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Abstract. We give a unified statement and proof of a class of well known mean value inequalities
for nonnegative functions with a nonlinear bound on the Laplacian. We generalize these to domains
with boundary, requiring a (possibly nonlinear) bound on the normal derivative at the boundary.
These inequalities give rise to an energy quantization principle for sequences of solutions of bound-
ary value problems that have bounded energy and whose energy densities satisfy nonlinear bounds
on the Laplacian and normal derivative: One obtains local uniform bounds on the complement of
finitely many points, where some minimum quantum of energy concentrates.

1. Introduction

One purpose of this note is to explain an ‘energy quantization’ principle that — in different
forms — has successfully been applied to a variety of partial differential equations, such
as minimal submanifolds, harmonic maps, pseudoholomorphic curves, and Yang—Mills
connections. The common feature of these PDE’s is an energy functional. (The solu-
tions often but not necessarily are critical points thereof.) The ‘energy quantization’ phe-
nomenon which we describe in theorpm| 2.1 is a consequence of a mean value inequality
for the energy density.

The second purpose of this note, and the content of s€dtion 3, is a presentation and
generalization of the underlying mean value inequality for the Laplace operator. Theo-
rem[1.] below is well known and proofs in an exhausting collection of cases can be found
in the literature, e.gl 1S, U]. Our aim here is to give a unified statement and proof. In
theorenj 1.3, we generalize this inequality to domains with boundary and inhomogeneous
Neumann boundary conditions.

We denote byB, (x) C R” the open geodesic ball of radiucentred atv € R" and
with respect to the present metric. Integration as well as the (positive definite) Laplace
operatorA = d*d will also be defined with respect to the metric given in the context.
The Euclidean metric oR” is denoted by its matrig. Note that by our convention the
Laplace operator in this metric is = — 3"/, 8;2.
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Theorem 1.1. For everyn € N there exist constants, u > 0, and$ > 0 such that the
following holds for all metricg onRR” such thatl|g — 1| 1 < 8.

Let B,(0) Cc R" be the geodesic ball of radis< r < 1. Suppose that the nonnega-
tive functione € C2(B,(0), [0, o0)) satisfies for somég, A1, a > 0

Ae < Ag+ Are +aet2/n and / e < pa "
B (0)

Then

e(0) < CAgr? + C(AY? +r_")/ e.
B, (0)

Remark 1.2. By using local geodesic coordinates the above theorem also implies a mean
value inequality on closed Riemannian manifolds with uniform consténts > 0, and
for all geodesic balls of radius less than a uniform constant.

In order to generalize the mean value inequality to manifolds with boundary we would
have to consider general metrics on the half sg@eHowever, for the sake of an ele-
mentary geometric proof, we restrict this exposition to the Euclidean metric. We denote
the intersection of a Euclidean ball with the half space by

D,(x) = B.(x) NH", H" := {(x0, %) | x0 € [0, 00), ¥ € R"71}.
The outer unit normal derivativ%an in the Euclidean case is justaimhozo.

Theorem 1.3. For everyn > 2 there exists a constar® and for alla, b > 0 there
existsu(a, b) > 0such that the following holds: Consider the (partial) bal} (y) c H"
for somer > O andy e H". Suppose that € C2(D,(y), [0, 00)) satisfies for some
Ag, A1, Bg, B1 >0

Ae < Ap+ A1e + ae(n+2)/n’ /.
: - and < b).
{ L|. e < Bo+ Bie + betD/n, ) e < jula, b)
Then
e = Cav?+ CBor (a4 B ) [ e
Dr(y)

2. Energy quantization

In this section we generally consider a PDE for mapsD — T from a Riemannian
manifold D (with possibly nonempty bounda§D) to a target spacé&, e.g. another
manifold, a Banach space, or a fibre bundle dvelhe energy is given for all sufficiently

regular map in the form
Ew = [ e,
D
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where the integranel(u) : D — [0, co) is a honnegative energy density function. Its key
property is that for a solution of the PDE, the positive definite Laplaciae(u) can be
bounded above in terms efu) itself.

If this bound is linear ire(u), then theorel provide’4-control one(x) in terms
of its mean values on geodesic balls. So if the endigy;) of a sequence of solutions
u; is bounded, then one obtains a uniform bound on the energy dergitigson any
compact subdomain dd \ dD. In many cases this leads to a compactness result, i.e. to
the convergence of a subsequence of the solution

For solutions of nonlinear PDE’s however, the boundAar(u) is usually nonlinear
in e(u). In that case the mean value inequality in theofen 1.1 only holds on geodesic
balls with sufficiently small energy and for nonlinearities up to or@ém D + 2)/dim D
in e(u) (Where the estimate becomes scale-invariant). Theprgm 1.3 generalizes this mean
value inequality to domain® with boundarys D and bounds on the outer normal deriva-
tive §—§|3D. This provides uniform bounds a#iu;) up to the boundary for solutions of
a PDE with appropriate boundary conditions and with bounded energy.

So if a sequence of solutions has bounded enerdgy(u;) but only satisfies nonlinear
bounds on the Laplacian or the normal derivative, then one only obtains locally uniform
bounds on the complement of finitely many points: By a converse of the mean value
inequality, the energy densitiesu;) can only blow up at points where some nonzero
guantum of energy concentrates. In the following theorem we give a blueprint for such
energy quantization results.

Here D is a Riemannian manifold (possibly noncompact or with boundayy, d*d
denotes the Laplace operator, af;;ddenotes the outer unit normal derivativesdd. For
the sake of simplicity we make a technical assumption on the metric near the boundary.

Assumption: A neighbourhood 06 D C D is locally isometric to EuclideaHl".

For general metrics the mean value inequality at the boundary becomes more techni-
cal, but theorerfi 1|3 should generalize in the same way as théorgm 1.1, so this theorem
should extend to general Riemannian manifolds with boundary.

Theorem 2.1. There exists a constant > 0 depending om = dim D and given con-
stantsa, b > 0 such that the following holds: Let € C2(D, [0, o0)) be a sequence of
nonnegative functions such that for some constadgtsA1, Bog, B1 > 0

{ Ae; < Ao+ Aze; + aef"+2)/",

3% |‘0Dei < Bo+ Bie; + bel~(n+l)/n.
Moreover, suppose that there is a uniform bouﬁ]gei < E < o0.

Then there exist finitely many pointsy, ..., xy € D (with N < E/h) and a
subsequence such that the are uniformly bounded on every compact subset of
D\ {x1,...,xy}, and there is a concentration of energy> 0 at eachx;: For every

8 > Othere existd; s € N such that

/ ei > h Vi > Ij,(s. (1)
Bs(x)
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Proof. Suppose that for somee D there is no neighbourhood on which theare uni-
formly bounded. Then there exists a subsequence (again de@piedndD > z; — x
such thate;(z;) = R! with R; — oo. We can then apply the mean value inequality

theore on the ballBs; (z;) of radiuss; = Ri’l/2 > 0. For sufficiently large € N,

these lie within appropriate coordinate chartdofin case; € 9 D we use the Euclidean
coordinate charts at the boundary to apply thedrerh 1.3, but we also denote the balls in
half space byBs, (z;). Now these mean value theorems provide uniform constaraisd
h:=max{ua"/2, i(a, b)} > 0 such that for every € N either

/ ei > h (2)
Bs; (zi)
or [p, ., ¢ < hand hence
R? = e(z) < CA05i2 + CBod; + C(Az/2 + Bf + 81»_”)/ e.
By, (z1)
In the latter case multiplication b§f = Rl._"/2 implies
R? < CAoR;"?/% 4 CBoR "™V Ch(AYPRTZ + BIRT? +1). (3)

Asi — oo, the left hand side diverges t&, whereas the right hand side converges
to Ch. Thus the alternativg¢ [2) must hold for all sufficiently laige N. In particular, this
implies the energy concentratidr] (1)gt= x.

Now we can go through the same argument for any other poitD at which the
present subsequen¢g) is not locally uniformly bounded. That way we iteratively find
pointsx; € D such that the energy concentratipp (1) holds for a further subsequence
Suppose this iteration yield8 > E /A distinct pointsxy, ..., xy (and might not even
terminate after that). Then we would have a subsequéntdor which at least energy
h > 0 concentrates near each Since the points are distinct, this contradicts the energy
bound [, e; < E. Hence this iteration must stop after at mo&t/%] steps, when the
present subsequen¢g) is locally uniformly bounded in the complement of the finitely
many points, where we found the energy concentration before. O

The allowed nonlinearities in theor¢mP.1 are sharp, and they are scale-invariant in the
following sense: Consider one functien H" — [0, co) with [¢ < oo andAe < Ce*,
%e < Ce* for somei, u € R. Then the rescaled functiong (z) = p~"e(z/p) for
p > 0 have the same energye, = [ e bute,(0) blows up ap — 0. On the other hand,
they satisfy the nonlinear boundse, < Cp**~"~2¢% and %e, < Cp""~"~lej;. Here
the constants are boundediff> (n + 2)/n andu > (n + 1)/n, so the theorem cannot
hold with nonlinearities of these higher orders.

The analogy in the use of energy densities in compactness proofs for a variety of
PDE’s, including minimal submanifolds_[A, CS] and harmonic maps of surfaces [SU],
has already been observed and listed by Wolfson [Wo]. Below, we will discuss pseudo-
holomorphic curves and Yang—Mills connections in more detail, and in the appendix we
give some sample calculations for the energy densities. In local coordinates these PDE’s
are all second order nonlinear elliptic systems (or first order reductions thereof), whose
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leading term is a component-wise Laplacian. In all cases, the nonlinearities are exactly of
the maximal order as in theorgm R.1. This corresponds to the fact that the energy func-
tionals are conformally invariant.

For pseudoholomorphic curvegwith a 2-dimensional domain) the energy is itfe
norm of the gradient, and the estimate < C(e + ¢?) leads to Gromov’s compactness
result [G/W0). A detailed proof o\e < Ce? can be found in[MS, Lemma 4.3.1]. The
linear term in the bound ore only occurs when the almost complex structure varies
over the domain of the pseudoholomorphic curve.

Forpseudoholomorphic curves with Lagrangian boundary conditionsthese com-
pactness results are also well known. They can be proven via a specific choice of a metric
for which %e = 0 (seel[[F] and[[M5, Lemma 4.3.3]). Then the energy density can be
extended across the boundary by reflection and the mean value inequali®y fap-
plies. For the naturally induced metric, the Lagrangian boundary condition only implies
Le < Cle+e%?) (see Iemml), which however fits nicely into our energy quantiza-
tion principle.

For Yang—Mills connectionson 4-manifolds the energy is tH&-norm of the curva-
ture. The bound\e < C(e + ¢3/2) was used by Uhlenbeck U] to prove a removable sin-
gularity result, which leads to Donaldson’s compactification of the moduli space of anti-
self-dual instanton$ [D]. For a proof of the energy quantization as in thgorém 2.1 see also
[Wel, Thm. 2.1]. As an example of the calculations involved we prove the bounds on
inlemmdA.2, based on a Bochner-Weitzéckformula by Bourguignon—Lawson [BL].

Consider a principal G-bundl2 — X over a 4-manifold with boundary. Théang—

Mills equation with boundary conditions for extremaA € Q1(X, gp) of the Yang—

Mills functional is the system ofiF4 = 0 and«F4|yx = 0. Heregp is the associated
bundle whose fibre is the Lie algebra of G. We show in lefoimé A.2 that the energy density
of such Yang—Mills connections satisfies a linear boug?gdg Be.

The anti-self-duality equation is a first order reduction of the Yang—Mills equation for
connections on 4-manifolds. The Yang—Mills boundary condition (roughly equivalent to
an inhomogeneous Neumann boundary condition) turns it into an overdetermined system,
similar to Neumann boundary conditions for holomorphic curves. The natural system to
consider are thuanti-self-dual connections with Lagrangian boundary conditions
Locally, these are anti-self-dual connections on a productP of a domairl/ ¢ H? and
a G-bundleP — X over a closed Riemann surface. By a Lagrangian boundary condition
for a connectionrd € QLU x X, gp) we meanA|;xx € L for everyz € 0H N U,
whereL c QY(Z, gp) is a Lagrangian (Banach) submanifold in the symplectic space of
connections.

Energy quantization for this system is proven.in [We, Thm. 1.2] for thé23bBundle
and a special class of Lagrangian submanifolds by an argument along the lines of the-
orem[2.1. In that case, the energy density / — [0, co) is given by the slice-wise
L2-norm of the curvature;(A) = [, |Fal?. The special Lagrangian boundary condition
(which has global nature along the Riemann surfageprovides-2e < C(e + ¢%?),
but one only has a linear bounsle < ge with a functiong that cannot be bounded in
terms ofe or a constant. However in the argument using (3) one can replace the con-
stantA; by the sequence“Rl.2 with a constanC and for sufficiently smalk > 0. The
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according estimatég| < CRl.2 can be established (and can roughly be understood as a

boundAe < Ce?). This result does not follow from the standard rescaling methods for
Yang—Mills connections.

3. Mean value inequalities

In this section we prove the mean value inequalities that were stated in the introduction
and that the energy quantization principle is based on. We continue the notation of the
introduction.

The special casgo = A1 = a = 0 of theorenj 1]1 and the starting point for the proof
is Morrey’s [M] mean value inequality for subharmonic functions. A proof of the version
below can be found in e.d. [ILS, Thm. 2.1]. For the Euclidean mgtrie 1 we give an
elementary proof in lemnfa 3.2 below.

Proposition 3.1. For everyn € N there exist constant€g and§ > 0 such that the
following holds for all0 < » < 1 and all metricsg onR” with ||g — 1|10 < 8.
If e € C2(B,(0), [0, o0)) satisfiesAe < 0, then

e(0) < Cor_”/ e.
B, (0)

Proof of theorerp 1]1This proof is based on the Heinz trick, which is to consider the max-
imum ¢ of the functionf below. This allows one to replace the bound on the Laplacian
by a constant depending énOne then obtains the result from the mean value inequality
for subharmonic functions and a number of rearrangements in different cases.
Consider the functiorf (p) = (1 — p)” Supg,, (0) € for p € [0, 1]. It attains its maxi-

mum at some < 1. Lete = supy_ ) ¢ = e(¥) ande = $(1—p) < 3, then
e(0) = f(0) =< f(p) = 2'¢"c.
Moreover, we have for alt € B, (x) C B,(0)

e(x) < sup e = (1-p—e)"f(p+e) < 2°A-p)"f(p) = 2'c,
B(p+e)r (0)

and hence\e < Ag + 2" A1¢ + 2't24c /7 Now define the function
v(x) = e(x) + (Ao + 2"¢(A1 + 4ad¥"))|x — x|

with the Euclidean normix — x|. It is nonnegative and subharmonic &p,(x) if the
metric is sufficientlyC-close tol. This is sinceAq|x — |2 = —2n for the Euclidean
metric andx —x| < er < 1lisbounded, sa|x—X|%2 < —n whenevet|g —1| 1o < 8is
sufficiently small. The control of the metric also ensures that the intgfgg%) Ix — x|?
is bounded by the following integral over the Euclidean h@ur()}): With the constant

C1=2""Vol " 1/(n + 2)

2pr
2 lx— %% =2 / ol "L dr = Cy(pr)"t2.
0

B}, (%)
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So we obtain from propositi@.l withh, = maxXCo, ,—112” CoCi}forall0<p <e

Co(pr)™" / v
By (%)

C2(27" Ao + &(A1 + 4a® ™)) (or)* + Cz(pr)_”/ e. (4)
Bpr(®)

c = v(x)

IA

IA

If 27" CoAg(er)? > 3¢, thene(0) < ¢ < 2¥e2C2A0r? < 2717"CoAor? proves the
assertion. Otherwise we can drag from (4) while doubling the constaxt,.
Next, if Co(Ay + 4ac®")(pr)? < 1, then Q) impliess < 2C2(pr)™ [ o €. SO if

C2(A1+ 4ac?™)(er)? < § thenp = ¢ proves the assertion,
e(0) < 2%"¢ < 2'TlCyr™ / e.
B, (0)

Otherwise we can choose® p < ¢ such that(pr)=2 = 2C2(A1 + 4ac?™). Then we
obtain withC3 = (2C5)11"/2

e(0) < ¢ < cs(A1+4a52/")"/2/ e.
By (%)

Again we have to distinguish two cases: Firstly,dfe4/” < A; then this yields

e(0) < C3(2A1)"? / e.
Byr(x)

Secondly, ifA1 < 4ac?/" thenc <& C3(8a)"/2 I3, € and thus withu = 8"2c;1>0

/ e > pa "2,
B (0)

So we either have the above or with some constafthat only depends om)
e(0) < CA0r2+C(A;/2+r_")f e. O
B, (0)

Theorenj 1.3 will be proven in three steps. The first step is the generalization of propo-
sition[3.7 to domains with boundary and subharmonic functions in the sense of the weak
Neumann equation: A distribution on a manifoldM is called subharmonic if for all
¥ € C®(M, [0, 00)) with 3% |5y = 0

Oz/eAl/r (:/wAe—l—/ Iﬂg—5>.
M M aM

Fore € C3(M) the equality above holds and implies thet < O andg—§|3M < 0.
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Lemma 3.2. For everyn > 2 there exists a constauily such that the following holds for
all R > 0andy € H": Suppose that € C?(D,(y), [0, c0)) satisfies

{Ae <0,
3

3_v|8H”e <0
Then

e(y) < Cor7"/ e.

Dy (y)

Proof. We will write H” = {(xg, %) | xo € [0, 00), ¥ € R*1} and also use spherical
coordinateS(xg, Xx) = (yo + r€0S¢, y + rsing - z) =: (r, ¢, z) with » € [0, 00),

¢ € [0, 7], andz € §"2 c R". (Forn = 2 this notation means® = {—1, 1}, and
integrationfo . .. dvolso will denote summation of the values at these two points.) Now
the boundary oD, (y) has two parts,

Z, = aD,(y) NoH" = {(0, %) | 1% — 717 < r? — yo?},
T, = 3B,()NH" = {(¢,2)|¢ €0, do(r)], z € 5" 2}.

Here we usepg(r) := arccos—yp/r). Foryg > r we setpo(r) := x, sol’, is the entire
sphere and the s&. is empty. With this we calculate for all> 0

d —n+1
& ()

d $o(r)
- fﬁl/ / e(r. ¢.2) (r sing)" 2 dvolg,—2 r d
dr 0 sn=2

¢o(r)
= / / ore(r, ¢, z) (Sin¢)”_2 dvolg.—2 d¢
0 §n-2

, 2o

/ e(r, ¢o(r), 2) (Singo(r))" 2 dvolg:-2. (5)
ar sn—2

Note thatgo(r) is constant foryg = 0 as well as for < yg. So firstly in caseg > 0 we
have for all O< r < yg

d )
— <r"+1/ e) = r7”+l/ a"—ve = —r7”+1/ Ae > 0. (6)
dr r, D, (y) D, ()

In that case we moreover have

lim (r—"+1 / e) = Vol " Le(y), 7)
Fr

r—0

which is less than or equal to”** [ eforall0<r < yo. So integratin%R/2 L dr
proves the lemma for aR < 2yy,

R/2
%2_"RnV0|S"_1e(y) 5/ /edr 5/ e.
0 r DR()’)
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Next, in caseyp = 0 we have for alk > 0

d
™ r_"+1/ e) = r_"+1f ;—Ue
r r, r,

= —r_’l""l/ Ae — r_”+l/ aa—ve > 0.
Dy (y) r

Since lim—o (r "+ [;. e) = 1Vol s"~Le(y), integration over O< r < R then proves

the lemma foryg = O and allR > 0,

R
%R”VOIS”_le(y) 5/ /edr =/ e.
0 r Dg(y)

Finally, in caseR > 2y > 0 we obtain from[(p) for all > yo
d

<r—n+1f 6‘) > —Yo /
dr I, r /rz_ycz) n—2

e(r, ¢o(r). 2) (Singo(r))" % dvolg,—2.

Now we can useﬂ?)BG), and integrate the above to obtain fopal r < %R

Vol s—1 e(y) < r_”+1/ e

r,

,
+ / Yop' " (p? = y§) "I /
Y

e(p, go(p), z) dvolg.—2dp.
0 sn—2

Since(p, ¢o(p), z) € dH", we already know that

2n

2n+1n
e(p, po(p),z) < —/ e < —_/ e.
Vol 5=1(E)y J g a0 00(0).2) Vol S"=1R™ Jp ()

With this (and substituting = p/yo) we find that for all 0< yo < r < 3R

Vol S"te(y) < r_"+l/ e

Ly
21+l \pl 12 (130" _
+n—1/ 21— 1722 f e
R*\ol §"— 1 Dr(y)
§r_”+l/ e + CR_"/ e. (8)
r Dr(y)

Here we have introduced a const@hthat only depends on > 2, in particular on the
value of the integral in: Forn = 2 we calculate it explicitly,

’)’o_ _ ry_1
/ t2(1—172) Y24 = [arcco$z‘1)]1° = arcco§L) < Z.
1

i
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Forn > 3 we have

—1 -1
ryo _ ryo

/ t_z(l—t_z)(n 24 < / 72t = 1-L < 1.
1 1 Yo

Now from (§) we know thaf[(8) also holds for@ r < yo (with C = 0), so integrating
fOR/2 r"=1... dr proves the lemma in this last case,

R/2
%(%)HVO|S”_1e(y) < /(; / edr + %(%)nCR_n/I; ( )e < CO/I; ( )e. O
r R(Y R\Y

Proof of theoreni T|3With lemma[3.2 in hand, the second step of the proof is to as-

sume constant positive boundse < A andg—§|8Hn < B and find a constant’y (only

depending om) such that for alk > 0 andy € H"

e(y) < Clr*”/ e + C1Ar? + C1Br. 9)
Dy (y)

That is, we first prove the theorem witty = B; = a = b = 0. To do this consider the
function

v(x) == e(x) + £ Alx — yI2+ (B + 1A yo)xo.

It is positive and satisfieAv < 0 andg—z |3H,, <0, so Iemm2 implies that

) = v(y) — (B+ 1A y0y0 < v(y) < Cor_"/D()v- (10)
- (y

Incaser < ypwe justuser(x) = e(x)+ %A|x — y|2, then the same holds, and moreover

r
n—1

/ v = / e + %A/ "ol "7 dr = / e + \2/213+2)Ar"+2.

D, (y) Dy (y) 0 D, (y)

In caser > yg we have (usingg < 2r on B, (y))

,
/ v 5/ e + Z%A/ "ol §"dr + (B + 1A o) X0
D (y) Dy (y) 0 Dy (y)

n—1 _
< /D ot WSS A2 4 (B4 2Ar) 2ol 57
ry

In any case, putting this intp (JLO) provés$ (9).

Finally, to prove the theorem we consider — analogous to the proof of th¢orém 1.1 —
the functionf (p) = (1 — p)" SUpp,, (y) € defined forp € [0, 1]. It attains its maximum
at somep < 1. We denote = SURp,, (y) € = e(x) ande = %(1 — p), thene(y) < 2"¢"¢
ande(x) < 2"'¢ for all x € D, (x). Thus onD,,(x) C D,(y) we have the estimates
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Ae < Ao+ 2'¢(A1+ 4ac®") and 3¢ |, ., < By + 2"¢(By + 2bc'/™). Putting this into
(9 yields forall0< p < ¢

¢ = e(X) < Cl(pr)_”/ e + C1(Ao + 2"¢(A1 + 4ac® ™)) (pr)?
Dy (®)

+ C1(Bo + 2'¢(B1 + 2b&Y™)) pr. (11)

To deduce the claimed mean value inequality from this, we have to go through a number

of different cases. Firstly, i€1A0(er)? + C1Boer > 3¢, then sinces < 3

e(y) < & < C1Aor? + C1Bor,

which proves the theorem. Otherwige](11) continues to hold wittand By dropped
(and the constant; doubled). Next, let O< & < ¢ be the solution of the equation
A1(e'r)?+ Bre'r = 27""1Cr  orin cased(er)? + Bier < 27"71Crt lete = ¢/ Then
we can rearrang (1L1) to obtain for alkOp < &’

f e > / e > &pr)"(3C7t = 2" 2ad®  (pr)? — 2Tt pr).  (12)
Dr(y) Dﬂr(i)

Now if a > 0 orb > O letn(a, b) > 0 be the solution of
2n+2an2 + 2}’t+lb77 — %C]Tl
If ¢/7 pr = n(a, b) for some O< p < ¢/, then the theorem holds with
/ e > 2CiMn@a b)" = pu(a, b) > 0.
Dr(y)
Otherwise we must havg/"¢'r < 1(a, b), so [12) withp = &’ gives
¢ < 4C1(e'r)™" / e. (13)

D (y)
In the special case = b = 0 we get the same directly frofh (12). In case= ¢ this
proves the theorem sineg¢y) < 2"¢"¢. Otherwises’ < ¢ satisfies withC, = 2"+t1Cy
2C; = Awe'r)? + Bie'r + G5t

= (V/A1e'r + C2—1/2)2 + (B1— 2C2_1/2\/A71)£/r

= (%Czl/zBle’r + szl/z)2 + (A1 — 2C2BY)(e'r)2.

From this one sees that eithBf < 2C2_1/2«/A1 ande'r > (v2 — 1)C2_1/2Al_1/2 from
the second line, afy < 2C2B% ande’r > 2(v/2—1)C, * By * from the third line. Putting
this into [I3) we finally obtain in this last case with a consi@rhat only depends om

e(y) < ¢ < c(A’{/2+B'f)/ e. O
Dr(y)
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A. Some identities for energy densities

Let (M, w) be a compact symplectic manifold, Iétbe anw-compatible almost com-
plex structure, and fix the induced meteg -, J-) on TM. Moreover, letL ¢ M be a
Lagrangian submanifold, that is, a submanifold of dimen%d’rmM with w|;, = 0.

For the following we use the coordinates r) € H? with + < 0. Then the outer unit
normal derivative oWH? is 9 |;—o.

LemmaA.1. LetQ2 c H? be an open domain and consider a pseudoholomorphic curve
u . Q — M with Lagrangian boundary conditions,

du + Jou =0, uz) e L VzedH2NQ.

Its energy density(u) = |d;u|? : @ — [0, co) satisfies

3/2

Aegaez, e<be

il
av |9H?2

with constants:, b that only depend oM, w, J) and L.

Proof. For Ae < a¢? see the proof of [MS, Lemma 4.3.1]. We calculate the normal
derivative w.l.0.g. at0, 0) in Darboux-Weinstein coordinates nedg,0) € L ¢ M. So

u is replaced byt = (u1,u2) : U — R" x R"” on a small neighbourhodd c 2 of

(0, 0). In these coordinates, the symplectic structure wg is independent ofs, ¢) € U,

and the Lagrangian submanifold &' x {0}, see [MS, Theorem 3.32]. However, the

almost complex structurg : R — R?'*2" varies with the base point. So we have

dsu + Jdu = 0withJ = Jou : U — RZ*?" and the boundary condition becomes

us(s, 0) = 0. We can now uséu = Jo,u to calculate

dre(u) = d; (wo(dsu, Josu))
= wo(0s (J Isu), Josu) + wo(dsu, (0;J)dsu)) + wo(dsut, Js(J dsut))
= 2w0(0%u, dsut) + 2w0((35J )t J dgtu) + wo (e, (3, J)dyit).

The first term vanishes @, 0) sinced;u|;—o = 0 anda§u2|,:o = 0. For the second and
third term note thaé;J = (VJ)d;u andd;J = (VJ)Jd,u. Hence
¥|,_pe@) < 2/VII-13ulP+1J(VII| - 18ul® < Bew)*?,

where the constar® only depends od and the coordinates, so it can be chosen uniform
for the compact manifold/. O

Let G be a compact Lie group and denote its Lie algebrg. (yhe local trivialization
of a G-bundle over a 4-manifold with boundary isxG{ — U for some open domain
U c H* Locally, a connection is given by gvalued 1-formA e QY (U, g). It induces
the exterior derivative g : Q“U, g) — QLU g) given by din = dn + 3[A A 7],
where the pairing is by the Lie bracket {] on g. The curvature of a connection is the
2-form Fy = dA + [A A A]
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Moreover, we equig with a G-invariant metriq( -, -) and letl/ be equipped with
any Riemannian metric. The covariant derivatwg is given for sectiong : &/ — g by
Vi€ = da&, but it extends to differential forms by the Leibniz rule using the Levi-Civita
connection orl{. The formal dual operators 6f4 and d, are denoted by’ and by
di U, g) — QF W, g).

Lemma A.2. Consider a Yang—Mills connectioh € QLU g),
diFa =0, xFplyga = 0.
Its energy density(A) = |Fa|? : U — [0, co) satisfies
AefCe+ce3/2, ;—v|8H4e§Be
with constantsB, ¢, C that only depend on the metric 6n
Proof. The Bochner-Weitzeriizk formula [BL, Thm. 3.10] is
(dadfy + dida)Fa = ViVaFs + Fpo (RiCA g+ 2R) + RA(Fa).

The left hand side vanishes for a Yang—Mills connection dug #,d= 0 and the Bianchi
identity dq F4 = 0. The quadratic terriR4(F4) € (U, g) can be expressed with the

help of a local orthonormal framey, .. ., e4) of T as
4
RAFANX, Y) =2 [Falej, X), Falej, V)].
j=1

The estimate for the Laplacian now follows from

—V*V|Fa|? = —2|VaFa|® = 2(Fa, V5VAF)
<2(Fa, Fao(RICAg+2R)) +2(Fa, RA(F4))
< C|Fal? +c|Fal®

Here the constar depends on the Ricci transform Ric and the scalar curvawkthe
metric onl{. The constant only depends on the metric gn

For the normal derivative at w.l.o.g. 0 we use local geodesic coordinate@glitn
combined with the flow of a unit normal vector field iné* to obtain coordinates
(x0, X1, X2, x3), xo < 0 on a neighbourhoot¥ c H* of 0. Then the components of
the metric satisfy;;|x,—0 = &;; and we hav%bw = Jolxy=0. The boundary condition
becomesFy; = O for all i, and it impliesV; Fp; = O for all i, j # 0. (HereF;; andV;
denote the components 6f, andV,4.) With this we can calculate

0] ool Fa|* = dol,,_o D 78" (Fix. Fye)
i jk,t

=2 008" (Fix. Fix) + 2 _(VoFu. Fi) < B|Fal*.
i,j.k ik
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Here the constam® only depends on the first normal derivative of the metric. The second
term vanishes sincg;; = 0 unless, k # 0, but by the Bianchi identity and the boundary
condition

VoFijr = ViFor +ViFig = 0 Vi k#Q. O
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