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Abstract. In the present paper, we give a first general construction of compactified moduli spaces
for semistableG-bundles on an irreducible complex projective cuXewith exactly one node,
whereG is a semisimple linear algebraic group over the complex numbers.
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1. Introduction

If X is a smooth projective curve aidglis a reductive linear algebraic group, then one has
the projective moduli space?; for the (S-equivalence classes of) semistable prindipal
bundles of fixed topological type € 71(G). The GIT-construction of this space is due to
Ramanathari [14]. Later it was simplified and extended to higher dimensionérog

and Sols[[10]. IfG is a semisimple group, there are alternative approaches by Balaji
and Seshadr([1], and the author [16],[17]. As does the work @€z and Sols, the
latter two yield Gieseker-type compactifications of the moduli spaces of stable principal
bundles in higher dimensions. An important open problem, raised by M. S. Narasimhan,
is to generalize this result to singular curves. The first case to understand will be the case
whereX is an irreducible projective curve with exactly one node (which will be called
for simplicity anodal curvein what follows). IfG = GL, (C), one may work with vector
bundles of rank rather than with principalr-bundles, and then the moduli spa&er, d)

of semistable torsion free sheaves of rardnd fixed degreé is the generalization one

is looking for. Similarly, if G = O(r) or G = Sp(r), then one may work with torsion

free sheave#’ together with a non-degenerate bilinear fofmé ® & — Oy, required

to be symmetric in the case of(© and anti-symmetric in the case of @p For these
objects, one has again a natural notion of semistability and the moduli spaces can be
constructed [6],18]. Surprisingly, however, the problem becomes difficult already for
SL,(C). On a smooth curve, an $IC)-bundle is usually identified with a vector bundle

E with /\rkE E = 0Ox. This determinantal condition does not make sense for a non-
locally free torsion free shedf on a nodal curve. Nagaraj and Seshadri suggest replacing
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the above condition by the condition that there be a non-zero homomorpﬁkﬁ"sﬁ’né” —

Ox which is an isomorphism outside the node f([13, p. 136]). Sun has recently
checked in[[2R] that this suggestion seems reasonable in the sense that this condition
defines an irreducible closed sub%gj , ) in the moduli space of semistable torsion free
sheaves of degree zero and rardn the curveX which is compatible with degenerations.

The latter statement means that, for a degeneration of a smoothXuovE, the moduli

space of vector bundles of ramkwith trivial determinant onX degenerates to a closed
subscheme o# (r, 0) the support of which is exactl¥s, (). The open problem which
remains is to givesy, () @ modular interpretation.

11

Based on the notion of a singular principal bundle introduced by the author on smooth
projective manifolds in[[16] and extended in a certain way to a wide class of singular
varieties (including nodal curves, see Secfior] 5.2 for the discussion) by Bhbsle [3], we
propose to look at the following objects. LEtbe a nodal curvei; a semisimple linear
algebraic group, and: G — SL(V) a faithful representation. Ahonest singular prin-
cipal G-bundle onX is a pair(«, 1), consisting of a torsion free sheaf on X and a
homomorphisnt: Synt (&7 ® V)¢ — O such that the image @f := X \ {nodg under
o is contained inFsom(V ® Ox, 7))/ G. Here,0: X — Spec(Symt(o/ @ V)°) =
Ftom(V ® Oy, ,;aflg)//G is the section corresponding to Now, we can form the base
change diagram

P ——— Ipec(Symt(/ @ V))

l l ®

X —2 Ipec(Sym' (o @ V)O)
The condition on the image &f guarantees tha¥’ (<7, ) := &)y is indeed a principal
G-bundle. In order to formulate an appropriate semistability condition for honest singular
G-bundles, we need some more notation. Suppgse a torsion free sheaf oki; then a
weighted filtration ofe7 is a pair(«/®, ), consisting of a filtration
F 0CAC - CHCd

of o by saturated subsheaves and a tuple (a1, . .., «y) of positive rational numbers.
To a weighted filtration.<7*, ), we associate the rational number

N
L(«/*. @) =Y ai(deg ) - k. — deg.#) - k7).
i=1
Next, leti: C* — G be a one-parameter subgroup@®fand let
Qc():={g e G| lm i) -g- A(z) "L exists inG}
—>

be the associated parabolic subgroup. Recall also.ttefines integerg; < - -+ < y541
and a decomposition
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s+1
v :Z@Vh Vi=veV iAW) =z"-v,VzeC},i=1...,s+1,
i=1
and thus theveighted flagV*, «) with

Ve 0CVicVieV S CVId--- oV CV

=

and

o= (oy,...,0), o .= M
- dimVv

We remark thaD s (1) is the G-stabilizer of the flag/®. Then areduction of(«7, 1) to

Ais a sectiong: U — P(,1)/Qc(A). This defines a weighted fiItratio(Wg,gﬁ)

of &7 in the following manner: Seiﬂ = (ay, ..., a1) Wherea = (a1, ..., ), and the

filtration &g 0C @ C --- C & C &/ is obtained as follows: The section

, i=1...,s.

UL 2, 1)]0600 = Isom(V & Oy, )/ Qervy(V)

yields a filtration

0C o G G Gy
of C;z%‘[v, by subbundles with k) = dim(V;),i = 1,...,s. This is becaus@gL(v)()
is the GL(V)-stabilizer of the flag’® and, thus,Zsom(V ® Oy, JZ%)/QGL(V)()») - U
is the bundle of flags in the fibres mm having the same dimensions as the flag We

defines’” = ker(y — ,;A%S’lei), i=1,...,s,sothat we obtain a filtration

0C o C - C o' Cafy

of #y by subbundles. Lef: U — X be the inclusion and defing; as the saturation
of &7 N ju(/"),i =1,...,s. Now, an honest singular principal-bundle is said to be
(semi)stablef

L(g,ap) (=)0

for every reductiorg of (&7, t) to a one-parameter subgroup®@f

1.2

Unfortunately, we are not able to give a direct construction of the moduli space of semi-
stable honest singulaf-bundles on the curv&. Instead, we use an idea inspired by
the theory of generalized parabolic bundles(df [2]. For this,Netc X be the node

of X, v: X — X the normalization, and~%(N) = {N1, No}. Recall that ageneral-

ized parabolic bundle of rank is composed of 1) a vector bundke of rank r on X

and 2) arr-dimensional quotienj: Ay, ® Ay, — R. The pair(A, ¢) defines the torsion

free sheafwZ on X as

o = ker(v,A — v (Ay, @ An,) = An, @ An,(Supported aiv) 4 R).

First, look at a triple(A, ¢, T), where(A, q) is a generalized parabolic bundle as above,
and?: Sym"(A ® V)¢ — 0’3 is a homomorphism of'z-algebras. Then we define the
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pushforward(«/, 7) := v.(A, ¢, T) as follows: The torsion free sheaf is associated to
(A, q) as explained before. In order to define the homomorphis8ynt (7 ® V)¢ —
Ox of Ox-algebras, we first observe that the inclusieh Cc v,(A) corresponds to a
homomorphism* (/) — A. This yields a homomorphism

o' v (Sym (o7 ® V)©) = Syt (v () @ V)¢ — Symf(A® V)Y 5 0%

of 0'z-algebras. The isomorphism results from general base change properties (Section 2
of [16]), and the second homomorphism comes from the naturahiag) — A. Now,
7’ in turn provides us with the map
72 Syt (o ® V)© — v*(Symt (o @ V)©) S v, (0%).

This is a homomorphism af’y-algebras. To see this, one has to verify that the first map
is a homomorphism ob’x-algebras. The latter reduces to the corresponding property of
the symmetric algebra Sy ® V), which, finally, is easily checked.

Now, we define alescending principatz-bundle (onX) to be a triple(A, ¢, T) as
before, such that the following requirements are met:

e The pair(A,7) defines by means of base change (see Diagfam (1)) a prirnGipal
bundle# (A, T) on X. This is equivalent to the fact that the associated seétioki —
Htom(V ® O, AY) /G given byT factorizes over the open subschemrieom(V ®
O3, AY)/G. Note that this implies that det) = 0.

e The image of the homomorphismfrom the pair(</, t) = v.(A, ¢, 7) lies in the
subalgebra’y .

Remark 1.2.1. (i) By definition, the pair(.«Z, t: Synt(«/ ® V)¢ — Oy) is an honest
singularG-bundle on the nodal curvg. Thus, in analogy with Bhosle’s theory of gener-
alized parabolic bundles, we describe honest singataundles on the singular curve
by principal G-bundles on the smooth curvg, satisfying some descent conditions.

(ii) A principal G-bundle P on X defines a descending-bundle onX. For this, let
& be the vector bundle with fibr& associated witl? by means of the representation
and set« := &". We have the natural inclusiab C .Zsom(V ® Oy, «/"). Taking the
G-quotient, we find the section: X — Fsom(V ® Ox, «/¥)/G which corresponds
to a homomorphism: Sym(« ® V)¢ — 0Oy of Ox-algebras. Then we set =
v/, q. Ay, © An, — Cokel/ — v,v*@/), and? = v*r. The triple(A, ¢,7) is a
descendings-bundle onX which, indeed, descends fb(more precisely tq.«7, 1)).

1.3

Next, we have to define the semistability concept for descending prinGigaindles.
This concept will depend on a parametee (0, 1) N Q. Fix such a parameter, and let
(A, q) be a generalized parabolic bundle as above. For any subbBrafiel, we define
thewa-parabolic degreas

a-parde@B) := deg B) — « - dimq(By,; ® Bn,).
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Now, let(A, g, T) be a descending-bundle on the curvél. As before, we can speak of
aweighted filtration(A®, @) of A (where “saturated subsheaf” = “subbundle”, becaxise
is smooth). To such a weighted filtratigA®, o), we assign the rational number

N
Py(A®, @) = Za,- (a-pardedA) - rk A; — a-pardedA;) - rk A).
i=1
In analogy to the definitions aboveyeduction of the descending-bundle(A, ¢, 7) to
the one-parameter subgroup C* — G is a sectioB: X — Z(A, q,7)/Q¢c(A). Such
a reductiong gives rise to a weighted fiItratiom}‘g, ag) of A by a procedure similar to
the one used in the case of honest singular principal bundles on the nodakcirivelly,
we call (A, g, T) a-(semi)stablef the condition

Po(f, ap) (2) 0

holds for any reductio of (A4, ¢, T) to a one-parameter subgroup@f
Below, we will explain what damily of descending;-bundles parameterized by a
schemes$ is. When one has this notion at hand, one may define moduli functors

M(0)*®)= Sch. — Set
S equivalence classes of families of
a-(semi)stable descendir@-bundles|

We then have:

Main Theorem. There exist a projective schem# (0)*** and an open subscheme
M (0)*S C A (0)* =5 as well as natural transformations of functors

_&a'(S)S: M(Q)a_(S)S_) h///(g)u—(s)s
with the following properties:

1. For every scheme/” and every natural transformatiof: .# (0)**— h_y, there is
a unigue morphisny:: .# (0)* S — A with®’ = h(y) o 3¢S,
2. The schemez (0)*® is a coarse moduli space for the functdi(o)*.

Regarding the relation of the notion @f(semi)stability to our notion of (semi)stability
for honest singulaG-bundles on nodal curves, we note

Proposition. There is a valuex; € (0,1) N Q such that, for everg > o1 and every
descendings-bundle(A4, ¢, T) on X with associated honest singular-bundle (<7, )
on X, the following conclusions hold true:

(i) If («, 1) is stable, therA, ¢, T) is a-stable.
(i) If (A, ¢q,7) isa-semistable, then, 7) is semistable.

Note that we may apply our results also to the case= SL,(C) andp: SL.(C) C
GL,(C). In this case, the moduli spac# (0)“*° maps onto the closed subsgt, )

in % (r, 0). This providesZsy, ) with the structure of the scheme-theoretic image of
A (0)***and seems to be the most natural scheme structure one canyi @n at the
moment. A similar strategy will be used to construct natural subschemes of Bhosle’s “big”
moduli spaces for singular princip@&l-bundles for an arbitrary semisimple groGp
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1.4

If X has arithmetic genus one (i.&,is a nodal elliptic curve) and is simple and simply
connected, there is another conceptual approach to the problem by Friedman and Morgan
[8]. They construct a projective moduli spacg&ry parameterizing certaig-bundles

on X. (It seems to be specific to the cgsg X) = 1 that one can build a compact moduli
space from principaG-bundles onX only, i.e., without singular objects.) This moduli
space is compatible with degenerations in the following sense: 1 — B, o: B— X)
consists of a flat proper morphismthe fibres of which are either smooth or nodal elliptic
curves and a sectianwhich meets the fibres only in smooth points, then there is a relative
moduli space#x,g — B such that the fibre over a pointis the usual moduli space of
semistableG-bundles ont ~1(b) if that curve is smooth, andZgy if 7 1(b) is a nodal
curve. LetB® be the open part where the fibresmofire smooth elliptic curves. Then the
relative compactification/x,p of .4 -1goy,g0 has certain uniqueness properties (see
Section 5 of[[8]).

The moduli space#ry is obtained by generalizing the “parabolic construction” in-
troduced in[[7] for smooth elliptic curves. In this construction, one fixes a syatash
simple roots and a special roat € A (that is, any root ifG is of type A,,, and the
unique long root such that the Dynkin diagram is a union of graphs of ypéth « as
an end, meeting each otherdnonly, otherwise). This provides the maximal parabolic
subgroupP,. TheG-bundles which are classified byry are obtained fronP,-bundles
by means of extending the structure group. Fyebundles, in turn, can be described by
certain vector bundles and non-abelian cohomology groups. Although the parabolic con-
struction gives very precise information on tiebundles thus obtained, it seems hard to
characterize them by semistability conditions. Nevertheless, the moduli sgageon-
tains a dense affine open pa#® which parameterizes thé-bundlesP on X enjoying
the following equivalent properties:

e The pullback ofP to the normalizatiorX is trivial.

e For every representatigint G — GL(W), the vector bundle, (P) is semistable.

We claim that.#° also forms an open subset of our moduli spacgse)*ss, for any
representatiop and any stability parametere (0, 1) N Q. To see this, leP be a princi-

pal G-bundle onX and consider the associated descendiAgundle(A, 7, ¢) (Remark
[1.2.1(ii)). Note thaf" := ker(¢q) may be viewed as the graph of the natural isomorphism
¢: An; — Ap,. For every subbundle @ B C A, it follows that

dim((By, ® Bn,) NT') = dim(Bn, N ¢(By,)) < 1k(B),
ie.,
dimq(BNl @ By,) > rk(B).
Thus, for any weighted filtratiofA®, o) of A, we obtain

N
P(A*. @) > ) ai(degA) -1k A; — degA;) -tk A) > 0.
i=1
The latter inequality results from the fact thiis semistable. Thus# (0)**Sand.#Zrwm
are isomorphic overz°.
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At the moment, it seems to be difficult to obtain more precise information about the
relationship between” (0)**and.Zrm, because (a) the objects.iffry are not charac-
terized by a semistability condition and (b) our moduli spa@é&)*s®are probably not
compatible with degenerations (so that the uniqueness property mentioned above cannot
be applied). Hopefully, more precise knowledge on the problem raised in Secfjon 5.3 will
shed light on this. Finally, it would be interesting to know whether the description of the
category of coherent sheaves Krgiven by Burban and Drozd in[[5] might be used and
generalized to get a description of all singulatbundles onX.

Conventions

We work over the field of complex numbers.sshemewill be a scheme of finite type
over C. For a vector bundl&’ over a scheme, we setP(&) := Proj(Sym'(&£)), i.e.,
P(&) is the projective bundle of hyperplanes in the fibregof

2. Preliminaries
2.1. Base change properties of affine morphisms

Suppose thaf: X — Y is an affine morphism, and lét Z — Y be an arbitrary mor-
phism. We form the base change diagram

h
X xyZ —%2> X

) Is

z ",y

The morphismy; is again affine, and one has

Proposition 2.1.1. For any coherent sheaf on X, the natural base change homomor-
phism
h*f*((g)) - fZ* }(é&)
is an isomorphism.
Proof. This can be found iri.[11, p. 12, Corollary (1.5.2)]. O

For any morphismp: T — S between schemes and am-module o7, there is the
“natural homomorphismi’ — @.p* ().

Lemma 2.1.2. In the situation of Propositio2.1.] let &y be an&y-module. Then the
homomorphism

h*(natura)
_—

* * * m * * * 7 %k
h*&y W i f &y = fz.h7%5 &y = fz. f7h" 6y
is the natural homomorphism fov' := h*&y andy = f7.

Proof. This is easily checked in the setting of modules over rings. O
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2.2. Zero loci of sheaf homomorphisms

Proposition 2.2.1. Let X be a projective varietyS a Noetherian schemez{s1 and dsz
coherent sheaves ahx X, andgs: &/ — /2 a homomorphism. 172 is flat overs,
then there is a closed subschepe S enjoying the following universal property: A mor-
phismh: T — S factorizes ovep3 if and only if (h x idy)*gg is trivial. In particular, a
points € S liesin 3 if and only ifggs3xx = 0.

Proof. The author learned this result from [9, Lemma 3.1]. A proof is also given in [16,
Proposition 2.1]. O

2.3. Generalized parabolic bundles

We summarize the main results of the papeér [2]. It serves also as a model for the kind
of results we wish to obtain for principal bundles. For this, we use the notation of the
introduction. Recall that we work on a fixed nodal cu¥eand thatv: X — X is the
normalization map. As befor@/ € X is the singular point, and~1(N) = {N1, Na}.

In the introduction, we explained the notion of a generalized parabolic bundle. Now,
we will introduce the notion of a family of such objects. For doing so, we use the fol-
lowing shorthand notations: I§ is the parameter scheme, then we wiiig v, for the
subscheme& x {N1, No} of S x X andSy for the subschemg& x {N} of § x X. Thena
family of generalized parabolic bundles parameterized liya pair(As, gs) which con-
sists of a vector bundldg on S x X and a quotient magps: ﬁS*(AS\SNl,NZ) — Rg onto
a vector bundle of rank on Sy . Here,r is the rank ofdg and7 s denotes the projection
morphismSy, y, — Sy. Two such familieg A%, ¢}) and(A%, ¢2) are callecequivalent
if there is an isomorphisngs: AL — A% such that

45 =4q5° T2 (VS1Sny )
Next, supposé& is another schemg,: T — S is amorphism, andAs, gs) is a family of
generalized parabolic bundles parameterized byhe pullback (A7, g7) of the family
(As, gs) via f is obtained as follows: We start with the E)Ilowing diagram in order to

introduce the necessary notation (where the maﬁs andh are derived fromf, e.g.,
h = f xidy):

S

Iny,N, SNI.N2

~ T n ~ -

T x X | Sx X Ls
T TS

TS
T
Tn SN
/) , /
T x X S x X ts
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The given datum is the quotient: rs,is.i{As — Rg. This provides us, by means of
pullback, with the quotient

h*qs: h*wssigAs — h*Rs =! Rt
on the schem@y . A repeated application of Propositipn 2]1.1 yields the following iden-
tifications:
~ = ~
W s TsulsAs = w1 h* Tl §As = wralreh T§As = mrradph* As.

If we setAr = TL*AS, then the above identifications tufitgs into a quotientyy:
Tr«(AriTy, v,) = Rr such that the following diagram commutes:

— h* .
h*Tl'S*(As) _— h*ﬂg*AS|5N1tN2 i> h RS

| I I

7 — qr
nruh*As = w1 At —— Tr(AriTy, N,) — RT

The associated family of torsion free sheaves of x X. Let S be a scheme and
(Ag, gs) a family of generalized parabolic bundles parameterized .bwe define the
associated family of torsion free sheavesSor X as

s = Kel(ws.(Ag) = Tsa(Asisy, v,) % Rs).

Since the maprs.(As) — Ry is surjective and botkrs,(Ag) and Rg are S-flat, the
family <75 is alsoS-flat.

Lemma 2.3.1. Let (Ag, gs) be a family of generalized parabolic bundles parameterized
by S, h: T — S a homomorphism, andAr, gr) the pullback of(Ag, gs) by h. This
yields the families#r and.aZs onT x X and S x X associated tgAr7, gr) and(As, gs),
respectively. Then one has an isomorphigin— h*.o7s such that the following diagram
commutes:
* g *
h*(s) ——> h*ms.(As)

=| E

C
A Em— T AT

Proof. This is, in fact, a direct consequence of Diagrain (2). O

Semistable generalized parabolic bundles. As in the introduction, we fix a stability
parameter € (0, 1) N Q. A generalized parabolic bund{d, ¢) on the curveX is called
a-(semi)stablef, for every subbundle @ B C A, the inequality
a-pardedB) - a-pardedA)
rk(B) - rk(A)

is satisfied.
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Example 2.3.2. The (semi)stability condition makes sense also for the value 1. In
fact, the following is known:

Proposition. A generalized parabolic bundi@, ¢) is 1-(semi)stable if and only if the
associated torsion free sheaf on X is (semi)stable.

Now, fixd € Z, r € Z~¢. By standard considerations, one infers

Corollary. Suppose that the stability parameteiis sufficiently close to one. Then, for
any generalized parabolic bundid, ¢) withdeg A) = d andrk(A) = r with associated
torsion free sheaf7, one has:

(i) If (A, q) is a-semistable, theny is semistable.
(i) If o is stable, therA, g) is a-stable.

The above proposition is Proposition 4.2[in [2]. We will come back to this in Sectign 5.2
within our context.

Ford andr as above, we want to study the moduli functors

GPE]¥: Sche — Set

equivalence classes of familig¢s
of a-(semi)stable generalize
parabolic bundles of degreke
and rank- parameterized by

In Section 4 of[[2], we then find

Theorem 2.3.3. There exist a projective schen%@%gff and an open subscheme
GPRBy, C9PA; as well as natural transformations of functors
- -(s)s
g G_PB;/V — hgt@«—@%(rs)s
with the following properties:

1. For every scheme/” and every natural transformatiofi’: %ﬂ%’jﬁs — h_y, there

is a unique morphisng: & P %575° — A with ' = h(yr) o 95,
2. The schem& 2 2. is a coarse moduli space for the funclePE; 7.
Fora sufficiently close to one, the map which associates to the equivalence class of a fam-
ily (As, gs) of generalized parabolic bundles parameterized thye equivalence class of
the associated family/s of torsion free sheaves o defines a natural transformation of

the functor GP&;°*to the moduli functor of semistable torsion free sheaveX pso that
the theorem implies

Corollary 2.3.4. For « close enough to one, there is a surjective morphism
%ﬂﬂgff — U (r,d).

Bhosle shows that this morphism is a desingularizatio@!jfr) = 1 (|2, Theorem 3,
Section 4]).
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3. Decorated generalized parabolic bundles

The general strategy to construct our moduli spaces is the one adopted in our[papers [16]
and [17]. This means that we will first develop a theory of decorated generalized parabolic
bundles in order to obtain our moduli spaces.

3.1. The homogeneous case

We fix non-negative integets b, ¢, and a line bundld. on X. A generalized parabolic
bundle with a decoration of type:, b, c; L) is a triple (A, ¢, ¢), where(A, ¢) is a gen-
eralized parabolic bundle as before, and(A®*)®’ — det(A)®° ® L is a non-trivial
homomorphism. Two generalized parabolic bundlas, g1, 1) and (A2, g2, ¢2) with

a decoration of typda, b, c; L) are said to bequivalentif there are an isomorphism
¥: A1 — Az and a number € C* such that

q1=q20 (YN No))s @2 = (Aety)® @ (z-idL)) o g1 0 ((p&H)®H) L,

A family of generalized parabolic bundles with a decoration of type, ¢; L) parame-
terized by a schemgis a quadrupléAg, gs, Mg, ¢s), where

e (Ag, gs) is a family of generalized parabolic bundles,

e g is aline bundle or§,

° ¢! (A?”)@b — det(A5)®”®n}*~(L®n§m5 is @ homomorphism such th%{s}xf( #0
foralls € S.

We will call two such familiegAl, g1, M, p}) and(AZ, g2, N2, »2) equivalentf there
are isomorphismgs: At — AZ andys: 90 — N2 such that

a5 = 4§ o Fsx(Wsisu )

¢§ = (dety)® @ mi(xs) ®idyz 1) 0 95 0 (WFH®)

Let (A, g, ¢) be a generalized parabolic bundle with a decoration of {ypé, c; L).
Suppose we are given a weighted filtratiot?, o) of A. We then define

Pab,c(A% s 9) i=—min{yy + -+ v, | (1, -0 Ja) €{L, ..., s + 179,
(/7|(Ajl®...®Aja)e)b # 0}.

In this definition, we used the weight vector

N
Z = (Vl, sy yS-‘rl) = Zai : (rk(Al) —r ..., rk(Al) - r, rk(Al)a ceey rk(Al))’
i=1 rk(A;) x (r—rk(A)))x

wherer = rk(A).

Remark 3.1.1. This definition agrees with the one given by the author in [15, Lemma
1.4], as one easily checks.
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We fix numbersr € (0, 1) N Q ands € Q.. Then the decorated generalized parabolic
bundle(A, g, ¢) is said to be(a, §)-(semi)stablef for every weighted filtration(A®, «)
of A, the inequality

Py(A®, )+ 68 papc(A® a;9) (=)0

is satisfied. Now, we may introduce the moduli functors

DGPE) ., Schy. — Set
equivalence classes of famili¢s
of («, §)-(semi)stable
generalized parabolic bundle
S — 1 (As, g5, Ns, ps) with a
decoration of typéa, b, c; L)
such that deg45|{s}><x) =d,
foralls € S,and rKAg) =r

o7

Our main auxiliary result is

Theorem 3.1.2. There exist a projective scher@%@%&”}’f}ﬁ,ﬂjw and an open sub-

?cheme@% ﬁﬂﬁf}fﬁb ey €29 @ﬂfl";f/)as/z /1. @s Well as natural transformations of
unctors

,8)- «,8)-(s)s
9% DGPEYEN. | — "oy paes s

with the following properties:

(i) For every.# and every natural transformatiof’: DGPB;‘);’;S/);/?7 s, = by, there

is a unique morphisny: %@@;";f);;/c/L — N With 9’ = h() o 9(@9)ss,

(i) The scheme@%@%&“}’f};b/cﬂ is a coarse moduli space for the functor
,6)-s
Mdo;r/u/b/c/L'

3.2. The inhomogeneous case

Here, we will make some remarks concerning a different class of decorations which we
will need in some places, but we do not have to develop the whole moduli theory. This
time, we fix tupless = (a1,...,a,), b = (b1,...,b,), andc = (c1, ..., c,) of non-
negative integers such thagt—rc; > Ofori =1,...,n.Ifa; —rc; =a; —rcj, 1 <i <

j < n,we call the triple(a, b, ¢c) homogeneoud he objects we will study now are triples

(A, g, ¢) with (A, g) a generalized parabolic bundle of ranlandg: A, , . — 0% a
non-trivial homomorphism. Here,

n

Agpe = PATNP @ (deta)*)®.
i=1
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We call (A, g, ¢) ageneralized parabolic bundle with a decoration of typeb, ¢), and
we say thatA1, g1, ¢1) isequivalent ta A, g2, ¢2) if there is an isomorphisnf: A1 —
A such that

q1=q2 0 (V|{N1.N5}),  ©1= @20 Vap.c

wherevyy pc: Avabe = A2.ab.c IS the isomorphism induced by. The decoratiorp

breaks into components
@it (A®H®hi 5 deqA)®i, i=1,...,n.
Given a weighted filtrationA®, «), we set, forA;11 ;= Aandi =1, ...,n,

w(A®, o @) == —min{y;, +--- + Vieg | U1+ Jai) € {1,..., s+ 1),
Pil(Aj @ @A), )2 # 0}

as well as
Pabc(A% a5 @) == maXxu(A®, a; @) i =1,...,n}
Next, we will relate inhomogeneous decorations to homogeneous ones; Let

- < v, be the integers which occur as — r¢;, i = 1,...,n. Given any three
non-negative integers, b, andc, we write V, 5 . for the GL(V)-module (V®%)®’ @
(AT VYO, SetV; = By, reymyy Varbicr J = 1., m. Choose a sufficiently
large common multiple of vy, ..., v,. If we let C* act onV; by multiplication withz*/,
the weighted projective spac&, .. \ {0})/C* gets embedded int&(V,,),

V, = &y SHWVY)® - ® S (V).
(dq,....dm) :d; =0,
vydy+Fomdm =0
The details may be found in [L7]. We may find positive integers, F with D —r F =
—w such thatV,, is a direct summand o¥p g r ([15, Corollary 1.2]) and we have an
embeddind?(V,,) < P(Vp g .F).

Let (A, ¢, ¢) be a generalized parabolic bundle with a decoration of {ypé, ¢).
Then ¢ defines, for every tupld = (d1,...,d,) With vidy + -+ + vpdy = o, @
homomorphism

Pa: SU(B) ® -+ ® S (B,) — Ox

whereB; := Ag; bicir ] =1,...,m. These homomorphisms add up to

ilaj—rci=vj

7 ) SU(BY) ® - ® $(By) — O.
(d1,....dp) 2 d; =0,
vidi++Updp =0

This finally defines
7 (A®P)®E — det(4)®”.

For every weighted filtratioA®, «) of A, we set

1 N
Va,b,e (A%, 0 @) 1= o wp e F(A%, a; @).
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Again, we fix parameterg € (0,1) N Q ands € Q.. Then a generalized parabolic
bundle (A, ¢, ¢) with a decoration of typéa, b, ¢) is called (¢, §)-(semi)stabldf, for
every weighted filtratiorfA®, ) of A, the inequality

Poz(A.s o) +6- UQ,Q,Q(A.9 o) (=) 0

is satisfied.

Remark 3.2.1. An obvious but important fact is

Vabc(A% a;0) < (=/>)0 & pap (A% a;9) <(=/>)0. 3)

3.3. The semistability concept for decorated generalized parabolic bundles for large
values of the semistability parameter

In this section, we will explain how the concept @f, §)-(semi)stability simplifies and
stabilizes when the parametegets very large. We may confine ourselves to a sketch of
the arguments, because they are a trivial adaptation of those in our [paper [18]. As usual,
we fix the input data, b, ¢, d, r, andL.

Let A be a locally free sheaf of degreeand rankr on the smooth curvél, and
@: (A®)® — det(A)®° ® L a non-trivial homomorphism. Given a trivializatioh,:
A®e; K = C"®c K, the homomorphism,, defines an elemedt, € P(V,,p,¢) X speeC)
SpecK). Here,n is the generic point oK andX is the function field ofX. We say that
¢ is generically semistablé 5, € P55, . xspecc) SPe¢K), with P55, _ the set of SKV)-
semistable points iB?(V, p.¢).

Remark 3.3.1. (i) The above notion of generic semistability does not depend on the
choice of the trivialization. In fact, set := A),. This is anr-dimensionalK -vector
space. The condition is thap]] € P(A, 5 ) be contained in the set of points which
are semistable for the action of the group(&) This follows from Proposition 1.14 in
Chapter 1.4 of [12].

(i) With the above formulation of generic semistability and the definition of
Hab.c(A®, a; @) in the form of Lemma 1.4 of [15], it is obvious that

Wab,c(A®, a; ¢) >0

for every weighted filtratiofA®, o) of A, if ¢ is generically semistable.

Now, fix a rational numbetr € (0,1). We say that a generalized parabolic bun-
dle (4, g, ¢) with a decoration of typda, b, c; L) is a-asymptotically (semi)stabli&
(a) ¢ is generically semistable and (b) for every weighted filtratiah, «) of A such that
Ka.b.c(A®, a; ) = 0, one has

Py(A*, @) (=) 0.
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Theorem 3.3.2. Givena, b, ¢, d, r, L anda as above, there is a positive rational number
850 Such that for every generalized parabolic bundkg g, ¢) with a decoration of type
(a, b, c; L), satisfyingdeg E) = d andrk(E) = r, and every rational numbe¥ > §,
the following two conditions are equivalent:

() (A, q,9)is (a, §)-(semi)stable.
(i) (A,q, @) isa-asymptotically (semi)stable.

Proof. The proof is subdivided into several steps as in [18].

Step 1.Here, one proves the following result.

Proposition 3.3.3. There is a positive rational numbég such that, for every > §g, a
generalized parabolic bundigd, ¢, ¢) with a decoration of typéu, b, ¢; L), deg A) =d,
andrk(A) = r which is(«, §)-semistable igr-asymptotically semistable as well.

Proof. Note that it suffices to show that, for large ¢ is generically semistable, be-
cause theria, §)-semistability obviously impliea-asymptotic semistability, by Remark
[3.3.1(ii). If ¢ is not generically semistable, then the proof of Theorem 3.1[1 in [18] shows
that there are a constafit(which depends only on the input data) and a weighted filtration
(A®, &) with

C > Za,-(rkA,- -degA) — r - deg A;))
i=1
and
Map.c(A%, a; ¢) < 0.
Furthermore, the tuplek A1, ..., rk As; a1, .. ., «y) belongs to a finite se?” which de-
pends only or, b, andc ([18, Remark 2.1.4(ii)]). Since, by definition of theparabolic
degree,

rk A’ - a-pardedA) — r - a-pardegA”)
=rkA -degA) —r-degA) —a-r-tkA +a-r- dimq(Aﬁv1 ® A;\,Z)
<rkA’.-degA) —r -degA) +a-r-(r—1)

for any subbundled’ of A, it is clear that we can find a constafit which depends only
on the input data with

C' =Y ai(tk A; - a-pardegA) — r - a-pardegA)).
i=1

Applying the condition of(«, §)-semistability to the above weighted filtration, we find
the estimate
c' -5 > Pa(A.,Q) +4- /La,b,c(A.7 ;@) > 0,

so that the proposition holds indeed 8pr:= C’. O
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Step 2

Proposition 3.3.4. The set of isomorphy classps] of vector bundlest of rankr and
degreed for which there exists a non-trivial homomorphigm(A®4)®? — det(A)®**®L
such that(A, ¢) is a-asymptotically semistable, is bounded.

Proof. First, we note that the arguments given in the section entitled “Simplification of
the semistability concept for decorated sheaves” ih [18] apply without modification to our
situation, too. This means that there is a finite set

T = {(ri,....,ré(i);ai,...,ai(i))|i =1 ...,1}
such that the following holds true.

Proposition 3.3.5. Given any positive rational numbéra generalized parabolic bundle
(A, q, ¢) with a decoration of typda, b, c; L) is (a, §)-(semi)stable if and only if the
condition

Py(A®, ) + 8- pab.c(A% a5 9) (=)0
holds for every weighted filtratio*®, «) of A satisfying

(rkAq,...,tkAg; 01, ....,05) € .

With this definition at hand, the proof of Proposit{on 3]3.4 may be adapted from the proof
of Proposition 3.2.2 in_[18] in very much the same fashion as the proof of Proposition
[3.3.3 has been adapted from the proof of Theorem 3.1[1 In [18]. |

Step 3. Assumes > §o. Then one direction is taken care of by Proposifion 3.3.3, but we
still have to show that an-asymptotically (semi)stable decorated generalized parabolic
bundle(A4, ¢, ¢) satisfies the condition afy, §)-(semi)stability for alls 3> 0. Recall that
a,b,c (A%, a; ) > 0for any weighted filtratioiA®, «) (Remarl 3.3 1(ii)). Moreover, the
condition of («, §)-(semi)stability is satisfied for those weighted filtratiqe’, «) with
Hab.c(A% a; ) = 0. Finally, we have to check what happens for weighted filtrations
(A®, @) With 145, (A®, a; @) > 0. By Propositiofi 3.3]1, we may assume

(rkAq,...,tkAg; 01, ....,05) € T. (4)
The boundedness res3.4 implies that we may find a corGtantth
Py(A® ) = C”
for any weighted filtratiom®, o of A for which (4) holds. Suppose> —C”. Then
Py(A®, @) + 8- plap. (A% ;) = C" + 68 > 0,

and we are done. O
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4. Descending principalG-bundles

Let G be a semisimple linear algebraic group over the complex numbers, and fix a faithful
representatiop: G — GL(V) on ther-dimensional complex vector spabe

4.1. The varietieslom(C", V) /G andP(Hom(C", VV)V)/ G

We obtain the representation

R: GL,(C) x G — GL(C" ® V),
(8.8 Wevr (g -w) ®o(g) (),
as well as the actions induced by the contragredient represenfation
I': (GL,(C) x G) x Hom(C", V¥) — Hom(C", V)
and B
I': (GL,(C) x G) x P(Hom(C", VV)¥) — P(Hom(C", V¥)¥).

For any degree/ > O, the representatioR induces an action of GC) x G on the
symmetric power Syf(C” ® V), so that there is an action of GIC) x G on the algebra
Sym(C" ® V). We also get the induced action of QIC) on the algebra SyhiC” @ V)¢
of G-invariants in Sym(C” ® V). This GL.(C)-action on Sym(C” ® V)¢ is, by
construction, the same which is induced by the,@D-actionT: G x H — H,
H := Hom(C", VV)/ G, coming fromI". Furthermore, we note that, for amy > O,
Synf(C" ® V) is a GL,.(C)-submodule of Syfi(C" ® V) and, thus, also afC’ @ V)&,
so that we find GL(C)-module homomorphisms

g (C @ V)® - synf (C" @ V)Y, d=>0.
Choose an so large thatp;_, Sym (C" ® V)© contains a set of generators for the
algebra Sym(C” ® V)¢. We define the GL(C)-module
Wy i=@PUi, Usi=(C @V)®)Y, d=o0.
i=1
The homomorphisms,, d > 0, provide us with an algebra homomorphism
7 Symt(WY) — Synt(C" @ V)©

which is compatible with the GlI(C)-actions. To summarize, we have found a represen-
tation,: GL,(C) — GL(W;) and a GL.(C)-equivariant closed embedding

¢ H — W;q.

We have to analyze the semistability of points), 1 € H, with respect to the action of
the speciallinear group SL(C). Setl := Isom(C", V¥)/G. This is a dense open subset
of H.
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Lemma 4.1.1. (i) Every point. (i), i € I, is SL, (C)-polystable.
(i) No pointc(h), h € H \ 1, is SL,(C)-semistable.

Proof. This is Lemma 4.1.1ir_ [17]. We briefly recall the argument.

(i) We choose a basis farV. This provides us with théSL, (C) x G)-invariant func-
tion o: Hom(C", VV) — C, f — det(f), which descends to a (non-constant) function
on H, called agair. For anyi € I, we clearly have(:(i)) # 0, so that (i) is SL,(C)-
semistable. Furthermore, for arfye Isom(C", V"), the(SL, (C) x G)-orbit of f is just
the level sed —1(z) for an appropriate € C*. In particular, it is closed. The image of this
orbit is the SL.(C)-orbit of i := [ f] in H, which is, therefore, closed. Sinces a closed,
SL, (C)-equivariant embedding, the orbit af) is also closed.

(i) It is obvious from the construction that the ring of S[C)-invariant functions on
H is generated by. This makes the asserted property evident. O

Next, we study the quotient
H :=P(Hom(C", V¥)¥) /G = (H \ {0})/C*.
We form the GL.(C)-module

Vo= @ SynfrU))®-- @ Synf*(UY).
(dl vvvvv d.r):
di=0,) idi=s!
Then we have the GI(C)-equivariant embedding
e (HN\{0})/C" — (W, \ {0)/C* — P(Vy).
Note that, for appropriat® € Z.o, we have a surjection

(C" @ V)®H®N v,

It is again elementary that, for a poiat € W, \ {0} and a one-parameter subgroup
A C* — SL.(O),

@, [w) = 1eow, @, [w) <(=/>)0
& u,w)<(=/>)0. (95

M ﬁ]p(((([:)‘@v)@.?! )GBN)

Corollary 4.1.2. The pointi([1]) € P(Vy), h € H, is SL,(C)-semistable if and only if
hel

Proof. This follows from Lemmd 4.1]1 and|(5), given the obvious fact théi)] =
u([n]). O
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4.2. The homogeneous and the inhomogeneous decoration associated with a singular
G-bundle

A singular principalG-bundle onX is a pair(A, T) which consists of a vector bundle

on X of rankr with trivial determinant and a homomorphigmSynt (A @ V)¢ — 0%

which is non-trivial in the sense that it is not just the projection onto the degree zero
component. The basic features of this notion are outlined in our gager [16]. In particular,
we recall the following alternative (s€e |16, Corollary 3.4]).

Lemma4.2.1. Let
5: X — Hom(A, V¥ ® O5) )G = Fpec(Symt (A ® V)©)

be the section defined HyThen&()?) is either contained inZsom (A, V¥ ® 0%)/G or
in the complement of this set.

In the former case, we call, T) abusively gorincipal G-bundle because it defines via
the pullback diagranj {1) a princip&l-bundle.# in the usual sense. We choosesas- 0
as in the previous section. Then to any singufabundle(A, T), we associate the pair
(A, ) with

0 DA V)® - Synt(Ae V) 5 o5

N

=1

1

and the paiKA, @) with
71 (A V)®H®N - (BSynf1(A® V) ® -+ & Synf" (A ® V)®) — 0%,

where the direct sum runs over @i, ..., d;) such thatd; > 0,i = 1,...,s, and
> id; = s!, and the second arrow is

Z Synf(gjaev)) ® - - - ® Syt (¢ agy)es)-

(d1,-nnds):
d;>0,Y id;=s!

We need the following important fact.

Proposition 4.2.2. Suppos€ A4, 7) is a principal G-bundle. Then the following condi-
tions on a weighted filtratiogA®, o) are equivalent:

(i) n(A® a,9) =0.
(i) n(A®, a,¢)=0.
(i) There exists a reductiofi of the G-bundle(A, T) to a one-parameter subgroup
of G such that(A®, o) = (A;;, o).

Proof. The equivalence of (i) and (ii) is a special case[¢f (3). For the equivalence of (ii)
and (iii), we refer the reader to [17, Lemma 4.2.1 and Proposition 4.2.2]. O
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Next, a singular G-bundle with a generalized parabolic structure (GFS)a triple
(A, ¢,7),where(A, q) is a generalized parabolic bundle of ranénd(A, 7) is a singular
G-bundle.

Fix the semistability parametets € (0,1) N Q and§ € Q.. Then a singulaG-
bundle(A, ¢, 7) with a GPS is said to bex, §)-(semi)stabléf for every weighted filtra-
tion (A®, o) of A the inequality

1
Py(A®, ) +6- a (A% 2 9) = Py(A%, )+ 8- v(A®%, a;9) (=)0

holds.

Proposition 4.2.3. For the fixed input data, s, anda as above, there is a rational num-
ber§,, > 0 such that for every > §,, and every singulaiG-bundle(4, g, T) with a
GPS, the following conditions are equivalent:

() (A,q,7)is (a, 8)-(semi)stable.
(i) (A, 7)is aprincipal G-bundle and, for every reductigh of (4, 7) to a one-param-
eter subgroup. of G, one has

Pu (A}, ap) (=) 0.

Proof. We apply Theorerp 3.3,2. We first note that, by Corolfary 4.%.85 generically
semistable if and only if the sectiéh X — Zom(A, V" ® O%)/ G associated with’
maps the generic point of to Zsom(A, VY ® 0%)/G. By Lemma{ 4.2.ﬁ, this means the
same agA, 7) being aG-bundle. Finally, according to Propositipn 4]2.2, the weighted
filtrations (A®, @) with u(A®, a, @) = 0 are precisely those of the form/‘s, ag). O

A family of singularG-bundles with a GPS parameterized by the schéme a triple
(As, gs, Ts) which consists of a vector bundlés on S x X, a quotient mapys:
Ts«(Asisy,v,) — Rs onto a vector bundle of rank on Sy, and a homomorphism
Ts: Synt(As ® V)¢ — 0Oy, 5 of O, z-algebras the restriction of which {8} x X

is non-trivial for every points € S. Recall thatTg denotes the projection morphism
SniN, — Sn. Two such families AL, g1, 71) and (A%, ¢2, 72) are calledequivalentf
there is an isomorphismis: AL — A2 such that

1_ 2 — a2
45 = 4q5 o Tsa(Ysisy,n,) aNd Tg=Tgo g

with ¥g: Synt (Al ® V)¢ — Synt (A% ® V)¢ the isomorphism induced bys. The
pullback of families of generalized parabolic bundles, introduced in S€ctipn 2.3, yields a
pullback of families of singula6G-bundles with a GPS, so that we may define the moduli
functors
SPBGP%o) @) Sch. — Set

equivalence classes of families pf

(o, 8)-(semi)stable singular

principal bundlegAs, gs, Ts)

with a GPS parameterized Iy

An intermediate step towards the main theorem is
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Theorem 4.2.4. There exist a projective schemé 2 %Y 2.7 (0)* 9 and an open
subscheme” %Y 2.7 (0)\ 9 C ./ PRBYGP.7(0) @) as well as natural trans-
formations of functors

o @8)-s)s. SPBGP@)(O[’&)_(S)S%hyygggyy(g)(u,&-(s)s

with the following properties:

1. For every.# and every natural transformatiof’: SPBGP$0) @9 — 1 ,, there
is a unique morphisng: .¥ PBYG 2.7 (0) *) — 4 with ' = h(y) o (9SS,

2. The scheme¥ %9 2.7 (0)*9S is a coarse moduli space for the functor
SPBGP &)@,

4.3. Families of descending-bundles

The last notion which is missing is that of a family of descending prinafpdlundles
parameterized by a schenSe First, let(Ag, gs, Ts) be a family of singulaiG-bundles
with a GPS andzs the associated family of torsion free sheavesson X. As shown for
the caseS = {x} in Sectior] 1.P, there is an associated homomorphism

60 Syt (s @ V)¢ — (ids x 1), 05, %
of U« x-algebras. With the usual arguments, one checks

Lemma 4.3.1. Let (As, g5, Ts) be as abovef: T — S a morphism, andAr, g7, Tr)
the pullback of the familyAs, gs, Ts) via f. Then

7 = f*(tg).

Now, the family(As, gs, Ts) is called &amily of descending principa-bundles param-
eterized by the schenseif the image of the homomorphismj lies in O x.

Remark 4.3.2. This last condition is equivalent to the vanishing of
G _ EIT21a |
Symi(es @ V)7 — ((ids x v)« 05, 5)/Osxx = 7wx((v0%)/0x).

Lemmd4.3.]L and Propositipn 2.P.1 suggest that this is a reasonable condition.

5. Singular G-bundles on nodal curves

In this section, we explain the relationship with the problem of Nagaraj and Seshadri [13]
and recent work of U. Bhoslel[[3].



236 Alexander H. W. Schmitt

5.1. Descendin®L, (C)-bundles

The first interesting testing case for our results is the case of the semisimple gra@) SL
together with its standard representatirSL, (C) C GL,(C). For any vector bundle
on the curveX, we have a canonical GLC)-equivariant isomorphism

Hom(A, 0F) [SL:(C) — Hom(detA), Oy),

i.e., giving a non-trivial homomorphisi#: Sym(A ® V)S4© — g% is the same as
giving a non-trivial homomorphism (= isomorphism, because(dgg= 0) de(A) —
O’%. This implies that
(A%, a;7) =0

for any weighted filtrationA®, «) of A. Therefore, for anw € (0, 1) N Q, the condition
of «-(semi)stability on a descendir@-bundle(A, ¢, 7) is the same as the condition of
a-(semi)stability on the generalized parabolic bundle¢). Thus, we obtain a forgetful
morphism

M (0)*5° — g@%gﬁs
and, fora close enough to one, also a forgetful morphism (Rernark]3.1.1)

. M()* 3 — U(r,0).

Proposition 5.1.1. The set-theoretic image of the morphigmis the closed subset
Us,(C)-

Proof. Remark$T.2]1(ii) and 3.1.1 imply that every paint % (r, 0) corresponding to a
stable vector bundle/ with trivial determinant lies in the image ¢@f On the other hand,

letm € .#(0)*°be a point corresponding to a descendiidpundle(A, ¢, 7). Recall
that we have an induced, non-trivial homomorphisn@gf-algebras

T Syrﬁ’(%@r)SL’(C) — Ox
which corresponds to a sectien X — JZom(<f, ﬁj‘?’)// SL,(C). Note that, on the
schemesZom (< , ﬁj‘f’) L X, there is the tautological homomorphigth 7* (&) —

or e i )
ﬁjfom(%ﬁ%. The homomorphisn\" H yields a morphism

h: Hom(ef, 6F") — jfom(/r\d, Ox).

Sincer is SL; (C)-invariant, it descends to a morphism

iz AHom(o/, 697 JSL,(C) — %om( /\ﬂ, ﬁx).

Thus, the homomorphism induces a homomorphismm A" &/ — Ox. Now, 0 is ob-
viously an isomorphism away from the noffe whencep(m) € %sy, ). The assertion
follows, becausé/s|, ) is the closure of the set of points/]] € % (r, 0) for which .o/
is a stable vector bundle and def) is trivial ([22, Theorem 1]). O

Therefore, we may equisy () with the structure of the scheme-theoretic image of the
morphisme.
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5.2. A generalization to arbitrary semisimple groups

A singular principal G-bundleon the nodal curveX is a pair(<7, t) which consists of
a torsion free shead? of rankr and degree zero ok and a non-trivial homomorphism
T: Symt (7 ® V)¢ — Ox. Here, non-trivial means again thats not just the projection
onto the degree zero component.

For a given singulaG-bundle (<7, t) we may choose an >> 0 such that the sum
b, Symi («7 ® V)© contains a set of generators for the algebra Syh® V)©. For
such arys, we obtain again an associated homomorphism

7 (o @ V)BHON s oy
For a weighted filtratiori.’®, «) of &7, we set

(e, o3 9) == —minfyj + -+ ¥, | (.- Ja) € {1 .o s+ 1P,
Pty 0, yo0 F O}
and 1
w(®, o 7) 1= o UCANBOR
Given a positive rational numbér a singularG-bundle(«, 7) is calleds-(semi)stabléf
L(* ) +8- - n(@®, ;1) ()0
for every weighted filtratiori<7®, ) of 7.

Remark 5.2.1. (i) As in [16, Remark 3.6], one verifies that the quaniity, -; t) does
not depend on the choice of

(i) It is, in fact, sufficient to choose such thatd;_; Sym (7 ® V)¢ generates
Synt (<7 ® V)© over a non-empty open subdggét This follows again from the remarks
in [16].

For a fixeds € Q-o, we obtain the moduli functors SR&?®®* of §-(semi)stable
singularG-bundles onx, and Bhosle proves if[3] that the moduli spacés? #(p)% s
for these functors do exist.

The problem with these concepts is that the theory of the instabilityaflagkamanan
—Ramanathan, which is crucial to the investigations_ in [17] and [18], does not apply on
the singular curveX. Therefore, we get no control over the open sulisethere as-
(semi)stable singulaG-bundle (<7, t) defines a true principal;-bundle ¢/ might be
even empty), nor do we obtain a satisfactory description of the concéffsemi)stability
whens gets large. For these reasons, we have worked, so far, on the smootiXcivee-
ertheless, we may use our moduli spaces to define some interesting closed subschemes of
Bhosle’s moduli spaces.

In order to explain these ideas, we first remark that the concept 6j-(semi)stabil-
ity and the numerical quantities involved may formally be defined for any positive rational
numberea. In particular, we can speak ¢f, §)-(semi)stability and define numbers such
as 1l-parde@d), andP1(A°®, ).
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Proposition 5.2.2. Let(A, ¢, T) be a descending-bundle and <7, 7) the induced hon-
est singularG-bundle onX.

() If («, 1) is 8-(semi)stable, theliA, g, T) is a (1, §)-(semi)stableG-bundle with a
GPS.

(i) If (A, q,7) is a(l,§)-(semi)stableG-bundle with a GPS, the(, 7) is a §-(semi)
stable singularG-bundle.

Proof. The proof is essentially the same as the one of Proposition 4.2 in [2].
(i) Let B be any saturated subsheaftf\We define the saturated subshe&fB) C &
by means of the following commutative diagram:

0 — YB) —— wB —— ¢(By,®By,) —— O

| l l l H

0O—— & — VA —— R —— 0

The Euler number of”(B) is

x(Z(B)) = x(B) —dimg(By, ® Bifz)
= degB) + rk(B)(1 — g(X)) — dimg(By, ® Bw,)
= (degB) + rk B — dimg(By, ® By,)) + k.7 (B)(1 — pa(X)),

so that we conclude

deg«)rk.7(B) — deqg.¥(B)) rtk &
= degA)rk B —deg.”(B))rk A

= (degA) — rk(A)) rk B — (deg B) — dimg(By, ® Bn,)) kA
= 1-pardegA) - rk B — 1-pardeg@B) - rk A.

Given a weighted filtratioiA®, «), the above construction yields the weighted filtration
(&°, ) with o7 .= S (A;), j =1,..., s, such that

Pi(A®, a) = L(&°, o).
Moreover, we clearly have
(A%, @, 7) = u(*, a, 1),

so that the first assertion is established.

(i) To prove the second part of the proposition, we have to explain that every saturated
subsheaf# C ¢ is of the form.(B) for an appropriate subbundi@ of A. This is
indeed the case for the subbundeyenerated by the image of the homomorphism

VB —> VA — vV A— A O

The other ingredient we need is the following.
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Proposition 5.2.3. There is a numbes > 0, such that for any € (1 —¢,1) N Q, any
integralsemistability parametet, and any singulaG-bundle(A4, ¢, 7) with a GPS, we
have:

@) If (A, q,7)is (a, 8)-semistable, then it i€l, §)-semistable.
(i) If (A,q,7)is (1, d)-stable, then it iga, §)-stable.

Proof. We remind the reader that there is a finite $&tdepending only on the I/)-
action onP(V ® C")/ G, such that the condition ofx, §)-semistability for a singular
G-bundle(A, g, T) with a GPS has to be checked only against those weighted filtrations
(A*, o) of A for which (tk A1, ...,k Ay, a1, ..., ) € 7 (Propositiof 3.3]5). We may
find a natural number such that

Pr(A®, @) + 8- n(A®, a; T) € Z[1/n]

for any such weighted filtration. For a generalized parabolic buitllg) and a weighted
filtration (A®, @), we have

N
|PL(A®, @) — Py(A®,0)| < &- Zaj rkAj - (kA —dimg(Ajin, © Ajin,))
j=1

S
<& tkA- Y otk A
=

We may choose so small that the right hand side of the above inequality is strictly
smaller than 1n. For such ar, the assertion is clear. O

Now, let (As, gs,Ts) be a family of descendingi-bundles parameterized by the
schemesS. Then there is an associated family’s, ts) of (honest) singulaG-bundles

(on X) parameterized by (see Sectiof 4]3). Let be as in Propositiop 5.4.3. Choose
@€ (l—e1)NQ ands € Z.g so large that the conclusion of Proposition 4.2.3
holds. Remark'4.3]1, Propositipn 5]2.2, and Proposjtion|5.2.3 imply that the assignment
(As, gs,Ts) — (s, T5) induces a natural transformation

M(0)*®® — SPB(p)*®

and, thus, a morphism
M ()"~ S P B ()"

between the corresponding moduli spaces. We definglo) C .~ P % (0)*ss as the
scheme-theoretic image of that morphism. This space is a good candidate for (at least the
point set of) a compactified moduli space of stafiidoundles onX. Note that the above
considerations demonstrate thaty (¢) consists of semistable honest singuiabundles

on X and that, indeed, every stable honest singGldundle onX lies in.#x (o).
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5.3. An open problem

The main problem with the results we have established in this paper is the lack of com-
patibility of the moduli spaces with degenerations. In fact, given a fafil> C over,

say,C = SpedC[r], such that the generic fibre is smooth and the fibre over 0 is a nodal
curve X, one would like to have a relative moduli spaBk; — C such that the generic
fibre is the usual moduli space of semistablebundles and such that the fibre over 0

is the moduli space we have constructed. This seems impossible in our approach. What
is, however, possible is the construction of a fansily(0)*SS — C such that over the
generic fibre we find our moduli space&temistable singulat-bundles from([16] and

over 0 we find Bhosle’s moduli spac& 22.2°°. By the results of [17], the generic fibre

is the usual moduli space of semistalldoundles provided théltis large enough. So, in

the wake of Sun’s results [22], we suggest the following

Problem. Letm: 9t — C be the closure o§~1(C \ {0}). Does the fibren—1(0) with
its induced reduced scheme structure equé (o) with its induced reduced scheme
structure?

6. The proofs

In this section, we discuss the construction of the various moduli spaces we have en-
countered so far. The main ideas are derived from our previous papéers [15] and [16] and
Bhosle’s theory of generalized parabolic bundles [2].

6.1. Proof of Theorein 3.7.2

Boundedness. Recall that a familyB of isomorphy classesA] of vector bundles on

X of, say, degre@ and rankr is said to beboundedif there exist a schemé of finite

type overC and a vector bundlds on § x X such that for every vector bundl& on

X with [A] € B, there exists a point € S with A = Ags)x%- BY the semicontinuity
theorem and easy facts on vector bundles on curves, this is equivalent to the fact that there
is a constan such thatu(B) < d/r + C for every bundleA with [A] € 9 and every
subbundle G_ B C A.

Proposition 6.1.1. There is a non-negative constafif depending only om, a, and§,
such that for everyw, §)-semistable generalized parabolic bundlg, ¢, ¢) with a deco-
ration of type(a, b, ¢; L) and every non-trivial proper subbundiof A,

d
u(B) < - +C.
Proof. Let0C B C A be any subbundle. Lemma 1.8(i) in [15] shows

Pabe(OC B C A (D;p) <alr—1),
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so that(wx, §)-semistability gives

drk B — (degB) —r)r +8-a-(r —1)
> (d—a-r)kB — (degB) —a - dimg(By, ® Bx,))r +5-a-(r —1)
= a-pardedA) rk B — a-parde@B)r +68 -a - (r — 1)
> a-pardedA) rk B — a-parde@B)r + 8 - j14.5..(0C B C A, (1); ) > 0.

We see that
d S-a-(r-D+r2 d 8-a-r—1
B) < — <4 -
M()_r+ r - tk(B) _r+ r tr
so that the assertion holds with=r + Sa(r — 1)/r. O

Construction of the parameter space. Recall that, for a schemg of finite type over
C, afamily of generalized parabolic bundles with a decoration of typeé, c; L) param-
eterized byS is a quadrupl€As, gs, MNs, ps), where(Ag, gs) is a family of generalized
parabolic bundles)is is a line bundle or§, andgg: (AS")®" — det(A5)® ® L ®
7Ny is a homomorphism such thag . ¢ # O foralls € §.

We choose a pointy € X and writed'z (1) for &5 (xo). By[6.1.4, we may choose an
integerng such that for every > ng and every(«, §)-semistable generalized parabolic
bundle(A4, ¢, ¢) with a decoration of typéa, b, c; L):

e HY(A(n)) = 0 andA(n) is globally generated,
e Hl(det(A)(rn)) = 0 and detd)(rn) is globally generated,
o Hl(detA)®** @ L ® O3 (na)) =0and detd)®* ® L ® U3 (na) is globally generated.

Choose some > ngandsetp :=d+rn+r(1—g). LetU be a complex vector space of
dimensionp. We defineQ® as the quasi-projective scheme parameterizing equivalence
classes of quotients: U ® Ox(—n) — A, whereA is a vector bundle of rank and
degreed on X and H%(g(n)) is an isomorphism. Om° x X we have the universal
quotient

qqo: U ®n§ﬁ)~((—n) — Agp.
DefineU, , := (U®*)®". Our assumptions imply that the sheaf
Hom(Uap ® Onp, Tep, (Ae(A q0)*° ® 1%L @ 1% 05 (na)))
is locally free. We call this shea#”” and set) := P(s#"). We let
dg: U @3 05(—n) — Ag
be the pullback o o to § x X. Now, on§) x X, there is the tautological homomorphism

5. Ugp ® Ogy — det(Ag)® ® 5L ® %05 (na) @ 5 05(1).
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According to Proposition 2.2.1, we defigeas the closed subscheme which is character-
ized by the condition thaty ® n}i( idﬁ}?(_na) vanish on

ker(Ug p ® 71)*? O3 (—na) — (Aga)eab)'

Let
9! U®n30%(—n) — Ag

be the restriction ofj to & x X. By definition of &, the sectioryg, factorizes over a
homomorphism

pe (AZ)® — detAg)® @ T4 L @ TN,

Here, g is the restriction 00'g(1) to &. The spaceS comes equipped with a family
(Ag, Ng, ¢s). To incorporate the parabolic structure as well, weHdie the Gral3man-
nian ofr-dimensional quotients df'. Letgg: U ® Og — Rg be the universal quotient
and pull it back toS x & in order to get

gexe U ® Osyxs — Roxes.

We defineqe s, Asx e, Nex e, andysy e as the puIIbacks of the objectgs, As,
Ng, andps on S andS x X106 x ® andG x & x X, respectively. On the scheme
G x ® =6 x & x {N}, we have the quotient

AN U ® O6x6 = T(Gx8)y, vyt (ASxBI(SxB)x, ,)

obtained by first restrictingg « 5 t0 S x & x {N1, N2} and then projecting t& x & x {N}.
We define the closed subscheffias the zero locus of the induced vector bundle map
ker(qy) — Rax e, SO that the restriction afg, s to ¥ factorizes over a quotient

4T T(Sx 8y npx (ASxB|(SxB) vy 1, 1T =TTy, vyt (AT Ty, v,) = RT = Rexez

Let Az andyz be the restrictions ol g s andp gy g 10T x X, and sefls (= Nex @3-
We call (A<, g, Mz, ¢5) theuniversal family This is justified by

Proposition 6.1.2 (Local universal property).Let S be a scheme of finite type ov&r
and (Ag, gs, Ns, ps) a family of («, §)-semistable generalized parabolic bundles with
a decoration of typda, b, c; L) parameterized bys. Then there exist an open covering
Si,i € I, of S, and morphisms;: S; — %, i € I, such that the restriction of the family
(As, g5, Vs, @s) 10 S; x X is equivalent to the pullback 0 <, g, Mg, <) via B; xidy,
foralli e I.

Proof. This is standard (see, e.d., [15, Proposition 2.8]). O
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The group action. We have natural actions of the group(®L) on the scheme&?, $,
and®. These actions induce an action

ISLiU)x%¥—>%
of SL(U) on the parameter scheriie

Proposition 6.1.3. Let S be a scheme of finite type ov€rand f12: § — ¥ two mor-
phisms such that the pullbacks(@fz, g, N<, <) via f1 x idy and B2 x idy are equiv-
alent. Then there exist agtale covering): T — S and a morphisnE: T — SL(U)
such that the morphistp o n: T — ¥ equals

LSRN N LN,

Proof. This can be easily adapted from [15, proof of Proposition 2.10]. O

The Gieseker space and map. Choose a PoincarsheafZ” on Jaé xX. By our as-
sumptions om, the sheaf

G = jfom(/\ U ﬁ‘]ac” JTJaél*(g ®7T§ﬁf((rn)))

is locally free. We se1 := P(%,"). By replacing?” with @@nj*ac, (sufficiently ample),
we may assume thaltg, (1) be very ample. Let: ¥ — Ja¢ be the morphism associated
with A" Az, and let2ls be a line bundle off with \" Az = (0 x idz)*Z ® 75 As.
Then
Nas®idez o) \U® Oz — (0 xidg)* P @ 15 05(rn) @ 15Uz
defines a morphism: T — Gy with 10, (1) = Uz. The sheaf
Gp 1= HomUq,c ® Oyad, Tyad (PE° @ T L @ 1% 05 (na)))

on Ja€ is also locally free. Sef, := P(¢,’). Itis clear that we can assundg;, (1) to
be very ample as well. The homomorphism

Uap ® Oz — (AZ)® @ 1305 (na)
— (0 x idg)*,@@’c ® n;?L ® n;?ﬁ;((na) ® JT%(Q[%C ® Ng)

provides a morphisnp: T — G2 with 50¢,(1) = Ql%" ® M<. Finally, we have the
morphismiz: T — & from the construction of. Altogether, settings := G1 x G2 x &
and: := (1 X (2 X (3, we have an injective and $U)-equivariant morphism

1. T — G.

Linearize the SKU)-action onG in Og(p —ad —ra, r8, ra) and denote b S the sets
of points inG which are SI(U)-(semi)stable with respect to the given linearization.
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Theorem 6.1.4. For n large enough, the following two properties hold true:

(i) The preimages *(G®®) consist exactly of those points: T for which (A, ;. @),
the restriction of the universal family o} x X, is an(«, §)-(semi)stable generalized
parabolic bundle with a decoration of tyge, b, c; L).

(if) The restricted morphism, -1 gss: ~H(G®9) — GSSis proper.

If we setT@d)-)s:— ;=1(G9), the above theorem implies that

D = P9 P A vy = T SLU)

exists as a projective scheme. Propositjons p.1.7and 6.1.3 show that there is a natural
transformation of the functor DGé,‘?f/)f/z J¢, INtO the functor of points o7. The uni-

versal property (Theorefn 3.1.2(i)) of this transformation is then a consequence of the
universal property of the categorical quotient. Likewise, one establishe$ 3.1.2(ii) for the
open subscheme

PG PR e = TS SL).

Proof of Theorem[6.1.4(i): A sample computation. The proof of Theorerm 6.1].4(i)
may be carried out along the lines of the proof of Theorem 2.11 in [15], basically by re-
placing the degree with the-parabolic degree everywhere. Therefore, we do not present
the whole proof here, but only a sample computation which demonstrates, in particular,
that we have chosen the correct linearization on the Gieseker pace

We use the notation of [15] for the sample computation. We assume that we are given
a pointr € (—1(G®3). This yields the decorated GRR,, ¢;, ¢;). We will check the con-
dition of («, 8)-(semi)stability for all weighted filtration§A®, o) of A for which A;(n) is
globally generated an(A;(n)) = {0}, j = 1,...,s.

Remark 6.1.5. Itis enough to consider such weighted filtrations because of the following
observations:

1. The set of torsion free sheaves of the famwith 1 € (—1(GS) for somen > ng
(needed to perform the construction) is also bounded (see [15, p. 188]). _

2. Given any bounded famil®s of vector bundles of rank and degree! on X, the
condition of(«, §)-(semi)stability for decorated GPR4, ¢, ¢) with [A] € 9 has to
be tested only against weighted filtratios®, «) satisfying the above extra assump-
tions. This is an easy consequence of Proposition|3.3.5 and general facts on bounded
families (compare [18, Section 3.4]).

From the filtrationA® of A; and the quotiend;: U ® 03 (—n) — A;, we get the flag/®

in U with U; := (H%(q,(n)))"2(H°(A;(n))), j = 1,...,s. We choose a one-parameter
subgroupir: C* — SL(U) the weighted flag of which is jusiU*®, «). By assumption,
writing r = (1, 2, t3),

0 (=) u, (1))
= (p —ad — rot) : /’LG]_()‘" tl) +r8 : I’LGZ(A" t2) +ra- MGg()\" t3)
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=(p—ad—ra)- Zaj(p rkA; — ho(Aj(n))r)

j=1
+rd- aj(vitp)-p—a- hO(Aj(”)))
j=1
+ra-y oj(pdimg (Ajn, ® Ajjn,) — rh%(A;(n))

j=1

= Zaj(pz rk Aj — paStk A; — pratk Aj — pri®(A;j(n)))
j=1

N
+r8- Y ajvig) - p
=1

+ra- ajpdimql(Alel @Alez)'

s
j=1

We divide the last expression yand observe that the assumption on #)eyields
PrkA; — rhO(Aj(n)) =degA)rkA; —rdegA)), j=1...5,

so that the above inequality results in

0 (=) Z(xj(deqm) rkA; —rdegA;))+6- Z“j(‘)j(éo) r—a-rkAj)
j=1 Jj=1

N
o Zaj("dimCIt(Aj\Nl ® Ajin,) —TTKA))
j=1

= > aj(a-pardegA,) rk A; — a-pardegA;)r)
=1
+6- ocj(vj(go)-r—a-rkAj).
=1

As explained on page 189 of [15],

s
Mabe(A% s 0) = ) aj(vj(p) -r —a-TkA)j),
j=1

so that we are done. ]

Proof of Theorem[6.1.4(ii). We briefly review a part of this argument in order to explain
why the assumption that the stability parametdye smaller than one is mandatory. For
this, let(C, 0) be the spectrum of a DVRR with quotient fieldK . Suppose we are given
a morphismi: C — GSSwhich lifts over Speck) to . This lifting is given by a family
(qx: U ®7‘r§(«ﬁ)~((—n) — Ak, qk, ¢k ) over Spec¢K) x X (we left outdlk, because itis
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trivial). This can be extended to a certain family-: U ® n;? Oz(—=n) — Zc, qc, oc),
consisting of

e asurjectiorjc onto the flat familyﬁc, Where;fq{o}xx may have torsion,

e a quotientgc: ﬁC*(Aachsz) — Rc the restriction of which to the subscheme
SpecgkK) x X differs fromgk by an element iK™, ~

o ahomomorphisnpc: (A2)®> — det(A)®C®n)*~(L the restriction of which t¢0} x X
is non-trivial and the restriction of which to Sge€) x X differs fromgg by an element
in K*.

The resulting datumic: U, — nC*(del(Zc)@" ® n)*?L ® n;?ﬁ;((na)) defines a mor-

phismC — G2 which coincides with the second componéatof &, andgc¢ yields a

morphismC — & which coincides with the third componei of /.

SetAc := A.Y. Thisis a locally free sheaf on the smooth surface X. Therefore,
we have a family

qc: U®7t;~(ﬁ;((—n) — Ac,
where the kernel of the homomorphidh® O3 (—n) — Ac| (g« ¥ is isomorphic to the
torsion subsheaf/ of KCHO}Xx. DefineT := dimc(.7). One gets a homomorphism
NU®OCc — ey (det(Ac) ® n}*? O (rn)) which defines a morphis@i — G1 which
coincides with the first component of 4.

SettingAo ‘= A¢ )%+ We have to show thati (g gy, 5 (1): U — H%(Ao(n))
must be injective. This implies, in particular, thﬁg‘{o}xg is torsion free and, hence,
Ac = ZC andqc = qc. The family (qc¢, gc, oc) extends the lifting of: from SpeckK)
to the wholeC. With H := ker(HO(qCHO}X;((n))) we obtain the weighted fla@ C H C
U, (1)) in U, and we choose a one-parameter subgvoup* — SL(U) which gives this
weighted flag. Note that dic#/) = T'. For this special one-parameter subgroup, we find
(comparel[15, p. 192f])

ugA, 1) = (p—ad —ra) - ug, (A, t1) +ré - ug,(A, 22) + ra - ug(a, 13)
=—(p—ad—roayT —réaT +ra(pdimq(In, ® In,) —rT)
= —prT + aprdimg(In, ® In,)
< —prT +aprT ”21 0.
This contradicts the fact that0) is semistable. O

6.2. Proof of Theorein 4.2.4

We fix an integes > 0 as in Sectiof 4]1. LetA, ¢, T) be a singulaG-bundle with a
GPS on the curv and let

> sON

7 (A V)®HeN 5 o5

be the associated homogeneous decoration. Note that, by Lemma 1.8(i)_fiom [15], one
has

1
S pOCBCAMip<r-1
S
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for B a non-trivial proper subbundle of. Thus, the arguments used in the proof of
Propositio 6.1]1 show that, for every subbundieg @ C A of A,

_1 o r—1
W(B) < w(A)+8 == 4,905 T2
r r

provided(A, g, T) is («, §)-semistable.

The parameter space for singularG-bundles with a GPS. Therefore, we may choose
an integemg such that, for every > ng and every(«, §)-semistable singulaG-bundle
(A, ¢, 7) with a GPS,A(n) is globally generated anH(A(n)) = 0. Furthermore, writ-
ing (C" ® V)®H®N as((C")®H)®? we may assume thatis also so large that all the
constructions and arguments used in the constructiongt? B'«:°)ss work with

0/r/s!/b/0/O%
thisn. LetU andQ° be as in Section 6l.1.
We continue with

9 = Q° x @) Hom(Syni (U ® V), HO(O(in))).
i=1

Note that, oveR) x X, there are universal homomorphisms
7 :symUeV)Q 0. D) e H° (O3(in) @ O T i=1...,s.
Lety! = evo ¢' be the composition dff with the evaluation map

ev: H(03(in)) ® O

2)XX—>7rﬁ(zn) i=1...,s

We twisty’ by id,,;?ﬁ;(,m) and put the resulting maps together to get the homomorphism

0 155 @Sym(U@m Oz(=n) @ V) = Og, 5

i=1

Next, ¢ yields a homomorphism af?’@ ;-algebras
On the other hand, there is a surjective homomorphism
B: Syt (Yg5) — Syt (7" A ® V)°

of graded algebras, where the left hand algebra is graded by assigning the teitte
elements in SymU ® ntﬁ~( n) @ V). Here,m: P x X — Q° x X is the natural
projection. The spac@j(G) is defined by the condition thétlj factorize overg, i.e.,
settingAg ) = (T*Ax0)19)(6)xx» there be a homomorphism

Ty SYM(Ag ) ® V) — Oycyxx



248 Alexander H. W. Schmitt

with 7 VG xx = TyG) © B. According to Proposmo@ B)(G) is defined as the
scheme-theoretic intersection of the closed subschemes

9=y e 7L

Bitylxx- kerﬂ‘{)}xx — Oy istrivial}, d >0.

We find the family(Ag) ). Ty(6)) ONY(G) x X. As in the construction of the parameter
space for decorated generalized parabolic bundles, wé & the Gralmannian ef
dimensional quotients df andgg: U ® Og — Rg the universal quotient. We pull back
the universal quotient t9)(G) x & in order to get

aG)xe- U ® OpiGyxs > RyGyxs-

We definqu)((;)x@, AiD(G)XQf)v and?@(c)xg as the pullbacks 18)(G) x & x i of the
respective objects o¥)(G) x X. Again, we have, on the sche®EG) x & = 9(G) x
& x {N}, the quotient

an: U ® O9)x® = T DG)xB)wy.ny+ (ADG)x BIDG) x B, vy)-

Finally, we define the closed subsche®&G) by the condition thagy)c)x ¢ vanish on
ker(qy). The restriction oy )« & t0 W(G) factorizes over a quotient

90(G)* TA(G) vy np* (AWG)IW(GI vy vy) — RWG) = RY(6)x®120(6)-

The restrictionsA gy ) of Ag)c)xe andTayg) Of TyG)xe 10 W(G) x X andggyc)
provide us with theuniversal family(Agy ). 920(6). Tau())- Of course, the analog of
Propositior 6.1]2 holds true.

The group action. This time, we find on our parameter sp&&G) an action
I': GL(U) x W(G) — W(G)

of the group GI(U). Again, the property analogous to the one of Proposftion 6.1.3 is
fulfilled. For the purpose of taking the GIT quotient, we may regard this action as an
action

T (C* x SL(U)) x W(G) — W(G)

of the groupC* x SL(U). The quotient may then be taken in two steps. First, we form
W(G) = W(G)/C*, which poses no problems, and the®(G)/ SL(U). The latter
problem will be reduced to the case of decorated generalized parabolic bundles. To this
end, we note that the construction from Secfior] 4.2 can clearly also be performed in
families, that is, the homomorphisty s, induces the homomorphism

)®S! )@N

Pw6): (Agmey ®V = OgyGyxX

of oy« x-modules. Now, let? be the parameter space for generalized parabolic
bundlegA, ¢, ¢) with deg/A) = 0 and rkA) = r and a decoration of typ@!, b, 0; O%).
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By the local universal property Gf (Propositi02), the tripleyay(g): U@ O (—n)
— AgG), 920(G)» Pa0(G)) induces a morphism

®: W(G) - T
If we let C* act trivially onT, then® becomesC* x SL(U))-equivariant. It thus descends

to an SL(U)-equivariant morphism

WG) —2s T
n| |

over the quot schem@P. Sincell is proper by the construction 8(G) and® is injec-
tive, we deduce

Lemma 6.2.1. The morphisn: MW(G) — T is finite.
Set

Q_B(G)(a,ﬁ)-(s)s = 6_1(::(01,8)-(5)5) and QB(G)((I,B)-(S)S = (D—l(‘:(aﬁ)-(s)s)'

Then the map

56y worte)s WG) @I — gladrE

is also proper, so that the quotients

SO = S PPBG DS (0) D= W(G) >3y SLW)
= W(G)* DBy (C* x SL))

exist, the scheme”>® being projective. By our definition ofe, §)-(semi)stability, the
open subsetdy(G) @9 consist precisely of those pointsfor which the restriction
(A, q¢, T;) of the universal family tdz} x X is (o, 8)-(semi)stable. Therefore, Theorem
[4.2.2 is deduced as before. o

6.3. Proof of the Main Theorem

Givena, we choosé > 8« in accordance with Propositipn 4.2.3. Thus, a descending
bundle(A, ¢, T) on X is a-(semi)stable if and only if it is af, §)-(semi)stable singular
G-bundle with a GPS.

Let 20(G) be as above, carrying the universal familWgyc), 990(6), TasG))- AS
explained in Section 4,3, we have an associated homomorphism

Téﬁ(G): Sym(&zfgﬂ((;) ® V)G — (ldgﬂ(G) X V)*ﬁm(c)xf(
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of Oayc)xx-algebras. Invoking Propositidn 2.2.1 once more, we deiné) as the
closed subscheme 85(G) where the induced homomorphism

p ) m&;m .
Sym' (Fapc)® V)™ — (([danG) X Vs Ogyy« %)/ Omeyxx = 73 ((n0%)/Ox)

vanishes. Now, suppose we are given a fanly, gs, Ts) of («, §)-semistable singular
G-bundles with a GPS parameterized by the sch&n@&hoose a covering;, i € I, of S
such that the above family is induced on ed&glby a morphismy;: S; — 20(G),i € I.
By the universal property dd(G) (Propositiorf 2.2]1) and Lemria 4.B.1, the morphisms
f; factorize over®(G) for all i € I if and only if (As, gs, Ts) is a family of («, §)-
semistable descending-bundles. On the other hand, our constructions imply that the
guotients

M (@)= (D(G) NW(G) ™9 J(C* x SLW))

exist and that# (0)**%is projective. Itis clear that the space&(o)*S*and.# (0)* are
the moduli spaces we have been looking for. O
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