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Abstract. In the present paper, we give a first general construction of compactified moduli spaces
for semistableG-bundles on an irreducible complex projective curveX with exactly one node,
whereG is a semisimple linear algebraic group over the complex numbers.
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1. Introduction

If X is a smooth projective curve andG is a reductive linear algebraic group, then one has
the projective moduli spaceM τ

G for the (S-equivalence classes of) semistable principalG-
bundles of fixed topological typeτ ∈ π1(G). The GIT-construction of this space is due to
Ramanathan [14]. Later it was simplified and extended to higher dimensions by Gómez
and Sols [10]. IfG is a semisimple group, there are alternative approaches by Balaji
and Seshadri [1], and the author [16], [17]. As does the work of Gómez and Sols, the
latter two yield Gieseker-type compactifications of the moduli spaces of stable principal
bundles in higher dimensions. An important open problem, raised by M. S. Narasimhan,
is to generalize this result to singular curves. The first case to understand will be the case
whereX is an irreducible projective curve with exactly one node (which will be called
for simplicity anodal curvein what follows). IfG = GLr(C), one may work with vector
bundles of rankr rather than with principalG-bundles, and then the moduli spaceU (r, d)

of semistable torsion free sheaves of rankr and fixed degreed is the generalization one
is looking for. Similarly, ifG = O(r) or G = Sp(r), then one may work with torsion
free sheavesE together with a non-degenerate bilinear formβ: E ⊗ E → OX, required
to be symmetric in the case of O(r) and anti-symmetric in the case of Sp(r). For these
objects, one has again a natural notion of semistability and the moduli spaces can be
constructed [6], [3]. Surprisingly, however, the problem becomes difficult already forG =

SLr(C). On a smooth curve, an SLr(C)-bundle is usually identified with a vector bundle
E with

∧rkE
E ∼= OX. This determinantal condition does not make sense for a non-

locally free torsion free sheafE on a nodal curve. Nagaraj and Seshadri suggest replacing
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the above condition by the condition that there be a non-zero homomorphism
∧rk E E →

OX which is an isomorphism outside the node ofX ([13, p. 136]). Sun has recently
checked in [22] that this suggestion seems reasonable in the sense that this condition
defines an irreducible closed subsetUSLr (C) in the moduli space of semistable torsion free
sheaves of degree zero and rankr on the curveX which is compatible with degenerations.
The latter statement means that, for a degeneration of a smooth curveX̂ toX, the moduli
space of vector bundles of rankr with trivial determinant on̂X degenerates to a closed
subscheme ofU (r,0) the support of which is exactlyUSLr (C). The open problem which
remains is to giveUSLr (C) a modular interpretation.

1.1

Based on the notion of a singular principal bundle introduced by the author on smooth
projective manifolds in [16] and extended in a certain way to a wide class of singular
varieties (including nodal curves, see Section 5.2 for the discussion) by Bhosle [3], we
propose to look at the following objects. LetX be a nodal curve,G a semisimple linear
algebraic group, and%: G → SL(V ) a faithful representation. Anhonest singular prin-
cipal G-bundle onX is a pair(A , τ ), consisting of a torsion free sheafA onX and a
homomorphismτ : Sym?(A ⊗V )G → OX such that the image ofU := X\{node} under
σ is contained inIsom(V ⊗ OX,A

∨

|U )/G. Here,σ : X → Spec(Sym?(A ⊗ V )G) =

Hom(V ⊗ OX,A
∨

|U )//G is the section corresponding toτ . Now, we can form the base
change diagram

P −−−−→ Spec(Sym?(A ⊗ V ))y y
X

σ
−−−−→ Spec(Sym?(A ⊗ V )G)

(1)

The condition on the image ofU guarantees thatP(A , τ ) := P|U is indeed a principal
G-bundle. In order to formulate an appropriate semistability condition for honest singular
G-bundles, we need some more notation. SupposeA is a torsion free sheaf onX; then a
weighted filtration ofA is a pair(A •, α), consisting of a filtration

A •: 0 ( A1 ( · · · ( As ( A

of A by saturated subsheaves and a tupleα = (α1, . . . , αs) of positive rational numbers.
To a weighted filtration(A •, α), we associate the rational number

L(A •, α) :=
s∑
i=1

αi(deg(A ) · rk Ai − deg(Ai) · rk A ).

Next, letλ: C? → G be a one-parameter subgroup ofG, and let

QG(λ) := {g ∈ G | lim
z→∞

λ(z) · g · λ(z)−1 exists inG}

be the associated parabolic subgroup. Recall also thatλ defines integersγ1 < · · · < γs+1
and a decomposition
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V :=
s+1⊕
i=1

Vi, Vi := {v ∈ V | λ(z)(v) = zγi · v, ∀z ∈ C?}, i = 1, . . . , s + 1,

and thus theweighted flag(V •, α) with

V •: 0 ( V1 ( V1 ⊕ V2 ( · · · ( V1 ⊕ · · · ⊕ Vs ( V

and
α = (α1, . . . , αs), αi :=

γi+1 − γi

dimV
, i = 1, . . . , s.

We remark thatQG(λ) is theG-stabilizer of the flagV •. Then areduction of(A , τ ) to
λ is a sectionβ: U → P(A , τ )/QG(λ). This defines a weighted filtration(A •

β , αβ)

of A in the following manner: Setαβ = (αs, . . . , α1) whereα = (α1, . . . , αs), and the
filtration A •

β : 0 ( A1 ( · · · ( As ( A is obtained as follows: The section

U
β
→ P(A , τ )/QG(λ) ↪→ Isom(V ⊗ OU ,A

∨

|U )/QGL(V )(λ)

yields a filtration
0 ( A ′

1 ( · · · ( A ′
s ( A ∨

|U

of A ∨

|U by subbundles with rk(A ′

i ) = dim(Vi), i = 1, . . . , s. This is becauseQGL(V )(λ)

is the GL(V )-stabilizer of the flagV • and, thus,Isom(V ⊗ OU ,A
∨

|U )/QGL(V )(λ) → U

is the bundle of flags in the fibres ofA ∨

|U having the same dimensions as the flagV •. We
defineA ′′

i := ker(A|U → A ′∨

s+1−i), i = 1, . . . , s, so that we obtain a filtration

0 ( A ′′

1 ( · · · ( A ′′
s ( A|U

of A|U by subbundles. Letj : U → X be the inclusion and defineAi as the saturation
of A ∩ j?(A

′′

i ), i = 1, . . . , s. Now, an honest singular principalG-bundle is said to be
(semi)stableif

L(A •
β , αβ) (≥) 0

for every reductionβ of (A , τ ) to a one-parameter subgroup ofG.

1.2

Unfortunately, we are not able to give a direct construction of the moduli space of semi-
stable honest singularG-bundles on the curveX. Instead, we use an idea inspired by
the theory of generalized parabolic bundles of [2]. For this, letN ∈ X be the node
of X, ν: X̃ → X the normalization, andν−1(N) = {N1, N2}. Recall that ageneral-
ized parabolic bundle of rankr is composed of 1) a vector bundleA of rank r on X̃
and 2) anr-dimensional quotientq: AN1 ⊕AN2 → R. The pair(A, q) defines the torsion
free sheafA onX as

A := ker(ν?A → ν?(AN1 ⊕ AN2) = AN1 ⊕ AN2(supported atN )
q
→ R).

First, look at a triple(A, q, τ̃ ), where(A, q) is a generalized parabolic bundle as above,
andτ̃ : Sym?(A ⊗ V )G → OX̃ is a homomorphism ofOX̃-algebras. Then we define the
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pushforward(A , τ ) := ν?(A, q, τ̃ ) as follows: The torsion free sheafA is associated to
(A, q) as explained before. In order to define the homomorphismτ : Sym?(A ⊗ V )G →

OX of OX-algebras, we first observe that the inclusionA ⊂ ν?(A) corresponds to a
homomorphismν?(A ) → A. This yields a homomorphism

τ ′: ν?(Sym?(A ⊗ V )G) ∼= Sym?(ν?(A )⊗ V )G → Sym?(A⊗ V )G
τ

→ OX̃

of OX̃-algebras. The isomorphism results from general base change properties (Section 2
of [16]), and the second homomorphism comes from the natural mapν?(A ) → A. Now,
τ ′ in turn provides us with the map

τ : Sym?(A ⊗ V )G → ν?ν
?(Sym?(A ⊗ V )G)

ν?(τ
′)

→ ν?(OX̃).

This is a homomorphism ofOX-algebras. To see this, one has to verify that the first map
is a homomorphism ofOX-algebras. The latter reduces to the corresponding property of
the symmetric algebra Sym?(A ⊗ V ), which, finally, is easily checked.

Now, we define adescending principalG-bundle (onX̃) to be a triple(A, q, τ̃ ) as
before, such that the following requirements are met:

• The pair(A, τ̃ ) defines by means of base change (see Diagram (1)) a principalG-
bundleP(A, τ̃ ) onX̃. This is equivalent to the fact that the associated sectionσ̃ : X̃ →

Hom(V ⊗ OX̃, A
∨)//G given by τ̃ factorizes over the open subschemeIsom(V ⊗

OX̃, A
∨)/G. Note that this implies that det(A) ∼= OX̃.

• The image of the homomorphismτ from the pair(A , τ ) = ν?(A, q, τ̃ ) lies in the
subalgebraOX.

Remark 1.2.1. (i) By definition, the pair(A , τ : Sym?(A ⊗ V )G → OX) is an honest
singularG-bundle on the nodal curveX. Thus, in analogy with Bhosle’s theory of gener-
alized parabolic bundles, we describe honest singularG-bundles on the singular curveX
by principalG-bundles on the smooth curvẽX, satisfying some descent conditions.

(ii) A principal G-bundleP onX defines a descendingG-bundle onX̃. For this, let
E be the vector bundle with fibreV associated withP by means of the representation%,
and setA := E ∨. We have the natural inclusionP ⊂ Isom(V ⊗ OX,A ∨). Taking the
G-quotient, we find the sectionσ : X → Isom(V ⊗ OX,A ∨)/G which corresponds
to a homomorphismτ : Sym?(A ⊗ V )G → OX of OX-algebras. Then we setA :=
ν?A , q: AN1 ⊕ AN2 → Coker(A → ν?ν

?A ), andτ̃ = ν?τ . The triple(A, q, τ̃ ) is a
descendingG-bundle onX̃ which, indeed, descends toP (more precisely to(A , τ )).

1.3

Next, we have to define the semistability concept for descending principalG-bundles.
This concept will depend on a parameterα ∈ (0,1) ∩ Q. Fix such a parameterα, and let
(A, q) be a generalized parabolic bundle as above. For any subbundleB of A, we define
theα-parabolic degreeas

α-pardeg(B) := deg(B)− α · dimq(BN1 ⊕ BN2).
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Now, let(A, q, τ̃ ) be a descendingG-bundle on the curvẽX. As before, we can speak of
aweighted filtration(A•, α) ofA (where “saturated subsheaf” = “subbundle”, becauseX̃

is smooth). To such a weighted filtration(A•, α), we assign the rational number

Pα(A
•, α) :=

s∑
i=1

αi(α-pardeg(A) · rkAi − α-pardeg(Ai) · rkA).

In analogy to the definitions above, areduction of the descendingG-bundle(A, q, τ̃ ) to
the one-parameter subgroupλ: C? → G is a sectionβ: X̃ → P(A, q, τ̃ )/QG(λ). Such
a reductionβ gives rise to a weighted filtration(A•

β , αβ) of A by a procedure similar to
the one used in the case of honest singular principal bundles on the nodal curveX. Finally,
we call(A, q, τ̃ ) α-(semi)stableif the condition

Pα(A
•
β , αβ) (≥) 0

holds for any reductionβ of (A, q, τ̃ ) to a one-parameter subgroup ofG.
Below, we will explain what afamily of descendingG-bundles parameterized by a

schemeS is. When one has this notion at hand, one may define moduli functors

M(%)α-(s)s: SchC → Set,

S 7→

{
equivalence classes of families of
α-(semi)stable descendingG-bundles

}
.

We then have:

Main Theorem. There exist a projective schemeM (%)α-ss and an open subscheme
M (%)α-s

⊂ M (%)α-ss as well as natural transformations of functors

ϑα-(s)s: M(%)α-(s)s
→ hM (%)α-(s)s

with the following properties:

1. For every schemeN and every natural transformationϑ ′: M (%)α-ss
→ hN , there is

a unique morphismψ : M (%)α-ss
→ N with ϑ ′

= h(ψ) ◦ ϑα-ss.
2. The schemeM (%)α-s is a coarse moduli space for the functorM(%)α-s.

Regarding the relation of the notion ofα-(semi)stability to our notion of (semi)stability
for honest singularG-bundles on nodal curves, we note

Proposition. There is a valueα1 ∈ (0,1) ∩ Q such that, for everyα > α1 and every
descendingG-bundle(A, q, τ̃ ) on X̃ with associated honest singularG-bundle(A , τ )

onX, the following conclusions hold true:

(i) If (A , τ ) is stable, then(A, q, τ̃ ) is α-stable.
(ii) If (A, q, τ̃ ) is α-semistable, then(A , τ ) is semistable.

Note that we may apply our results also to the caseG = SLr(C) and%: SLr(C) ⊂

GLr(C). In this case, the moduli spaceM (%)α-ss maps onto the closed subsetUSLr (C)
in U (r,0). This providesUSLr (C) with the structure of the scheme-theoretic image of
M (%)α-ssand seems to be the most natural scheme structure one can put onUSLr (C) at the
moment. A similar strategy will be used to construct natural subschemes of Bhosle’s “big”
moduli spaces for singular principalG-bundles for an arbitrary semisimple groupG.
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1.4

If X has arithmetic genus one (i.e.,X is a nodal elliptic curve) andG is simple and simply
connected, there is another conceptual approach to the problem by Friedman and Morgan
[8]. They construct a projective moduli spaceMFM parameterizing certainG-bundles
onX. (It seems to be specific to the casepa(X) = 1 that one can build a compact moduli
space from principalG-bundles onX only, i.e., without singular objects.) This moduli
space is compatible with degenerations in the following sense: If(π : X→B, σ : B→X)
consists of a flat proper morphismπ the fibres of which are either smooth or nodal elliptic
curves and a sectionσ which meets the fibres only in smooth points, then there is a relative
moduli spaceMX/B → B such that the fibre over a pointb is the usual moduli space of
semistableG-bundles onπ−1(b) if that curve is smooth, andMFM if π−1(b) is a nodal
curve. LetB0 be the open part where the fibres ofπ are smooth elliptic curves. Then the
relative compactificationMX/B of Mπ−1(B0)/B0 has certain uniqueness properties (see
Section 5 of [8]).

The moduli spaceMFM is obtained by generalizing the “parabolic construction” in-
troduced in [7] for smooth elliptic curves. In this construction, one fixes a system1 of
simple roots and a special rootα ∈ 1 (that is, any root ifG is of typeAn, and the
unique long root such that the Dynkin diagram is a union of graphs of typeA with α as
an end, meeting each other inα only, otherwise). This provides the maximal parabolic
subgroupPα. TheG-bundles which are classified byMFM are obtained fromPα-bundles
by means of extending the structure group. ThePα-bundles, in turn, can be described by
certain vector bundles and non-abelian cohomology groups. Although the parabolic con-
struction gives very precise information on theG-bundles thus obtained, it seems hard to
characterize them by semistability conditions. Nevertheless, the moduli spaceMFM con-
tains a dense affine open partM 0 which parameterizes theG-bundlesP onX enjoying
the following equivalent properties:

• The pullback ofP to the normalizatioñX is trivial.
• For every representationϕ: G → GL(W), the vector bundleϕ∗(P ) is semistable.

We claim thatM 0 also forms an open subset of our moduli spacesM (%)α-ss, for any
representation% and any stability parameterα ∈ (0,1)∩ Q. To see this, letP be a princi-
palG-bundle onX and consider the associated descendingG-bundle(A, τ̃ , q) (Remark
1.2.1(ii)). Note that0 := ker(q) may be viewed as the graph of the natural isomorphism
ϕ: AN1 → AN2. For every subbundle 0( B ( A, it follows that

dim((BN1 ⊕ BN2) ∩ 0) = dim(BN2 ∩ ϕ(BN1)) ≤ rk(B),

i.e.,
dimq(BN1 ⊕ BN2) ≥ rk(B).

Thus, for any weighted filtration(A•, α) of A, we obtain

P(A•, α) ≥

s∑
i=1

αi(deg(A) · rkAi − deg(Ai) · rkA) ≥ 0.

The latter inequality results from the fact thatA is semistable. Thus,M (%)α-ss andMFM
are isomorphic overM 0.
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At the moment, it seems to be difficult to obtain more precise information about the
relationship betweenM (%)α-ssandMFM, because (a) the objects inMFM are not charac-
terized by a semistability condition and (b) our moduli spacesM (%)α-ss are probably not
compatible with degenerations (so that the uniqueness property mentioned above cannot
be applied). Hopefully, more precise knowledge on the problem raised in Section 5.3 will
shed light on this. Finally, it would be interesting to know whether the description of the
category of coherent sheaves onX given by Burban and Drozd in [5] might be used and
generalized to get a description of all singularG-bundles onX.

Conventions

We work over the field of complex numbers. Aschemewill be a scheme of finite type
over C. For a vector bundleE over a schemeX, we setP(E ) := Proj(Sym?(E )), i.e.,
P(E ) is the projective bundle of hyperplanes in the fibres ofE .

2. Preliminaries

2.1. Base change properties of affine morphisms

Suppose thatf : X → Y is an affine morphism, and leth: Z → Y be an arbitrary mor-
phism. We form the base change diagram

X ×Y Z
hZ

−−−−→ X

fZ

y yf
Z

h
−−−−→ Y

The morphismfZ is again affine, and one has

Proposition 2.1.1. For any coherent sheafE onX, the natural base change homomor-
phism

h?f?(E ) → fZ?h
?
Z(E )

is an isomorphism.

Proof. This can be found in [11, p. 12, Corollary (1.5.2)]. ut

For any morphismϕ: T → S between schemes and anyOS-moduleA , there is the
“natural homomorphism”A → ϕ?ϕ

?(A ).

Lemma 2.1.2. In the situation of Proposition2.1.1, let EY be anOY -module. Then the
homomorphism

h?EY
h?(natural)

−−−−−→ h?f?f
?EY

2.1.1
∼= fZ?h

?
Zf

?EY = fZ?f
?
Zh

?EY

is the natural homomorphism forA := h?EY andϕ := fZ.

Proof. This is easily checked in the setting of modules over rings. ut
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2.2. Zero loci of sheaf homomorphisms

Proposition 2.2.1. LetX be a projective variety,S a Noetherian scheme,A 1
S and A 2

S

coherent sheaves onS × X, andϕS : A 1
S → A 2

S a homomorphism. IfA 2
S is flat overS,

then there is a closed subschemeZ ⊂ S enjoying the following universal property: A mor-
phismh: T → S factorizes overZ if and only if(h × idX)?ϕS is trivial. In particular, a
point s ∈ S lies inZ if and only ifϕS|{s}×X ≡ 0.

Proof. The author learned this result from [9, Lemma 3.1]. A proof is also given in [16,
Proposition 2.1]. ut

2.3. Generalized parabolic bundles

We summarize the main results of the paper [2]. It serves also as a model for the kind
of results we wish to obtain for principal bundles. For this, we use the notation of the
introduction. Recall that we work on a fixed nodal curveX and thatν: X̃ → X is the
normalization map. As before,N ∈ X is the singular point, andν−1(N) = {N1, N2}.

In the introduction, we explained the notion of a generalized parabolic bundle. Now,
we will introduce the notion of a family of such objects. For doing so, we use the fol-
lowing shorthand notations: IfS is the parameter scheme, then we writeSN1,N2 for the
subschemeS × {N1, N2} of S × X̃ andSN for the subschemeS × {N} of S ×X. Then a
family of generalized parabolic bundles parameterized byS is a pair(AS, qS) which con-
sists of a vector bundleAS onS × X̃ and a quotient mapqS : πS?(AS|SN1,N2

) → RS onto
a vector bundle of rankr onSN . Here,r is the rank ofAS andπS denotes the projection
morphismSN1,N2 → SN . Two such families(A1

S, q
1
S) and(A2

S, q
2
S) are calledequivalent

if there is an isomorphismψS : A1
S → A2

S such that

q1
S = q2

S ◦ πS?(ψS|SN1,N2
).

Next, supposeT is another scheme,f : T → S is a morphism, and(AS, qS) is a family of
generalized parabolic bundles parameterized byS. Thepullback(AT , qT ) of the family
(AS, qS) via f is obtained as follows: We start with the following diagram in order to

introduce the necessary notation (where the mapsh, h̃, andh̃ are derived fromf , e.g.,
h = f × idX):

T × X̃

T ×X

πT
TN SN

ιS

πT

ι̃T

ιT

TN1,N2 SN1,N2

ι̃S

πS

h̃

S × X̃

S ×X

πS

h

h̃
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The given datum is the quotientqS : πS?̃ιS?̃ι ?SAS → RS . This provides us, by means of
pullback, with the quotient

h?qS : h?πS?̃ιS?̃ι
?
SAS → h?RS =: RT

on the schemeTN . A repeated application of Proposition 2.1.1 yields the following iden-
tifications:

h?πS?̃ιS?̃ι
?
SAS

∼= πT ?h̃
? ι̃S?̃ι

?
SAS

∼= πT ?̃ιT ?h̃
?
ι̃ ?SAS

∼= πT ?̃ιT ?̃ι
?
T h̃

?AS .

If we setAT := h̃?AS , then the above identifications turnh?qS into a quotientqT :
π̃T ?(AT |TN1,N2

) → RT such that the following diagram commutes:

h?πS?(AS) −−−−→ h?πS?AS|SN1,N2

h?qS
−−−−→ h?RS

∼=

y y∼=

∥∥∥
πT ?h̃

?AS = πT ?AT −−−−→ πT ?(AT |TN1,N2
)

qT
−−−−→ RT

(2)

The associated family of torsion free sheaves onS × X. Let S be a scheme and
(AS, qS) a family of generalized parabolic bundles parameterized byS. We define the
associated family of torsion free sheaves onS ×X as

AS := ker(πS?(AS) → πS?(AS|SN1,N2
)
qS
→ RS).

Since the mapπS?(AS) → RS is surjective and bothπS?(AS) andRS areS-flat, the
family AS is alsoS-flat.

Lemma 2.3.1. Let (AS, qS) be a family of generalized parabolic bundles parameterized
by S, h: T → S a homomorphism, and(AT , qT ) the pullback of(AS, qS) by h. This
yields the familiesAT andAS onT ×X andS×X associated to(AT , qT ) and(AS, qS),
respectively. Then one has an isomorphismAT → h?AS such that the following diagram
commutes:

h?(AS)
⊆

−−−−→ h?πS?(AS)

∼=

y y∼=

AT
⊆

−−−−→ πT ?AT

Proof. This is, in fact, a direct consequence of Diagram (2). ut

Semistable generalized parabolic bundles. As in the introduction, we fix a stability
parameterα ∈ (0,1)∩ Q. A generalized parabolic bundle(A, q) on the curvẽX is called
α-(semi)stableif, for every subbundle 0( B ( A, the inequality

α-pardeg(B)

rk(B)
(≤)

α-pardeg(A)

rk(A)

is satisfied.
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Example 2.3.2. The (semi)stability condition makes sense also for the valueα = 1. In
fact, the following is known:

Proposition. A generalized parabolic bundle(A, q) is 1-(semi)stable if and only if the
associated torsion free sheafA onX is (semi)stable.

Now, fix d ∈ Z, r ∈ Z>0. By standard considerations, one infers

Corollary. Suppose that the stability parameterα is sufficiently close to one. Then, for
any generalized parabolic bundle(A, q) with deg(A) = d andrk(A) = r with associated
torsion free sheafA , one has:

(i) If (A, q) is α-semistable, thenA is semistable.
(ii) If A is stable, then(A, q) is α-stable.

The above proposition is Proposition 4.2 in [2]. We will come back to this in Section 5.2
within our context.

Ford andr as above, we want to study the moduli functors

GPBα-(s)s
d/r : SchC → Set,

S 7→


equivalence classes of families
of α-(semi)stable generalized
parabolic bundles of degreed
and rankr parameterized byS

 .
In Section 4 of [2], we then find

Theorem 2.3.3. There exist a projective schemeG PBα-ss
d/r and an open subscheme

G PBα-s
d/r ⊂ G PBα-ss

d/r as well as natural transformations of functors

ϑα-(s)s: GPBα-(s)s
d/r → h

G PBα-(s)s
d/r

with the following properties:

1. For every schemeN and every natural transformationϑ ′: G PBα-ss
d/r → hN , there

is a unique morphismψ : G PBα-ss
d/r → N with ϑ ′

= h(ψ) ◦ ϑα-ss.
2. The schemeG PBα-s

d/r is a coarse moduli space for the functorGPBα-s
d/r .

Forα sufficiently close to one, the map which associates to the equivalence class of a fam-
ily (AS, qS) of generalized parabolic bundles parameterized byS the equivalence class of
the associated familyAS of torsion free sheaves onX defines a natural transformation of
the functor GPBα-ss

d/r to the moduli functor of semistable torsion free sheaves onX, so that
the theorem implies

Corollary 2.3.4. For α close enough to one, there is a surjective morphism

G PBα-ss
d/r → U (r, d).

Bhosle shows that this morphism is a desingularization if(d, r) = 1 ([2, Theorem 3,
Section 4]).
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3. Decorated generalized parabolic bundles

The general strategy to construct our moduli spaces is the one adopted in our papers [16]
and [17]. This means that we will first develop a theory of decorated generalized parabolic
bundles in order to obtain our moduli spaces.

3.1. The homogeneous case

We fix non-negative integersa, b, c, and a line bundleL on X̃. A generalized parabolic
bundle with a decoration of type(a, b, c;L) is a triple(A, q, ϕ), where(A, q) is a gen-
eralized parabolic bundle as before, andϕ: (A⊗a)⊕b → det(A)⊗c ⊗ L is a non-trivial
homomorphism. Two generalized parabolic bundles(A1, q1, ϕ1) and (A2, q2, ϕ2) with
a decoration of type(a, b, c;L) are said to beequivalentif there are an isomorphism
ψ : A1 → A2 and a numberz ∈ C? such that

q1 = q2 ◦ (ψ|{N1,N2}), ϕ2 = (det(ψ)⊗c ⊗ (z · idL)) ◦ ϕ1 ◦ ((ψ⊗a)⊕b)−1.

A family of generalized parabolic bundles with a decoration of type(a, b, c;L) parame-
terized by a schemeS is a quadruple(AS, qS,NS, ϕS), where

• (AS, qS) is a family of generalized parabolic bundles,
• NS is a line bundle onS,
• ϕS : (A⊗a

S )⊕b → det(AS)⊗c⊗π?
X̃
L⊗π?SNS is a homomorphism such thatϕS|{s}×X̃ 6≡ 0

for all s ∈ S.

We will call two such families(A1
S, q

1
S,N

1
S, ϕ

1
S) and(A2

S, q
2
S,N

2
S, ϕ

2
S) equivalentif there

are isomorphismsψS : A1
S → A2

S andχS : N1
S → N2

S such that

q1
S = q2

S ◦ (πS?(ψS|SN1,N2
)),

ϕ2
S = (det(ψS)

⊗c
⊗ π?S(χS)⊗ idπ?

X̃
L) ◦ ϕ1

S ◦ ((ψ⊗a
S )⊕b)−1.

Let (A, q, ϕ) be a generalized parabolic bundle with a decoration of type(a, b, c;L).
Suppose we are given a weighted filtration(A•, α) of A. We then define

µa,b,c(A
•, α;ϕ) := − min{γj1 + · · · + γja | (j1, . . . , ja) ∈ {1, . . . , s + 1}

×a,

ϕ|(Aj1⊗···⊗Aja )
⊕b 6≡ 0}.

In this definition, we used the weight vector

γ = (γ1, . . . , γs+1) :=
s∑
i=1

αi · (rk(Ai)− r, . . . , rk(Ai)− r︸ ︷︷ ︸
rk(Ai )×

, rk(Ai), . . . , rk(Ai)︸ ︷︷ ︸
(r−rk(Ai ))×

),

wherer := rk(A).

Remark 3.1.1. This definition agrees with the one given by the author in [15, Lemma
1.4], as one easily checks.
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We fix numbersα ∈ (0,1) ∩ Q andδ ∈ Q>0. Then the decorated generalized parabolic
bundle(A, q, ϕ) is said to be(α, δ)-(semi)stableif for every weighted filtration(A•, α)

of A, the inequality

Pα(A
•, α)+ δ · µa,b,c(A

•, α;ϕ) (≥) 0

is satisfied. Now, we may introduce the moduli functors

DGPB(α,δ)-(s)s
d/r/a/b/c/L: SchC → Set,

S 7→



equivalence classes of families
of (α, δ)-(semi)stable
generalized parabolic bundles
(AS, qS,NS, ϕS) with a
decoration of type(a, b, c;L)
such that deg(AS|{s}×X) = d,
for all s ∈ S, and rk(AS) = r


.

Our main auxiliary result is

Theorem 3.1.2. There exist a projective schemeDG PB(α,δ)-(s)s
d/r/a/b/c/L and an open sub-

schemeDG PB(α,δ)-s
d/r/a/b/c/L ⊂ DG PB(α,δ)-ss

d/r/a/b/c/L as well as natural transformations of
functors

ϑ (α,δ)-(s)s: DGPB(α,δ)-(s)s
d/r/a/b/c/L → h

DG PB(α,δ)-(s)s
d/r/a/b/c/L

with the following properties:

(i) For everyN and every natural transformationϑ ′: DGPB(α,δ)-ss
d/r/a/b/c/L → hN , there

is a unique morphismψ : DG PB(α,δ)-ss
d/r/a/b/c/L → N with ϑ ′

= h(ψ) ◦ ϑ (α,δ)-ss.

(ii) The schemeDG PB(α,δ)-s
d/r/a/b/c/L is a coarse moduli space for the functor

DGPB(α,δ)-sd/r/a/b/c/L.

3.2. The inhomogeneous case

Here, we will make some remarks concerning a different class of decorations which we
will need in some places, but we do not have to develop the whole moduli theory. This
time, we fix tuplesa = (a1, . . . , an), b = (b1, . . . , bn), andc = (c1, . . . , cn) of non-
negative integers such thatai − rci > 0 for i = 1, . . . , n. If ai − rci = aj − rcj , 1 ≤ i <

j ≤ n, we call the triple(a, b, c) homogeneous. The objects we will study now are triples
(A, q, ϕ) with (A, q) a generalized parabolic bundle of rankr andϕ: Aa,b,c → OX̃ a
non-trivial homomorphism. Here,

Aa,b,c :=
n⊕
i=1

(A⊗ai )⊕bi ⊗ (det(A)∨)⊗ci .
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We call(A, q, ϕ) a generalized parabolic bundle with a decoration of type(a, b, c), and
we say that(A1, q1, ϕ1) is equivalent to(A2, q2, ϕ2) if there is an isomorphismψ : A1 →

A2 such that
q1 = q2 ◦ (ψ|{N1,N2}), ϕ1 = ϕ2 ◦ ψa,b,c,

whereψa,b,c: A1;a,b,c → A2;a,b,c is the isomorphism induced byψ . The decorationϕ
breaks into components

ϕi : (A
⊗ai )⊕bi → det(A)⊗ci , i = 1, . . . , n.

Given a weighted filtration(A•, α), we set, forAs+1 := A andi = 1, . . . , n,

µ(A•, α;ϕi) := − min{γj1 + · · · + γjai | (j1, . . . , jai ) ∈ {1, . . . , s + 1}
×ai ,

ϕi|(Aj1⊗···⊗Ajai
)⊕bi 6≡ 0}

as well as
µa,b,c(A

•, α;ϕ) := max{µ(A•, α;ϕi) | i = 1, . . . , n}.

Next, we will relate inhomogeneous decorations to homogeneous ones. Letv1 <

· · · < vm be the integers which occur asai − rci , i = 1, . . . , n. Given any three
non-negative integersa, b, andc, we writeVa,b,c for the GL(V )-module(V⊗a)⊕b ⊗

(
∧dim(V )

V )⊗−c. SetVj :=
⊕

i:ai−rci=vj Vai ,bi ,ci , j = 1, . . . , m. Choose a sufficiently
large common multipleω of v1, . . . , vm. If we letC? act onVj by multiplication withzvj ,
the weighted projective space(Va,b,c \ {0})/C? gets embedded intoP(Vω),

Vω :=
⊕

(d1,...,dm) : di≥0,
v1d1+···+vmdm=ω

Sd1(V ∨

1 )⊗ · · · ⊗ Sdm(V ∨
m ).

The details may be found in [17]. We may find positive integersD,E,F withD− rF =

−ω such thatVω is a direct summand ofVD,E,F ([15, Corollary 1.2]) and we have an
embeddingP(Vω) ↪→ P(VD,E,F ).

Let (A, q, ϕ) be a generalized parabolic bundle with a decoration of type(a, b, c).
Then ϕ defines, for every tupled = (d1, . . . , dm) with v1d1 + · · · + vmdm = ω, a
homomorphism

ϕ̃d : Sd1(B1)⊗ · · · ⊗ Sdm(Bm) → OX

whereBj :=
⊕

i:ai−rci=vj Aai ,bi ,ci , j = 1, . . . , m. These homomorphisms add up to

ϕ̃:
⊕

(d1,...,dm) : di≥0,
v1d1+···+vmdm=ω

Sd1(B1)⊗ · · · ⊗ Sdm(Bm) → OX̃.

This finally defines
ϕ̂: (A⊗D)⊕E → det(A)⊗F .

For every weighted filtration(A•, α) of A, we set

νa,b,c(A
•, α;ϕ) :=

1

ω
· µD,E,F (A

•, α; ϕ̂).
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Again, we fix parametersα ∈ (0,1) ∩ Q andδ ∈ Q>0. Then a generalized parabolic
bundle(A, q, ϕ) with a decoration of type(a, b, c) is called(α, δ)-(semi)stableif, for
every weighted filtration(A•, α) of A, the inequality

Pα(A
•, α)+ δ · νa,b,c(A

•, α;ϕ) (≥) 0

is satisfied.

Remark 3.2.1. An obvious but important fact is

νa,b,c(A
•, α;ϕ) < (= / >) 0 ⇔ µa,b,c(A

•, α;ϕ) < (= / >) 0. (3)

3.3. The semistability concept for decorated generalized parabolic bundles for large
values of the semistability parameter

In this section, we will explain how the concept of(α, δ)-(semi)stability simplifies and
stabilizes when the parameterδ gets very large. We may confine ourselves to a sketch of
the arguments, because they are a trivial adaptation of those in our paper [18]. As usual,
we fix the input dataa, b, c, d, r, andL.

Let A be a locally free sheaf of degreed and rankr on the smooth curvẽX, and
ϕ: (A⊗a)⊕b → det(A)⊗c ⊗ L a non-trivial homomorphism. Given a trivializationψη:
A⊗OX̃

K ∼= Cr⊗CK, the homomorphismϕ|η defines an element̃ση ∈ P(Va,b,c)×Spec(C)
Spec(K). Here,η is the generic point of̃X andK is the function field of̃X. We say that
ϕ is generically semistableif σ̃η ∈ Pss

a,b,c×Spec(C)Spec(K), with Pss
a,b,c the set of SL(V )-

semistable points inP(Va,b,c).

Remark 3.3.1. (i) The above notion of generic semistability does not depend on the
choice of the trivialization. In fact, setA := A|η. This is anr-dimensionalK-vector
space. The condition is that [ϕη] ∈ P(Aa,b,c) be contained in the set of points which
are semistable for the action of the group SL(A). This follows from Proposition 1.14 in
Chapter 1.4 of [12].

(ii) With the above formulation of generic semistability and the definition of
µa,b,c(A

•, α;ϕ) in the form of Lemma 1.4 of [15], it is obvious that

µa,b,c(A
•, α;ϕ) ≥ 0

for every weighted filtration(A•, α) of A, if ϕ is generically semistable.

Now, fix a rational numberα ∈ (0,1). We say that a generalized parabolic bun-
dle (A, q, ϕ) with a decoration of type(a, b, c;L) is α-asymptotically (semi)stableif
(a)ϕ is generically semistable and (b) for every weighted filtration(A•, α) of A such that
µa,b,c(A

•, α;ϕ) = 0, one has

Pα(A
•, α) (≥) 0.
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Theorem 3.3.2. Givena, b, c, d, r,L andα as above, there is a positive rational number
δ∞ such that for every generalized parabolic bundle(A, q, ϕ) with a decoration of type
(a, b, c;L), satisfyingdeg(E) = d and rk(E) = r, and every rational numberδ > δ∞,
the following two conditions are equivalent:

(i) (A, q, ϕ) is (α, δ)-(semi)stable.
(ii) (A, q, ϕ) is α-asymptotically (semi)stable.

Proof. The proof is subdivided into several steps as in [18].

Step 1.Here, one proves the following result.

Proposition 3.3.3. There is a positive rational numberδ0 such that, for everyδ > δ0, a
generalized parabolic bundle(A, q, ϕ)with a decoration of type(a, b, c;L), deg(A)=d,
andrk(A) = r which is(α, δ)-semistable isα-asymptotically semistable as well.

Proof. Note that it suffices to show that, for largeδ, ϕ is generically semistable, be-
cause then(α, δ)-semistability obviously impliesα-asymptotic semistability, by Remark
3.3.1(ii). If ϕ is not generically semistable, then the proof of Theorem 3.1.1 in [18] shows
that there are a constantC (which depends only on the input data) and a weighted filtration
(A•, α) with

C ≥

s∑
i=1

αi(rkAi · deg(A)− r · deg(Ai))

and
µa,b,c(A

•, α;ϕ) < 0.

Furthermore, the tuple(rkA1, . . . , rkAs;α1, . . . , αs) belongs to a finite setT which de-
pends only ona, b, andc ([18, Remark 2.1.4(ii)]). Since, by definition of theα-parabolic
degree,

rkA′
· α-pardeg(A)− r · α-pardeg(A′)

= rkA′
· deg(A)− r · deg(A′)− α · r · rkA′

+ α · r · dimq(A′

N1
⊕ A′

N2
)

≤ rkA′
· deg(A)− r · deg(A′)+ α · r · (r − 1)

for any subbundleA′ of A, it is clear that we can find a constantC′ which depends only
on the input data with

C′
≥

s∑
i=1

αi(rkAi · α-pardeg(A)− r · α-pardeg(Ai)).

Applying the condition of(α, δ)-semistability to the above weighted filtration, we find
the estimate

C′
− δ ≥ Pα(A

•, α)+ δ · µa,b,c(A
•, α;ϕ) ≥ 0,

so that the proposition holds indeed forδ0 := C′. ut
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Step 2

Proposition 3.3.4. The set of isomorphy classes[A] of vector bundlesA of rank r and
degreed for which there exists a non-trivial homomorphismϕ: (A⊗a)⊕b → det(A)⊗c⊗L
such that(A, ϕ) is α-asymptotically semistable, is bounded.

Proof. First, we note that the arguments given in the section entitled “Simplification of
the semistability concept for decorated sheaves” in [18] apply without modification to our
situation, too. This means that there is a finite set

T = {(r i1, . . . ., r
i
s(i);α

i
1, . . . , α

i
s(i)) | i = 1, . . . , t}

such that the following holds true.

Proposition 3.3.5. Given any positive rational numberδ, a generalized parabolic bundle
(A, q, ϕ) with a decoration of type(a, b, c;L) is (α, δ)-(semi)stable if and only if the
condition

Pα(A
•, α)+ δ · µa,b,c(A

•, α;ϕ) (≥) 0

holds for every weighted filtration(A•, α) ofA satisfying

(rkA1, . . . , rkAs;α1, . . . ., αs) ∈ T .

With this definition at hand, the proof of Proposition 3.3.4 may be adapted from the proof
of Proposition 3.2.2 in [18] in very much the same fashion as the proof of Proposition
3.3.3 has been adapted from the proof of Theorem 3.1.1 in [18]. ut

Step 3.Assumeδ > δ0. Then one direction is taken care of by Proposition 3.3.3, but we
still have to show that anα-asymptotically (semi)stable decorated generalized parabolic
bundle(A, q, ϕ) satisfies the condition of(α, δ)-(semi)stability for allδ � 0. Recall that
µa,b,c(A

•, α;ϕ) ≥ 0 for any weighted filtration(A•, α) (Remark 3.3.1(ii)). Moreover, the
condition of(α, δ)-(semi)stability is satisfied for those weighted filtrations(A•, α) with
µa,b,c(A

•, α;ϕ) = 0. Finally, we have to check what happens for weighted filtrations
(A•, α) with µa,b,c(A•, α;ϕ) > 0. By Proposition 3.3.1, we may assume

(rkA1, . . . , rkAs;α1, . . . ., αs) ∈ T . (4)

The boundedness result 3.3.4 implies that we may find a constantC′′ with

Pα(A
•, α) ≥ C′′

for any weighted filtrationA•, α of A for which (4) holds. Supposeδ > −C′′. Then

Pα(A
•, α)+ δ · µa,b,c(A

•, α;ϕ) ≥ C′′
+ δ > 0,

and we are done. ut



G-bundles on nodal curves 231

4. Descending principalG-bundles

LetG be a semisimple linear algebraic group over the complex numbers, and fix a faithful
representation%: G → GL(V ) on ther-dimensional complex vector spaceV .

4.1. The varietiesHom(Cr , V ∨)//G andP(Hom(Cr , V ∨)∨)//G

We obtain the representation

R: GLr(C)×G → GL(Cr ⊗ V ),

(g, g′) 7→ (w ⊗ v 7→ (g · w)⊗ %(g′)(v)),

as well as the actions induced by the contragredient representationR∨,

0: (GLr(C)×G)× Hom(Cr , V ∨) → Hom(Cr , V ∨)

and
0: (GLr(C)×G)× P(Hom(Cr , V ∨)∨) → P(Hom(Cr , V ∨)∨).

For any degreed ≥ 0, the representationR induces an action of GLr(C) × G on the
symmetric power Symd(Cr ⊗V ), so that there is an action of GLr(C)×G on the algebra
Sym?(Cr ⊗ V ). We also get the induced action of GLr(C) on the algebra Sym?(Cr⊗V )G
of G-invariants in Sym?(Cr ⊗ V ). This GLr(C)-action on Sym?(Cr ⊗ V )G is, by
construction, the same which is induced by the GLr(C)-action 0̃: G × H → H,
H := Hom(Cr , V ∨)//G, coming from0. Furthermore, we note that, for anyd ≥ 0,
Symd(Cr ⊗ V )G is a GLr(C)-submodule of Symd(Cr⊗V ) and, thus, also of(Cr⊗V )⊗d ,
so that we find GLr(C)-module homomorphisms

πd : (Cr ⊗ V )⊗d → Symd(Cr ⊗ V )G, d ≥ 0.

Choose ans so large that
⊕s

i=0 Symi(Cr ⊗ V )G contains a set of generators for the
algebra Sym?(Cr ⊗ V )G. We define the GLr(C)-module

Ws :=
s⊕
i=1

Ui, Ud := ((Cr ⊗ V )⊗d)∨, d ≥ 0.

The homomorphismsπd , d ≥ 0, provide us with an algebra homomorphism

π : Sym?(W∨
s ) → Sym?(Cr ⊗ V )G

which is compatible with the GLr(C)-actions. To summarize, we have found a represen-
tationκs : GLr(C) → GL(Ws) and a GLr(C)-equivariant closed embedding

ι: H ↪→ Ws .

We have to analyze the semistability of pointsι(h), h ∈ H, with respect to the action of
thespeciallinear group SLr(C). SetI := Isom(Cr , V ∨)/G. This is a dense open subset
of H.
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Lemma 4.1.1. (i) Every pointι(i), i ∈ I, is SLr(C)-polystable.
(ii) No pointι(h), h ∈ H \ I, is SLr(C)-semistable.

Proof. This is Lemma 4.1.1 in [17]. We briefly recall the argument.
(i) We choose a basis forV ∨. This provides us with the(SLr(C)×G)-invariant func-

tion d: Hom(Cr , V ∨) → C, f 7→ det(f ), which descends to a (non-constant) function
on H, called againd. For anyi ∈ I, we clearly haved(ι(i)) 6= 0, so thatι(i) is SLr(C)-
semistable. Furthermore, for anyf ∈ Isom(Cr , V ∨), the(SLr(C)×G)-orbit of f is just
the level setd−1(z) for an appropriatez ∈ C?. In particular, it is closed. The image of this
orbit is the SLr(C)-orbit of i := [f ] in H, which is, therefore, closed. Sinceι is a closed,
SLr(C)-equivariant embedding, the orbit ofι(i) is also closed.

(ii) It is obvious from the construction that the ring of SLr(C)-invariant functions on
H is generated byd. This makes the asserted property evident. ut

Next, we study the quotient

H := P(Hom(Cr , V ∨)∨)//G = (H \ {0})//C?.

We form the GLr(C)-module

Vs :=
⊕

(d1,...,ds ):
di≥0,

∑
idi=s!

Symd1(U∨

1 )⊗ · · · ⊗ Symds (U∨
s ).

Then we have the GLr(C)-equivariant embedding

ι: (H \ {0})//C? ↪→ (Ws \ {0})//C? ↪→ P(Vs).

Note that, for appropriateN ∈ Z>0, we have a surjection

((Cr ⊗ V )⊗s!)⊕N → Vs .

It is again elementary that, for a pointw ∈ Ws \ {0} and a one-parameter subgroup
λ: C? → SLr(C),

µOP(((Cr⊗V )⊗s! )⊕N )(1)
(λ, [w]) = µOP(Vs )(1)(λ, [w]) < (= / >) 0

⇔ µ(λ,w) < (= / >) 0. (5)

Corollary 4.1.2. The pointι([h]) ∈ P(Vs), h ∈ H, is SLr(C)-semistable if and only if
h ∈ I.

Proof. This follows from Lemma 4.1.1 and (5), given the obvious fact that [ι(h)] =

ι([h]). ut



G-bundles on nodal curves 233

4.2. The homogeneous and the inhomogeneous decoration associated with a singular
G-bundle

A singular principalG-bundle onX̃ is a pair(A, τ̃ ) which consists of a vector bundleA
on X̃ of rankr with trivial determinant and a homomorphism̃τ : Sym?(A⊗ V )G → OX̃
which is non-trivial in the sense that it is not just the projection onto the degree zero
component. The basic features of this notion are outlined in our paper [16]. In particular,
we recall the following alternative (see [16, Corollary 3.4]).

Lemma 4.2.1. Let

σ̃ : X̃ → Hom(A, V ∨
⊗ OX̃)//G = Spec(Sym?(A⊗ V )G)

be the section defined bỹτ . Theñσ(X̃) is either contained inIsom(A, V ∨
⊗ OX̃)/G or

in the complement of this set.

In the former case, we call(A, τ̃ ) abusively aprincipalG-bundle, because it defines via
the pullback diagram (1) a principalG-bundleP in the usual sense. We choose ans � 0
as in the previous section. Then to any singularG-bundle(A, τ̃ ), we associate the pair
(A, ϕ) with

ϕ:
s⊕
i=1

(A⊗ V )⊗i → Sym?(A⊗ V )G
τ̃

→ OX̃

and the pair(A, ϕ̂) with

ϕ̂: ((A⊗ V )⊗s!)⊕N →

⊕
Symd1(A⊗ V )⊗ · · · ⊗ Symds ((A⊗ V )⊗s) → OX̃,

where the direct sum runs over all(d1, . . . , ds) such thatdi ≥ 0, i = 1, . . . , s, and∑
idi = s!, and the second arrow is∑

(d1,...,ds ):
di≥0,

∑
idi=s!

Symd1(ϕ|(A⊗V ))⊗ · · · ⊗ Symds (ϕ|(A⊗V )⊗s ).

We need the following important fact.

Proposition 4.2.2. Suppose(A, τ̃ ) is a principalG-bundle. Then the following condi-
tions on a weighted filtration(A•, α) are equivalent:

(i) µ(A•, α, ϕ̂) = 0.
(ii) µ(A•, α, ϕ) = 0.

(iii) There exists a reductionβ of theG-bundle(A, τ̃ ) to a one-parameter subgroupλ
ofG such that(A•, α) = (A•

β , αβ).

Proof. The equivalence of (i) and (ii) is a special case of (3). For the equivalence of (ii)
and (iii), we refer the reader to [17, Lemma 4.2.1 and Proposition 4.2.2]. ut
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Next, a singular G-bundle with a generalized parabolic structure (GPS)is a triple
(A, q, τ̃ ), where(A, q) is a generalized parabolic bundle of rankr and(A, τ̃ ) is a singular
G-bundle.

Fix the semistability parametersα ∈ (0,1) ∩ Q andδ ∈ Q>0. Then a singularG-
bundle(A, q, τ̃ ) with a GPS is said to be(α, δ)-(semi)stableif for every weighted filtra-
tion (A•, α) of A the inequality

Pα(A
•, α)+ δ ·

1

s!
· µ(A•, α; ϕ̂) = Pα(A

•, α)+ δ · ν(A•, α;ϕ) (≥) 0

holds.

Proposition 4.2.3. For the fixed input data%, s, andα as above, there is a rational num-
ber δ∞ > 0 such that for everyδ > δ∞ and every singularG-bundle(A, q, τ̃ ) with a
GPS, the following conditions are equivalent:

(i) (A, q, τ̃ ) is (α, δ)-(semi)stable.
(ii) (A, τ̃ ) is a principalG-bundle and, for every reductionβ of (A, τ̃ ) to a one-param-

eter subgroupλ ofG, one has

Pα(A
•
β , αβ) (≥) 0.

Proof. We apply Theorem 3.3.2. We first note that, by Corollary 4.1.2,ϕ̂ is generically
semistable if and only if the sectioñσ : X̃ → Hom(A, V ∨

⊗ OX̃)//G associated with̃τ
maps the generic point of̃X to Isom(A, V ∨

⊗OX̃)/G. By Lemma 4.2.1, this means the
same as(A, τ̃ ) being aG-bundle. Finally, according to Proposition 4.2.2, the weighted
filtrations(A•, α) with µ(A•, α, ϕ̂) = 0 are precisely those of the form(A•

β , αβ). ut

A family of singularG-bundles with a GPS parameterized by the schemeS is a triple
(AS, qS, τ̃S) which consists of a vector bundleAS on S × X̃, a quotient mapqS :
πS?(AS|SN1,N2

) → RS onto a vector bundle of rankr on SN , and a homomorphism

τ̃S : Sym?(AS ⊗ V )G → OS×X̃ of OS×X̃-algebras the restriction of which to{s} × X

is non-trivial for every points ∈ S. Recall thatπS denotes the projection morphism
SN1,N2 → SN . Two such families(A1

S, q
1
S, τ̃

1
S ) and(A2

S, q
2
S, τ̃

2
S ) are calledequivalentif

there is an isomorphismψS : A1
S → A2

S such that

q1
S = q2

S ◦ πS?(ψS|SN1,N2
) and τ̃1

S = τ̃2
S ◦ ψS

with ψS : Sym?(A1
S ⊗ V )G → Sym?(A2

S ⊗ V )G the isomorphism induced byψS . The
pullback of families of generalized parabolic bundles, introduced in Section 2.3, yields a
pullback of families of singularG-bundles with a GPS, so that we may define the moduli
functors

SPBGPS(%)(α,δ)-(s)s: SchC → Set,

S 7→


equivalence classes of families of
(α, δ)-(semi)stable singular
principal bundles(AS, qS, τ̃S)
with a GPS parameterized byS

 .
An intermediate step towards the main theorem is
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Theorem 4.2.4. There exist a projective schemeS PBG PS (%)(α,δ)-(s)s and an open
subschemeS PBG PS (%)(α,δ)-s ⊂ S PBG PS (%)(α,δ)-ss as well as natural trans-
formations of functors

ϑ (α,δ)-(s)s: SPBGPS(%)(α,δ)-(s)s
→ hS PBG PS (%)(α,δ)-(s)s

with the following properties:

1. For everyN and every natural transformationϑ ′: SPBGPS(%)(α,δ)-ss
→ hN , there

is a unique morphismψ : S PBG PS (%)(α,δ)-ss
→ N with ϑ ′

= h(ψ) ◦ ϑ (α,δ)-ss.
2. The schemeS PBG PS (%)(α,δ)-s is a coarse moduli space for the functor

SPBGPS(%)(α,δ)-s.

4.3. Families of descendingG-bundles

The last notion which is missing is that of a family of descending principalG-bundles
parameterized by a schemeS. First, let(AS, qS, τ̃S) be a family of singularG-bundles
with a GPS andAS the associated family of torsion free sheaves onS ×X. As shown for
the caseS = {?} in Section 1.2, there is an associated homomorphism

τ ′

S : Sym?(AS ⊗ V )G → (idS × ν)?OS×X̃

of OS×X-algebras. With the usual arguments, one checks

Lemma 4.3.1. Let (AS, qS, τ̃S) be as above,f : T → S a morphism, and(AT , qT , τ̃T )
the pullback of the family(AS, qS, τ̃S) via f . Then

τ ′

T = f ?(τ ′

S).

Now, the family(AS, qS, τ̃S) is called afamily of descending principalG-bundles param-
eterized by the schemeS if the image of the homomorphismτ ′

S lies inOS×X.

Remark 4.3.2. This last condition is equivalent to the vanishing of

Sym?(AS ⊗ V )G → ((idS × ν)?OS×X̃)/OS×X

2.1.1&2.1.2
∼= π?X((ν?OX̃)/OX).

Lemma 4.3.1 and Proposition 2.2.1 suggest that this is a reasonable condition.

5. SingularG-bundles on nodal curves

In this section, we explain the relationship with the problem of Nagaraj and Seshadri [13]
and recent work of U. Bhosle [3].
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5.1. DescendingSLr(C)-bundles

The first interesting testing case for our results is the case of the semisimple group SLr(C)
together with its standard representation%: SLr(C) ⊂ GLr(C). For any vector bundleA
on the curvẽX, we have a canonical GLr(C)-equivariant isomorphism

Hom(A,O⊕r

X̃
)//SLr(C) → Hom(det(A),OX̃),

i.e., giving a non-trivial homomorphism̃τ : Sym?(A ⊗ V )SLr (C) → OX̃ is the same as
giving a non-trivial homomorphism (= isomorphism, because deg(A) = 0) det(A) →

OX̃. This implies that
µ(A•, α; τ̃ ) = 0

for any weighted filtration(A•, α) of A. Therefore, for anyα ∈ (0,1) ∩ Q, the condition
of α-(semi)stability on a descendingG-bundle(A, q, τ̃ ) is the same as the condition of
α-(semi)stability on the generalized parabolic bundle(A, q). Thus, we obtain a forgetful
morphism

M (%)α-ss
→ G PBα-ss

0/r

and, forα close enough to one, also a forgetful morphism (Remark 3.1.1)

ϕ: M (%)α-ss
→ U (r,0).

Proposition 5.1.1. The set-theoretic image of the morphismϕ is the closed subset
USLr (C).

Proof. Remarks 1.2.1(ii) and 3.1.1 imply that every pointu ∈ U (r,0) corresponding to a
stable vector bundleA with trivial determinant lies in the image ofϕ. On the other hand,
let m ∈ M (%)α-ss be a point corresponding to a descendingG-bundle(A, q, τ̃ ). Recall
that we have an induced, non-trivial homomorphism ofOX-algebras

τ : Sym?(A ⊕r)SLr (C) → OX

which corresponds to a sectionσ : X → Hom(A ,O⊕r
X )//SLr(C). Note that, on the

schemeHom(A ,O⊕r
X )

π
→ X, there is the tautological homomorphismH : π?(A ) →

O⊕r

Hom(A ,O⊕r
X )

. The homomorphism
∧r

H yields a morphism

h: Hom(A ,O⊕r
X ) → Hom

( r∧
A ,OX

)
.

Sinceh is SLr(C)-invariant, it descends to a morphism

h: Hom(A ,O⊕r
X )//SLr(C) → Hom

( r∧
A ,OX

)
.

Thus, the homomorphismτ induces a homomorphismd:
∧r A → OX. Now, d is ob-

viously an isomorphism away from the nodeN , whenceϕ(m) ∈ USLr (C). The assertion
follows, becauseUSLr (C) is the closure of the set of points [A ] ∈ U (r,0) for which A
is a stable vector bundle and det(A ) is trivial ([22, Theorem 1]). ut

Therefore, we may equipUSL(r) with the structure of the scheme-theoretic image of the
morphismϕ.
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5.2. A generalization to arbitrary semisimple groups

A singular principalG-bundleon the nodal curveX is a pair(A , τ ) which consists of
a torsion free sheafA of rankr and degree zero onX and a non-trivial homomorphism
τ : Sym?(A ⊗V )G → OX. Here, non-trivial means again thatτ is not just the projection
onto the degree zero component.

For a given singularG-bundle(A , τ ) we may choose ans � 0 such that the sum⊕s
i=1 Symi(A ⊗ V )G contains a set of generators for the algebra Sym?(A ⊗ V )G. For

such ans, we obtain again an associated homomorphism

ϕ̂: ((A ⊗ V )⊗s!)⊕N → OX.

For a weighted filtration(A •, α) of A , we set

µ(A •, α; ϕ̂) := − min{γj1 + · · · + γja | (j1, . . . , ja) ∈ {1, . . . , s + 1}
×a,

ϕ̂|(Aj1⊗···⊗Aja )
⊕b 6≡ 0}

and

µ(A •, α; τ) :=
1

s!
· µ(A •, α; ϕ̂).

Given a positive rational numberδ, a singularG-bundle(A , τ ) is calledδ-(semi)stableif

L(A •, α)+ δ · µ(A •, α; τ) (≥) 0

for every weighted filtration(A •, α) of A .

Remark 5.2.1. (i) As in [16, Remark 3.6], one verifies that the quantityµ(·, ·; τ) does
not depend on the choice ofs.

(ii) It is, in fact, sufficient to chooses such that
⊕s

i=1 Symi(A ⊗ V )G generates
Sym?(A ⊗ V )G over a non-empty open subsetU . This follows again from the remarks
in [16].

For a fixedδ ∈ Q>0, we obtain the moduli functors SPB(%)δ-(s)s of δ-(semi)stable
singularG-bundles onX, and Bhosle proves in [3] that the moduli spacesS PB(%)δ-(s)s

for these functors do exist.
The problem with these concepts is that the theory of the instability flagà la Ramanan

–Ramanathan, which is crucial to the investigations in [17] and [18], does not apply on
the singular curveX. Therefore, we get no control over the open subsetU where aδ-
(semi)stable singularG-bundle(A , τ ) defines a true principalG-bundle (U might be
even empty), nor do we obtain a satisfactory description of the concept ofδ-(semi)stability
whenδ gets large. For these reasons, we have worked, so far, on the smooth curveX̃. Nev-
ertheless, we may use our moduli spaces to define some interesting closed subschemes of
Bhosle’s moduli spaces.

In order to explain these ideas, we first remark that the concept of(α, δ)-(semi)stabil-
ity and the numerical quantities involved may formally be defined for any positive rational
numberα. In particular, we can speak of(1, δ)-(semi)stability and define numbers such
as 1-pardeg(A), andP1(A

•, α).
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Proposition 5.2.2. Let (A, q, τ̃ ) be a descendingG-bundle and(A , τ ) the induced hon-
est singularG-bundle onX.

(i) If (A , τ ) is δ-(semi)stable, then(A, q, τ̃ ) is a (1, δ)-(semi)stableG-bundle with a
GPS.

(ii) If (A, q, τ̃ ) is a (1, δ)-(semi)stableG-bundle with a GPS, then(A , τ ) is a δ-(semi)
stable singularG-bundle.

Proof. The proof is essentially the same as the one of Proposition 4.2 in [2].
(i) LetB be any saturated subsheaf ofA. We define the saturated subsheafS (B) ⊂ A

by means of the following commutative diagram:

0 −−−−→ S (B) −−−−→ ν?B −−−−→ q(BN1 ⊕ BN2) −−−−→ 0∥∥∥ y y y ∥∥∥
0 −−−−→ A −−−−→ ν?A −−−−→ R −−−−→ 0

The Euler number ofS (B) is

χ(S (B)) = χ(B)− dimq(BN1 ⊕ BN2)

= deg(B)+ rk(B)(1 − g(X̃))− dimq(BN1 ⊕ BN2)

= (deg(B)+ rkB − dimq(BN1 ⊕ BN2))+ rk S (B)(1 − pa(X)),

so that we conclude

deg(A ) rk S (B)− deg(S (B)) rk A

= deg(A) rkB − deg(S (B)) rkA

= (deg(A)− rk(A)) rkB − (deg(B)− dimq(BN1 ⊕ BN2)) rkA

= 1-pardeg(A) · rkB − 1-pardeg(B) · rkA.

Given a weighted filtration(A•, α), the above construction yields the weighted filtration
(A •, α) with Aj := S (Aj ), j = 1, . . . , s, such that

P1(A
•, α) = L(A •, α).

Moreover, we clearly have

µ(A•, α, τ̃ ) = µ(A •, α, τ ),

so that the first assertion is established.
(ii) To prove the second part of the proposition, we have to explain that every saturated

subsheafB ( A is of the formS (B) for an appropriate subbundleB of A. This is
indeed the case for the subbundleB generated by the image of the homomorphism

ϕ: ν?B → ν?A → ν?ν?A → A. ut

The other ingredient we need is the following.
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Proposition 5.2.3. There is a numberε > 0, such that for anyα ∈ (1 − ε,1) ∩ Q, any
integralsemistability parameterδ, and any singularG-bundle(A, q, τ̃ ) with a GPS, we
have:

(i) If (A, q, τ̃ ) is (α, δ)-semistable, then it is(1, δ)-semistable.
(ii) If (A, q, τ̃ ) is (1, δ)-stable, then it is(α, δ)-stable.

Proof. We remind the reader that there is a finite setT , depending only on the SL(V )-
action onP(V ⊗ Cr)//G, such that the condition of(α, δ)-semistability for a singular
G-bundle(A, q, τ̃ ) with a GPS has to be checked only against those weighted filtrations
(A•, α) of A for which (rkA1, . . . , rkAs, α1, . . . , αs) ∈ T (Proposition 3.3.5). We may
find a natural numbern such that

P1(A
•, α)+ δ · µ(A•, α; τ̃ ) ∈ Z[1/n]

for any such weighted filtration. For a generalized parabolic bundle(A, q) and a weighted
filtration (A•, α), we have

∣∣P1(A
•, α)− Pα(A

•, α)
∣∣ < ε ·

s∑
j=1

αj rkAj · (rkA− dimq(Aj |N1 ⊕ Aj |N2))

≤ ε · rkA ·

s∑
j=1

αj rkAj .

We may chooseε so small that the right hand side of the above inequality is strictly
smaller than 1/n. For such anε, the assertion is clear. ut

Now, let (AS, qS, τ̃S) be a family of descendingG-bundles parameterized by the
schemeS. Then there is an associated family(AS, τS) of (honest) singularG-bundles
(on X) parameterized byS (see Section 4.3). Letε be as in Proposition 5.2.3. Choose
α ∈ (1 − ε,1) ∩ Q and δ ∈ Z>0 so large that the conclusion of Proposition 4.2.3
holds. Remark 4.3.1, Proposition 5.2.2, and Proposition 5.2.3 imply that the assignment
(AS, qS, τ̃S) 7→ (AS, τS) induces a natural transformation

M(%)α-(s)s
→ SPB(%)δ-(s)s

and, thus, a morphism

M (%)α-(s)s
→ S PB(%)δ-(s)s

between the corresponding moduli spaces. We defineMX(%) ⊂ S PB(%)δ-ss as the
scheme-theoretic image of that morphism. This space is a good candidate for (at least the
point set of) a compactified moduli space of stableG-bundles onX. Note that the above
considerations demonstrate thatMX(%) consists of semistable honest singularG-bundles
onX and that, indeed, every stable honest singularG-bundle onX lies inMX(%).
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5.3. An open problem

The main problem with the results we have established in this paper is the lack of com-
patibility of the moduli spaces with degenerations. In fact, given a familyX → C over,
say,C = SpecC[[ t ]], such that the generic fibre is smooth and the fibre over 0 is a nodal
curveX, one would like to have a relative moduli spaceMG → C such that the generic
fibre is the usual moduli space of semistableG-bundles and such that the fibre over 0
is the moduli space we have constructed. This seems impossible in our approach. What
is, however, possible is the construction of a familys: S(%)δ-ss

→ C such that over the
generic fibre we find our moduli space ofδ-semistable singularG-bundles from [16] and
over 0 we find Bhosle’s moduli spaceS PBδ-ss. By the results of [17], the generic fibre
is the usual moduli space of semistableG-bundles provided thatδ is large enough. So, in
the wake of Sun’s results [22], we suggest the following

Problem. Let m: M̂G → C be the closure ofs−1(C \ {0}). Does the fibrem−1(0) with
its induced reduced scheme structure equalMX(%) with its induced reduced scheme
structure?

6. The proofs

In this section, we discuss the construction of the various moduli spaces we have en-
countered so far. The main ideas are derived from our previous papers [15] and [16] and
Bhosle’s theory of generalized parabolic bundles [2].

6.1. Proof of Theorem 3.1.2

Boundedness. Recall that a familyB of isomorphy classes [A] of vector bundles on
X̃ of, say, degreed and rankr is said to beboundedif there exist a schemeS of finite
type overC and a vector bundleAS on S × X̃ such that for every vector bundleA on
X̃ with [A] ∈ B, there exists a points ∈ S with A ∼= AS|{s}×X̃. By the semicontinuity
theorem and easy facts on vector bundles on curves, this is equivalent to the fact that there
is a constantC such thatµ(B) ≤ d/r + C for every bundleA with [A] ∈ B and every
subbundle 0( B ( A.

Proposition 6.1.1. There is a non-negative constantC, depending only onr, a, andδ,
such that for every(α, δ)-semistable generalized parabolic bundle(A, q, ϕ) with a deco-
ration of type(a, b, c;L) and every non-trivial proper subbundleB ofA,

µ(B) ≤
d

r
+ C.

Proof. Let 0 ( B ( A be any subbundle. Lemma 1.8(i) in [15] shows

µa,b,c(0 ( B ( A, (1);ϕ) ≤ a(r − 1),
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so that(α, δ)-semistability gives

d rkB − (deg(B)− r)r + δ · a · (r − 1)

≥ (d − α · r) rkB − (deg(B)− α · dimq(BN1 ⊕ BN2))r + δ · a · (r − 1)

= α-pardeg(A) rkB − α-pardeg(B)r + δ · a · (r − 1)

≥ α-pardeg(A) rkB − α-pardeg(B)r + δ · µa,b,c(0 ( B ( A, (1);ϕ) ≥ 0.

We see that

µ(B) ≤
d

r
+
δ · a · (r − 1)+ r2

r · rk(B)
≤
d

r
+
δ · a · (r − 1)

r
+ r,

so that the assertion holds withC = r + δa(r − 1)/r. ut

Construction of the parameter space. Recall that, for a schemeS of finite type over
C, a family of generalized parabolic bundles with a decoration of type(a, b, c;L) param-
eterized byS is a quadruple(AS, qS,NS, ϕS), where(AS, qS) is a family of generalized
parabolic bundles,NS is a line bundle onS, andϕS : (A⊗a

S )⊕b → det(AS)⊗c ⊗ π?
X̃
L ⊗

π?SNS is a homomorphism such thatϕS|{s}×X̃ 6≡ 0 for all s ∈ S.

We choose a pointx0 ∈ X̃ and writeOX̃(1) for OX̃(x0). By 6.1.1, we may choose an
integern0 such that for everyn ≥ n0 and every(α, δ)-semistable generalized parabolic
bundle(A, q, ϕ) with a decoration of type(a, b, c;L):

• H 1(A(n)) = 0 andA(n) is globally generated,
• H 1(det(A)(rn)) = 0 and det(A)(rn) is globally generated,
• H 1(det(A)⊗c ⊗L⊗ OX̃(na)) = 0 and det(A)⊗c ⊗L⊗ OX̃(na) is globally generated.

Choose somen ≥ n0 and setp := d+ rn+ r(1−g). LetU be a complex vector space of
dimensionp. We defineQ0 as the quasi-projective scheme parameterizing equivalence
classes of quotientsq: U ⊗ OX(−n) → A, whereA is a vector bundle of rankr and
degreed on X̃ andH 0(q(n)) is an isomorphism. OnQ0

× X̃, we have the universal
quotient

qQ0: U ⊗ π?
X̃
OX̃(−n) → AQ0.

DefineUa,b := (U⊗a)⊕b. Our assumptions imply that the sheaf

Hom(Ua,b ⊗ OQ0, πQ0?(det(AQ0)
⊗c

⊗ π?
X̃
L⊗ π?

X̃
OX̃(na)))

is locally free. We call this sheafH and setH := P(H ∨). We let

qH: U ⊗ π?
X̃
OX̃(−n) → AH

be the pullback ofqQ0 to H× X̃. Now, onH×X, there is the tautological homomorphism

sH: Ua,b ⊗ OH → det(AH)
⊗c

⊗ π?
X̃
L⊗ π?

X̃
OX̃(na)⊗ π?HOH(1).
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According to Proposition 2.2.1, we defineS as the closed subscheme which is character-
ized by the condition thatsH ⊗ π?

X̃
idOX̃(−na)

vanish on

ker(Ua,b ⊗ π?
X̃
OX̃(−na) → (A⊗a

H )⊕b).

Let

qS: U ⊗ π?
X̃
OX̃(−n) → AS

be the restriction ofqH to S × X̃. By definition ofS, the sectionsH factorizes over a
homomorphism

ϕS: (A⊗a
S )⊕b → det(AS)

⊗c
⊗ π?

X̃
L⊗ π?SNS.

Here,NS is the restriction ofOH(1) to S. The spaceS comes equipped with a family
(AS,NS, ϕS). To incorporate the parabolic structure as well, we letG be the Graßman-
nian ofr-dimensional quotients ofU . Let qG: U ⊗ OG → RG be the universal quotient
and pull it back toS × G in order to get

qS×G: U ⊗ OS×G → RS×G.

We defineqS×G, AS×G, NS×G, andϕS×G as the pullbacks of the objectsqS, AS,
NS, andϕS on S andS × X̃ to S × G andS × G × X̃, respectively. On the scheme
S × G = S × G × {N}, we have the quotient

qN : U ⊗ OS×G → π (S×G)N1,N2?
(AS×G|(S×G)N1,N2

)

obtained by first restrictingqS×G toS×G×{N1, N2} and then projecting toS×G×{N}.
We define the closed subschemeT as the zero locus of the induced vector bundle map
ker(qN ) → RS×G, so that the restriction ofqS×G to T factorizes over a quotient

qT: π (S×G)N1,N2?
(AS×G|(S×G)N1,N2

)|T = πTN1,N2?
(AT|TN1,N2

) → RT := RS×G|T.

LetAT andϕT be the restrictions ofAS×G andϕS×G to T×X̃, and setNT := NS×G|T.
We call(AT, qT,NT, ϕT) theuniversal family. This is justified by

Proposition 6.1.2 (Local universal property).Let S be a scheme of finite type overC,
and (AS, qS,NS, ϕS) a family of (α, δ)-semistable generalized parabolic bundles with
a decoration of type(a, b, c;L) parameterized byS. Then there exist an open covering
Si , i ∈ I , of S, and morphismsβi : Si → T, i ∈ I , such that the restriction of the family
(AS, qS,NS, ϕS) toSi×X̃ is equivalent to the pullback of(AT, qT,NT, ϕT) viaβi×idX̃,
for all i ∈ I .

Proof. This is standard (see, e.g., [15, Proposition 2.8]). ut
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The group action. We have natural actions of the group SL(U) on the schemesQ0, H,
andG. These actions induce an action

0: SL(U)× T → T

of SL(U) on the parameter schemeT.

Proposition 6.1.3. Let S be a scheme of finite type overC andβ1,2: S → T two mor-
phisms such that the pullbacks of(AT, qT,NT, ϕT) via β1 × idX̃ andβ2 × idX̃ are equiv-
alent. Then there exist ańetale coveringη: T → S and a morphism4: T → SL(U)
such that the morphismβ2 ◦ η: T → T equals

T
4×(β1◦η)

→ SL(U)× T
0
→ T.

Proof. This can be easily adapted from [15, proof of Proposition 2.10]. ut

The Gieseker space and map. Choose a Poincaré sheafP on Jacd ×X̃. By our as-
sumptions onn, the sheaf

G1 := Hom
( r∧

U ⊗ OJacd , πJacd ?(P ⊗ π?
X̃
OX̃(rn))

)
is locally free. We setG1 := P(G ∨

1 ). By replacingP with P⊗π?
Jacd

(sufficiently ample),

we may assume thatOG1(1) be very ample. Letd: T → Jacd be the morphism associated
with

∧r
AT, and letAT be a line bundle onT with

∧r
AT

∼= (d × idX̃)
?P ⊗ π?TAT.

Then
r∧
(qT ⊗ idπ?

X̃
OX̃(n)

):
r∧
U ⊗ OT → (d × idX̃)

?P ⊗ π?
X̃
OX̃(rn)⊗ π?TAT

defines a morphismι1: T → G1 with ι?1OG1(1) = AT. The sheaf

G2 := Hom(Ua,c ⊗ OJacd , πJacd ?(P
⊗c

⊗ π?
X̃
L⊗ π?

X̃
OX̃(na)))

on Jacd is also locally free. SetG2 := P(G ∨

2 ). It is clear that we can assumeOG2(1) to
be very ample as well. The homomorphism

Ua,b ⊗ OT → (A⊗a
T )⊕b ⊗ π?

X̃
OX̃(na)

→ (d × idX̃)
?P⊗c

⊗ π?
X̃
L⊗ π?

X̃
OX̃(na)⊗ π?T(A

⊗c
T ⊗ NT)

provides a morphismι2: T → G2 with ι?2OG2(1) = A⊗c
T ⊗ NT. Finally, we have the

morphismι3: T → G from the construction ofT. Altogether, settingG := G1 × G2 × G
andι := ι1 × ι2 × ι3, we have an injective and SL(U)-equivariant morphism

ι: T → G.

Linearize the SL(U)-action onG in OG(p−aδ− rα, rδ, rα) and denote byG(s)s the sets
of points inG which are SL(U)-(semi)stable with respect to the given linearization.
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Theorem 6.1.4. For n large enough, the following two properties hold true:

(i) The preimagesι−1(G(s)s) consist exactly of those pointst ∈ T for which(At , qt , ϕt ),
the restriction of the universal family to{t}× X̃, is an(α, δ)-(semi)stable generalized
parabolic bundle with a decoration of type(a, b, c;L).

(ii) The restricted morphismι|ι−1(Gss): ι
−1(Gss) → Gss is proper.

If we setT(α,δ)-(s)s := ι−1(G(s)s), the above theorem implies that

D := DG PB(α,δ)-ss
d/r/a/b/c/L := T(α,δ)-ss//SL(U)

exists as a projective scheme. Propositions 6.1.2 and 6.1.3 show that there is a natural
transformation of the functor DGPB(α,δ)-ss

d/r/a/b/c/L into the functor of points ofD . The uni-
versal property (Theorem 3.1.2(i)) of this transformation is then a consequence of the
universal property of the categorical quotient. Likewise, one establishes 3.1.2(ii) for the
open subscheme

DG PB(α,δ)-s
d/r/a/b/c/L := T(α,δ)-s/SL(U).

Proof of Theorem 6.1.4(i): A sample computation. The proof of Theorem 6.1.4(i)
may be carried out along the lines of the proof of Theorem 2.11 in [15], basically by re-
placing the degree with theα-parabolic degree everywhere. Therefore, we do not present
the whole proof here, but only a sample computation which demonstrates, in particular,
that we have chosen the correct linearization on the Gieseker spaceG.

We use the notation of [15] for the sample computation. We assume that we are given
a pointt ∈ ι−1(G(s)s). This yields the decorated GPB(At , qt , ϕt ). We will check the con-
dition of (α, δ)-(semi)stability for all weighted filtrations(A•, α) of A for whichAj (n) is
globally generated andH 1(Aj (n)) = {0}, j = 1, . . . , s.

Remark 6.1.5. It is enough to consider such weighted filtrations because of the following
observations:

1. The set of torsion free sheaves of the formAt with t ∈ ι−1(Gss) for somen ≥ n0
(needed to perform the construction) is also bounded (see [15, p. 188]).

2. Given any bounded familyB of vector bundles of rankr and degreed on X̃, the
condition of(α, δ)-(semi)stability for decorated GPBs(A, q, ϕ) with [A] ∈ B has to
be tested only against weighted filtrations(A•, α) satisfying the above extra assump-
tions. This is an easy consequence of Proposition 3.3.5 and general facts on bounded
families (compare [18, Section 3.4]).

From the filtrationA• of At and the quotientqt : U ⊗ OX̃(−n) → At , we get the flagU•

in U with Uj := (H 0(qt (n)))
−1(H 0(Aj (n))), j = 1, . . . , s. We choose a one-parameter

subgroupλ: C? → SL(U) the weighted flag of which is just(U•, α). By assumption,
writing t = (t1, t2, t3),

0 (≤) µ(λ, ι(t))

= (p − aδ − rα) · µG1(λ, t1)+ rδ · µG2(λ, t2)+ rα · µG3(λ, t3)
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= (p − aδ − rα) ·

s∑
j=1

αj (p rkAj − h0(Aj (n))r)

+ rδ ·

s∑
j=1

αj (νj (ι0) · p − a · h0(Aj (n)))

+ rα ·

s∑
j=1

αj (p dimqt (Aj |N1 ⊕ Aj |N2)− rh0(Aj (n)))

=

s∑
j=1

αj (p
2 rkAj − paδ rkAj − prα rkAj − prh0(Aj (n)))

+ rδ ·

s∑
j=1

αj · νj (ι0) · p

+ rα ·

s∑
j=1

αjp dimqt (Aj |N1 ⊕ Aj |N2).

We divide the last expression byp and observe that the assumption on theAj yields

p rkAj − rh0(Aj (n)) = deg(At ) rkAj − r deg(Aj ), j = 1, . . . , s,

so that the above inequality results in

0 (≤)
s∑

j=1

αj (deg(At ) rkAj − r deg(Aj ))+ δ ·

s∑
j=1

αj (νj (ι0) · r − a · rkAj )

+α ·

s∑
j=1

αj (r dimqt (Aj |N1 ⊕ Aj |N2)− r rkAj )

=

s∑
j=1

αj (α-pardeg(At ) rkAj − α-pardeg(Aj )r)

+ δ ·

s∑
j=1

αj (νj (ι0) · r − a · rkAj ).

As explained on page 189 of [15],

µa,b,c(A
•, α;ϕt ) ≥

s∑
j=1

αj (νj (ι0) · r − a · rkAj ),

so that we are done. ut

Proof of Theorem 6.1.4(ii). We briefly review a part of this argument in order to explain
why the assumption that the stability parameterα be smaller than one is mandatory. For
this, let(C,0) be the spectrum of a DVRR with quotient fieldK. Suppose we are given
a morphismh: C → Gss which lifts over Spec(K) to T. This lifting is given by a family
(qK : U ⊗ π?

X̃
OX̃(−n) → AK , qK , ϕK) over Spec(K)× X̃ (we left outNK , because it is
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trivial). This can be extended to a certain family(̃qC : U ⊗ π?
X̃
OX̃(−n) → ÃC, qC, ϕC),

consisting of

• a surjectioñqC onto the flat familyÃC , whereÃC|{0}×X may have torsion,
• a quotientqC : πC?(ÃC|CN1,N2

) → RC the restriction of which to the subscheme

Spec(K)× X̃ differs fromqK by an element inK?,
• a homomorphismϕC : (Ã⊗a

C )⊕b → det(Ã)⊗c⊗π?
X̃
L the restriction of which to{0}×X̃

is non-trivial and the restriction of which to Spec(K)×X̃ differs fromϕK by an element
in K?.

The resulting datumkC : Ua,b → πC?(det(ÃC)⊗c ⊗ π?
X̃
L ⊗ π?

X̃
OX̃(na)) defines a mor-

phismC → G2 which coincides with the second componenth2 of h, andqC yields a
morphismC → G which coincides with the third componenth3 of h.

SetAC := Ã∨∨

C . This is a locally free sheaf on the smooth surfaceC × X̃. Therefore,
we have a family

qC : U ⊗ π?
X̃
OX̃(−n) → AC,

where the kernel of the homomorphismU ⊗ OX̃(−n) → AC|{0}×X̃ is isomorphic to the

torsion subsheafT of ÃC|{0}×X. DefineT := dimC(T ). One gets a homomorphism∧r
U ⊗ OC → πC?(det(ÃC)⊗ π?

X̃
OX̃(rn)) which defines a morphismC → G1 which

coincides with the first componenth1 of h.
SettingA0 := AC|{0}×X̃, we have to show thatH 0(qC|{0}×X̃(n)): U → H 0(A0(n))

must be injective. This implies, in particular, that̃AC|{0}×X̃ is torsion free and, hence,

AC = ÃC andqC = q̃C . The family(qC, qC, ϕC) extends the lifting ofh from Spec(K)
to the wholeC. WithH := ker(H 0(qC|{0}×X̃(n))) we obtain the weighted flag(0 ( H (
U, (1)) in U , and we choose a one-parameter subgroupλ: C? → SL(U) which gives this
weighted flag. Note that dim(H) = T . For this special one-parameter subgroup, we find
(compare [15, p. 192f])

µG(λ, t) = (p − aδ − rα) · µG1(λ, t1)+ rδ · µG2(λ, t2)+ rα · µG(λ, t3)

= −(p − aδ − rα)rT − rδaT + rα(p dimq(TN1 ⊕ TN2)− rT )

= −prT + αpr dimq(TN1 ⊕ TN2)

≤ −prT + αprT
α<1
< 0.

This contradicts the fact thath(0) is semistable. ut

6.2. Proof of Theorem 4.2.4

We fix an integers � 0 as in Section 4.1. Let(A, q, τ̃ ) be a singularG-bundle with a
GPS on the curvẽX and let

ϕ̂: ((A⊗ V )⊗s!)⊕N → OX̃

be the associated homogeneous decoration. Note that, by Lemma 1.8(i) from [15], one
has

1

s!
· µ(0 ( B ( A, (1); ϕ̂) ≤ r − 1
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for B a non-trivial proper subbundle ofA. Thus, the arguments used in the proof of
Proposition 6.1.1 show that, for every subbundle 0( B ( A of A,

µ(B) ≤ µ(A)+ δ ·
r − 1

r
+ r

deg(A)=0
= δ ·

r − 1

r
+ r,

provided(A, q, τ̃ ) is (α, δ)-semistable.

The parameter space for singularG-bundles with a GPS. Therefore, we may choose
an integern0 such that, for everyn ≥ n0 and every(α, δ)-semistable singularG-bundle
(A, q, τ̃ ) with a GPS,A(n) is globally generated andH 1(A(n)) = 0. Furthermore, writ-
ing ((Cr ⊗ V )⊗s!)⊕N as((Cr)⊗s!)⊕b, we may assume thatn is also so large that all the
constructions and arguments used in the construction ofDG PB(α,δ)-ss

0/r/s!/b/0/OX̃
work with

thisn. LetU andQ0 be as in Section 6.1.
We continue with

Y = Q0
×

s⊕
i=1

Hom(Symi(U ⊗ V ),H 0(OX̃(in))).

Note that, overY × X̃, there are universal homomorphisms

ϕ̃i : Symi(U ⊗ V )⊗ OY×X̃
→ H 0(OX̃(in))⊗ OY×X̃

, i = 1, . . . , s.

Let ϕi = ev◦ ϕ̃i be the composition of̃ϕi with the evaluation map

ev:H 0(OX̃(in))⊗ OY×X̃
→ π?

X̃
OX̃(in), i = 1, . . . , s.

We twistϕi by idπ?
X̃
OX̃(−in)

and put the resulting maps together to get the homomorphism

ϕ: VY :=
s⊕
i=1

Symi(U ⊗ π?
X̃
OX̃(−n)⊗ V ) → OY×X̃

.

Next,ϕ yields a homomorphism ofOY×X̃
-algebras

τ̃Y: Sym?(VY) → OY×X̃
.

On the other hand, there is a surjective homomorphism

β: Sym?(VY) → Sym?(π?AQ0 ⊗ V )G

of graded algebras, where the left hand algebra is graded by assigning the weighti to the
elements in Symi(U ⊗ π?

X̃
OX̃(−n) ⊗ V ). Here,π : Y × X̃ → Q0

× X̃ is the natural
projection. The spaceY(G) is defined by the condition that̃τY factorize overβ, i.e.,
settingAY(G) := (π?AQ0)|Y(G)×X, there be a homomorphism

τ̃Y(G): Sym?(AY(G) ⊗ V )G → OY(G)×X
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with τ̃Y|Y(G)×X = τ̃Y(G) ◦ β. According to Proposition 2.2.1,Y(G) is defined as the
scheme-theoretic intersection of the closed subschemes

Yd := {y ∈ Y | τ̃ d
Y|{y}×X

: kerβd
|{y}×X → OX is trivial}, d ≥ 0.

We find the family(AY(G), τ̃Y(G)) onY(G)× X̃. As in the construction of the parameter
space for decorated generalized parabolic bundles, we letG be the Graßmannian ofr-
dimensional quotients ofU andqG: U ⊗OG → RG the universal quotient. We pull back
the universal quotient toY(G)× G in order to get

qY(G)×G: U ⊗ OY(G)×G → RY(G)×G.

We defineqY(G)×G, AY(G)×G, andτ̃Y(G)×G as the pullbacks toY(G)× G × X̃ of the
respective objects onY(G)× X̃. Again, we have, on the schemeY(G)× G = Y(G)×

G × {N}, the quotient

qN : U ⊗ OY(G)×G → π (Y(G)×G)N1,N2?
(AY(G)×G|(Y(G)×G)N1,N2

).

Finally, we define the closed subschemeW(G) by the condition thatqY(G)×G vanish on
ker(qN ). The restriction ofqY(G)×G to W(G) factorizes over a quotient

qW(G): πW(G)N1,N2?
(AW(G)|W(G)N1,N2

) → RW(G) := RY(G)×G|W(G).

The restrictionsAW(G) of AY(G)×G and τ̃W(G) of τ̃Y(G)×G to W(G) × X̃ andqW(G)

provide us with theuniversal family(AW(G), qW(G), τ̃W(G)). Of course, the analog of
Proposition 6.1.2 holds true.

The group action. This time, we find on our parameter spaceW(G) an action

0′: GL(U)× W(G) → W(G)

of the group GL(U). Again, the property analogous to the one of Proposition 6.1.3 is
fulfilled. For the purpose of taking the GIT quotient, we may regard this action as an
action

0̃: (C? × SL(U))× W(G) → W(G)

of the groupC? × SL(U). The quotient may then be taken in two steps. First, we form
W(G) := W(G)//C?, which poses no problems, and thenW(G)//SL(U). The latter
problem will be reduced to the case of decorated generalized parabolic bundles. To this
end, we note that the construction from Section 4.2 can clearly also be performed in
families, that is, the homomorphism̃τW(G) induces the homomorphism

ϕ̂W(G): ((AW(G) ⊗ V )⊗s!)⊕N → OW(G)×X̃

of OW(G)×X̃-modules. Now, letT be the parameter space for generalized parabolic
bundles(A, q, ϕ)with deg(A) = 0 and rk(A) = r and a decoration of type(s!, b,0; OX̃).
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By the local universal property ofT (Proposition 6.1.2), the triple(qW(G):U⊗π?
X̃
OX̃(−n)

→ AW(G), qW(G), ϕ̂W(G)) induces a morphism

8: W(G) → T.

If we let C? act trivially onT, then8 becomes(C?×SL(U))-equivariant. It thus descends
to an SL(U)-equivariant morphism

W(G)
8

−−−−→ T

5

y y
Q0 Q0

over the quot schemeQ0. Since5 is proper by the construction ofW(G) and8 is injec-
tive, we deduce

Lemma 6.2.1. The morphism8: W(G) → T is finite.

Set

W(G)(α,δ)-(s)s := 8
−1
(T(α,δ)-(s)s) and W(G)(α,δ)-(s)s := 8−1(T(α,δ)-(s)s).

Then the map

8
|W(G)(α,δ)-(s)s: W(G)(α,δ)-(s)s

→ T(α,δ)-(s)s

is also proper, so that the quotients

S (s)s := S PBG PS (%)(α,δ)-(s)s := W(G)(α,δ)-(s)s//SL(U)

= W(G)(α,δ)-(s)s//(C? × SL(U))

exist, the schemeS ss being projective. By our definition of(α, δ)-(semi)stability, the
open subsetsW(G)(α,δ)-(s)s consist precisely of those pointst for which the restriction
(At , qt , τ̃t ) of the universal family to{t} × X̃ is (α, δ)-(semi)stable. Therefore, Theorem
4.2.4 is deduced as before. ut

6.3. Proof of the Main Theorem

Givenα, we chooseδ > δ∞ in accordance with Proposition 4.2.3. Thus, a descendingG-
bundle(A, q, τ̃ ) on X̃ is α-(semi)stable if and only if it is an(α, δ)-(semi)stable singular
G-bundle with a GPS.

Let W(G) be as above, carrying the universal family(AW(G), qW(G), τ̃W(G)). As
explained in Section 4.3, we have an associated homomorphism

τ ′

W(G): Sym?(AW(G) ⊗ V )G → (idW(G) × ν)?OW(G)×X̃
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of OW(G)×X-algebras. Invoking Proposition 2.2.1 once more, we defineD(G) as the
closed subscheme ofW(G) where the induced homomorphism

Sym?(AW(G)⊗V )
G

→ ((idW(G)×ν)?OW(G)×X̃)/OW(G)×X

2.1.1&2.1.2
∼= π?X((ν?OX̃)/OX)

vanishes. Now, suppose we are given a family(AS, qS, τ̃S) of (α, δ)-semistable singular
G-bundles with a GPS parameterized by the schemeS. Choose a coveringSi , i ∈ I , of S
such that the above family is induced on eachSi by a morphismfi : Si → W(G), i ∈ I .
By the universal property ofD(G) (Proposition 2.2.1) and Lemma 4.3.1, the morphisms
fi factorize overD(G) for all i ∈ I if and only if (AS, qS, τ̃S) is a family of (α, δ)-
semistable descendingG-bundles. On the other hand, our constructions imply that the
quotients

M (%)α-(s)s := (D(G) ∩ W(G)(α,δ)-(s)s)//(C? × SL(U))

exist and thatM (%)α-ss is projective. It is clear that the spacesM (%)α-ssandM (%)α-s are
the moduli spaces we have been looking for. ut
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