfy the same equationasndu(x,, y,) —
0 asn — +o0. From standard elliptic estimates, the functiafysconverge inC,zo’g ®)
(forall 0 < o < 1), up to taking a subsequence, to a nonnegative fungtigsolving

Attoo +b - Viteo + g (Qus =0 iInQ,
Oylioo =0 onos.

Furthermoreu(x,y) = 1, whenceus, > 0 in Q from the strong maximum princi-
ple. Owing to the definitions oM and of the sequence,, y,), one finds that O<
Uoo(x + L1e1, ¥)/uoo(x,y) < M1 andus(x + Lie1,y)/uso(X,y) = M;. Notice then
that My > 0 sinceu is positive inQ.

The function
Uoo(X + Lie1, y)

E(x,y) =
Y oo (X, )
satisfies
Viso .
AE+2—=.VE+b-VE=0 inQ,
u
=0 * onos2,

with £ < My in Q and equality atx, y). It follows from the strong maximum principle
thaté = M1 in Q, whenceus (x + Lie1, ¥) = Miuoso(x, y).

In other words, if we sed; = (In M1)/L1, the functionp1(x, y) := e " u(x, y)
is positive inQ and it satisfies

A@1 + 20103, 91 + 0291 + b - Vo1 + biaigr + ¢'(O)p1 =0 inQ,

g1 +av-e1p1 =0 onag,

¢1(x + Lie1, y) = ¢1(x, y) inQ,
whereb = (b1, ..., bn).

Notice now that the functiopy (x + Le, y)/@1(x, y) is globally bounded if2, once
again from Harnack type inequalities. Then set

x + Loeo,
Mp:= sup @1( 2€2,y)
(x,0)eQ p1(x,y)

and follow the same procedure as before, and s@ tmes. One then gets the existence
of a positiveL-periodic functiony in Q satisfying

Ap+20-Vigp+lalPp+b-Vo+b-Gdo+g0ep=0 inQ,
hp+v-ae=0 onog,

for somex = (o, ..., aq) € RY, wherela|? = ¢+ - -+a2,& = (a1, ..., 24, 0,...,0)
e RY andV is the gradient with respect to both, y) variables.
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Divide the above equation iy and integrate by parts over the c€ll By periodicity,
it follows that

Vol|? \Y v
/{' ol + 20 - ;¢+|a|2+b-7¢+b~&+g’(0)}=O.
C

(pZ
\Y 2 2
v b +<g’<0>—%)}=0.

/C{—+&+—

[0 2

One then gets a contradiction with the assumpfign< 2,/g’(0).
As a conclusion, Case 2 is ruled out, whencg;imf> 0 andu = 1. o

In other words,

Remark 4.3. In the case wher& = R, the above proof can be slightly simplified.
Indeed, by Lemmp 42, there & > 0 and a functionw such thatw > 0in Bg, w =0
ONdBg, w < uin Bg andAw + cé - Vw + f(w) > 0in Bg. Since the equati04)
satisfied byu is translation invariant, and sinee > 0 in R", one can slide: in any
direction and prove that, for ath € RV, w < u(- + xo) in Bg. Therefore, infy u > 0
and one concludes as in Case 1 of the above proofitkatl.

This result in the cas& = R" has been known since the paper of Aronson and
Weinberger[2], who used parabolic tools. The above arguments actually provide a simpler
proof using elliptic arguments.

Proof of Theorem 1.13As already emphasized, it only remains to prove tha® it a
straight cylinder in directior, thenw*(e) = 2,/ f/(0) for any nonnegative continuous
and compactly supported initial conditiag # O.

Let ug be such a function. Since*(e) < c*(e) < 2,/f’(0), one only has to prove
thatw*(e) > 2,/ f/(0).

Let0 < ¢ < 2,/f/(0) and let us actually prove thatz, x 4 cte, y) — 1 ast — +oo
locally in (x, y) € Q. Let us mention that, sinc is invariant in directiorg, the function
(x,y) — v(t,x,y) = u(t,x + cte, y) is defined inQ for all + > 0. The functionv
actually satisfies

vy =Av+4ce-Vv+ f(v)

forallt > 0 and(x, y) € @, together with Neumann boundary conditionsa®, and
initial condition uo. Notice thatv(z, x, y) > O forallt > 0 and(x, y) € Q from the
strong maximum principle.

SetM = suprw uo. One has O< M < +o0 by assumption. Leg(r) be the function
solvingé = f(¢) andé(0) = M. From the assumptions ofy, one has:(r) — 1 as
t — +o0. Furthermorep(z, x, y) < £(¢) for allt > 0 and(x, y) € Q by the parabolic
maximum principle. Therefore,

limsup sup v, x,y) <1 (4.3)
t——+00 (x,y)e§

On the other hand, from Lemnja 4.2, there exiBts> 0 (large enough so that
Br N Q # ¥) and a functionw solving [4.2) and such that, say(1, x, y) > w(x,y)
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for all (x,y) € Bg N Q (remember that MR ) cBerq V(L x, y) > 0). Letw be the
function defined iM2 by & = w in Bx N Q and®w = 0in 2\ Bg. The function® is then
a subsolution for the equation satisfiediyTherefore, the functioa solving

0, =AO+cé-VO+ f(O), t>0, (x,y) €,
30 =0, t>0, (x,y) €99,
0(0,x,y) =w(x,y),

is nondecreasing with respectrtand, sincab < v(1, -, -) in Q, the functiory satisfies
Vi >0, V(x,y) € Q, 0t x,y) <v(t+1x,y). (4.4)

Without loss of generality, one can assume that 1 in Q, whenced (¢, x, y) < 1
for all (t,x,y) € Rt x Q. By monotonicity in¢, the functiond(z, x, y) converges as
t — 4o0 to a functiony (x, y). From standard parabolic estimates, the convergence
6(t,x,y) — ¥(x,y) ast — oo holds locally uniformly inQ and the functiony is
a classical solution 04) with = f, b = ce and|b| < 2,/ f’(0). Furthermore,
0<® <1y <1inQ (thus,y # 0sincew > 0in Bx N # ). Propositiof 1.14 yields
=1

One deduces fronj (4.4) that limjnf . oo Min; y)ex v(t, x, y) > 1 for all compact
setsK C Q.

One concludes fron@B) thatr, x, y) — 1 ast — +oo locally in (x, y) € Q. That
completes the proof of Theordm 1]13. o

Remark 4.4. If Q is invariant in directiore and satisfieg (I}1), then(z, x +cre, y) > 1

ast — oo locally in (x, y) € Q for 0 < ¢ < 2,/f/(0) and for all solutions: of )
with continuous bounded nonnegative initial condition= 0. The latter indeed holds
from the maximum principle even ifg is not compactly supported. Furthermore, under
the additional assumption thag is compactly supported, then(z, x + cte, y) — 0 as

t — 4oolocally in (x, y) € Qforall ¢ > 2,/f/(0).
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