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Abstract. We consider the Yamabe type family of problet#s): —Aus = u" 72/~ 4. > 0

in Ag, ue = 0 0ndA., whereA; is an annulus-shaped domain®F, n > 3, which becomes
thinner a — 0. We show that for every solutian;, the energyfAF |Vue|? as well as the Morse
index tend to infinity a& — 0. This is proved through a fine blow up analysis of appropriate
scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some
elliptic problem onR”, a half-space or an infinite strip. Our argument also involves a Liouville type
theorem for regular solutions on an infinite strip.
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1. Introduction
In this paper we consider the following Yamabe type family of problems:

—Aup = ulHOD g
(Pe) ug >0 inAg,
us =0 OndAg,

where A, is an annulus-shaped open domainRf, n > 3, ande is a small positive
parameter. The domaia, becomes thinner as — 0 (see the precise definition df,
below).
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We define onH3(A,) the functional

1 n—2 _
Js<u>=§fA 'V”'Z_T/A |u| 2"/ (=2 (1.1)

whose positive critical points are solutions(@t, ).
We denote byn(u.) the Morse index ofi, as a critical point of the functional,, that

is, the number of negative eigenvalues of the linearized operator %u;‘/(“) in

Hg(Ae) N H?(A,).

We are mainly concerned with what happens to the energy and the Morse index of
us ase tends to zero. Our main motivation for investigating such behavior of the solu-
tions comes from the fact that information about the energy and/or spectral properties
is closely related to the existence and multiplicity of solutions of nonlinear equations
having variational structure. It is also related to the geometric properties of solutions to
PDE problems. For details see works of Bahri [2], Bahri—Lians [4], De Figueiredo—Yang
[10], Lazer—Solimini[[16], Pacella [18], Ramos—Terracini—Troestler [19], Solimini [24]
and Yang!([26],[[27].

In [§], Bahri and Lions have shown that given a sequence of solutions of some su-
perlinear and subcritical elliptic equations with Dirichlet boundary conditions in a fixed
smooth and bounded domain Bf, we havem(uy) — +oc if and only if |ug|z~ —

400, provided that the nonlinearity has a prescribed behavior at infinity. Later Harrabi—
Rebhi-Selmil[14], Yand [27], and Aubin—Bahkil [1] extended this result to more general
subcritical nonlinearities.

In the critical case, Bnichou and Pomet|[8] proved that for radial solutions on stan-
dard thin annuli, the energy and the Morse index tend to infinity. Our goal in this paper is
to prove that this result holds true for all solutions, and also on nonstandard annuli.

To be more precise, we need to introduce some notationst betany smooth func-
tion

FiR™ 51,2, (B1....60-1) > f(Or,....00_1).
which is periodic of periodr with respect td#s, ..., 6,_2 and of period 2 with respect
to6,,_1. We set
Si(f)={xeR":ir=f(61,...,60,-1},
where(r, 01, ..., 0,_1) are the polar coordinates of
For ¢ positive small enough, we introduce the map

ge 1 S1(f) = g:(S1(f)) = S2(f), x> ge(x) = x + ¢ny,

wheren, is the outward normal t&1(f) at x. We denote by(A;).-o the family of
annulus-shaped open setsiifi such thab A, = S1(f) U S2(f).

Our main result is the following.
Theorem 1. Letu, be any solution of P;). Then, ag — 0,
() [y, IVuel? = +oo,
(i) m(ue) — o0,
wherem(u,) is the Morse index ofi, as a critical point of the functional, defined

by (L.3).
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Remark 2. Statement (i) of Theorefn 1 has already been provedlin [6] [@and [7], using
completely different arguments. However, our argument proves the two statements at the
same time displaying a deep connection between the energy and the spectral properties
of the solutions.

During the process of proving Theorgm 1 we perform some blow ups and find limit
equations orR" or a half-space or an infinite strip, and it turns out that the following
Liouville type theorem that we prove in Section 4 is useful.

Theorem 3. Letu € C2(2) be a positive bounded solution of

—Au = y"tD/=2) inQ,
) u=20 on o0<2,
m(u) < 00,

wherem(u) is the number of negative eigenvalues-oh — *244®=2 in H}(Q) N
H2() and$2 is the strip defined by

Q={(,x) eR"'xR:ia<x, <b}, abeR.
Thenu = 0in Q.

Our proof, which is by contradiction, relies on a careful analysis of successive scalings
of solutions. Such scalings give rise to singular solutions of limiting equations as well as
regular ones. The analysis of the regular solutions is based on the above Liouville type
theorem, while the analysis of the singular case uses in a crucial way the blow up analysis
introduced by R. Schoen, and studied extensively by Y.Y. Li. In particular, the “isolated
simple” property of the blow up points in the Yamabe equation on locally conformally
flat manifolds is a cornerstone in our analysis, together with the extensive use of the
Pohozaev identity. However, our analysis exhibits new features which are not present in
the above mentioned works. A basic difference is that in contrast to those papers, our
domain changes, and a big source of worry is that it may become degenerate during the
blow up process. Therefore our first aim is to scale in such a way that the limit domain
does not degenerate.

Another main ingredient of the proof of Theorgin 1 is to show that if the Morse index
of the solutions is a positive integer then also the number of blow up points of the
solutions remains bounded ly. This is similar to what happens in other asymptotical
critical problems described by El Mehdi—Pacella [11].

The organization of the remainder of the paper is as follows. In Section 2 we start our
blow up scheme, blowing up first at the global maximuna gfthen finding another point
which is the first to escape under appropriate scaling, and conclude that each of them
contributes to the total energy at least a fixed amount. Section 3, devoted to the proof of
Theorenf L, shows that the process started in Section 2 does not stop after finitely many
steps, and that each point contributes at least 1 to the total index pfoving that both
the energy and the Morse index must be infinite. In Section 4 we prove Thgprem 3, while
in the Appendix we recall some well known facts about the blow up analysis of Yamabe
type equations.
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2. The blow up process

To prove Theorer|1, we argue by contradiction, that is, we supposéRhatas a solu-
tion u, which satisfies

(H1) f Vuel> < C1 or (Hp) m(ue) < Ca,
Ag

whereC1 andCs are given positive constants independerd.diVe first recall the follow-
ing result:

Lemma4 ([6]). We have:

1. [y IVuel? 4 Oase — 0.
2. M1, — +ooase — 0, whereM1 , = llugllLooa,)-

3. There existg > 0 such that for: small enough, we ha\zﬁMz/(” 2)
Now letA; o = MZ/(” DA, — aie), whereay . € A, is such thatMy , = u(a1,), and
denote by, the funct|0n defined oA 1 . by

Ve (X) = My tue(are + My "2 X). 2.1)

It is easy to see that. satisfies

{—Ave = v§n+2)/(n_2), O<wv. <1 inNAg,, 2.2)

v.(0)=1 v, =0 ONJA1.
Liouville type theorems and the Pohozaev identity on the limit domain yield
Lemma 5. We have
M " Pd(are, 04.) — +oo  ase — 0,

whered (a1 -, 3A,) denotes the distance of . to the boundary of,.

Proof. Let! = lim,_o M7/, 2/(n— 2)d(alg, dA;). According to the proof of Lemma 2.3 of
[6], we havel > 0. Argumg by contradiction, we suppose tliat oco. Then it follows
from (2.2) and standard elliptic theory that there exists some positive functaooh that
(after passing to a subsequenag);~ v in C,%C(Q), whereQ is a half-space or a strip in
R", andv satisfies

—Av =0t2/@=2) gy <1 inQ,
v =1, v=0 onog.

But if Q is a half-space, then by [12}, must vanish identically and thus we derive a
contradiction. IfQ2 is a strip inR” and condition(H7) is satisfied, then by the Pohozaev
identity (see e.gl[24, Theorem 111.1.3}),= 0 and thus we also obtain a contradiction in
this case. Lastly, if2 is a strip inR” and condition(Hy) is satisfied, then by Theorqﬁw 3,

we also find a contradiction. Thus our lemma follows. O
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From Lemmg b, we derive that there exists some positive funatisaoch that (after
passing to a subsequenag)— v in C&)C(R"), andv satisfies

_ — 1, (n+2)/(n=2) H n
{ Av=v , v>0 InR" 2.3)

v(0) =1, Vv =0.
It follows from [9] that
V(X) = 8(0,a,) (X)),
wherea,, = (n(n — 2))~Y2 and, fora € R” andx > 0,
A (n=2)/2

P11 32x —a?)n-2/2 with o= (n(n —2)" "2/ (2.4)

danx)=c
We recall thab ) are the only minimizers for the Sobolev constant
. _2 . —
S = inf{IVul o 1l 220ay oy © 1Vl € L2, w € L2072 0 201 (2.5)

We note that, by the above arguments, for Zny 0 we have
/ ug"/(”_z)(x) dx — S%L(n)_z)(x) dx ase— 0, (2.6)
B(a1e,R/A1e) BOR)

wherery , = Mf/s("fz).

To proceed further, we introduce the function
~ —2)/2 ~ _
e (X) = dy; Pue(are +dreX), X € Ag = dHA: —ave), (2.7)
wheredy , = d(a1,, A,). Notice that from Lemmp]5, we know that
i:(0) = di"s_z)/zug(al’g) — 400 ase — 0.

We observe that the limit domain df; is a strip or a half-space iR”; we denote it byl
in both cases.
As a first step of our blow up process, we prove the following proposition.

Proposition 6. We have
e = m%x(|x — a1,8|(”*2)/2u8(x)) — +oo0 ase — 0.
X€A:
Proof. Arguing by contradiction, we suppose that < C, with C is a positive constant
independent of. Thus, we have
1X|"=2/25,(X) < C, VX € A,.

In particular,
iie(X) < C|X|@™/2 ¥X e B(0,1/2) \ {0},
s (0) — +o0.
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Therefore 0 is an isolated blow up point &f (see Appendix for definition). Then it
follows from Propositiof 19 that 0 is an isolated simple blow up point (see Appendix) in
B(0, 1/2). Applying Propositiorj 118 of the Appendix we derive that there exist positive
constantg; andc, such that

c1ie (0) Cc2

<u e
aram Dgypnar = Loy

for y € B(0,1/4) \ {O}.

Considering now the linear equation
Au+Vu=0 with V=gi¥n=2,
we deduce from Lemnja L6 and the Harnack inequality (s€e [13]) that
ie(y) < cxiie (071, Vy €K, (2.8)

whereK is any compact subset of, which does not contain 0, ang; is a constant
depending orK .
Now we set

It is easy to check thal, satisfies

— A, = 123_4/(”_2)(O)5§n+2)/(’1_2), 5. >0 in Ag,
U, =0 ONoAg,

and
7:(0) — 400 ase — 0,
calyP " < Be(y) < calyP, Vy ek,
whereK is any compact subset df, \ {0}. It follows from standard elliptic theory that
e — aGn(0,-) in C3.(I),

where G (0, -) is the Green function of the Laplace operator with Dirichlet boundary
condition defined on the limit domail (half-space or strip) and wheteis a positive
constant. Such a Green function can be written as

Gn(0,x) = [x[*™" = H(0, x),
whereH (0, x) > 0 by the maximum principle. We now observe thatsatisfies
—Aiiy = a"2/=2in B, := B(0, r) for anyr < 1/2.
Applying the Pohozaev identity (see for example Corollary 1.1 of [17]), we derive that

n—2
2n

—r

a2/ =2 — / B(r, x, iig, Viig), (2.9)
3B, 3B,
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where )
- - n—22_0i; r _._. o 0llg

B \YJ = —u.,— — =|V .
(r,x,ug, Vitg) 2 Ug EY 2| | +r<8v

On the one hand, using (2.8), we obtain

i "2

n—2 5
r / uf”/(”_z) <c
2n 9B, i

rn
Multiplying @.9) by ii2(0), we derive that

i 2 <0>)

r}’l

507 [ B Vi) = 0(
3B,
Using the homogeneity of the operat®r we obtain

o ()
B(r, x, ¥, Vi) = O =——-).
3B, r

In particular, we conclude that

e—0

lim / B(r,x,v,,Vi,) =0 forO<r <1/2 (2.10)
3B,

On the other hand,
e — aGp(0,-) inC?@B,), for0<r <1/2,
and forr small enough,
Gn(0,x) = x> — H(O,0) +o(|x]), with x| =r.

Thus we have

—2)2
lim / B(r.x. 5., Vi) = . ) 10, 0)a? 5" > 0,
0B,

e—0,r—0Jyp,
which contradicts[(2.30), and thus our proposition follows. O
Letaz . € A, be such that
he = laze — a1.e| "2 Pug(az,e),

wherer, is defined in Proposition] 6. Now if we blow up at the paint., Propositionl p
implies that the image under the new scaling of the first paintwill escape to infinity,

a fact that we express loosely by saying that these paintse themselve$iowever the
domain may become degenerate, that is, its width becomes thinner and thinner along the
blow up process. The following lemma rules out such a situation.
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Lemma 7. There exist§ > 0 such that for every,
A2,c8 = 6,
wherex . = uf/("fz)(azgg).
Proof. For X € B(0, (\2.:/2)|a1s — a2¢|) N D,, we set
we(X) = Ay Pug(aze +352X), With De =hze(Ae —aze).  (2.11)

Recall that, for any € A,, we have

(n—2)/2

—-2)/2 -2)/2 —-2)/2
|x — al,s|(n )/ ug(x) < laze — al,8|(n )/ ug(aze) = laze — al,a|(n )/ )‘2’5

Thus, for anyx € A,, we obtain

ue(x)  lage —ay|"=2/2
A= = T =g 0272

But, forx € B(az,, laze — a1.|/2), we havelx — a1 .| > |az . — a1¢|/2. Hence

Ue (x) < 9(n=2)/2

W = for anyx € B(az,e, laz,e — Clj_,g|/2).
2.

Thus we obtain
we(X) <2742 VX € B(O, (A2.¢/Dlare — azel) N Dy.
Arguing by contradiction, we suppose that
r2ce >0 ase — 0.
Letay, € 9D, be such thajay .| = d(0, dD,). We may assume without loss of gener-
ality that the unit outward normal ®D, atas . is e,, Wheree, is thenth element of the
canonical basis dR”. Let
B@ay, 1)={x"eR" ¥ —ap,| <1,

where
G = @y, a5,) eR"IxR, x=@ x")eRIxR
Let
T: = (B(ay,, 1) x [-1,1]) N D,
0T = 8(T,) N 3D, T2 =d(T) N D,.
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We denote byGr, the Green function of the Laplace operator with Dirichlet boundary
condition defined orT;. Let X € T, such thatX = B.e,, with —1 < B8, < 1. By easy
computations, one can check that

dy
Gr,(X,y)dy S/ ———— = O0(A2,6).
/Te T, |X —y"—2 ’
Now we observe that

ws<X>=cn< / Gr,(X, pyw2/=D(y) dy — f agfé‘(x,wwg(y)dy)

T

_ oG,
= Cn(f Gr. (X, y)wT2/0=2(y) gy —/ (X, y)we () dy>,
T, 37*82 Jv
wherec, is a positive constant. But, sincé= g.¢,, we have
daGr,
ov

Sincew, < 2"=2/2 we derive that

(X,y)<ec, VyedT2

_ G,
/ G, (X, w202 (y) dy = 0 (g ce), / 08T (X, yywe(y)dy = O(hae6).
T, aT2 OV
Thus we obtainw,(X) = O(2.¢), and in particularw,(0) = 1 < cAp.e. Thus we
derive a contradiction and therefore our lemma follows. O
Now, sincerz e /> 0 ase — 0, we can prove, as in Lemrpa 5, that
A2ed(azs, 3A;) — +oo  ase — 0

and therefore there existe R" andu > 0 such that the functiow, defined by[(2.1]1)
converges irCI%)C(R”) to 8¢,,). Thus we have found a second blow up paipt of u,
with concentration., . defined by

_ b -
aze =aze + , )"2,8 = II«)LZ,&
)"2,8

Observe thaty . ¢ = urz e /4 0ase — 0, and therefore as above we have
A2ed(G2e, A;) — +00  ase — 0.

Summarizing, we have built two poindg ., az . with concentrations.q . andiz,g such
that, ass — 0,

)\l,ad(al,s» 8A£) — 4009, X2,<sd(6_12,e;“a 8A£) — +00, (212)
_ 2n/(n—2

YR >0 /B —s )u§"/<" D(x)dx — . 5(0’{1‘:’) ) (x) dx, (2.13)

VR > 0 u?/ =2 (x)dx — S0P ydx,  (2.14)

B(az,e,R/A2) B(b,R/ 1)
|al,€ - aZ,sp\l,s — +00, |a1,s - &2,8|)"2,8 — +00. (2-15)
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In this section, we have started a blow up process, producing blow up points which
ignore each otherand therefore contribute to the total energy at least a fixed amount.
Our goal now is to prove that the process does not stop after finitely many steps. This
is a key argument in the proof of Theor@in 1. See Propodiiion 8 in the next section for a
guantitative statement of this fact.

3. Proof of Theorem1

This section is devoted to the proof of Theorjgm 1. We first prove that the process started
in Section 2 does not stop after finitely many steps Actually we have:

Proposition 8. LetS = {x], ..., x;}, p > 2, be such that, as — 0,
d(xf,0A4.)" 7Py, (xf) > 0o forl<i<p, (3.1)
lxf — X8| 20, (xf) > 00 fori £, 1<i.j<p. (3.2)
Then

m%xd(x, 8§22, (x) > 0o ase — 0.
XEAg

Proof. Arguing by contradiction, we assume that there exists 0 such that
dx,8)" 22, (x) < C, Vx € A,.
Without loss of generality, we may assume that

d(xf,, dA;) = min d(xf, d0A,).
1<i<p

We set

&
dy = d(xj. 040 we(X) = ()" P Pu @ X gy Xf =L
p

Observe thak’;, = 0. We distinguish two cases:

Case 1:mimci<p-1|X]| < min;4; | X! — Xj|. In this case we prove the following
lemma:

Lemma 9. There exist$ > OsuchthaiX?| > éfori e {1,..., p —1}.

Proof. Without loss of generality we may assume th&f| = mim<;<,—1 |X7|. Arguing
by contradiction, we suppose that= |X]| — 0. Consider

we(X) =122y, (¢X), where X = X/z, sothaiX}| = 1.
Observe that

d(X,81) " PP w.(X) <C, where Sy={0,X{,.... X5},
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implies that

Iy 22w (y) < € for all [y| < 3z,

ly — X§|"=2/2y,(y) < ¢ forall |y — X§| < 3.
It follows that

Iy =220, (y) < € for all |y| < 1,

ly = X§|"=2/2i,(y) < € forall |y — X§| < 3.

Notice that

B (0) = 1722w (0) = [xf — x5 |22 U (x5) — o0,
ﬁ)g(f(i) = |x] —xf,|(”_2)/2 ug(xy) — o0.
It follows that 0 andX; := lim,_,o f(i are isolated simple blow up points (see Appendix).

Now it follows from standard elliptic theory and properties of isolated simple blow up
points that

lim i (e (y) = h(y) I Cigo(R" \ Sp),
h(y) >0, yeR'\S,,

whereh is harmonic outside itsingular setS, C Sy, andS, = {0, X1, ..., )?p_l}, with

X; = lim,_oX¢ for1 < i < p — 1. Observing that0, X1) € Sz, we then deduce
from Bocher’s theorem (see e.@.[15]) and the maximum principle that there exist some
nonnegative functiom(y) and positive constants/1, M, such that for ally € R" \

{52\ {0, X1}},

b(y) > 0,
h(y) = Ma|y>™" + Maly — X1/>7" + b(y).

Therefore for some constast> 0,
h(y) = Ma|y|>™ + A+ O(|y|) for y closeto 0O

As usual we derive a contradiction like in the proof of Proposifipn 6. The proof of
Lemmd 9 is thereby completed. O

Case 2miny<j<p—1 |X7| > min;2; | X7 — X;?|.
Lemma 10. There exist$d > 0 such that

min|Xf—X;| >¢§ fori,jef{l,...,p—1}.
i#]
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Proof. Without loss of generality, we may assume that

X{ — X5 = min | X¢ — X¢).

Suppose by contradiction that
o, =1|X{—X5|—0

and set

n—2/2

ve(y) =0 we (oey + X9).

It follows thatv, satisfies
—Av, = v§”+2)/(”_2), ve >0 in|y| <1/o,.

TakingY; such thatXs = o, Y5 + X{, itis easy to see that

ve(y) < Cly|~"=2/2 forall [y| < 3. ve(0) — o0,

ve(y) < Cly — Y5|7"=2/2 forall |y — Y5| < 3. v.(Y5) > oc.
It follows that 0 andY; := lim,_o Y; are isolated simple blow up points, therefore
arguing as in the first case, we derive a contradiction. O

Coming back to the proof of Propositiph 8, we see that, from Lenjmas 9 dnd 10, there
existss > 0, which does not depend ensuch that:

|X|"=2/2 ) (X) < C for everyX e B(0, §/2),
|X — X5|"=2/2y,(X) < C foreveryX € B(Xt,8/2),
we (0) = (d5) =272 u (xf) — 0.

We distinguish two cases:

e |X]| — oo as e — 0. Inthis case O is the only isolated blow up pointefand thus,
arguing as in the proof of Propositiph 6, we derive a contradiction.

e There exists a constat > 0 such thatX{| < C. In this case we argue as in the proof
of Lemmd® or LemmB_10 to derive a contradiction.

The proof of Propositiofn|8 is thereby completed. O
In the next proposition, we prove that at each blow up point constructed by our blow up

scheme, the projection QH&(Ag) of the bubble concentrating there contributes at least 1
to the total Morse index af,.

Proposition 11. Let{x{, ..., x,}, p > 2, be such that, as — 0,
d(xf,0A:) " 2/2y, (xf) - 00 forl<i<p, (3.3)
xf — x6|72 20, (xf) > 00 fori . 1<i.j<p. (3.4)

Thenm(u,) > p.
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Proof. We begin by introducing some notation. We denoteyliie quadratic form asso-
ciated to the linearized operaterA — %uﬁ/("_z) defined oan}(Ag) N H?%(A,). Thus,
for v € H3(A;) N H?(A,), we have

n-+2 _
q(v) =/ |Vv|2——2/ u =22,
Ag Ag

n—

Let
dj = min{d(xf, 8 A), 3|xf — x| for j 3 i},

and denote b)PES(X;,A;) the projection Oﬁ(x;,,\;) onto H&(B(x;?, d))), thatis,
APE(S(xl?,A;’?) = A(S(xf,)»f) in B(x;, dl-/), PS(S(X;Q;\?) =0 ondB(x}, dl-/),

P¢8(,s ) being continued by 0 idt, \ B(x{, d}) (here and below, = (e (x£))?/ =2)),
Clearly the supports of the functiom$d,: ;:) are disjoint and.fd; — +oo for eachi.
In order to prove our proposition, it is sufficient to prove that,d@mall,

)4
q(zaipgs(x;,kis)) <0 Vi eR (3.5)
i=1

To simplify our notation we will writeP,é; andé; instead ofP.d.s 52y andd. ;e re-
spectively. Now, we observe that

p p
q(zaipgs,-) = Za,?/ |VP58i|2+Zaiaj/ VP8,V P.5;
i=1 i=1 Ag

i#] Ae
n+2 _ P
- TZ/ ul 2)<Zoti2Pg8i2+Zotiotng&PgSj)
n Ae i=1 iZ)
P
= Y afq(Pes), (3.6)
i=1

where we have used the fact that the supports of the funcBghsare disjoint.
We now notice that

n+2 3
q(Ped;) = f |V P:8; % — f U4/ =2 p, 52
4e B(xf.R/%)

n—2

n+2
_ / u0-2 p 52
n—2 Ja\BxE R/

n+2
<[ wesp-t e,
BG:f ) n—2 JBxt R/

where R is a large positive constant such that,, zq ) 5(25'2(’:’)‘2) = o(1) with a, =

(n(n —2))" 12,
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We now write

/ |VP8(SZ |2 — / 8[(”“1’2)/(11*2) PSSi
B(x?,d) B(x?,d))

:/ 521/1=2 _/ 5D/ (5. p sy,
B(xf.d)) B(xf.d))

For the second integral, we have
2)/(n—2 _
/B o 8D (8 — Peby) < eldi — Pedil oo g ayy < cO5d)EZ - 0
Xjdi

ase — 0; in the last inequality we have used Proposition 1_of [20]. Thus we have

/ |VP851‘|2 :/ 6[?”/(’1—2) +0(1)
B(xf.d)) B(xf.d))

We also have

/ W02 p, 52
B(xf,R/A)

— / 52 p.s? + 0(/ lue — 842 P€8i2>.
B(xf,R/%E) B, R/AL)

Thus, since

f sY0—Dp 2 f 521/ 1=2) | f 540D (5, p,s;)2
B(xf,R/AE) B(xf . R/A) B(xE,R/3E)

2/n—2
—2f R - na,
B(:xf,R/AS)
4/(n—2
/ 577281 — Ped)? < €18 — Pebil2an-a s, = 0(D),
B(xf,R/A)

we derive that

/ uH=2 p,5?
B(x¢,R/A)

- / 5272 4 o(1) + 0(/ lug — 8;]%7 2 PSSZ.Z).
B(E,R/AE) B(xf,R/AS)

Therefore we obtain

_ 2 ~
q(Ped;) < f 521/ =2 _i/ 521/1-2
B(xf.dy) n—2JpusRD)

+ 0(/ lug — 5,»|4/<”—2>5,.2) + 0(1). (3.7)
B(x£,R/E)
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Now, letting AL = A£ (A, — xf) and setting, foX € AL,

£ (X) — 1 e X

we see that! — §(0,q,) IN C,%C(R”). Thus [3.F) becomes

2n/(n-2) N+2 2n/(n—2)
MLEEN R
0 Jeosay @ n—2J)por @
T </ Vi =8 |4/(n2)3<20,a,,>> +o(D)
B(O,R)

__—4 / 82n/(n—2)_/ 521/ @1=2)
n—2 Jpn O RN\BOEd) O

n+2 2n/(n—2)
b +o(D).
n— 2 R”\B(O,R) 0,a,)

SinceB(0, A{d)) — R", we deduce that
—4 n/2
q(Pedi) < — 2S +o0(1), (3.8)

wheres is the Sobolev constant defined by (2.5).
Clearly, [3:6), ... .[(3]8) givg (3.5) and therefore our result follows. O

Proof of Theorer]1. Arguing by contradiction, we assume that either the energy is uni-
formly bounded(H,), or the Morse index is uniformly bound€d/,). Using the results

of Section 2, we start a blow up process, which enables us to gain at each step at least
a fixed amount of energy, and at least 1 in the Morse index. Namely athhsgep, we

have constructekl points(a1 ¢, . . ., akx.) With concentrationgrq ., ..., Ax o) satisfying,
ase — 0,
Vie{l,....,k}, Aied(aie, dAg) — 400, (3.9)
VR >0 uf”/(”fz) (x)dx — ng{y(")_z)(x) dx, (3.10)
B(aye.R/A1e) BOR) "

Vi #1VR >0 / w22 (1) dx — 8o B () dx, (3.12)
B(aie,R/%iz) B R/uy M

Vi#Ejell....k}, laie —ajelhie = F00. (3.12)

Hence we derive that

/ |Vug|? > kS™? and m(u.) > k.
Ae

Then using Propositiorjg 8 apd|11, we derive that this process does not stop after finitely
many steps, contradicting assumptid# ), respectively H»). Our theorem follows. O
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4. A Liouville type theorem

This section is devoted to proving the Liouville type theorem, Thedrem 3 stated in the
introduction. The main idea is to use the spectral information to gain more integrability
of the solution, and this is the content of the next two lemmas.

Lemma 12. Letu be a positive bounded solution @f). Then
/ w2 =2 () dx < +oo.
Q
Proof. Without loss of generality, we may translate the origin in such a way that

Q={(,x) e R"IxR:0<x, <k} (kisafixed real.

We denote by the quadratic form associated to the linearized operator 2+2;,4/(1—2)
defined onH}(Q2) N H2(Q). Forh € H3(Q) N H?(Q), we have

2
q(h):/ |Vh|2—i/ u¥ =252
Q n—2Jq

Letdy > 0, and forR > 2dp, set
Qr={(,x)) eR" I xR: x| <R, 0<x, <R}

Now we introduce the function

0 if r < do,
L0 itdy < r < 2dy,
do
@do,R(¥) = {1 if 2do <r < R,
2R—r .
if R<r <2R,
0 if > 2R,

wherer = |x’|. We distinguish two cases:

Case 1:.¥R > 2dp Va € (0,1) q(pay ru™) > 0.
Case 2:3R; > 2dp 31 € (0,1) q(pyy r,u'tt) <O.

In Case 1, expanding(@dO,Rul*"‘) and lettinge tend to zero, we obtain

n+2 _
/ IVul?p7 g — / w2l > / w2 (Aay R Pdo.r-  (4.1)
Qor n—2 Q2r Q2p

Now, multiplying the equation-Au = u("fz)/("‘z) by ult*¢Z . and integrating by
parts onQ2oz and lettinge tend to zero, we find that

_ 1
/ |Vu|2(p50,R —f w2/ 2)§0§O,R = é,/ uzA(<p507R). (4.2)
Qor Qor Q2r
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From [4.1) and (4]2), we derive that

4 / 2/(n-2) 2 / 2(1 2
u 0 R = u\ sA(Qg. r) — A@dy.R * Pdo.R |-
n—2 Qo do,R Qo 2 do,R 0 0

Since
A((ﬂazlo,R) = 204y, RA@dg.R + 2|V(Pdo,R|2’
we find that 4
2n/(n-2) 2 2 2
u ® S/ u“lVedy r1°
n—2 /sz do-R Qor °
Thus

4 _
[
n—2 2dg<r<R Q2r

We now observe that

8 .
WO’—R(X)z—ﬁ for R<r<2R, 1<i<n-1,
0x; r
8(pd0,R(x) i .
a—x,-:r%o for do<r<2dg, 1<i<n-1,
and therefore
Vo, (¥)? = for R <r < 2R,

R2

1

IV@ao, g ()2 = — fordo=r < 2do.
0

1
2n/(n—2) / 2
u < — u“ + c¢(do),
w/;ZR R2 Qor

wherec(dp) is a positive constant depending onlydyandn. Using Hlder's inequality,
we find that

¢ (n—2)/n
/ w21/ 0=2) < —2< / u2"/<"2>> R2n=D/n 4 ¢(dp).
Qr R Q2r

(n—2)/n
/ u2”/<"—2>> + ¢(do). (4.3)
Q2r

Thus

That is,

Since 0< u < ¢ on 2, we deduce that
/ y 212 < pn-1,
Q2R
Therefore by[(4]3), we have

/ u? =2 < (R"=3 1 (dp).
QR
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We insert this bound iff (4.3) and iterate this argument to obtain
/ u2n/(n72) S CRD(], + C/(do)
Qg

with o = 1 — 3, ap41 = 2a, — 2 andc’(do) a positive constant depending only
andn. It is easy to see that, converges te-1 whenp tends tooo. Taking po such that

ap, < 0, we then derive
/ w2/ n=2) 5
Q
in the first case.

In Case 2, the Morse index of is at least 1. Consided; > 2R;. Then either
q(godl,Rul"‘“) > OforallR > 2d; and alle € (0O, 1) (as in the first case we then prove that
[qu?/ =2 < 00 ) or there existR, > 2d1, az € (0, 1) such thay (g, r,u't?) < 0.
Sinced;, > 2Ry, the supports oy, r, andey, r, are disjoint and therefore the Morse
index ofu is larger than or equal to 2. We again iterate this argument. $ireg < oo,
there exists! > 0 such that

q(¢a.gu*®) >0, Ve € (0,1), VR > 2d. (4.4)
Then, as in the first case, we prove that|(4.4) impf@az”/(”*z) < 00, and the lemma
follows. 0

Lemma 13. Letu be a positive bounded solution ¢f). Then

/ [Vul?dx < oo.
Q

Proof. Fore > O small leth = h, € C}(Q) be a cut-off function such that

1 ifxe Q1/e,

Vh| <2¢ inQ Q1/e,
0 InQ\Q: [Vh| < 2/e \ Q1/¢

O0<h<1, h(x):{

where, forl > 0, ©; is the subset of2 defined by
Q ={(x',x,) eR"IxR: x| <land O0< x, < k}.

(We recall that after translation we may suppose fhat {(x’,x,) € R* 1 xR :0 <

xn < k}, wherek is a fixed real.) We then test the equation
“Au = 4y +2/ (=2

with the functionp = ¢, = uh? to obtain estimates for the functioh = v, = uh.
Observe that

Vo = h®Vu + 2uhVh,
YuVe = h?|Vul? + 2uhVh - Vu,
VY12 = h?|Vul? + 2uhVuVh + u?|Vh|?
= VuVe + u?|Vh°.
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Thus

/IW|2=/ VuV<p+f u2|Vh|2=/u2"/<"—2>h2+/ u?|Vh|?.
Q Q Q Q Q

Using Lemmd 1P, Kider's inequality and the fact thaWi| < 2 in Qa/c \ Q1/¢, We

derive that
/|V¢|2§/MZ’/("_2)h2+c.
Q Q

Letting ¢ tend to zero, we derive our lemma. O

Proof of Theorern|3.Using Lemmag 12 arjd 13 and the Pohozaev identity, we derive that
u vanishes identically (see e.g.[25, Theorem 1.3, p. 156]). O

5. Appendix: blow up analysis

In this appendix, we give the definitions, and recall basic properties of isolated and iso-
lated simple blow up points, which were first introduced by R. Schioen [21]], [22], [23]
and extensively studied by Y.Y. Li[17].
Let 2 € R" be a bounded smooth domain. Consider a farily of solutions to the
following equation:
—Au= u"T%"2 4 >0 inQ. (5.1)
The aim of the blow up analysis is to describe the behaviar; dsi tends to infinity.

It follows from standard elliptic regularity that {fz; }; remains bounded if{;.(€2), then

foranya € (0,1), u; — u in C,ZO’S‘(Q) along some subsequence. Otherwise, we say that
{u;}; blowsuplLetB,(x) ={y eR" : |y — x| <r}.

Definition 14. Suppose thau;}; satisfy(5.7). A pointy € Q is called ablow up point
for {u;}; if there existy; — y such thatu; (y;) — +o0.

In what follows, ify is a blow up point fofu;};, writing y; — y we mean thay; — y
andu; (y;) — +oo asi — +oo.

Definition 15. Assume thay; — ¥ is a blow up point for{u;};. The pointy € Q is
called anisolated blow up poinif there exist € (0, d(y, 92)) andC > 0 such that

ui(y) < Cly —y|~"=2/2 forally e Br(yi) N Q. (5.2)

Isolated blow up enjoys nice properties, such as a Harnack inequality around singular
points:

Lemma 16 ([17]). Letu; satisfy(5.J)andy; — y €  be an isolated blow up point
of {u;};. Then forany0 < r < r, we have

max u; < Cs min uj,
By (yi)\Byj2(yi) Bor (yi)\Brj2(yi)

whereCs is some positive constant independent ahdr.
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The property of being isolated prevents accumulation of blow up points, but it does not
prevent superposition of bubbles over bubbles. For this we need the notion of isolated
simple blow up. Lety, — y be an isolated blow up point fdr; };. We define (her¢d B, |

is then — 1-dimensional volume ai B,)

1
19B:| JoB, ()

ui(r) = ui, re0,d@y,oQ)), (5.3)
and
4i(r) = r"2725,(r),  r e 0,d(yi, IN)).

Definition 17. An isolated blow up poiny € Q for {;}; is called anisolated simple
blow up pointif there exists some < (0, r), independent of, such thati; (r) has pre-
cisely one critical point in0, ¢) for large.

The property of being an isolated simple blow up point means that in a ball of fixed radius
around the blow up point, the solution is upper bounded and lower bounded by a constant
times the bubble. In the following lemma, we give a quantitative statement of this fact.

Proposition 18 ([[17]). Assume thafu;}; satisfies(c.1) with Q@ = By, and lety, —
y € Q be an isolated simple blow up point for; };, which for some positive constamt
satisfies

ly =il ""PPui(y) < M, Vy € Ba. (5.4)

Then there exists some positive constant C(n, M, o) (¢ being given in the definition
of isolated simple blow up point) such that fox |y — y;| < 1,

Chu )y = yilP" < wi(y) < Cui(y) "y — yil> (5.5)

The main result of the blow up analysis of Yamabe type equations on locally conformally
flat manifolds is that all isolated blow up points are actually isolated simple blow up
points. This is recalled in

Proposition 19 ([17]). Assume thafu;}; satisfies equatiof5.])on Q = B, c R”
(n > 3) and lety be an isolated blow up point fdu;};. Theny is an isolated simple
blow up point.
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