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Abstract. Random-cluster measures on infinite regular trees are studied in conjunction with a gen-
eral type of ‘boundary condition’, namely an equivalence relation on the set of infinite paths of
the tree. The uniqueness and non-uniqueness of random-cluster measures are explored for certain
classes of equivalence relations. In proving uniqueness, the following problem concerning branch-
ing processes is encountered and answered. Consider bond percolation on the farfilpftieee
branching process. What is the probability that every infinite path, dfeginning at its root, con-

tains some vertex which is itself the root of an infinite open subtree?
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1. Introduction and summary

The random-cluster model may be viewed as a unification of percolation and the Ising/
Potts models for a ferromagnet. It was described by Fortuin and Kasteleyn around 1970 in
a series of influential papers, and has provided one of the principal methods for studying
the mathematics of ferromagnetism. Se€ [10, 11] for detailed accounts of and bibliogra-
phies associated with the model. When the underlying géafinite, the corresponding
random-cluster measure is given in a closed form. When the graph is infinite, one pro-
ceeds either by taking weak limits of measures on finite subgréiphs H 1 G, or by
concentrating on a class of measures whose conditional measures, given the configuration
off a finite subgraplH, satisfy the appropriate ‘DLR/Gibbs specification’ (S€e [8]). Much
(but not all) is known about the relationship between these two approachesGvisem
finite-dimensional lattice. The primary purpose of the present paper is to study the corre-
sponding problem wheg¥ is an infinite regular tree, thus continuing a project initiated
in [13].

A random-cluster measure on a finite tree is simply a product measure—it is the cir-
cuits in a graph which cause dependence between the states of different edges, and, when
there are no circuits, there is no dependence. Circuits may, however, be introduced into
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trees through a consideration of boundary conditions, and there lies the principal direction
of this paper. Le" be an infinite labelled tree with root 0, and fetbe the set of all infi-

nite (self-avoiding) paths df beginning at 0, termerhys We may think of a boundary
condition as being an equivalence relatiemn R, the ‘physical’ meaning being that two
raysp, p’ are considered to be ‘connected at infinity’ whenever p’. Such connections
affect the counts of connected components of random subgraphs, thereby contributing to
the random-cluster measures definedZanThe two extremal boundary conditions are
usually termed ‘free’ (meaning that there exist no connections at infinity) and ‘wired’
(meaning that all rays are equivalent), respectively; these notions agree with those in use
for lattices. The wired boundary condition @his that studied in[13, 18].

Our study of random-cluster measures will be pursued in Sections 4-6 in the context
of the infinitem-ary treeT,,, wherem € {2,3,...}. Let ~ be an equivalence relation
on the setR of rays of 7),,. In Section 4 is presented the DLR/Gibbs specification of
a so-called t)random-cluster measuren 7. When studying random-cluster measures
which arise through limits of finite-volume measures, it turns out to be natural to restrict
oneself to equivalence classes which are ‘closed’ when viewed as sub&#sTdfus we
are led to consider the topological properties of equivalence relations, and this we do in
Section 5.

A random-cluster measut; , , on a graphG has two parameters, namely an edge-
weightp € [0, 1] and a cluster-weight € (0, o). It is an important and useful property
of random-cluster measures with > 1 that they satisfy the FKG inequality, and for
this reason we confine ourselves here to this case. The measyre increases (in the
sense of stochastic ordering) asncreases. Whefy is infinite, one knows in the case
of lattices (seel[8]) that there exists a unique random-cluster measure with parameters
p andg (> 1) wheneverp is either sufficiently small or sufficiently large, and it is an
important open problem to determine the unigueness region exactly. The case of small
p was answered fof;, in [13], where uniqueness was proved for all< p, , where
Pm.q 1S given by an explicit formula. It was proved moreover that there exists an inter-
val of values ofp of the form [p,, 4, p;n’q], non-empty whery > 2, such that there
is non-uniqueness of wired random-cluster measureg figing in this interval. It was
conjectured in[[13] that uniqueness of wired measures is valid whaenp;n,q, and such
uniqueness was proved [n [18] for sufficiently laggdn Section 6, we extend the work of
[18] to prove the existence of, , € (p,, ,. 1) such thatuniqueness is valid fpr> p;,
in the more general context of a certain subclass of equivalence relations termed ‘open’
relations.

In proving the above unigueness, we make use of a result from branching processes
which may have other applications also. [etbe the family-tree of a Galton—Watson
branching process with a single progenitor 0, and we assume for simplicity that every
family-size is at least 1 and that the mean family-size exceeds I’ @e construct a
bond percolation process with given edge-dengityA vertexv of T is colouredblue
if it is the root of an infinite open subtree @f. The progenitor O is coloureblack if
every infinite path of" starting at O contains some blue vertex. We shall see in Section 2
how to calculate the probability = IP(0 is black in terms of the family-size probability
generating functior’ of the branching process.
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Of special relevance to our study of random-cluster measures is the problem of finding
a necessary and sufficient condition prsuch thaty = 1. We shall see in Theorem
[2.2 thaty = 1 if and only if p > pg, where pg is given uniquely by the equation
G'(1-psO(ps)) = 1, and(p) is the survival probability of the open subtree with root 0.
[We consider here the ‘quenched’ probability measure which ‘averages’ over realizations
of T as well as over the open edge-set7af Although we obtain such results in the
context of a general branching process, in our application to the random-cluster model,
we shall consider (as i [18]) only the deterministic case in which every individual has
exactlym children; this is the case witfi (x) = x™.

The present work is related to the analysis of the random-cluster model on the com-
plete graph performed in|[5] and continued [inl[20], the common concept being that of
a ‘mean-field model'. A mean-field theory of statistical mechanics arises either through
removing the finite-dimensional spatial aspect of the system, or by considering a model
which is in some sense ‘infinite-dimensional’. In seeking rigorous theory, mathematicians
often consider the correct setting for a mean-field model to be either the complete graph
or a tree. In the case of percolation, for example, the corresponding models are the so-
called Erds—Renyi random graph (sekl[4,117]) and the binomial branching process (see
[Ql Chapter 10]). Paper][5] contains the theory of the random-cluster measure on the com-
plete graph with: vertices, wherg € (0, co) andp = A/n, in the limit asn — oco. The
present paper (and the earlier|[13] 18]) is devoted to the case of trees.

2. Branching processes

We pose and answer a natural question concerning branching processes. This has an ap-
plication for the uniqueness of random-cluster measures on trees, and it may well have
further applications in other areas of probability theory. It may be viewed as an extension
of a (sub-)result of [18].

We consider a (Galton—Watson) branching process with family-size probability gen-
erating functionG satisfying

G0 =0 1<G'(1) <oo. (2.1)

In other words, the number of offspring of any individual is non-zero, and the mean
family-size is strictly greater than 1 (we shall return after Coroflary 2.3 to the situation in
which one dispenses with the assumpt@() = 0). The family-treeT’ of the process
is an infinite tree with labelled vertex-s&tand a single progenitor called itsigin and
labelled 0. We writéP for the probability measure which governs the branching process.
For general accounts of the theory of branching processes,/seel[1] 15, 16].

We turnT into a directed tree by directing every edge away from OxlLle¢ a vertex.
An x-ray is defined to be an infinite directed path Bfwith (unique) endvertex. We
denote byR, the set of allk-rays of7, and we abbreviatRq to R. We shall use the term
ray to mean a member of sonfe,. The edge off' joining verticesx andy is denoted
(x, y) when undirected, and:[ y) when directed fromx to y.
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We introduce next a second level of randomness through a consideration of bond per-
colation onT (see|[9] for a general account of percolation). Suppose for the moment that
T is given, which is to say tha&t = (V, E) is a given labelled directed rooted infinite tree
as above. Let & p < 1. Each edge of is declarecbpenwith probability p, andclosed
otherwise; the states of different edges are independent. This amounts to considering the
product measuré , with densityp on the configuration spa¢, 1}E. LetE (S E) be
the set of open edges, and define the fofest (V, E). It is standard that the connected
component of? containing 0 is itself a branching process. A patlof T is calledopen
if every edge int is open.

The vertices offl" are assigned colours depending on the subtrees of which they are
roots. Letx € V. We colourx blueif somex-ray of T is open; we coloux yellowif x
is not blue but every-ray of T contains some blue vertex; we coloured if it is neither
blue nor yellow. Finally, a vertex which is either blue or yellow is said tdlaek Note
thatx is black if and only if every-ray contains a blue vertex. We write

y7.x = Pg p(xisblack, 6r, = Pg ,(x is blue), 2.2

noting that these quantities depend on the e&Ve now average over the measiie
Letk > 0 and letF; be theo-field generated by the firét generations of". Suppose
thatv lies in thekth generation of". By the Markov property of branching processes, the
guantities

Yo =Plry| Fr), 6y =POry | Fi) (2.3
do not depend (almost surely) on the choice a@indk, whence
Yo =v0, 6y =0bo. (2.4

[Rather than introduce further notation, we ys€X) to denote the mean of a random
variableX under a probability measuge] We introduce the abbreviations

Y=y, 0=0, (2.5

and we note the obvious inequality
y > 0. (2.6)

In summary, the root 0 is blue (respectively, red, yellow) with probahilifgespectively,
1—y,y — 0); itis black with probabilityy .

The calculation ob = 0(p, G) is standard, and may be found in any of many text-
books (see, for example, [12, Thm 5.4.5]). The extinction probabijlity 1 — 6 is the
smallest positive root of the equation

n=GQ1-p+pn), 27
and thug is the largest root in [01] of the equation

0=1—G(1— ph). (2.8
It follows from[(2.7) in the usual manner that

6 >0 ifandonlyif pG'(1) > 1. (2.9



Random-cluster measures on trees 257

Our principal target in this section is to calculateWe definef), : [p6, 1] — [0, co0)

by
fr@=0+G(a—pb), «ac|pdl], (2.10)

and we note some properties gf the proofs of which will be given later.

Proposition 2.1. Let p € [0, 1) and letG satisfy{(2.1} The equationr = f,(«) has a
root atee = 1. It has either one or two roots in the intervigld, 1], and it has two distinct
roots in this interval if and only it/ (1 — p@) > 1.

The functionf,, is sketched in Figurie 2.1. Next is the main result of this section.

ylk

Fig. 2.1. A sketch of the graphs of = x andy = f,(x) on the interval p#, 1]. Whether or not
there exists aroot af = f,(a) other than atr = 1 depends on the gradient §f ata = 1.

Theorem 2.2. Consider a branching process whose family-size probability generating
function satisfie§2.1} and letp € [0, 1). Theny is the smallest root in the interval
[po, 1] of the equation

y =0+ G(y — po). (2.11)
The following are equivalent

(i) ¥ = 1, which is to say there exist almost surely no red vertices,
(i) G'(1—po) <1,
(i) pc < p < 1, wherepg is given uniquely by’ (1 — pg0(ps)) = 1.

We make a remark about the valyg; given in Theorenj 2]2(iii). The function
6 = 0(p) is smooth wherp > pg = 1/G'(1). On differentiating (2.8) we find that

6’ = (0 4+ pd")G'(1— ph).
Hence, forpg < p < 1,G'(1— pf) < 1lifand only ifd’ < 6 + p6’, which is to say that
d
d—((l —p)O(p)=1—-p)o —60=<0.
p

Thereforepg is characterised as the valuek [0, 1] which maximises1 — p)0(p).
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We point out that the coloured tree constitutes a multi-type branching process.
That is, suppose that each vertexfis coloured red, blue, or yellow in the manner
described above. We may think of the colour of any given vertex aypes and then
it is an exercise in the theory of multi-type branching processes to showtlahen
coloured) has the same distribution as the family-tree of a multi-type branching process
with certain offspring-type distributions. This is a consequence of a general result for
multi-type processes which may already be known, and whose details are contained in
the next section.

We turn briefly to a particular instance of importance for the random-cluster model on
aregulartree. Le € {2, 3,...} be a given integer, and &}, denote the infinite labelled
rooted tree in which the root has degreand every other vertex has degreer 1. This
is the family-tree of the branching process with probability generating function given by
G(a) = o™, o € R. We consider bond percolation @i, with edge-density as above,
and we arrive at the following result to be found[in|[18].

Corollary 2.3 ([18])). Letm € {2,3, ...} andp € [0, 1]. The probabilityy that the root
of T,,, is black satisfiey = 1if and only if p > pp(m), where

poim) = 11:”:—:1//((,";2 (2.12)
In particular,
P2 =% pp3) = 5@ —+3)~052337..., (2.13)
and it is easily seen that
pp(m) ~ Io% asm — oo. (2.14)

Finally, prior to the proofs, we make a remark about the situation Whenj (2.1) is not
assumed in its entirety, but only thatd G’(1) < oo. The branching process is then
supercritical, but may be finite with a strictly positive probability. Evef ifs infinite,
it will generally contain vertices for which the setR, of x-rays is empty, and such
vertices are automatically assigned the colour yellow, following the rules given towards
the start of this section. The conclusion of Theofen) 2.2 is easily seen to be valid in this
more general setting.

Proof of Propositiorj 2]1.The functionf, is non-decreasing and strictly convex on the
interval [p6, 1]. Itis clear by (2.8) thay, (1) = 1 andf,(pf) > p6. See Figurg 2]1.

If f,ﬁ(l) > 1, there exist two distinct roots of the equatien= f,(x) in [p6, 1]; if
fl;(l) < 1, thena = 1 is the unique such root. O

Proof of Theoreri Z]2Letk > 1, and letX be the number of offspring of the progenitor
0. We say that a vertex is k-yellow if: x is not blue, but every-ray contains a blue
vertex belonging to the firgt generations of”. Vertexx is calledk-blackif it is either
blue ork-yellow. Lety (k, X) be the (conditional) probability giveX that O isk-black,
and writey (k) = P(y (k, X)). Now, O isk-yellow if and only if it is not blue but every
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child is either(k — 1)-yellow or blue. This occurs if and only if every childof O satisfies:
eithery is (k — 1)-yellow, ory is blue and the edg®, y) is closed. Therefore,

[yk, X) — 6] = (y(k — 1) — 6] + (1L — p)O)*.

We take expectations to find that

y(k) = fp(y(k—1)), (2.15)

where f, is given inf (2.10). Nowy (k) — y ask — oo, and f, is continuous, whencg
satisfieg (2.17). Sincg(0) = 6 < 1, we find by the usual recursion argument thas
the smallest root ing6, 1] of [(2.11). Note thay > 6 by[(2.6).

By Proposition) 2.1y = 1ifand only if f,(1) = G'(1 - pf) < 1. NowG is strictly
convex and differentiable on [@], andG’(1) > 1 by[(2.1), whileG'(0) =P(X =1) < 1.
Therefore there exists a unigyec (0, 1) such thatG’(8) = 1, andG’'(1 — pd) < 1 if
and only if 1— p6 < B. O

Proof of Corollary[2.3. SinceG(a) = o™, the unique root of the equatiai' (8) = 1 is
given by = m~Y"=D _|f pg = 1 — B then, by (2.9),
1-6=G(p) =p",

whence
1-8 1-m YD
6 1—mm/mD
as claimed. O

p:

3. Multi-type branching processes

We prove a general result about multi-type processes in this section, and then apply it to
the coloured branching processes of Section 2. A related argument underpins the Marko-
vian construction of random-cluster measures on trees |In [13].

Consider a multi-type (Galton—Watson) branching process with & s&ft types;
7 may be finite or countably infinite. We assume, for convenience, that the children of
each individual are ordered in some manner, and we may if necessary impose a random
ordering within families. Suppose also that we are given a (measurable) classification of
the possible family-trees into a (finite or countable) set of tyebat we call ‘colours’
(not to be confused with the original types that will be called ‘types’). We colour each
vertexx of the family-tree by the colour of the subtree rooted at

We shall assume that the colouring rule has the property that the colour of any given
vertex is determined by the number and types and colours of its childranh#fsk
offspring labelled 12, ..., k, therth of which has type, and colourj,, we denote the
colour ofx by ®(k; i1, j1, .- ., ik, jk)-

Theorem 3.1. The coloured family-tree of the process, with vertices marked by both type
and colour, is a multi-type branching process with type space.” .
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Proof. Let p;(k; i1, ..., ix) be the probability that an individual of types Z hask > 0
children of typesi, ..., i, respectively. Let;;; be the probability that the family-tree,
starting with an individual of typé € Z, receives colouy € 7.

Let
pij (ks i1, j1, ooy iks Ji)
_ qi;lpi(k; i1, ..., 0k) l_[leql',jl if @Ck;i1, j1, ... ik Jx) = J,
0 otherwise

There is probabilityp; (k; i1, . ..,ik)]_[leqi,jl that a family-tree starting with an in-
dividual of typei hask children with types and colour§, j1), ..., (ix, jr). In this
case the root is coloured (k; i1, j1, - - ., ik, jx), and thus the probability of this hap-
pening and the root being colourgdis g;; p;; (k; i1, j1, ..., ik, ji). Consequently, the
conditional probability that this happens given that the root has tygred colour; is
Pij ki1, Jis .oy ik Ji)-

Moreover, if we label th& children of the root asj, ..., xx, and we require some
further event€y, . . ., &, whereg&; depends only on the subtree rooted;athen in these
probabilities we have to replagg ;, by

P(&;, andx; receives colouy; | x; has type;)
= g;,;P(& | x; has type; and colourjp).

Thus the probabilities are multiplied by

k
[ [P(& | x has typei; and colourji).
=1

Consequently, given the types and colours in the first generatiok lifenches are inde-
pendent of each other and are copies of the entire coloured family-tree, with appropriate
initial conditions. In other words, the coloured family-tree is a multi-type branching pro-
cess with type spacé x J, where the probability that a particle of type and colour

(@i, j) € T x J hask > 0 children of types and colou(#,, j1), ..., (ix, jr), respectively,

is pij (ks i, ja, - .-y ks Jk)- O

Let us apply this result to the coloured trees of Section 2. TheTrieethe family-
tree of a branching process with probability generating functiosatisfying[ (2.1)). We
designate any given edge @fas ‘open’ with probabilityp, and as ‘closed’ otherwise.
Thus the ‘type’ of any vertex of is taken to be the state of the incoming edge, namely
either 1 (open) or O (closed). (The type of the root of the tree is irrelevant.) The number
of offspring of x thus does not depend on the typexgfand each child is assigned a
type independently of the types of the other offspring, with probabitgy= 1 — p
(respectively,r; = p) for type O (respectively, type 1). We may thus writefor the
probability that the root receives coloyre {b, y, r}.
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Consider for example the binary tré&e defined at the end of Section 2. We have

P, i (i1, j1) = (1, b),

polin, j1,i2, j2) = { priyqj,  if (2, j2) = (L, D),

0 otherwise

Ty i, it j1 =y and eitherj> =y or (iz, j2) = (0, b),
momi,qp  if (i1, j1) = (0,b) andj» =y,

n2q?/qy if (i1, j1) = (i2. j2) = (0. b),

0 otherwise

py(i1, j1,i2, j2) =

pr(i, j1, i2, j2) = { miy g, 1f jo = rand(iy, j1) # (1, b),
0 otherwise.

The following is easily seen. The mean number of red offspring of a red individual is
wr =21 — pqp) = 2(1 — pb),

andu, > 1lifand only if p < pp(2) = %; se) and Theor.2. Therefore, the
red subtree of the multi-type process having red progenitor is supercritical if and only if
p < pp(2). A similar calculation is valid foff;,, with m > 2.

In fact, for any branching process as in Section 2, a simple calculation shows that the
mean number of red offspring of a red individuald§(1 — p#).

4. Random-cluster measures on trees

Henceforth, we restrict ourselves to the regular infinite labelleaty treeT,, = (V, E),
wherem € {2,3,...}. Each vertex has degree+ 1, and there is a distinguishedigin
labelled 0. We shall state our results for genenralbut may sometimes consider the
special case: = 2 for simplicity. Part of7; is drawn in Figurl.

Fig. 4.1. Part of the infinite binary tre@,.
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The treeT,, differs from T, only in the degree of its root. We have chosen to work
with 7, rather thanT,, in this section only because this is the more natural setting for
the random-cluster model. Sindg, is a regular tree, it has a larger family of graph-
automorphisms. When it comes to calculations of critical values and the like, the differ-
ences betweefi, andT,, are largely cosmetic.

We continue the study of random-cluster measureg,pmitiated in [13], beginning
with a more general definition than that used there.®et {0, 1}£, and equip2 with
theo -field F generated by the finite-dimensional cylinder sets. An edigecalledopen
in a configurationw (¢ Q) if w(e) = 1, andclosedotherwise. We write)(w) = {e :

w(e) = 1} for the set of open edges in. We shall consider probability measures on
the measurable pa€2, F) which satisfy a certain ‘random-cluster’ condition. Sirige
contains no circuits, random-cluster measuresTgnare simply product measures. A
much more interesting structure is revealed through the introduction of the concept of
‘boundary conditions’. A similar development for Ising models has been explored in the
statistical physics literature (se€ [2, 3]), and in the probability literature under the title
‘broadcasting in trees’ (see [21,122]). Boundary conditions may be introduced in the more
general context of non-amenable graphs, but we do not follow this route here; se€ [11, 14,
18] for accounts of the random-cluster model on a non-amenable graph.

Each edge of, is directed away from the root 0. We shall make use of the rayy, of
and we remind the reader of the notation concerning rays at the beginning of Section 2.
The setR of O-rays ofT),, is in one-one correspondence with the{de®, ..., m + 1} x
(1, 2,....,m¥. Let~ be an equivalence relation @, and writeC(~) for the family of
equivalence classes of. Let £ denote the class of all equivalence relationsrThere
is a partial ordex on & given by:~1 < ~5 if

forall p, o’ € R, p ~2 p' whenevep ~;1 p’. (4.1

There is a minimal (respectively, maximal) equivalence relation in this partial order which
we denote as-? (respectively~1). The equivalence classes-of are singletons, whereas
c(~h = (R}

Forx € V, letIl, be the set of infinite (undirected) pathsjf with endpointx. Let
x € V and letr € I1,; there exists a unique O-ray, denoigd such thatr andp,, differ
on only finitely many edges. For given this gives a one-one correspondence> p,
betweenll, andR. (Forx = 0, it is the identity.) Any relation~ on R may be extended
to arelation on J, ., I, by: form € I, t € I1,, we haver ~ tifand only if p, ~ p;.

For any vertext € V, we write R], for the subset ofR comprising all rays which
pass through:. The correspondence betweEly and R restricts to a correspondence
between their subsef®, andR),, such that any ray, € R, corresponds to the unique
ray p,, € R of which it is a subray.

The equivalence relatior (e £) may serve as a boundary condition, to be interpreted
roughly as follows. Suppose thate 2, and letC1, C2 be two distinct connected com-
ponents of the graptV, n(w)). ThenC1 andC> are considered to be the same cluster if
there exist rayg; C C1, p2 C C2 such thato; ~ p2. Otherwise expressed, two rays are
‘identified at infinity’ if they are equivalent under. This will be made more rigorous in
the following formal definition of a random-cluster measure.
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Let A be a finite subset o¥/, and letE, be the set of edges df,, having both
endvertices inA. For& € Q, we write Qi for the (finite) subset of2 containing all
configurationsw satisfyingw(e) = &(e) for e € E \ E,; these are the configurations
which ‘agree witht off A’

Let~ e &£, & € Q,andw € Qi The configurationw gives rise to an ‘open graph’
on A, namelyG (A, w) = (A, n(w) N E ). We augment this graph by adding certain new
edges. Specifically, for distinet, v € A, we add a new edge between the paiw if
either:

(a) there exists a path @& \ E, fromu to v which is open irg, or
(b) there exists a vertex-disjoint pair of infinite paths < I1,, =, € II, satisfying
T, ~ 1y, Which are open i§ and which are edge-disjoint froy .

We write G5~ (A, w) for the resulting augmented graph, and wekfet' (A, ) be the
number of connected components@t ™~ (A, ). These definitions are motivated by the
idea that each equivalence class of rays leads to a common ‘point at infinity’, through
which verticest andv may be connected by open paths.

Next we define a random-cluster measure corresponding to a given equivalence rela-
tion~. Let~ € £,& € Q, and letp € [0, 1] andg € (0, c0). We defme¢>A g 1O be the
random-cluster measure on the finite graph E ) ‘with boundary conditiort’. More
precisely, IetbA’M be the probability measure on the p&i, F) given by

- = 1—[ pw(e)(l_ p)l—w(e)]qké’”(A,w) it we Qf\
¢A,p,q(w) = ZA p.q €€Ea (42)
0 otherwise

WhereZi’;’q is the appropriate normalising constant

Zi;q Z { H PO — p)- w(e)} K (M) 4.3

a)eQE ecEp

Note thatg}, (2}) = 1.

In the special case when = 1 and~ = ~1, we write qu v for ¢A This is
usually called the random-cluster measure/\ownh ‘wired’ boundary COthtIOHS and it
has been studied in a slightly disguised forniin [13]. As usual (see [10] and the references
therein), random-cluster measures satisfy the FKG inequality wherd, and this allows
the deduction that the weak limit

1 ; 1
B = M 6% g (4.4)

exists wheng > 1, and is independent of the manner in which the limitt V is

taken. As a side-comment, we remark that the FKG inequality is a fundamental technique
in the study of the random-cluster model. This is already very familiar in the field (see
[10], for example), and we do not explain it further here. Thus, we shall omit details
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of arguments involving the FKG inequality and the stochastic ordering relatipof
probability measures. We note for later use that, fogal 1 and~ € &,

Br g StON g TADA (4.5)

For any finite subset C V, we write7, for theo-field generated by the sgb(e) :
e € E\ E,} of states of edges having at least one endvertex outside
Let~ € £,0< p <1, andg > 0. A probability measurg on (2, F) is called
a (~)random-cluster measunaith parameterg andgq if: for all A € F and all finite
subsetsA C V,
$(A1TRE) = ¢y, ,(4) forg-aet. (4.6)

The set of such measures is denolg@;lq. Random-cluster measures were introduced in
[8] and are studied systematically in[11] and elsewhere. Note that the casepwhén

p = 1org = 1 are trivial; in these cas€s, (4.2) gives the product measuté pf )

for everyé and~, and therj (4.) holds if and only ¢ is the product measugg, with
densityp on (2, F).

This is an appropriate moment to introduce a measurability assumptienine left
hand side of (4.6) is a measurable functiortpto we want the right hand side to be a
measurable function df too, with respect to or at least with respect to its completion
for ¢. For A a finite subset o andu,v € A, letK, " , denote the setab € @ =
{0, 1}£ such that there exist infinite vertex-disjoint paths e I1,, 7, € II, satisfying
m, ~ m, and that are open in and edge-disjoint front,. We call the equivalence
relation~ measurablef K, , € F forall suchu, v, A. Itis an easy exercise to deduce,

if ~is measurable, thaf A p.g(A) is a measurable function éf thus permitting condition
[(4.6). We writegy, for the set of all measurable memberscoWe discuss measurability
further in the next section.

Returning to the extremal equivalence relatior§ ~*, for simplicity of notation
we write R;f; = RJ, and similarIyR;j] = R}, Members ofRS , (respectively,
R},,q) are called ‘free’ random-cluster measures (respectively, ‘wired’ random-cluster
measures).

The basic questions of interest include the following. For what &, p, ¢ is the
setR,, , non-empty, and when doég, , comprise a singleton only? Progress towards
answers has been made [inJ[L3] 18]. pgtdenote product measure with densjtyon
(2, F). We definer : [0, 1] x (0, co0) — [0, 1] by

_r
p+q(l—p)

When p, ¢ are given, we use the abbreviation= 7 (p, ¢). Note thatr # p exceptin
the trivial casep =0, p =1 orqg = 1.

w(p,q) = 4.7

Theorem 4.1([13]). (@) ForO0 < p < landg > 0, the seth)q of free random-cluster
measures comprises the singletnonly, wherer = n(p, ¢).
(b) ForO < p < 1andg > 0O, the setR,l,’q of wired random-cluster measures is non-

empty. Ifg > 1, thenR}  contains the weak limip; | given i
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We present in Theorefn §.1(a) a necessary and sufficient condition for the statement
¢= € R, ,, for ~belonging to a certain class of equivalence relations to be defined in the
next section.

We write {x <> y} for the set of alkw € © for which there exists an open path joining
vertexx to vertexy. (For the moment, we refer to open paths in tinelirectedtree7,,.)

The complement of the evefit <> y} is denotedx « y}. We write {x < oo} for the
event thatx is the endvertex of an infinite open path®ff. For a probability measurg
on (2, F), we define thgercolation probabilityby

0(¢) = ¢(0 < 00). 4.8
Of particular interest are the two special cases

0%(p.q) = 0(¢x). O (p.q) =082 ,).

where the former is well-defined for gll, ¢, and the latter wheg > 1 at least.

The function 8%(p, ¢) is the survival probability of a branching process with
bin(m, ) family-sizes (subject to the small change of vertex degree at the origin). It
may be computed as|in (2}7)—(3.8). In particulargittical value

p3(g) = suplp : 6°(p, q) =0} 4.9
is immediately seen to be the valuepfor which(p, ¢) = m~1, whence
q

0
=—\ 4.10
rc(q) mtq—1 (4.10
Less standard is the calculation given[ini[13] of the critical value
pe(q) =supp : 0X(p, q) =0}
wheng > 1, namely
0 .
(@) fl<qg=<2
piigy = e =1
U, if g > 2,
whereU, is the unique value op < (0, 1) for which the polynomial
m+1 p m 1
(g —Dx +|(1————q )x" + x—=1
1-p 1-p
has a double root if0, 1). Applying this as in[[13] whem = 2, we find that
1 ifl1<q<2
=170 411)
Pl = _2vg—1 q>2 .
1+2/g-1

[An alternative proof of these facts may be obtained by the parallel/series replacement
method used in the proof of Theorém|6.4; see [11].]
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We note from|[[13] for later use that, fgr> 1,

1<q <2 p> pig), or

(4.12)
q>2, p=>piag.

6(p,q) > 0 ifand only if I

Letg > 1. It was proved in[183] that there exists a continuum of probability measures
in R%. , wheng > 2 andpl(g) < p < p2(¢), and it was conjectured th&}. A contains
exactly one measure whegn > pg(q). Unigueness was proved in_[18] for sufficiently
large values ofp, and we recall this result next. In the notation of Section 2, we take
as ‘mother process’ the process in which every individual has exactildren; the
corresponding family-size probability generating function is givewlgy) = o™, o € R.

On this graph, we construct bond percolation with dengityiven in[(4.7), and we ask
for the probability that the origin is black. By Corolldry P.3 (see also [18]), the probability
y that the origin is black satisfies

y=1 ifandonlyif = > py(m),

wherepy(m) is given in(2.19).
Theorem 4.2([18]). Letg > 1 and letp be such that

B P
T o tad—p ” Pom).

The sefR;’q comprises the singletoﬁ%,q only.

Proof. This is a special case of the forthcoming Theofenh 6.3. ]

5. Relations on the set of rays

We consider next the case of a general boundary conditi¢a &rn). We cannot prove in
general thak; , is non-empty, but only for a certain class of equivalence relations which
we introduce in this section. It is in fact unnecessary for the present purposes to require a
relation onR to be anequivalenceelation, and thus we shall broaden the discussion in
this section to the class of all symmetric relationsion

For simplicity, we continue to consider the infinite-ary treeT;,, with root 0, and
every edge oriented away from 0. The conclusions of this section are valid under consid-
erably less restrictive assumptions on the underlying tree.

We write S for the class of all symmetric reflexive relations &Bn and we think of a
relation as a subset of the spaRé. Thus we consider the s&tof subsetss of R? such
that:

(@) (p,p) e Sforall p e R,
(b) (p1, p2) € S whenever(pz, p1) € S.

The setR of rays may be viewed as a topological space with the product topology.
SinceR is the product of compact spaces, it is itself compact. The faffily: v € V}
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forms a base for the space. We end®#& with the product topology, and we call the
relation S € S closed(respectivelyopen, Borél if S is a closed (respectively, open,
Borel) subset oR2. We write S, (respectivelyS,, Sg) for the set of closed (respectively,
open, Borel) relations. By definitior§c, So € Sg. We shall see in Corollary 5.6 that
every open equivalence relation is closed.

There follows a description of a certain family of closed relations. A (finite or infinite)
subsetW of V is calledincomparabléf there exists no O-ray of,,, which contains more
than one member d¥; W is called acutsetf it is incomparable and every 0-ray contains
some member ofV. The smallest cutset is the singleton &t Let W be a cutset. Each
R, w € W, is an open subset of the compact spR¢eand in additionR), : w € W)
is a cover ofR. By compactnessi is finite. In summary, all cutsets are finite. Every
cutsetW generates a finite set of verticls = W U ins(W), where ingW) is the set of
all verticesv € V such that there exists a path Bffrom 0 tov which is vertex-disjoint
from W. We refer to such a sé¥ as aboxof the tree.

Let W be an incomparable (finite or infinite) set of vertices, and partitoas W =
W1 U Wa. Let S be the (equivalence) relation given by

S:(U R;)xR;,)U(U{(p,p)ipGRiu})U(RivXRgv)a

weWp weWs

where
RS =R\ | R
weW

In the usual jargon borrowed from the theory of electrical networks, the rel&ticor-
responds to ‘wired boundary conditions’ &, for everyw € Wy, ‘free boundary con-
ditions’ on R, for everyw € W», and a ‘wired boundary condition’ on the union of all
other rays. Certainly§ is an equivalence relation, and in additi®ms a closed relation (it
may be considered easier to see tRAt\ S is open). The construction df 13, Section 5]
gives rise to equivalence relations of the above type. Note that the minimal and maximal
relations~% and~1 are both of this type (for-!, takeW = {0}); in particular, they are
closed.

A simple example of the above recipe arises whris a cutset, and is therefore
finite. LetS" be the relation:

sV =J R, xR,
weW

The equivalence classes$Y are the set®R! , w € W. We callS (e S) acutset relation
if there exists a cutsé¥ such thatS = SW. The maximal equivalence relation! is a
cutset relation with single equivalence cldg&s

We next continue the measurability discussions from Section 4. Recall first that, if
x € V andx is an infinite path ofl’ with endvertexx, then there exists a unique 0-ray,
denotedp,, such thatr and p, differ on only finitely many edges. (The pathe I,
comprises a finite path from to some vertexw directed in the opposite direction, fol-
lowed by a ray iR, which differs fromp, only in the absence of the first sectionmf
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from O tow.) For givenx, the pairr, p, are in one-one correspondence. koa ray in
R, we denotep,, by 7’. We consider five related definitions of subsets of the configura-
tion space. Let A be a finite subset of .

1. A;f’v, foru, v € V,is the set of configurations such that there exist opengaysR,,
pv € Ry With (o), p) € S. (These rays have endpointsv.)

2. A;jfv, foru, v € V, is the set of configurations such that there exist opengaysR;,,
pv € R, with (p,, py) € S. (These rays have common endpoint 0.)

3. KMS’U’A, foru,v € A, is the subset of2 such that there exist infinite open vertex-
disjoint pathsm (1) € I,, m(v) € I, satisfying (oxw). prw)) € S and that are
edge-disjoint fromE 4 .

4. K3, foru,v € V, is similarly defined as the subset@fsuch that there exist vertex-
disjoint open paths (u) € I, 7 (v) € I, satstying(pxw), Prw)) € S. Thus,K,f’v =

s

u,v,{u,v}"
5. K2, foran edge = (u,v) € E, equalsk; , = K5 (-

We say that two vertices, v arecomparabldf one is on the path from 0 to the other
(includingu = 0, v = 0 andu = v), andincomparableotherwise.

Theorem 5.1. The following are equivalent, for evefye S.

(i) AS, e Fforallu,veV.
(i) AS, eFforallu,veV.
(i) A3, € F forallincomparableu, v € V.
(iv) Kj,eFforallu,veV.
(v) K5, e F forallfinite subsets\ € V andu, v € A.

u,v,

(vi) K5 e Fforalledges € E.

Proof. For two verticest, y € V, letn, , be the path betweenandy, and letP; , be
the cylinder event that all edges:in , are open.

()=(i): A, = A3, NP, N Poy.

(i) =(iii): For w € Q, let ¢ (w) equalw except that all edges ing, andng, are
open. Themp : @ — Q is measurable, and | = ¢~1(A] ).

(iif) =(i): Suppose thai lies between 0 and. Let W be the finite set of the possible
verticesw where a rayp, from u that does not passmay first leave the path, ,. Then
A5 is the finite union ofP, , N A5, |, w € W, andP, , N B, whereB, is the event that
there is an infinite open ray iR,.

(i)=(iv): Considering the places where the pathsandr, leaveng, andmrg,,, we
see thak; , equals a finite union of ses, . N P, , N A7 |.

(iv)=(v): Define¢(w) to equalw except that all edges ih, are deemed closed.
Thenk , =¢ XKy ).

(V)=(vi): A special case.

(vi)=(iii): Let w be the father ob. Define¢ (w) to equalw except that all edges in
7, are deemed open, and all edges that are incident to this path, exeeptatlosed.

ThenAs , = ¢_1(K<Sw,u>)- o
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We say that the relatios is measurablef the equivalent conditions in Theorem
[5.] are satisfied. Note that this agrees with the previous use of the word ‘measurable’
as applied to equivalence relations. We now investigate measurability furthe® ket
R x Q be the set of pairgp, w) such thatp is a O-ray that is open iw; this is a closed
subset of the compact spaex Q2. Further, letD € R x R x Q be the set of triples
(p1, p2, w) such that botlp; andp2 are open inw, and(p1, p2) € S. Thus,

D=Rx0)NMRx0)N(S xQ),

whereA = {(p1, p2, w) : (p2, p1, w) € A}. Hence,D is a closed, and thus compact,
subset ofR x R x Qif S is closed, and is Borel if S is Borel. We can now state the
following links between the measurability of a relatiSrand the properties of viewed
as a subset dR2.

Theorem 5.2. (a) A closed relation is measurable.
(b) A measurable relation is Borel.

Proof. () If u,v € V, thenAS, = w3(D N (R, x R, x 2)), wherexrs denotes the
projection on the third factor. I§ is closed, this is the projection of a compact set, and thus
compact, so (i) in Theorefn §.1 is satisfied. (This part is also an immediate consequence
of Theorenj 5.4 below.)

(b) Lety : R? —  be defined by (p1, p2)(e) = 1 if and only ife € p1 U po.
In other wordsr(p1, p2) is the configuration with all edges im and p2 open, but no
others. The functiony is continuous, and thus (Borel) measurable.

Let S be a measurable relation, so that each of the six parts of Th¢orgm 5.1 is valid.
Two distinct 0-raysp1 and p2 pass though two incomparable verticeandv, and they
satisfy(p1, p2) € Sifand only if p1 € R}, p2 € R}, andyr(p1, p2) € A;ffv. Hence,

§= { U (R, x Ry)N ’ﬁfl(A,f:U)] U{(p,p):peR)

u,vincomparable

which is a Borel subset 682, using (ii) in Theorel. O
Theorenj 5.p leaves an obvious gap.

Problem 5.3. Is every Borel relation measurable?

Note that the proof of Theorem %.2(a) breaks down for Borel relations because the
projection of a Borel set is in general not a Borel set. However, for Polish spaces (and the
spaces we consider are such), the projection of a Borel set is a Suslin (or analytic) set,
and such sets are universally measurable, that is, they belong to the comg@letd
for every finite Borel measure. (See, for example, [6, Sections 8.2, 8.4].) Thedrer 5.1
holds also if we replacg by theo-field ﬂﬂ F,. of universally measurable sets, and we
thus see that every Borel relation is (at least) universally measurable, which is enough for
the definitior] (4.8) to make sense.

The closed relations have a certain property that will enable a large-volume limit for
random-cluster measures, and we present this next. For any lamd anyw € 2, we
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write w,l\ for the configuration that agrees withon E, and equals 1 elsewhere, which
is to say that

1, Jol) ifeeEn,
wy(e) = .
1 otherwise

We define the event
—S
K, A :{weQ:w}\ EKE},

i.e., if e = (u,v), the set of configurations such that there exist vertex-disjoint paths
w(u) € M, w(v) € I, with (o7w), Pr@)) € S such that the parts of the paths inside

are open. Note tha?f’A is a cylinder event, and that it is decreasing\in
Theorem 5.4. LetS € S. Then

foralle ¢ E, K, , | K5 asA 1V, (5.1)
if and only if S is closed.

Proof. Assume first thaf is closed. Let = (x, y) € E andw € Q.

Let I (respectively,IT§) be the set of infinite (undirected) paths Bf\ {e} with
endpointx (respectivelyy), and letFy = Fj (w) be the set of all pairéo1, p2) € S such
that:

(i) p1 = pux) for somev(x) e I1¢,
(i) p2 = pu(y) for somev(y) e II5,
(iii) all edges inv(x), v(y) which belong toE 5 are open.

ThenF, is the intersection of with a product of two closed sets of rays, and is therefore
closed and hence compact. Furthermdtg,is decreasing im\.
We similarly defineF’ = F(w) by (i) and (ii), but replacing (iii) by:

(i) all edges inv(x), v(y) are open.

Sincev(x) andv(y) are uniquely determined ks andpp, it is clear that
F=(")Fa.
A

Since the sets are compact, this implies that

F(w) #0 & Fjp(w) # ¢ for everyA. (5.2

We now observe thab e ?\f’,\ & Fa(w) # 9, andw € K & F(w) # 0. Thu

can be writterk S = (), ?S’A, which is (5.1l).
Suppose conversely tifat (5.1) holds. Lef, o), n > 1, be a sequence isuch that

(p1, p3) = (p1,p2) @sn — oo (5.3
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for someps, p2 € R with p1 # p2. We shall show thade1, p2) € S.Let0, x1, x2, ..., xp
be the vertices, taken in order, in the (finite) intersectiopiofnd p2, and writex = x,,,
write y for the next vertex o, as one moves from,, towards infinity, and le¢ = (x, y).

Letw € Q2 be the configuration which takes the value 1 on edgfes p1 U p2, and
the value 0 on all other edges.

Write the edges Of,o/’.’ in order as f,.”(l), f,.”(Z), ..., and those ofp; as
i, fi(),.... By [@ forj = 1,2, fori > "1, and for all largen, we have
fj”(i) = f;(i). Therefore, for all boxes,, and forj = 1, 2 and all largez, the intersec-
tion of E with p;‘ equals its intersection with;. By the assumption thap?, p5) € S

for eachn, we find thatw € FS’A for all A, and therefore, -l ),

Since the only open rays it are the subrays of; and pp, this can happen only if
(p1, p2) € S. ThereforesS is closed, as required. O

We return now to the universe efjuivalenceelations onR, which we think of as
binary relations and denote by. We call ~ € £ closed(respectively,open if it is
closed (respectively, open) when viewed as a relation. The set of closed (respectively,
open) equivalence relations is denotgdrespectively&y). By definition, & € Se and
Eo C So. Let &yt (S &) be the set of equivalence relations which, when viewed as rela-
tions, are cutset relations. The word ‘measurable’ applied to an equivalence relation has
been explained in Section 4 and elaborated in Theprefn 5.1. We continue with a theorem

concerning open equivalence relations.

Theorem 5.5. Let~ be an equivalence relation dR, and letR (k) be the set of all paths
of lengthk starting at0. The following are equivalent.

(a) ~ is open.

(b) Each equivalence class ofis an open subset &.

(c) There exists an integér > 1, and an equivalence relatiotr; on R(k), such that~
is specified by~ in the sense that

p1~ pz ifandonlyif p1(k) ~¢ p2(k),

wherep (k) denotes the path comprising the fiksedges of an infinite path fromO.

Proof. Suppose that- € &, Then the sectiond, = {p’ e R : p ~ p'}, p € R, are
open, and thus the equivalence classes are open.

Suppose next that (b) holds. The equivalence classes cover the compacRspace
whence there exists a finite subcover. Since the equivalence classes are disjoint, no proper
subset cover®, and therefore there exist only finitely many equivalence classes. Each
class is the complement of the union of the others, and is therefore closed and thus com-
pact. Being open, each class is a union of sets of the Rfv € V (since these form a
base), and, being compact, is a finite union of such sets. There exists therefore an integer
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k such that every equivalence class is a union of sets of theRjjrasw ranges over the
set of vertices at distandefrom the root 0.
That (c) implies (a) is obvious. O

Corollary 5.6. Every open equivalence relation is closed, and thus measurable.

Proof. Let ~ € &,. By Theore, the sétp, p') € R2: p ~ p'}is a finite union of
closed sets and is therefore closed. O

We finish this section with a note. There are of course many equivalence relations
which are not closed. However, with each relatiemay be associated a closed relation,
termed theclosureof ~ and denoted~. We define~ to be the intersection of all closed
equivalence relations’ satisfying~ < ~’ with respect to the partial order.l). Itis
easily checked that is itself a closed equivalence relation.

6. Random-cluster measures with general boundary conditions

Let us consider the treE = T, with m > 2. We show first thaR ;. # @ for ~ € &
andg > 1. The proofs are given later in the section, and do not appear to extend to the
caseg < 1.

Theorem 6.1. Let~ e E;and letO < p < 1.

(a) Letw be given b{{4.7), and suppose # 1, ¢ # 1. The product measugg, satisfies
¢= € R, , if and only if

¢ (there exist two or more equivalent open raysO0.

(b) If ¢ = 1, the weak limit

exists and satisfies,; € R, 4
(c) Letq > 1andletp € R, . Then

1~ 1
¢7T Sst¢ Sst ¢p,q Sst ¢p7q'

(d) Letq_ > 1 and letp be such that(p, ) = O; se€(4.12} The setR,, , comprises
the singleton measug, only.

More generally, the proof of (c) shows th@; <st ¢;;;/ whenever- < ~/, Part (b)
may be extended as follows to arbitrary equivalence relations.

Theorem 6.2. Let~ € &, and let=~ be the closure of-. If g > 1, then

$r = bry ASATV. 6.1)
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This leads to the question: for € &, is 4),}1; a (~)-random-cluster measure? The
answer can be positive or negative, as illustrated by the following examples.

1. Let~' be a closed relation with some equivalence classatisfying|C| > 2, and let
p € C.Let~ be the relation having the same equivalence classesasept thaC is
replaced by the two equivalence clas€8s{p} and{p}. It is easily seen that and~’

(= =) generate the same family of random-cluster measures, and mk;}ce R, 4
by[(6.1). (We return to such constructions after Thedrerh 6.4.)

2. Consider for definiteness the trég Each of the three subtrees with root 0 is a binary
tree, and each vertex therein may be viewed as a combination of leftward and rightward
steps from 0. Le be the set of all (infinite) 0-rays which have only finitely many
leftward steps. The st is dense iR, and is countable and hence Borel. kebe the
equivalence relation whose unique non-trivial equivalence clags lisis easily seen
that~ = ~1. Letg > 1,p < 1, andg € R, 4- By stochastic domination <st ¢,
and therefore, sincg is countable,

¢(some ray in7 is open = 0.

This implies that, with¢-probability 1, there is no pair of distinct equivalent open
rays in the tred’,. By the forthcoming Lemma 6.5(a), the unige)-random-cluster
measure is the product measyre By|[(6.1],

1~ _ 41 _ | 1~
¢p,q - ¢p,q - /I\Im/ ¢A,p,q ;é ¢7T

if the conditions o) hold. Thereforajjj ¢R,y under these conditions.

We turn next to the question of the uniqueness of random-cluster measures for.large
We shall prove thaRk ), is a singleton when- € &, ¢ > 1, andp is sufficiently large.
This extends[[118, Thm 1.3], which was concerned with the wired (maximal) boundary
condition. We leave as a problem the question whether this result extends to arbitrary
closed relations.

Theorem 6.3. Let~ € Esand letO < p < 1,9 > 1. If 7 > pp(m) wherer and pp(m)

are given i and|(2.12}) thenR;q comprises the singletoﬁﬁjg only.

Finally, we turn to the question of the degree to which the mea@;@echaracterises
the relation~, and for simplicity we consider first the case whernis a cutset relation.
Suppose that € &, which is to say that- = ~W for some cutseW. Let Ty be the
set of edges = (u, v) which belong to no ray it ..y Rw. It is an easy consequence
of the forthcoming Lemm@.S that any memigeof R, , may be written in the form

o= {el—TIW ¢e,n} X {UEV ¢w,p,q}, (6.2)

whereg, ; is the Bernoulli measure of), 1} associated with the state efand¢,, p 4
is a wired random-cluster measure on the graph induce pyvith root w; conversely,
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any suchp, with any choice of wired random-cluster measupgs, 4, belongs toR ;.

In other wordsg € R, may be described as product measure/gnwith densityr,
combined with a wired random-cluster measure on the graph formed by the rays in each
givenRR,, w € W. In particular,

oty =TT ten} x { T 680} 63)

ecTwy weW

whereqs,})’p.q is the maximal wired random-cluster measureiy.

We say thatzbl}j’p,q possesses a product componitere exists a non-empty subset
F of the setE(R,,) of edges ofR,, such that

b5.pq = {1 0sn} x v 64)

feF

for some probability measutg on the set of configurations @& (R ) \ F. Wheng > 1
anddl(p, ) > Othen, by the results 6f[13], or as a consequence of Lemrha 6.5(b) below,
¢3 .4 POSSEsses no product component. It follow$ by {6.3) that, for any cutset relation

~W the measur@%j; is characterised by the sBt. That is,

1~ 1~
¢p,q # ¢p,q for ~, ~ € gcut, ~ # "\’/,

whenevel > 1 and(4.17) holds.

Note in passing thak , , contains a continuum of distinct measures whenever there
are a continuum of distinct wired measures on the graph induced by anyRiyveSee
[13, Section 5].

The above conclusion is extended to open equivalence relations in the next theorem.

Theorem 6.4. Letg > 1 and letp be such thap # 1andé(p, ¢q) > 0; seq(4.12} For
distinct members-, ~ of &, we havepyy # ¢y -

The conclusion of this theorem is false wihreplaced bye:. For example, leW be
a cutset and leb € W. Consider the closed (equivalence) relatibgiven by

s:{ U R;xR;}u{(p,p):peR;U}.
xeW, x#w

Now let p, o’ € R}, be distinct, and le§” = S U {(p, p), (o', p)}. ThenS and S’ are

closed equivalence relations which generate the same family of random-cluster measures.
The proofs of the three theorems above are preceded by a lemma, a special case of

which may be found in [13]; see aldd [7]. We |&t = {e is open. Theo -field generated

by the states of edges € E with f # e is denoted/,. The eventK " is defined prior to

Theorem G.1.
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Lemma6.5. Let~e Eprand0<p <14 >0.

(a) A probability measurep on (2, F) satisfiesp € R, if and only if, for alle € E
and forg-almost every,

p if&ekK;,

d(Je | Te)(E) = it ¢ K>,

(6.5)

wherer is given irf(4.7})
(b) Lete € E and¢ € R, , wherep # 0,1andg # 1. The (random) state af is

independent of the states Bf\ {e}, equallingl with probability , if and only if
¢(K)=0.

Proof. (a) By an application of [19, Propn IV.1.8], the random-cluster meaguts ,
on a finite graphG = (V, E) is characterised by the statement that, for all edges
(x,y) € E,

p If§€K(35

06, p.qg(Je | T)(§) = if & ¢ Ko,

(6.6)

wherekK, is the event that andy are joined by an open path @f\ {¢}. Seel[1l, Thm
2.1], for example. I satisfies the condition of the lemma thenW}s R, - The
converse is similar.

(b) Whenp # 0,1 andg # 1, we havep # &, and the claim follows by part (a).0

Proof of Theorer 6]1(a) Supposg # O; the casg = 0 is trivial. If ¢, satisfies the
condition, thenp, (K;) = O for alle € E, implying that¢, satisfieg (6.5). By Lemma
6.5(a),¢= € R, ,. The converse argument is valid whenz# 7, which requires that
p#1lq#1

(b) Let ~ € &:. By the FKG inequality in the usual way (se€ [8, Thm 3.1(a)] for
example), the limit

. 1~
¢ = zl\l?\]/ ¢A,p,q
exists and is a probability measure. We prove next éhattisfied (6.5) for alk and
¢-almost eveng, and the claim will follow.

Foré € Q andF C E, write [¢]F for the set of all configurations which agree with
gonF.ForW C V ande € Ey, let [£]w (respectively, §]w\.) be an abbreviation for
€]k, (respectively, §]E,\(e)). We write 5v1v for the configuration which agrees with
on Ew and which equals 1 elsewhere. For economy of notation, we shall omit explicit

reference to the values pfandg in the rest of this proof, and thus we Wr'dé = ¢11\’;7’q.
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By the martingale convergence theorem,det (x, y) € E and¢-almost every,

e 9 [Elae)
B 1 T)(E) = fim W

— lim ¢A(Jc’ [S]A\L)
AtV Mv Px(E]ave)
= lim I|m D1 (@1 (Je | [Elave) | [E]ave)

AV A
= J\'m/ km/ dx(ga | [Elave). (6.7)

by[(6.6), where

§a®) =7 +(p— Mg~ &)

and?;A = {w € Q : 0} € K,'}. Here and later, 4 denotes the indicator function of

the eventA. Since~ is closed by assumption, we find by Theoren 5.4 that
K, ALK asAt vV, (6.8)

whencega | g whereg =7 + (p — )1k, .
We claim that

¢a(ga | [E]lav) = ¢(g1[Ela) @SA1TYV, (6.9

and we prove this as follows. Let’ be a box satisfyings € A’ C A, and writeya (-) =
¢i(~ | [E]a\e). Sincegy is non-increasing im,

Ya(g) < ¥Ualga) < ¥algar).

We take the limits ag\ 4 V andA’ 4 V, in that order, and we appeal to the dominated
convergence theorem to dediice (6.9).
By the martingale convergence theorem,

d(g I [E]ave) = g(6) asA 1V, for ¢g-almost everny.

Hence[(6.7) and (6.9) show tfat (8.5) holds, and the result follows.

(c) Let A be an increasing cylinder event ji, and suppose that is defined on a
finite setB of edges. LetA be a box of the tree satisfyingj, 2 B. In the construction
of gbi’; p in Section 4, we add a certain set of (permanently open) new edgesftr

¢[1\’; g e add a larger (or equal) set of new edges andbf\o[, an even larger set; on

the other hand, no such edges are addecbio b = q&A”"q By the FKG inequality, the
addition of a new open edge gives rise to a stochastically larger random-cluster measure.
Thus, for everyg,

80 p.g(A) < 035 (A < o3 [(A) < ¢k, (A).
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Here ¢A,P is the product measugg, (cf. Theorerr.l(a)) Usnﬂ6) and taking the
expectatlon ovef we find

$r(A) < $(A) < B3 (A) < 9L, (A).

Now letA 4 V.

(d) Letp e R, , . Sincedt(p, q) = 0, there |s¢1q-a S. no open ray. By (c), there is
thus¢-a.s. no open ray, and thus, by (4.2), for every cylinderseéfined on some finite
edge-seB and every boxA with E, 2 B,

d’f\’;.q("‘) ¢Ap° (A) = ¢ (A)  forg-aes.

Hence, by (4.8) and taking the expectatipiA) = ¢ (A). O

Proof of Theorerf 6]2Let ~ € £. Using(4.5) in the usual way, we may restrict ourselves

for simplicity to setsA which are boxes. LeA be a finite box ofV. Forv € A, letC, be

the subset oRR containing all 0-rays whose final point of intersection withs v. Let~

be the lowest equivalence relation (in the sense of the natural partial order on equivalence
relations, seg (4.]1)) on thé, such that:C, ~ C, if there existp, € Cy, p» € Cy

such thatp, ~ p,. The relation~ may be extended without change of notation to an
equivalence relation oR. By construction® is closed (since eaafi, is closed). Since

~ < =, we have

~ <~ <& (6.10)
Letw € Q, and letk> ™~ (A, w) be given as befolle (4]2). We claim that

P (A, w) = kYA, ). (6.11)

By )kl'N(A, ) = kl*:.(A., w), and henc@/l\';’q = ¢>11\’;,)q. The claim of
the em follows on taking the limit 1 V.

We prove (6.17) next. Let™ = A~ (A, w) be the set of edges which are added to
G (A, w) in the construction prior ) of the measmk;’q. Since~ < =, we have
A~ C A”. It therefore suffices to prove that, {f, v) € A~, there exists a path of™
joining u to v. Suppose€u, v) € A~, so thatC,, ~ C,. By the definition ofx, there exist

verticesug = u, u1, ..., u; = v such that, for 0< i < k, C,; andC,,,, contain two
~-equivalent rays. Thereforéy;, u;+1) € A™, and hence: andv are connected by a
path inA™. The proof is complete. O

Proof of Theorerf 6]3This is inspired by the proof of [8, Thm 5.3(c)]; see alsd [18, Thm
1.3]. For any cutsef’, we write ingC) for the set of all vertices reachable from 0 along
paths of7" disjoint fromC, andC = C U ins(C). The subs-field of F generated by the
states of edges having no more than one verteX ism denotedZ¢.

Letw > pp(m) and~ € &,. Choosek according to Theorefn §.5(c), and Wtbe the
set of all vertices at distandgefrom 0. Let A be an increasing cylinder event jf, and
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suppose thatt is defined on the set of edges in some B»f the tree which we may
take sufficiently large to contaiv. Let¢ € R, . We shall show that

B(A) = gy (A), (6.12

and the claim will follow.

Let A be a box satisfying\ 2 B and letw € Q. Recall from Section 2 that a vertex
is blue if there exists an-ray that is open (for the configuratias). For any boxA D A,
let B = Ba(w) be the set of blue cutsets contained\iinnoting that3y = ¢ is possible.
There is a natural partial order @ given byCy < C if C1 € C». Let Cmax be the
maximal blue cutset in this partial ordering, thus,

Crax= | J C.

CEBA

Note that, for any cutsef C A, the eventEa ¢ = {Cmax = C} lies in theo-field 7.
Lete > 0. There exists a deterministic baX = A’(A, €) 2 A such that

¢ (Epr) >1—¢ forallAD A, (6.13
whereE 4 is the event

En={Br ##andA Cins(Cma0} = () Eac.
iNs(C)DA

Corollary[2.3 and the assumptian > py(m) have been used here. The corollary was
phrased for the tre§,, rather thart),,, but it is easily seen to be valid for either tree.

Let C be a cutset witlh € ins(C), C € A. On the evenE, ¢, C is a blue cutset.
By|[(4.6) and the fact thaV € B C ins(C),

_ 4L~ .
¢(A1Tc) =dz , (A ¢-as., onkac.
By the FKG inequality (sefe (4)5)),
0N (M) <A1 T0) <y, ,(A)  d-as. onEac.
We take expectations and sum over cutgets A such thatA C ins(C) to find that
¢i’;,,q(A)¢(EA) < ¢(A) —¢(A, NOtEL) < ¢,1\’;,,q(A)¢(EA). (6.14)
By[(6.13]) and the fact from Theordm B.1(c) ttat-st ¢, if A is large enough,
0<¢(A, NOtEA) <1—¢(En) =1—¢z(En) <e.

We pass to the limits in (6.174) as + V, € | 0, andA 1 V to obtair{ (6.12) as required.
o

Proof of Theorer@4Let |x| denote the length of the unique pathzf from 0 tox. Fix
k > 0, let Ay be the set of alk with |x| < k, and letd Ay = Ay \ Ar—1 as usual. We call
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y adescendantf x if the unique path from 0 tg passes through. Forx € V, write
Dy, (x) for the set of all descendangsof x with |y| = m, andD(x) = |, | Dm (x).
Choose~ € &, and fixk = k(~) such that the conclusion of Theor5.5(c) holds.
Let ~ be given as in that theorem. Foyry € d Ay, we writex ~ y if the unique paths
mo,x (respectivelyrg ) from O tox (respectivelyy) satisfymg , ~ 7o, . We have
1~ _ ~

#y = Jm v
wherey,” = ¢/l\',:p,q' Letn > k = k(~). The measurey,,” may be considered as the
random-cluster measure on the gra@fi = (A, E,,), whereA} is obtained from

A, by identifying any pair of vertices, v € dA, having the property that there exist
ou € Ru, py € Ry With p, ~ p,. Sincen > k, this implies two levels of identifications:

(i) for everyx € 9 Ay, we identify the seD,, (x) of vertices,
(i) if x,y € dAy are such that ~; y, we identify all vertices inD, (x) U D, ().

Part (i) incorporates part (i), since~; x for x € 3 Ag, but we express it thus in order to
emphasize the role of the equivalence relatian

We recall a basic fact (s€le [11], especially the appendix). Consider the random-cluster
measure on a finite grapi = (A, B) with cluster-weighting factoy and a familyp
= (pp : b € B) of edge-parameters. Any sBt of one or more edges in parallel (respec-
tively, in series) may be replaced by a single edge with an associated edge-parameter that
is a function of(p,, : b € B") andg. We call such a replacemenparallel (respectively,
serie9 replacement.

From the finite subtre€A, E,) of T,, we construct as follows a further tree de-
noted7. To eachx € dA; we attach a further edge [x’) to the vertexx, arriving thus
at a tree which we denof& and which is illustrated in Figufe §.1. These new edges are
calledattachmentsFrom 7T we obtain the grapif'™ by identifying x’ and y’ whenever
x ~, y. The graphG,” may be transformed by a sequence of parallel and series re-
placements intd"~. The random-cluster measupg” corresponds to the random-cluster
measurev,” on T~ for which the attachment edge,[x') has an associated parameter
pn that depends only op, ¢, k, andn, and not further on the choice efand~. Since

Fig. 6.1. To each boundary vertexof the firstk (= 2) generations of;, is attached a new edge
[x, x").
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v, = 4),}1;, we see thap, — poo for somepo, € [0, 1], and thakb,%j; corresponds to
the random-cluster measurg, on T~ for which the attachment edges have associated
parametepy.

Assume now thap is such that 0< 61(p, g) < 1. It is easily deduced that,, €
(0,1). Forx € dAg, we write e, for the unique edge of,, of the form [, x). The

marginal (joint) law of the states of the edges : x € dAy) is the same unde;b;j; as
undervy.

Letg > 1, and letx, y € 9Ak, x # y. Let C be the event that, is closed for all
z € dAx \ {x, y}. The conditional measure giveh of v is a random-cluster measure
on the grapir’~ with the edgeg,, z € dA; \ {x, y}, removed, and we denote this graph
by 7. It is a fundamental property of random-cluster measures gvigh 1 on a finite
graph, with edge-parameters lying (@, 1), that the states of two edges are dependent
random variables if and only if there exists some cycle containing both edges (see [11]).
There exists a cycle i, containing botte, ande, if and only if x ~, y. Therefore,
x ~ y ifand only if

V(s [ Iy NC) # vy | IENO), (6.15)

whereJ, = J,_is the event that, is open.

The proof is nearly complete. Let and~’ be distinct open equivalence relations,
and choosé sufficiently large that the conclusion of Theorgm|5.5(c) holds for beth
and~'. Since~ and~" are distinct, there exist, y € A, such thatc ~; y butx ~; y.

Thereforep satisfie) but/ does not, and hengl, # ¢ as required. O
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