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Abstract. We give a unified statement and proof of a class of well known mean value inequalities
for nonnegative functions with a nonlinear bound on the Laplacian. We generalize these to domains
with boundary, requiring a (possibly nonlinear) bound on the normal derivative at the boundary.
These inequalities give rise to an energy quantization principle for sequences of solutions of bound-
ary value problems that have bounded energy and whose energy densities satisfy nonlinear bounds
on the Laplacian and normal derivative: One obtains local uniform bounds on the complement of
finitely many points, where some minimum quantum of energy concentrates.

1. Introduction

One purpose of this note is to explain an ‘energy quantization’ principle that – in different
forms – has successfully been applied to a variety of partial differential equations, such
as minimal submanifolds, harmonic maps, pseudoholomorphic curves, and Yang–Mills
connections. The common feature of these PDE’s is an energy functional. (The solu-
tions often but not necessarily are critical points thereof.) The ‘energy quantization’ phe-
nomenon which we describe in theorem 2.1 is a consequence of a mean value inequality
for the energy density.

The second purpose of this note, and the content of section 3, is a presentation and
generalization of the underlying mean value inequality for the Laplace operator. Theo-
rem 1.1 below is well known and proofs in an exhausting collection of cases can be found
in the literature, e.g. [S, U]. Our aim here is to give a unified statement and proof. In
theorem 1.3, we generalize this inequality to domains with boundary and inhomogeneous
Neumann boundary conditions.

We denote byBr(x) ⊂ Rn the open geodesic ball of radiusr centred atx ∈ Rn and
with respect to the present metric. Integration as well as the (positive definite) Laplace
operator1 = d∗d will also be defined with respect to the metric given in the context.
The Euclidean metric onRn is denoted by its matrix1. Note that by our convention the
Laplace operator in this metric is1 = −

∑n
i=1 ∂i

2.
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Theorem 1.1. For everyn ∈ N there exist constantsC, µ > 0, andδ > 0 such that the
following holds for all metricsg onRn such that‖g − 1‖W1,∞ ≤ δ.

LetBr(0) ⊂ Rn be the geodesic ball of radius0< r ≤ 1. Suppose that the nonnega-
tive functione ∈ C2(Br(0), [0,∞)) satisfies for someA0, A1, a ≥ 0

1e ≤ A0 + A1e + a e(n+2)/n and
∫
Br (0)

e ≤ µa−n/2.

Then

e(0) ≤ CA0r
2
+ C

(
A
n/2
1 + r−n

) ∫
Br (0)

e.

Remark 1.2. By using local geodesic coordinates the above theorem also implies a mean
value inequality on closed Riemannian manifolds with uniform constantsC,µ > 0, and
for all geodesic balls of radius less than a uniform constant.

In order to generalize the mean value inequality to manifolds with boundary we would
have to consider general metrics on the half spaceHn. However, for the sake of an ele-
mentary geometric proof, we restrict this exposition to the Euclidean metric. We denote
the intersection of a Euclidean ball with the half space by

Dr(x) := Br(x) ∩ Hn, Hn := {(x0, x̄)
∣∣ x0 ∈ [0,∞), x̄ ∈ Rn−1

}.

The outer unit normal derivative∂
∂ν

|∂Hn in the Euclidean case is just−
∂
∂x0

|x0=0.

Theorem 1.3. For everyn ≥ 2 there exists a constantC and for all a, b ≥ 0 there
existsµ(a, b) > 0 such that the following holds: Consider the (partial) ballDr(y) ⊂ Hn

for somer > 0 and y ∈ Hn. Suppose thate ∈ C2(Dr(y), [0,∞)) satisfies for some
A0, A1, B0, B1 ≥ 0{

1e ≤ A0 + A1e + ae(n+2)/n,
∂
∂ν

∣∣
∂Hne ≤ B0 + B1e + be(n+1)/n,

and
∫
Dr (y)

e ≤ µ(a, b).

Then

e(y) ≤ CA0r
2
+ CB0r + C

(
A
n/2
1 + Bn1 + r−n

) ∫
Dr (y)

e.

2. Energy quantization

In this section we generally consider a PDE for mapsu : D → T from a Riemannian
manifoldD (with possibly nonempty boundary∂D) to a target spaceT , e.g. another
manifold, a Banach space, or a fibre bundle overD. The energy is given for all sufficiently
regular mapsu in the form

E(u) =

∫
D

e(u),
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where the integrande(u) : D → [0,∞) is a nonnegative energy density function. Its key
property is that for a solutionu of the PDE, the positive definite Laplacian1e(u) can be
bounded above in terms ofe(u) itself.

If this bound is linear ine(u), then theorem 1.1 provides aC0-control one(u) in terms
of its mean values on geodesic balls. So if the energyE(ui) of a sequence of solutions
ui is bounded, then one obtains a uniform bound on the energy densitiese(ui) on any
compact subdomain ofD \ ∂D. In many cases this leads to a compactness result, i.e. to
the convergence of a subsequence of the solutionui .

For solutions of nonlinear PDE’s however, the bound on1e(u) is usually nonlinear
in e(u). In that case the mean value inequality in theorem 1.1 only holds on geodesic
balls with sufficiently small energy and for nonlinearities up to order(dimD+ 2)/dimD
in e(u) (where the estimate becomes scale-invariant). Theorem 1.3 generalizes this mean
value inequality to domainsD with boundary∂D and bounds on the outer normal deriva-
tive ∂e

∂ν
|∂D. This provides uniform bounds one(ui) up to the boundary for solutionsui of

a PDE with appropriate boundary conditions and with bounded energy.
So if a sequence of solutionsui has bounded energyE(ui) but only satisfies nonlinear

bounds on the Laplacian or the normal derivative, then one only obtains locally uniform
bounds on the complement of finitely many points: By a converse of the mean value
inequality, the energy densitiese(ui) can only blow up at points where some nonzero
quantum of energy concentrates. In the following theorem we give a blueprint for such
energy quantization results.

HereD is a Riemannian manifold (possibly noncompact or with boundary),1 = d∗d
denotes the Laplace operator, and∂

∂ν
denotes the outer unit normal derivative at∂D. For

the sake of simplicity we make a technical assumption on the metric near the boundary.

Assumption: A neighbourhood of∂D ⊂ D is locally isometric to EuclideanHn.

For general metrics the mean value inequality at the boundary becomes more techni-
cal, but theorem 1.3 should generalize in the same way as theorem 1.1, so this theorem
should extend to general Riemannian manifolds with boundary.

Theorem 2.1. There exists a constant~ > 0 depending onn = dimD and given con-
stantsa, b ≥ 0 such that the following holds: Letei ∈ C2(D, [0,∞)) be a sequence of
nonnegative functions such that for some constantsA0, A1, B0, B1 ≥ 0{

1ei ≤ A0 + A1ei + ae
(n+2)/n
i ,

∂
∂ν

∣∣
∂D
ei ≤ B0 + B1ei + be

(n+1)/n
i .

Moreover, suppose that there is a uniform bound
∫
D
ei ≤ E < ∞.

Then there exist finitely many points,x1, . . . , xN ∈ D (with N ≤ E/~) and a
subsequence such that theei are uniformly bounded on every compact subset of
D \ {x1, . . . , xN }, and there is a concentration of energy~ > 0 at eachxj : For every
δ > 0 there existsIj,δ ∈ N such that∫

Bδ(xj )

ei ≥ ~ ∀i ≥ Ij,δ. (1)
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Proof. Suppose that for somex ∈ D there is no neighbourhood on which theei are uni-
formly bounded. Then there exists a subsequence (again denoted(ei)) andD 3 zi → x

such thatei(zi) = Rni with Ri → ∞. We can then apply the mean value inequality

theorem 1.1 on the ballsBδi (zi) of radiusδi = R
−1/2
i > 0. For sufficiently largei ∈ N,

these lie within appropriate coordinate charts ofD. In casez ∈ ∂D we use the Euclidean
coordinate charts at the boundary to apply theorem 1.3, but we also denote the balls in
half space byBδi (zi). Now these mean value theorems provide uniform constantsC and
~ := max{µa−n/2, µ(a, b)} > 0 such that for everyi ∈ N either∫

Bδi (zi )

ei > ~ (2)

or
∫
Bδi (zi )

ei ≤ ~ and hence

Rni = e(zi) ≤ CA0δ
2
i + CB0δi + C

(
A
n/2
1 + Bn1 + δ−ni

) ∫
Bδi (zi )

ei .

In the latter case multiplication byδni = R
−n/2
i implies

R
n/2
i ≤ CA0R

−(n+2)/2
i + CB0R

−(n+1)/2
i + C~

(
A
n/2
1 R

−n/2
i + Bn1R

−n/2
i + 1

)
. (3)

As i → ∞, the left hand side diverges to∞, whereas the right hand side converges
toC~. Thus the alternative (2) must hold for all sufficiently largei ∈ N. In particular, this
implies the energy concentration (1) atxj = x.

Now we can go through the same argument for any other pointx ∈ D at which the
present subsequence(ei) is not locally uniformly bounded. That way we iteratively find
pointsxj ∈ D such that the energy concentration (1) holds for a further subsequence(ei).
Suppose this iteration yieldsN > E/~ distinct pointsx1, . . . , xN (and might not even
terminate after that). Then we would have a subsequence(ei) for which at least energy
~ > 0 concentrates near eachxj . Since the points are distinct, this contradicts the energy
bound

∫
D
ei ≤ E. Hence this iteration must stop after at mostbE/~c steps, when the

present subsequence(ei) is locally uniformly bounded in the complement of the finitely
many points, where we found the energy concentration before. ut

The allowed nonlinearities in theorem 2.1 are sharp, and they are scale-invariant in the
following sense: Consider one functione : Hn

→ [0,∞) with
∫
e < ∞ and1e ≤ Ceλ,

∂
∂ν
e ≤ Ceµ for someλ,µ ∈ R. Then the rescaled functionseρ(z) = ρ−ne(z/ρ) for

ρ > 0 have the same energy
∫
eρ =

∫
e buteρ(0) blows up asρ → 0. On the other hand,

they satisfy the nonlinear bounds1eρ ≤ Cρλn−n−2eλρ and ∂
∂ν
eρ ≤ Cρµn−n−1e

µ
ρ . Here

the constants are bounded iffλ > (n + 2)/n andµ > (n+ 1)/n, so the theorem cannot
hold with nonlinearities of these higher orders.

The analogy in the use of energy densities in compactness proofs for a variety of
PDE’s, including minimal submanifolds [A, CS] and harmonic maps of surfaces [SU],
has already been observed and listed by Wolfson [Wo]. Below, we will discuss pseudo-
holomorphic curves and Yang–Mills connections in more detail, and in the appendix we
give some sample calculations for the energy densities. In local coordinates these PDE’s
are all second order nonlinear elliptic systems (or first order reductions thereof), whose
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leading term is a component-wise Laplacian. In all cases, the nonlinearities are exactly of
the maximal order as in theorem 2.1. This corresponds to the fact that the energy func-
tionals are conformally invariant.

Forpseudoholomorphic curves(with a 2-dimensional domain) the energy is theL2-
norm of the gradient, and the estimate1e ≤ C(e + e2) leads to Gromov’s compactness
result [G, Wo]. A detailed proof of1e ≤ Ce2 can be found in [MS, Lemma 4.3.1]. The
linear term in the bound on1e only occurs when the almost complex structure varies
over the domain of the pseudoholomorphic curve.

Forpseudoholomorphic curves with Lagrangian boundary conditions, these com-
pactness results are also well known. They can be proven via a specific choice of a metric
for which ∂

∂ν
e = 0 (see [F] and [MS, Lemma 4.3.3]). Then the energy density can be

extended across the boundary by reflection and the mean value inequality forRn ap-
plies. For the naturally induced metric, the Lagrangian boundary condition only implies
∂
∂ν
e ≤ C(e+ e3/2) (see lemma A.1), which however fits nicely into our energy quantiza-

tion principle.
ForYang–Mills connectionson 4-manifolds the energy is theL2-norm of the curva-

ture. The bound1e ≤ C(e+ e3/2) was used by Uhlenbeck [U] to prove a removable sin-
gularity result, which leads to Donaldson’s compactification of the moduli space of anti-
self-dual instantons [D]. For a proof of the energy quantization as in theorem 2.1 see also
[We, Thm. 2.1]. As an example of the calculations involved we prove the bounds on1e

in lemma A.2, based on a Bochner–Weitzenböck formula by Bourguignon–Lawson [BL].
Consider a principal G-bundleP → X over a 4-manifold with boundary. TheYang–

Mills equation with boundary conditions for extremaA ∈ �1(X, gP ) of the Yang–
Mills functional is the system of d∗AFA = 0 and∗FA|∂X = 0. HeregP is the associated
bundle whose fibre is the Lie algebra of G. We show in lemma A.2 that the energy density
of such Yang–Mills connections satisfies a linear bound∂

∂ν
e ≤ B e.

The anti-self-duality equation is a first order reduction of the Yang–Mills equation for
connections on 4-manifolds. The Yang–Mills boundary condition (roughly equivalent to
an inhomogeneous Neumann boundary condition) turns it into an overdetermined system,
similar to Neumann boundary conditions for holomorphic curves. The natural system to
consider are thusanti-self-dual connections with Lagrangian boundary conditions.
Locally, these are anti-self-dual connections on a productU×P of a domainU ⊂ H2 and
a G-bundleP → 6 over a closed Riemann surface. By a Lagrangian boundary condition
for a connectionA ∈ �1(U × 6, gP ) we meanA|{z}×6 ∈ L for everyz ∈ ∂H ∩ U ,
whereL ⊂ �1(6, gP ) is a Lagrangian (Banach) submanifold in the symplectic space of
connections.

Energy quantization for this system is proven in [We, Thm. 1.2] for the SU(2)-bundle
and a special class of Lagrangian submanifolds by an argument along the lines of the-
orem 2.1. In that case, the energy densitye : U → [0,∞) is given by the slice-wise
L2-norm of the curvature,e(A) =

∫
6

|FA|
2. The special Lagrangian boundary condition

(which has global nature along the Riemann surface6) provides ∂
∂ν
e ≤ C(e + e3/2),

but one only has a linear bound1e ≤ ge with a functiong that cannot be bounded in
terms ofe or a constant. However in the argument using (3) one can replace the con-
stantA1 by the sequenceCR2

i with a constantC and for sufficiently small~ > 0. The
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according estimate|g| ≤ CR2
i can be established (and can roughly be understood as a

bound1e ≤ Ce2). This result does not follow from the standard rescaling methods for
Yang–Mills connections.

3. Mean value inequalities

In this section we prove the mean value inequalities that were stated in the introduction
and that the energy quantization principle is based on. We continue the notation of the
introduction.

The special caseA0 = A1 = a = 0 of theorem 1.1 and the starting point for the proof
is Morrey’s [M] mean value inequality for subharmonic functions. A proof of the version
below can be found in e.g. [LS, Thm. 2.1]. For the Euclidean metricg = 1 we give an
elementary proof in lemma 3.2 below.

Proposition 3.1. For everyn ∈ N there exist constantsC0 and δ > 0 such that the
following holds for all0< r ≤ 1 and all metricsg onRn with ‖g − 1‖W1,∞ ≤ δ.

If e ∈ C2(Br(0), [0,∞)) satisfies1e ≤ 0, then

e(0) ≤ C0r
−n

∫
Br (0)

e.

Proof of theorem 1.1.This proof is based on the Heinz trick, which is to consider the max-
imum c̄ of the functionf below. This allows one to replace the bound on the Laplacian
by a constant depending onc̄. One then obtains the result from the mean value inequality
for subharmonic functions and a number of rearrangements in different cases.

Consider the functionf (ρ) = (1 − ρ)n supBρr (0) e for ρ ∈ [0,1]. It attains its maxi-

mum at somēρ < 1. Let c̄ = supBρ̄r (0) e = e(x̄) andε =
1
2(1 − ρ̄) < 1

2, then

e(0) = f (0) ≤ f (ρ̄) = 2nεnc̄.

Moreover, we have for allx ∈ Bεr(x̄) ⊂ Br(0)

e(x) ≤ sup
B(ρ̄+ε)r (0)

e = (1 − ρ̄ − ε)−nf (ρ̄ + ε) ≤ 2n(1 − ρ̄)−nf (ρ̄) = 2nc̄,

and hence1e ≤ A0 + 2nA1c̄ + 2n+2ac̄(n+2)/n. Now define the function

v(x) := e(x)+
1
n

(
A0 + 2nc̄

(
A1 + 4ac̄2/n))

|x − x̄|2

with the Euclidean norm|x − x̄|. It is nonnegative and subharmonic onBεr(x̄) if the
metric is sufficientlyC1-close to1. This is since11|x − x̄|2 = −2n for the Euclidean
metric and|x−x̄| ≤ εr ≤ 1 is bounded, so1|x−x̄|2 ≤ −nwhenever‖g−1‖W1,∞ ≤ δ is
sufficiently small. The control of the metric also ensures that the integral

∫
Bρr (x̄)

|x − x̄|2

is bounded by the following integral over the Euclidean ballB1

2ρr(x̄): With the constant

C1 = 2n+3Vol Sn−1/(n+ 2)

2
∫
B1

2ρr (x̄)

|x − x̄|2 = 2
∫ 2ρr

0
tn+1Vol Sn−1 dt = C1(ρr)

n+2.
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So we obtain from proposition 3.1 withC2 = max{C0,
1
n
2nC0C1} for all 0< ρ ≤ ε

c̄ = v(x̄) ≤ C0(ρr)
−n

∫
Bρr (x̄)

v

≤ C2
(
2−nA0 + c̄

(
A1 + 4ac̄2/n))(ρr)2 + C2(ρr)

−n

∫
Bρr (x̄)

e. (4)

If 2−nC2A0(εr)
2 > 1

2 c̄, thene(0) ≤ c̄ ≤ 21−nε2C2A0r
2

≤ 2−1−nC2A0r
2 proves the

assertion. Otherwise we can dropA0 from (4) while doubling the constantC2.
Next, if C2(A1 + 4ac̄2/n)(ρr)2 ≤

1
2, then (4) impliesc̄ ≤ 2C2(ρr)

−n
∫
Br (0)

e. So if

C2(A1 + 4ac̄2/n)(εr)2 ≤
1
2 thenρ = ε proves the assertion,

e(0) ≤ 2nεnc̄ ≤ 2n+1C2r
−n

∫
Br (0)

e.

Otherwise we can choose 0< ρ < ε such that(ρr)−2
= 2C2(A1 + 4ac̄2/n). Then we

obtain withC3 = (2C2)
1+n/2

e(0) ≤ c̄ ≤ C3
(
A1 + 4ac̄2/n)n/2 ∫

Bρr (x̄)

e.

Again we have to distinguish two cases: Firstly, if 4ac̄2/n
≤ A1 then this yields

e(0) ≤ C3(2A1)
n/2
∫
Bρr (x̄)

e.

Secondly, ifA1<4ac̄2/n thenc̄< c̄ C3(8a)n/2
∫
Bρr (x̄)

e and thus withµ=8−n/2C−1
3 >0∫

Br (0)
e > µa−n/2.

So we either have the above or with some constantC (that only depends onn)

e(0) ≤ CA0r
2
+ C

(
A
n/2
1 + r−n

) ∫
Br (0)

e. ut

Theorem 1.3 will be proven in three steps. The first step is the generalization of propo-
sition 3.1 to domains with boundary and subharmonic functions in the sense of the weak
Neumann equation: A distributione on a manifoldM is called subharmonic if for all
ψ ∈ C∞(M, [0,∞)) with ∂ψ

∂ν
|∂M = 0

0 ≥

∫
M

e1ψ

(
=

∫
M

ψ 1e +

∫
∂M

ψ ∂e
∂ν

)
.

For e ∈ C2(M) the equality above holds and implies that1e ≤ 0 and ∂e
∂ν

|∂M ≤ 0.
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Lemma 3.2. For everyn ≥ 2 there exists a constantC0 such that the following holds for
all R > 0 andy ∈ Hn: Suppose thate ∈ C2(Dr(y), [0,∞)) satisfies{

1e ≤ 0,
∂
∂ν

∣∣
∂Hne ≤ 0.

Then

e(y) ≤ C0r
−n

∫
Dr (y)

e.

Proof. We will write Hn
= {(x0, x̄) | x0 ∈ [0,∞), x̄ ∈ Rn−1

} and also use spherical
coordinates(x0, x̄) = (y0 + r cosφ , ȳ + r sinφ · z) =: (r, φ, z) with r ∈ [0,∞),
φ ∈ [0, π ], and z ∈ Sn−2

⊂ Rn. (For n = 2 this notation meansS0
= {−1,1}, and

integration
∫
S0 . . . dvolS0 will denote summation of the values at these two points.) Now

the boundary ofDr(y) has two parts,

Zr := ∂Dr(y) ∩ ∂Hn
=
{
(0 , x̄)

∣∣ |x̄ − ȳ|2 ≤ r2
− y0

2},
0r := ∂Br(y) ∩ Hn

=
{
(r, φ, z)

∣∣ φ ∈ [0, φ0(r)], z ∈ Sn−2}.
Here we useφ0(r) := arccos(−y0/r). Fory0 > r we setφ0(r) := π , so0r is the entire
sphere and the setZr is empty. With this we calculate for allr > 0

d

dr

(
r−n+1

∫
0r

e

)
=

d

dr

(
r−n+1

∫ φ0(r)

0

∫
Sn−2

e(r, φ, z) (r sinφ)n−2 dvolSn−2 r dφ

)

=

∫ φ0(r)

0

∫
Sn−2

∂re(r, φ, z) (sinφ)n−2 dvolSn−2 dφ

+
∂φ0

∂r

∫
Sn−2

e(r, φ0(r), z) (sinφ0(r))
n−2 dvolSn−2. (5)

Note thatφ0(r) is constant fory0 = 0 as well as forr ≤ y0. So firstly in casey0 > 0 we
have for all 0< r ≤ y0

d

dr

(
r−n+1

∫
0r

e

)
= r−n+1

∫
∂Dr (y)

∂
∂ν
e = −r−n+1

∫
Dr (y)

1e ≥ 0. (6)

In that case we moreover have

lim
r→0

(
r−n+1

∫
0r

e

)
= Vol Sn−1 e(y), (7)

which is less than or equal tor−n+1
∫
0r
e for all 0<r≤y0. So integrating

∫ R/2
0 rn−1. . . dr

proves the lemma for allR ≤ 2y0,

1
n
2−nRn Vol Sn−1 e(y) ≤

∫ R/2

0

∫
0r

e dr ≤

∫
DR(y)

e.
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Next, in casey0 = 0 we have for allr > 0

d

dr

(
r−n+1

∫
0r

e

)
= r−n+1

∫
0r

∂
∂ν
e

= −r−n+1
∫
Dr (y)

1e − r−n+1
∫
Zr

∂
∂ν
e ≥ 0.

Since limr→0

(
r−n+1

∫
0r
e
)

=
1
2Vol Sn−1 e(y), integration over 0< r ≤ R then proves

the lemma fory0 = 0 and allR > 0,

1
2nR

n Vol Sn−1 e(y) ≤

∫ R

0

∫
0r

e dr =

∫
DR(y)

e.

Finally, in caseR > 2y0 > 0 we obtain from (5) for allr > y0

d

dr

(
r−n+1

∫
0r

e

)
≥

−y0

r

√
r2 − y2

0

∫
Sn−2

e(r, φ0(r), z) (sinφ0(r))
n−2 dvolSn−2.

Now we can use (7), (6), and integrate the above to obtain for ally0 < r ≤
1
2R

Vol Sn−1 e(y) ≤ r−n+1
∫
0r

e

+

∫ r

y0

y0 ρ
1−n(ρ2

− y2
0)
(n−3)/2

∫
Sn−2

e(ρ, φ0(ρ), z) dvolSn−2 dρ.

Since(ρ, φ0(ρ), z) ∈ ∂Hn, we already know that

e(ρ, φ0(ρ), z) ≤
2n

Vol Sn−1(R2 )
n

∫
DR/2(ρ,φ0(ρ),z)

e ≤
2n+1n

Vol Sn−1Rn

∫
DR(y)

e.

With this (and substitutingt = ρ/y0) we find that for all 0< y0 < r ≤
1
2R

Vol Sn−1 e(y) ≤ r−n+1
∫
0r

e

+
2n+1nVol Sn−2

Rn Vol Sn−1

∫ ry−1
0

1
t−2(1 − t−2)(n−3)/2 dt

∫
DR(y)

e

≤ r−n+1
∫
0r

e + CR−n

∫
DR(y)

e. (8)

Here we have introduced a constantC that only depends onn ≥ 2, in particular on the
value of the integral int : Forn = 2 we calculate it explicitly,∫ ry−1

0

1
t−2(1 − t−2)−1/2 dt =

[
arccos(t−1)

]ry−1
0

1
= arccos

(
r
y0

)
< π

2 .
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Forn ≥ 3 we have∫ ry−1
0

1
t−2(1 − t−2)(n−3)/2 dt ≤

∫ ry−1
0

1
t−2dt = 1 −

r
y0
< 1.

Now from (6) we know that (8) also holds for 0< r ≤ y0 (with C = 0), so integrating∫ R/2
0 rn−1 . . . dr proves the lemma in this last case,

1
n

(
R
2

)nVol Sn−1 e(y) ≤

∫ R/2

0

∫
0r

e dr +
1
n

(
R
2

)n
CR−n

∫
DR(y)

e ≤ C0

∫
DR(y)

e. ut

Proof of theorem 1.3.With lemma 3.2 in hand, the second step of the proof is to as-
sume constant positive bounds,1e ≤ A and ∂e

∂ν

∣∣
∂Hn ≤ B and find a constantC1 (only

depending onn) such that for allr > 0 andy ∈ Hn

e(y) ≤ C1r
−n

∫
Dr (y)

e + C1Ar
2
+ C1Br. (9)

That is, we first prove the theorem withA1 = B1 = a = b = 0. To do this consider the
function

v(x) := e(x)+
1
2nA|x − y|2 + (B +

1
n
Ay0)x0.

It is positive and satisfies1v ≤ 0 and∂v
∂ν

∣∣
∂Hn ≤ 0, so lemma 3.2 implies that

e(y) = v(y)− (B +
1
n
Ay0)y0 ≤ v(y) ≤ C0r

−n

∫
Dr (y)

v. (10)

In caser ≤ y0 we just usev(x) = e(x)+ 1
2nA|x−y|2, then the same holds, and moreover∫

Dr (y)

v =

∫
Dr (y)

e +
1
2nA

∫ r

0
tn+1Vol Sn−1dt =

∫
Dr (y)

e +
Vol Sn−1

2n(n+2)Ar
n+2.

In caser > y0 we have (usingx0 ≤ 2r onBr(y))∫
Dr (y)

v ≤

∫
Dr (y)

e +
1
2nA

∫ r

0
tn+1Vol Sn−1dt + (B +

1
n
Ay0)

∫
Dr (y)

x0

≤

∫
Dr (y)

e +
Vol Sn−1

2n(n+2)Ar
n+2

+ (B +
1
n
Ar) 2

n
Vol Sn−1rn+1.

In any case, putting this into (10) proves (9).
Finally, to prove the theorem we consider – analogous to the proof of theorem 1.1 –

the functionf (ρ) = (1 − ρ)n supDρr (y) e defined forρ ∈ [0,1]. It attains its maximum

at someρ̄ < 1. We denotēc = supDρ̄r (y) e = e(x̄) andε =
1
2(1 − ρ̄), thene(y) ≤ 2nεnc̄

ande(x) ≤ 2nc̄ for all x ∈ Dεr(x̄). Thus onDεr(x̄) ⊂ Dr(y) we have the estimates
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1e ≤ A0 + 2nc̄(A1 + 4ac̄2/n) and ∂e
∂ν

∣∣
∂Hn ≤ B1 + 2nc̄(B1 + 2bc̄1/n). Putting this into

(9) yields for all 0< ρ ≤ ε

c̄ = e(x̄) ≤ C1(ρr)
−n

∫
Dρr (x̄)

e + C1
(
A0 + 2nc̄(A1 + 4ac̄2/n)

)
(ρr)2

+ C1
(
B0 + 2nc̄(B1 + 2bc̄1/n)

)
ρr. (11)

To deduce the claimed mean value inequality from this, we have to go through a number
of different cases. Firstly, ifC1A0(εr)

2
+ C1B0εr ≥

1
2 c̄, then sinceε ≤

1
2

e(y) ≤ c̄ ≤ C1A0r
2
+ C1B0r,

which proves the theorem. Otherwise (11) continues to hold withA0 andB0 dropped
(and the constantC1 doubled). Next, let 0< ε′ < ε be the solution of the equation
A1(ε

′r)2 +B1ε
′r = 2−n−1C−1

1 or in caseA1(εr)
2
+B1εr ≤ 2−n−1C−1

1 let ε = ε′. Then
we can rearrange (11) to obtain for all 0< ρ ≤ ε′∫

Dr (y)

e ≥

∫
Dρr (x̄)

e ≥ c̄(ρr)n
(1

2C
−1
1 − 2n+2ac̄2/n(ρr)2 − 2n+1bc̄1/nρr

)
. (12)

Now if a > 0 orb > 0 letη(a, b) > 0 be the solution of

2n+2aη2
+ 2n+1bη =

1
4C

−1
1 .

If c̄1/nρr = η(a, b) for some 0< ρ ≤ ε′, then the theorem holds with∫
Dr (y)

e ≥
1
4C

−1
1 η(a, b)n =: µ(a, b) > 0.

Otherwise we must havēc1/nε′r < η(a, b), so (12) withρ = ε′ gives

c̄ ≤ 4C1(ε
′r)−n

∫
Dr (y)

e. (13)

In the special casea = b = 0 we get the same directly from (12). In caseε′ = ε this
proves the theorem sincee(y) ≤ 2nεnc̄. Otherwiseε′ < ε satisfies withC2 = 2n+1C1

2C−1
2 = A1(ε

′r)2 + B1ε
′r + C−1

2

=
(√
A1ε

′r + C
−1/2
2

)2
+
(
B1 − 2C−1/2

2

√
A1
)
ε′r

=
(1

2C
1/2
2 B1ε

′r + C
−1/2
2

)2
+
(
A1 −

1
4C2B

2
1

)
(ε′r)2.

From this one sees that eitherB1 ≤ 2C−1/2
2

√
A1 andε′r ≥ (

√
2 − 1)C−1/2

2 A
−1/2
1 from

the second line, orA1 ≤
1
4C2B

2
1 andε′r ≥ 2(

√
2−1)C−1

2 B−1
1 from the third line. Putting

this into (13) we finally obtain in this last case with a constantC that only depends onn

e(y) ≤ c̄ ≤ C
(
A
n/2
1 + Bn1

) ∫
Dr (y)

e. ut
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A. Some identities for energy densities

Let (M,ω) be a compact symplectic manifold, letJ be anω-compatible almost com-
plex structure, and fix the induced metricω( · , J · ) on TM. Moreover, letL ⊂ M be a
Lagrangian submanifold, that is, a submanifold of dimension1

2 dimM with ω|L ≡ 0.
For the following we use the coordinates(s, t) ∈ H2 with t ≤ 0. Then the outer unit

normal derivative on∂H2 is ∂t |t=0.

Lemma A.1. Let� ⊂ H2 be an open domain and consider a pseudoholomorphic curve
u : � → M with Lagrangian boundary conditions,

∂su+ J∂tu = 0, u(z) ∈ L ∀z ∈ ∂H2
∩�.

Its energy densitye(u) = |∂su|
2 : � → [0,∞) satisfies

1e ≤ a e2, ∂
∂ν

∣∣
∂H2e ≤ b e3/2

with constantsa, b that only depend on(M,ω, J ) andL.

Proof. For 1e ≤ a e2 see the proof of [MS, Lemma 4.3.1]. We calculate the normal
derivative w.l.o.g. at(0,0) in Darboux-Weinstein coordinates nearu(0,0) ∈ L ⊂ M. So
u is replaced byu = (u1, u2) : U → Rn × Rn on a small neighbourhoodU ⊂ � of
(0,0). In these coordinates, the symplectic structureω = ω0 is independent of(s, t) ∈ U ,
and the Lagrangian submanifold isRn × {0}, see [MS, Theorem 3.32]. However, the
almost complex structureJ : R2n

→ R2n×2n varies with the base point. So we have
∂su + J∂tu = 0 with J = J ◦ u : U → R2n×2n, and the boundary condition becomes
u2(s,0) = 0. We can now use∂tu = J∂su to calculate

∂te(u) = ∂t
(
ω0(∂su, J∂su)

)
= ω0(∂s(J ∂su), J ∂su)+ ω0(∂su, (∂tJ )∂su))+ ω0(∂su, J∂s(J ∂su))

= 2ω0(∂
2
s u, ∂su)+ 2ω0((∂sJ )∂su, J∂su)+ ω0(∂su, (∂tJ )∂su).

The first term vanishes at(0,0) since∂su2|t=0 = 0 and∂2
s u2|t=0 = 0. For the second and

third term note that∂sJ = (∇J )∂su and∂tJ = (∇J )J∂su. Hence

∂t
∣∣
t=0e(u) ≤ 2|∇J | · |∂su|

3
+ |J (∇J )J | · |∂su|

3
≤ B e(u)3/2,

where the constantB only depends onJ and the coordinates, so it can be chosen uniform
for the compact manifoldM. ut

Let G be a compact Lie group and denote its Lie algebra byg. The local trivialization
of a G-bundle over a 4-manifold with boundary is G× U → U for some open domain
U ⊂ H4. Locally, a connection is given by ag-valued 1-formA ∈ �1(U, g). It induces
the exterior derivative dA : �k(U, g) → �k+1(U, g) given by dAη = dη +

1
2[A ∧ η],

where the pairing is by the Lie bracket [·, ·] on g. The curvature of a connection is the
2-formFA = dA+ [A ∧ A].
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Moreover, we equipg with a G-invariant metric〈 ·, · 〉 and letU be equipped with
any Riemannian metric. The covariant derivative∇A is given for sectionsξ : U → g by
∇Aξ = dAξ , but it extends to differential forms by the Leibniz rule using the Levi-Civita
connection onU . The formal dual operators of∇A and dA are denoted by∇∗

A and by
d∗

A : �k+1(U, g) → �k(U, g).

Lemma A.2. Consider a Yang–Mills connectionA ∈ �1(U, g),

d∗

AFA = 0, ∗FA|∂H4 = 0.

Its energy densitye(A) = |FA|
2 : U → [0,∞) satisfies

1e ≤ Ce + c e3/2, ∂
∂ν

∣∣
∂H4e ≤ B e

with constantsB, c, C that only depend on the metric onU .

Proof. The Bochner–Weitzenböck formula [BL, Thm. 3.10] is(
dAd∗

A + d∗

AdA
)
FA = ∇

∗

A∇AFA + FA ◦ (Ric ∧ g + 2R)+RA(FA).

The left hand side vanishes for a Yang–Mills connection due to d∗

AFA = 0 and the Bianchi
identity dAFA = 0. The quadratic termRA(FA) ∈ �2(U, g) can be expressed with the
help of a local orthonormal frame(e1, . . . , e4) of TU as

RA(FA)(X, Y ) = 2
4∑

j=1

[FA(ej , X), FA(ej , Y )].

The estimate for the Laplacian now follows from

−∇
∗
∇
∣∣FA∣∣2 = −2

∣∣∇AFA∣∣2 − 2〈FA , ∇
∗

A∇AFA 〉

≤ 2〈FA , FA ◦ (Ric ∧ g + 2R) 〉 + 2〈FA , RA(FA) 〉

≤ C
∣∣FA∣∣2 + c

∣∣FA∣∣3.
Here the constantC depends on the Ricci transform Ric and the scalar curvatureR of the
metric onU . The constantc only depends on the metric ong.

For the normal derivative at w.l.o.g. 0 we use local geodesic coordinates on∂H4

combined with the flow of a unit normal vector field intoH4 to obtain coordinates
(x0, x1, x2, x3), x0 ≤ 0 on a neighbourhoodU ⊂ H4 of 0. Then the components of
the metric satisfygij |x0=0 = δij and we have∂

∂ν
|∂H4 = ∂0|x0=0. The boundary condition

becomesF0i = 0 for all i, and it implies∇jF0i = 0 for all i, j 6= 0. (HereFij and∇j

denote the components ofFA and∇A.) With this we can calculate

∂0
∣∣
x0=0|FA

∣∣2 = ∂0
∣∣
x0=0

∑
i,j,k,`

gijgk`〈Fik, Fj` 〉

= 2
∑
i,j,k

∂0g
ij
〈Fik, Fjk 〉 + 2

∑
i,k

〈 ∇0Fik, Fik 〉 ≤ B|FA|
2.
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Here the constantB only depends on the first normal derivative of the metric. The second
term vanishes sinceFik = 0 unlessi, k 6= 0, but by the Bianchi identity and the boundary
condition

∇0Fik = ∇iF0k + ∇kFi0 = 0 ∀ i, k 6= 0. ut
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