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Abstract. We prove several optimal Moser—Trudinger and logarithmic Hardy-Littlewood—Sobolev
inequalities for systems in two dimensions. These include inequalities on the sfheoe a

bounded domai2 ¢ RR? and on all ofR2. In some cases we also address the question of ex-
istence of minimizers.

1. Introduction

The Moser—Trudinger (MT) inequality (s€e [13]) on the two-sph#resads:

M) = / }|Vu|2dw—Mlog</ e d—“’) >—C, VueHYS?, f udw =0,
52 2 2 4r 52

(1.1)
where O< M < 8r. The MT inequality plays an important role in problems of prescrib-
ing Gauss curvature (see Aubin [1], Chang-Yarig [5] and the references therein). A sharp
version of [T.1L), which is due to Onoffi[l5], states tHat|(1.1) is valid with the optimal
C = 0 on the right hand side. Moser’s original proof[of {1.1) was obtained as a corollary
of his stronger inequality:

/ AP < C v e HY(S?) with / u=0 and/ |Vul? = 1. (1.2)
52 52 52

Onofri's proof of the sharp form of (I1), i.e. witi = 0, used estimates of Aubinl[1]
and the conformal invariance of the functional. Other proofs of Onofri’s result were later
given by Hongl[10] and by Osgood, Phillips and Sarnak [16]. Of particular interest to us
is the alternative derivation of Onofri’s inequality by Becknelr [3] (see also Carlen and
Loss [4]), which is based on a duality principle and on Lieb’s sharp form of the Hardy—
Littlewood—-Sobolev inequali&On $2 the dual inequality takes the form

1
v = [ otogo+ o= [ [ plondogio - exbpiwn) dosder = ¢ (13)
52 A Js2 Jg2
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1 Actually Beckner's result generalizes Onofti’s inequality to any dimension.
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forall p € T'y(S?) if M < 87, where
FM(SZ):z{pEO:/ ,olog,o<ooand/ p:M}, (1.4)
SZ 2

and|w1 — w»| stands for the Euclidean distance betwegrandw in R3.
The generalization of the functiongl,. to the system case is the functional

1
vl =3 [ otognt o Ya [ [ sondoglor—wzi o dordon

iel i,jel
(1.5)
considered on the domain

Ty ($?) = {p = (pi)ier : pi = 0, / pilog p; < oo and/ pi = M;, Vi}, (1.6)
52 52

wherel :={1,2,...,n} andA := {q; ;} is a symmetria: by » matrix. In what follows

we assume that; ; > 0 for all i, j, but later we shall also study other classes of matri-
ces. The duality relation betwegn ([1.1) ahd(1.3) can be extended, under the additional
hypothesis tha# is positive definite, to a duality betwegn ({1.5) and the functional

1 1
FM(u) = é Z aj, j /;2 Vu,-Vuj — ZM,‘ Iog<E /52 exp(j;ai,juj)) (1.7)

i,jel iel
over the class
H,(S?) = {u e (HY(5?))" :f u; =0, Vi}.
52

Note that in thescalar casen = 1 it follows from the MT inequality that a necessary
and sufficient condition for the boundedness from beloy $fandv . overH1(S%) and

' (52), respectively, is¥ < 8. The analogue of this condition to the system case turns
out to be a set of’2— 1 inequalities involving the quadratic polynomials

Aj(M) = SNZM,' - Z a iMiM; = ZM,'(STL’ — Zai’ij)’ (1.8)

ieJ i,jed ieJ jeJ

for every nonempty subsét C 1. The polynomialA ; was first introduced by Chanillo
and Kiessling([B] in their study of entire solutions of Liouville system&h A set of
conditions (“subcritical”),

Ay(M)>0, YJICI, J+0, (1.9)

was used in[7] for the study of a related variational problem on bounded domakts in

and the associated minimizers (see also below). On the other hand, a simple rescaling
argument (as in |7, Lemma 2.2]) shows that if &mmeJ, A;(M) < 0, thenF™ and

W are unbounded from below. Wang [20] proved an analogous result to thakt of [7]
for compact surfaces, showing that teebcritical condition [1.9) is sufficient for the
boundedness of (the analogue & in this case. A natural question that we address
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here is whether the bound still holds in tbetical case i.e. when we turn some, or all,
of the inequalities in[(1]9) into equalities to get the weaker condition

Ay(M)>0, YJCI, J#0. (1.10)

One of our main results, Theor{rh 2, asserts that the bounhisﬁo(rres.FM) indeed holds
under assumptiof (1.]L0) i ; > O for all i, but a slightly stronger condition is needed
if we allow zero diagonal elements (s€e (2.16) below). So far, results feritiel case
were obtained only for very special systems by Wang [20] and by Jost and Wang [11] (see
(17) and below). We shall also consider analogous functionals on the wholeRslane
as well as on bounded domaifisc R?. In certain cases, when the bound is verified, we
shall address the question of the existence of minimizers.

In the next section we introduce the full details of our main results. Some of them
were announced in [18]. The proofs are given in the following sections.

2. Description of main results

Before stating our main results we want to focus on two important notions which demon-
strate the similarities and differences between the scalar problem and the vectorial one.
The first notion iduality.

Inthescalar caser = 1, the functionall) oi1(S2) and ) o (S2) are dual
in the sense that both are bounded or unbounded from below, simultaneously. Moreover, a
minimizeru for M if exists, is related to a minimizerof ¥ viap = Me"/ st e* and
—Au = p — M /4. This duality extends to the vector functionalg (on Iy (52)) and
FM (onH,(5%)) provided the matrixa; ;) is positive definitdsee SectioE|3). However,
our results for g2 do not require this condition. Our basic assumption is

aj, j > 0, Vi, j, (21)

but we shall also study other classes of matrices in Subséctipn 5.2.

Next we turn to the notion ofonformal invariancelt is known thaty 2 (p) is con-
formally invariant in the critical cas® = 8r. By this we mean that the l.h.s. ¢f (L.3) is
invariant under the conformal action,

pr>pi=(po1)-|Ttl, (2.2)

wherer is any conformal automorphism ¢f and.7; is its Jacobian (here and in the
following we do not distinguish between conformal and anti-conformal automorphisms).
We shall often applyf (2]2) for a special class of automorphigms, : y € S, a e Ry},
defined as follows:

Tye(x) =S, HaS,(x), VxeS? (2.3)

whereS,, is the stereographic projection satisfyiig(y) = co. However, in the vectorial
case (i.en > 2) itturns out that the condition analogousWo= 8r, namelyA ; (M) = O,
is notsufficient, in general, to ensure the conformal invariancé @fon T (S2).
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In fact, Wy is clearly invariant with respect to the actiqn (2.2) (appliebte= p;,
i € I) whent is anisometryof S2. But the conformal group also contains other auto-
morphisms whose action is more transparent when we use the stereographic projection to
transform the problem t&2. UsingS = Sxs (V denoting the north pole) we associate to
eachp : $2 — R” a functionp : R2 — R” via the transformation (se€l[3, 4])

pi < pi = [pi - A+ 1xH?/4] 0 S,
Viel. (2.4)

oS_l),

~ 4
Piepz—m'(m

Note that

2|x — y

1 el
ST = ST = s e

Vx,y € R?, (2.5)
By a simple computation, using (2.5), we obtain foandg which are related by (2/4),

Vo) = Fre(p) = Y [ iilogsids

iel

1 - ~
tar Say [ [ Acoogix — 0 drdy

ijel
- 1
+30u [ Ailog + 1xBdx — A/ log2.  (2.6)
el R2 47
with

1
1),':2—4—2611"ij, Vi el. (27)
T jel

/,5i=/,0i, Viel.
R2 52

Moreover, using the arguments of [4] it can be shown that is bounded below over
Ty (5?) (see[[T.p)) if and only ifig2 is bounded below on

Itis clear that

Iy(R? = {ﬁ L fi =0, /RZ pillog pil < oo,
/ pi = M;, oi log(1 + Ix|?) < o0, Vi € I}. (2.8)
R2 R2
Now we can observe that the functional

1
V(5 — 5100 5 y 50l s
Rr2(P) ;GI /ﬂézp 09/ dX+—4ni§j€1a,j Aéz/ﬂézp (x)(oglx — yDp;(y)dxdy
(2.9)
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is invariant with respect to translations, i@(x) — p;(x + v) for all i € I (for any
fixedv € R?), and dilatations, i.65; (x) — a2p;(ax) for all i € I (for any fixedo > 0),
provided thatA ; (M) = 0. But clearly the difference between the two functionals,

~ . L xf?
V2 (B) — WRz() = D _vi [ hilog —5— dx. (2.10)
iel

is not invariantwith respect to translations and dilatatiamdessy; = O foralli € 1. We
shall call this last case, i.e. when

Zai,ijZBT[, Vi el, (2.11)
jel

theconformal caselndeed, from the above we see that (2.11) is a necessary and sufficient
condition for thefull invarianceof the functional g2 with respect to the conformal group

of the sphere. Evidently] (Z.]11) implies that (M) = 0, but as explained above, the
converse is false in general. We should mention that Wang [20] studied a special case of
the conformal cas¢ (2.]L1) in which the positive definite matris stochastic, that is,

Yaj=1 Vjel, (2.12)

iel

and the vector of massag satisfiesM; = 8x for alli € I. Under these assumptions he
proved that the functional™ is bounded below oft,, (52) (this clearly implies bound-
edness also wheM; < 8 for all i). Actually, the result of Wang is more general since

he studied a functional which is defined on any closed surfagee. two-dimensional
compact Riemannian manifold without boundary). In Sedfipn 3 we shall prove the fol-
lowing optimal result for the conformal case &#?, which can be viewed as the natural
generalization of the results of Onofri and Beckner to the system case (since it gives the
optimaladditiveconstant). Here again we see the advantage of using the dual formulation:
it allows us to deduce easily the system analogue from Beckner’s scalar result.

We recall that a symmetric matrig is calledirreducibleif for all i, j € I, there
exist{ky, ..., k;} € I with kg = i andk; = j such thata, i, - aiy kg -+ - ar_1.y # 0.
Equivalently,A is irreducible if there is n@ # J & I such that; ; = Oforalli € J and
Jj ¢ J. Any symmetric matrixA can be decomposed into a sum of irreducible matrices,
inducing a decomposition of the functionlk into a sum of independent functionals,
each corresponding to an irreducible factor. The assumption of irreducibility is useful for
some unigueness questions.

Theorem 1. Let A be a symmetric matrix satisfyir@@.l)and M € R’, such that(2.17)
holds. Setting

0 __ My M, ~0 __ My M,
T e and p = o L N2 1 L a2
4 4 7 (1+ |x|%) T (14 |x|%)

we have:
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0)
min W = W (p0) (2.13)
T (5?)
and
min Wpe = Wpa(5°). (2.14)
I'y(R?)

(i) The conformal images (as defined{thd)) of the constant vectqs® are minimizers
in (2.13)
(i) The conformal images q&° (i.e. (3% o 1) - | 7|, T : R? — R? conformal) are
minimizers in(2.14)
(iv) If, in addition, the matrixA is positive definite, then
FMu) >0, VueH, (S5, (2.15)
with equality if
M M,
u=(22loglZl, ..., =~ loglT:| ) +e.
8 8

wherec is a constant vector.

(v) Assume now that is irreducible. Then the minimizers given explicitly(i—(iv)
are the unique minimizers. Also, in teebconformal case.e. whenv; > 0 for all
i e I with at least one strict inequality® is the unique minimizer i@2.13) and if
A is positive definite, them = 0 is the unique minimizer if@.13)

As explained above, for > 2 the conformal case is exceptional among the critical con-
figurations ofA and M. Our next theorem provides an optimal criterion for boundedness
from below of the functionald/s(p) and FM in the general case. It turns out that this
criterion requires a slightly stronger condition than (1.10), namely,

Aj(M)=>O0forallgd £A£J C I,

2.16
if Ayj(M) = 0forsome/, theng;; + Apiy(M) >0, Vi e J. ( )

Remark 2.1. Note that[(2.Ip) is equivalent tp (T]10) if the matdxhas a positive diag-
onal, thatisg; ; > Oforalli € I.

Theorem 2. Let A be a symmetric matrix satisfyir@@.l)and M € R’,.. Then:

(i) Condition(2.18)is necessary and sufficient for the boundedness from beldaity-of
onT y(5?).

(i) If, in addition, the matrix4 is positive definite, then conditidd.18)is necessary and
sufficient for the boundedness from below df on H,,(52).

Remark 2.2. In the general nonconformal critical case, in contrast with the conformal
case, we do not know whether minimizers exist, both in (i) and (ii). What we do know is
thatp® = (M1/4x, ..., M,/47) is not a minimizer fonrg2 and that® = 0 is not a min-
imizer for FM (although both are solutions of the corresponding Euler-Lagrange equa-
tions); see Propositign 3.1 below. [n [19] we obtained a generalization of Th¢grem 2(i)
for compact manifolds in dimensias > 2.
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So far we considered only nonnegative matride§.e. those satisfying (2 1)). How-
ever, there is interest in studying a more general class of systems, namelydbbalod-
rating systemsThese are systems associated with symmetric matdicgbich have the
following structure: there exists a decomposition/adis a disjoint union ok (1 < K
< n) subsetdy, ..., Ix such that

{a,-,jzo, Viijel,l=1,.. K, 2.17)

ai’jfo, Viel,Vjel,,Vl#m,1<Il,m<K.

The caseK = 1 corresponds of course to a nonnegative matrix, butkfor 2, an
assumption that we shall make in what follows, we obtain new types of matrices. Of
particular interest is the extreme cae= n. Here all thel;’s are singletons and we get
the condition

aji = 0, Vi and ajj = 0, Vi #= j. (2.18)

In fact, Jost and Wang studied in_[11] a special system of this type, the Toda system,
which corresponds to the case whdrés the Cartan matrix fofU (n + 1), i.e.

2 =10 ...... 0
-1 2 -1 0
a=|0 L] (2.19)
oot te -1 0
0 .-12 -1
0 ...... 0 -12

For A in the class[(2.18) the conditiop (I]10) (which is easily seen to be equivalent to
(2.18) in this case) simplifies to

0< Auyy(M) =8rM; —a;;M?, Vi (2.20)

Indeed, the validity of[ (Z.70) for all singletong,= {i} for all i, implies its validity for

all J C I, since all the off-diagonal elements df are nonpositive. In fact, in [11] it

was proved that for the Toda system conditipn (R.20),Me.< 4x for all i, is suffi-

cient for the corresponding™ to be bounded below o#,, (5%) (necessity is known to

hold true). Actually, Jost and Wang proved the analogue result on every 2-dimensional
compact surface. Using the dual formulation we are able to obtain a very simple proof of
the boundedness from below ¥ on I'(S?) in this case. Moreover, we are able to
compute the exact value of the infimum and to prove that the infimum is not achieved. We
summarize our results for general collaborating systems in the following theorem.

Theorem 3. Let A be a symmetric matrix corresponding to a collaborating system with
K > 2blocks and letM € R’} be given. Then:



420 Itai Shafrir, Gershon Wolansky

(i) The validity of(2.18)for eachi;, i.e.

Ay(M)>0forallg#£J C I, and
Vi=1,...,K: if Aj(M) =0 forsomeJ C I}, (2.21)
thena; ; + A\ y(M) > 0, Vi € J,

is a necessary and sufficient condition for the boundedness from beldw:. ain
I'3(5?), and whend is positive definite, for the boundedness from below Yfon
H, (S?).

(i) If K = n,i.e. A satisfieq[2.18) and if the critical case conditions; ; M; = 8x for
all i, are satisfied, then

M; M; 1
inf We = Z [Ml- log — + —lco:| — — supW(x), (2.22)
Ty (52) < AT 27 4 (52
where
W(x) := Z(_ai*-j)MiM«i log|x; — XA,'| (2.23)
i#j
and
co=/52 log|x — y|dy = 2r(log4—1). (2.24)

(iii) Under the assumptions of (ii), if we suppose in addition tAatioes not have

a row of zeros (ignoring the diagonal), then the infimum({2Z®23) is not attained.
Moreover, any weak limit (in the sense of measures) of a minimizing sequence is of
the formp = (M168y,, ..., Mpdy,), Wherex = (x1,...,x,) € (52" is a maximizer

of W.

In Subsectiofi 5]2 we shall present a variant of Thegriem 3(ii),(iii) for a more general class
of matrices thar{ (2.18).

Remark 2.3. Since the proof of part (i) of Theorgn 3 uses only the scalar Moser—Trudin-
ger inequality, which is known to be true on any two-dimensional compact surface (see
[l [14]), it follows that the assertion in (i) is valid in this more general setting (as proved
in [11] for the Toda system).

Next we present two results on related variational problem&%and on a bounded
domain® ¢ R?. In the following we shall assume again thasatisfies[(Z]1). We shalll
first describe an entropy inequality which involves the functiobigh, already defined
in (2.9). We claim that this functional is well defined oy (R?) for everyM e RY.
Indeed, using[(2]5), the stereographic projection and the obvious fact that the Euclidean
distance between any two points on the unit sphere is less than or equal to 2, we get the
elementary inequality

1 1
log|x — y| < > log(1+ |x]?) + > log(L+ |y|?), Vx,yeR2 (2.25)
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By (2.25) we obtain for any e I'j/(R?), as in [4],

/ / pi(x)(log|x — y)p;(y)dxdy < oo, Vi, j.
R2 JR2

On the other hand, using (3.3) below, we get

1
f 0i (y) qu( )dy <C, VxelR? Vi.
{ly—x|<1} lx — yl

Hence
//5,-<x)<log|x—y|)ﬁ,-<y>dxdy>—oo, Vi, J,
R2 JR2

and our claim follows. From the discussion affer[2.8) it follows that is invariant with
respect to translations and dilatations, but, in general, not with respect to the other con-
formal actions ofR2. The invariance with respect to the noncompact actions, translations
and dilatations implies that ; (M) = 0 is a necessary condition for boundedness below

of Wg2. Using similar techniques to those used in the proof of Thegiem 2, we obtain an
analogous result concerning the boundedness of the functional. In addition, we establish
an existence result for minimizers.

Theorem 4. Let A be a symmetric matrix satisfyir@@.l)and M € R’,.. Then:

(i) A;(M) = 0and(2.18)are necessary and sufficient conditions for the boundedness
from below of¥z2 on Ty (R?).
(i) There exists a minimizer for Wg2 overT y(R?) if and only if

A(M)=0 and A;(M)>0, VJGI. (2.26)

Finally we turn to a version of the Moser—Trudinger inequality for systems on bounded
domains. By Moser’s inequality [13],

1
—/ |Vul? — 87 Iog(/ e“) >—-C, Vuce Hol(Q), (2.27)
2 Jq Q

whereQ is a bounded domain iR?. The extension to systems is expected to take the
form

% Z /Sza,-,jVuiVuj - ZM,‘ Iog([g exp(Za,;jujD >—-C, Vue (H(:)L(Q))n,

i,jel iel jel
(2.28)
whereA is a matrix satisfyind (2]1). Iri 7] it was shown thaf (2.28) holds inghiacritical
case(L.9). The question whether the same result remains valid ierifieal casewas left
open. Our last theorem provides a positive answer to that question. Here again we use a
dual formulation, involving the Green functidahg (x, y) for the operatoA on  with
Dirichlet boundary conditions.

Theorem 5. Let Q be a bounded domain iR?, A a symmetric matrix andf € R”.
Then:
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(i) If A satisfieg(2.7)) then condition(2.18)is necessary and sufficient for the bounded-
ness from below of

1
Vo(p) =) fQ pi()logpi(x)dx =5 3 ai j fg fQ pi(X)Gal(x, y)p;(y) dx dy

iel i,jel
(2.29)
over

Ty () = {p = (pi)ier : pi = 0, / pilogp; < oo and/ pi = M;, Vi}.
. . (2.30)
If, in addition, the matrixA is positive definite, then conditid@.18)is necessary and
sufficient for(2.28)to hold.
(i) More generally, ifA corresponds to a collaborating system wiktblocks, ther{2.21)
is a necessary and sufficient condition for the boundedness from beldw @in
I'y(€2), and whend is positive definite, for the validity d2.28)

3. On duality and conformal invariance

In this section we explore the two important notions of duality and conformal invariance.
In particular, we shall prove Theorgr 1 on the conformal case.

We begin by presenting a duality principle which connects the Moser—Trudinger func-
tional FM with ¥g. An analogous statement for the problem on a bounded domain was
proved in [7, Proposition 2.1]. A simple adaptation of the argument yields the result for
our context too, but we prefer to present a slightly different approach which involves the
functional

1
D(p,u) 22/52/01' log p;i + Zai,j[/sz EVMI' - Vu —,Oiuj},

iel i,jel
defined onl 37 (S2) x H,(S?).

Lemma 3.1. Let A be a symmetria x n matrix. Then, for any fixed € H,,(52), ®(-, u)
is bounded from below ofizs (S2) and

M;
inf  ®(p,u)=FM@)+) Milog—. (3.1)
pela(s?) Y, 4

Moreover, the infimum iB.1) is uniquely attained ap given by

5= M, exp(Y_ e ai.ju j)
 — 1 ’
Js2 exp(Y_ ;e i, juj)

Viel (3.2)
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Proof. Applying the elementary inequality
ab <blogb—b+e*, VaeR, VbeR,, (3.3)
with a = u;(x)/y andb = yp;(x), and using[(1]1), we find that for all j € I and
y >0,
/ piuj < V/ pi |09/0i+/ e“i’Y +y M;log(y Je) < V/ pilogp;+Cu;, M;, y).
52 52 52 52

Therefore, for some > 0 andC = C(u, M, ¢) we have
d(p,u) > 82/ pilogp; —C.
iel 52

Hence, for each fixed € H,(52) the functionakb(-, ), which is continuous and strictly
convex on the closed and convex subEgi(S?) of the reflexive Banach space (Orlicz
space)

X = {P = (pidier * [52((1+ loi D) 1091 + [pi]) — |pi]) < oo, Vi}
satisfies the coercivity condition
d(p,u) »> © aSZ/ pilogp; — oo, forpe T 1 (S?).
icl /52

It follows that the minimum ofb (-, u) overT 37 (S?) is attained, and the unique minimizer
p must satisfy[(3]2). Plugging it i we are led to[(3]1). O

Next we examine the infimum @b (p, -) with respect tae, for a fixedp, under the addi-
tional assumption that is positive definite.

Lemma 3.2. Supposé is positive definite. Then, for any fixpds T'j7(5?), the infimum
of ®(p, ) overH,(S2) is attained atiz given by

M; .
—Ail; =pi — — inS2 Viel. (3.4)
4
Moreover,
min ®(p, u) = /,0-|0 0i
Jin @ (p ; pilogp

1 M; M ;
ta X af [ (00 - 5 )togle =3 (ny0 - 3 Javar. @9

i,jel
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Proof. Similarly to the proof of Lemm@ 3]1 we deduce thBip, -) is strictly convex
and coercive ovel,, (5) (here we use the assumption thais positive definite), and
it follows that the minimum is attained at a uniques H,,(S%). Taking the variation of
@ (p, u) with respect to each; yields [3.4). The Green functioG (x, y) for —A on 52
is by definition a solution to

1
—AyG(x,y) =8 — — onS2 (3.6)
4

The solution to[(3J6) is unique up to an additive constant, and we can choose as a repre-
sentativeG (x, y) = —% log |x — y| (here againx — y| stands for the Euclidean distance
in R%). Therefore, we may rewritg (3.4) as

M;
i =G * (,0,' _ 4—) Viel. (3.7)
JT

Plugging [3.7) in® and using the equality
Q/’ 1‘7_' Vil . __‘/' 1 ' M; _ -
2\ 2 Ui Vij—pikj | = 2 \2 Pi - uj—pidj

_ ! -2 -2 g a
——5[92[92 (pz(x)—ﬂ> (x,y)<pj(y)—g> xdy,

we are led to[(3]5). ]

A simple corollary of the above is the following analoguelto [7, Proposition 2.1].

Corollary 3.1. Let A = (a; ;) be a positive definite matrix. Thehs. is bounded from
below onl 3 (S?) iff FM is bounded from below oK, (52) and

M;
inf W)= inf FMw)+) M log 7~ +

co
0N MM, (3.8)
el y(52) ueH, (52) 1672 Z b

iel i,jel

wherecq is defined in(2.24) Moreover, existence of minimizers for the two problems is
equivalent, and the minimizers are related {@2) and (3.4).

Proof. The result follows immediately from Lemmps 8.1 3.2 by using

inf inf ®(p,u) = inf inf  ®(p, u). O
ucH, (5?) pel y(S?) 0T 1 (52) uecH, (5?)

Next we turn to the notion of conformal invariance and present the simple proof of The-
orem[] concerning the conformal and subconformal cases.

Proof of Theorerf]1 By the duality principle of Corollarly 3|1 it follows that, for positive
definite A, (2.13) is equivalent td (2.15). Indeed, it suffices to note that the funetien
log |7, | satisfies the equation

—Aw =2(e" - 1) =2(|T:| - D).
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Hence, forp; = %ljﬁ, (3:4) givesi; = % log|J:| + ci. As explained in Secti 2,
(2.13) is equivalent td (2.14) in the conformal case. It suffices thus to prove the assertions
aboutWg,. We recall the following form of the logarithmic Hardy—-Littlewood—Sobolev
inequality (see([3, Theorem 2]; it is equivalent to the critical casg of (1.3)):
1
/ FlogF +/ GlogG + —/ / F(x)(log|x — y|)G(y)dx dy
S2 S2 T Js2 Js2
>4cg, VF,G €T (5%, (3.9)

with equality iff F andG both equal the same conformal image of the constant function
H = 1. Applying [3.9) toF = Fp; andG = 77 i pj yields, for eachi, j € 1,

Mjf pi Ingi+Mif Pj |09,0j+4/ / pi(x)(loglx — yDp;(y)dxdy
52 52 s2 Js2

>

M} o+ MM 1og MM 3.10
co+ M; j0916712' (3.10)

Multiplying (3-10) by1 ~ and summing o, j yields

Yo aiiM;
Z%/ pilogp+ - 3 a ,,/ / pi)(logx — y)p; () dx dy

iel i,jel
> ai jMiMj + —— Y a; jMiM; Iog
T6r? 2 i
167T i,jel 16711]61
16712 > ai i MiM; +Z<1——)M lo g— (3.11)
i,jel iel

which may be rewritten as

Vo) = Vo + Y [ prlogtano /. (3.12)

iel

wherey; is defined in[(Z]7). In the conformal case,= O for alli € I, and [2.IB) fol-
lows from [3.12). Moreover, (ii) follows from conformal invariance, and the uniqueness
assertion for this case in (v) follows from the characterization of uniquengssijn (3.9).

In the subconformal case;(> 0 for alli andv;, > 0 for someig) we apply Jensen’s
inequality

/ (4pi | M;) log(4mpi /M;) > O (3.13)
S2
to the r.h.s. of[(3.32) to infer that

We2(p) = We2(pO). (3.14)

For o0 there is equality in[(3.44). Thereforg? is a minimizer. Moreover, ifo is any
minimizer, then equality must hold ip (3]10) for &llj € I such that; ; > 0. Under the
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assumption that is irreducible, it follows thap is a conformal image 06°. We claim

that actuallyp = p°. Indeed, assume by negation tpais a nontrivial conformal image

of p°, and thus all its components are nonconstant. This yields strict inequality in (3.13)
foralli € 1. By assumption there is ag € I for whichv;, > 0, and therefore, by (3.12)

the inequality in[(3.14) too is strict. Contradiction. O

Our next result shows that the minimizing property of the constant configurafiohar-
acterizes the conformal case among the critical cases. More precisely, we have

Proposition 3.1. Let A be a symmetric matrix satisfyir{@.J)). Assume that\; (M) = 0
but that (2-11) is not satisfied, i.e., there exisig such thatv;, # 0. Thenp® is nota
minimizer forw g overT 4 (S?).

Proof. Assume by negation tha is a minimizer. Then alsg® is a minimizer for\Tle
overT 4 (R?). Using our assumption ; (M) = 0 (i.e.)";c; viM; = 0) and the fact that
the components gi° are proportional to each other [n (2}10) yields

W2 (5°) = T2 (50). (3.15)
Moreover, wheneven ; (M) = 0 we also have

inf Wp2 < inf Wpo. 3.16
I'y(R?) R Ty (R?) b ( )

Indeed, fix anyp € Ty (R?). Then the functionalbg. is invariant with respect to dilata-
tions, i.e.Wp2 (@) = Wp2(p) for all @ > 0, wherep @ (x) = a?p(ax). Moreover,

lim f A log(1 + |x|?) dx = lim / gilog(l+ |x/a®)dx =0, Viel,
Rz o—> 00 RZ

o—>00

and thus ling_ oo Yg2(5@) = Wga(p). This clearly implies[(3:16). Combining (3]16)
with (3-19) it follows thatg® is also a minimizer ofVz2 over 'y (R?). However, every
minimizer g of W2 overl'y (R?) satisfies the Euler—Lagrange equations

i - 1 ,
pilx) = 3 (Lt 1x) ’EXF)(—Z D _dij /R PO Iog|x—y|dy), Vi eI, (3.17)

jel
for some positive constanis, . . ., 1,. On the other hand, any minimizer ¥f;. satisfies
(3-I7) withv; = Ofor alli € 1. Sinceg® is a minimizer for both functionals, we get a
contradiction for = io. O

4. A basic estimate

Proposition 4.]1 below provides the main tool for the proofs of Theofefis 2,[4 and 5. Since
in all these results conditiof (2]16) plays an important role, we begin with an interpreta-
tion of it. The proof of the following elementary lemma requires a simple modification of
the proof of [7, Lemma 5.1].
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Lemma 4.1. Let A be a symmetric matrix and |8 < R’ satisfyA;(M) = 0. Then for
eachi € I the following two conditions are equivalent:

dA;

—(M 0, 4.1

S < @1)
Apiy (M) + a,'_,,'Ml-2 > 0. 4.2)

Proof. Sincegst (M) =8 — 23" a; jM;, we have

O0=A;(M) = Apnii (M) —i—a,-,,-M,-z + M,; (87'( — ZZa,‘,ij)
jel

2 3A1
= A M) + ai i M + M ——

i M),
8M,-( )

and the result follows. O

The next lemma explains the significance of conditjon (2.16).

Lemma 4.2. Let A be a symmetric matrix with;; > Oforall i € I, and letM e R’}
satisfy(L.1Q) Then(2.18)is satisfied if and only if\; is identically zero on no edge of
the box

B(M)={N eR} : N < M}.

Proof. The Z' vertices ofB(M) are0 and{M, }4..;c; Where

Mj if jeld,

M), =
(My),] !O otherwise

Assume first that{ (2.16) is not satisfied. Then there exist I andi € J such that
Aj(M) =0,a;; =0andAg (M) =0forK = J\ {i}. Sincea; ; > Oforall j € I, and
A > 0on all the vertices oB(M) (by (1.10)), it follows from the maximum principle
that A; > 0 onB(M). Let f; : [0, M;] — [0, co) denote the restriction ok ; to the
edge connectindfx to M;. Sinceq; ; = 0, f; is a linear function 010, M;] satisfying
f1(M;) = A;(M) =0andf,(M;) =0 (by Lemm). Thereforg; = 0 on[0, M;],
i.e. A; = 0 on the edge connectindx to M.

Assume next that\; is identically zero on some edge connectiy to M; with
J = K U {i}. Clearly A;(My) = A;(Mg) = 0 andgﬁ(Mj) = 0. Therefore, by
Lemmg 4.1 we infer thah x (M) = 4, ; = 0 and [2.1) fails to hold. O

Now we are in a position to present the main result of this section.

Proposition 4.1. Let A be a symmetric matrix witk;; > O for all i € I, and let
M e R’.. Then there exists a constafi§ such that

0 1 0
/ D wilogwids + / Ar(w)ds = —Co (4.3)
—00 A —00

iel
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forall w = (wy, ..., w,) whose components are absolutely continuouR orand satisfy
w; >0 on (—o0,0), lim w;(s)=0 and w;0) = M;, Vi, (4.4)
§—>—00
if and only if M satisfies conditioif2.18)

Proof. (i) We first prove the sufficiency of conditiop (2]16). Put

1
F(w,w') =) wjlogw] + 2 M)
icl T
Applying the elementary inequality (3.3) with= log 2% andb = w/ yields for each
s € (—o0, 0),
A
w; logw; + % > wi[log A;(w) — log4rn + 1].

Therefore,

0 0
/ F(w,w)ds > / (Zw;) logAj(w)ds — Iog(%Tn) ZM,’. (4.5)

- iel iel

For each we have

0 0 M;
/ wilogA(w)ds > / w; logi; (w;) ds = / log A; (m) dm, (4.6)
oo oo 0
where

i(m) ;= inf{{A;(N): N = (N1, ..., Ny) € B(M), Ni = m}. 4.7)

Sincea; ; > 0 for all j, the minimum in[(4.}) is attained at one of the vertices of the
n — 1-dimensional boXN € B(M) : N; = m}.

Let us fix anyi € I. Setting for each/ & I (/ = ¢ is allowed, and we denote
Mg =0)andj ¢ J,

gs.jm)=A(L—=m/Mj)Mj + (m/M;)M ju;y) form e [0, M;],
we then have
Ai(m) = min{gy:(m) : J C I\ {i}} form e [0, M;]. (4.8)

For eachsJ < I\ {i}, gs; is a concave quadratic polynomial in the variabigsince
a;; > 0) which is nonnegative of9, M;]. If g;;(0) = 0 then we must havg/, ;(0) > 0.
Indeed,g’u(O) = 0 would imply thatA; is identically zero on the edge joiningf,
to My, contradicting[(2.16) and Lemnja #.2. By the same argument we have: either
gri(M;) > 0, or, if g;;(M;) =0, theng’“(M,») < 0. We conclude that there exists
oy > 0such that

gsi(m) > ay;m(M; —m) onl[0, M;].
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In view of (4.8), we obtain fof; := min{fa,; : J € I\ {i}},
Ai(m) > o;m(M; —m) on[0, M;]. (4.9)
Clearly,
M;
/ log(m(M; — m))dm > —oo, (4.10)
0

and [4.3) follows from[(4]5)[ (4]6) (4.9) ar[d (4}10).
(i) Next we prove the necessity df (2]16). Assume that (2.16) is not satisfied. If

Aj(M) < 0O for some} # J < I, then by the argument of [7, Lemma 2.2] it fol-
lows that [[4.B) cannot hold. Assume then that (IL.10) is satisfied, but for s@meand
W+ K C1I\{i}wehave, forJ = K U {i},

Ar(Mg) = A (M) =a;; =0. (4.11)

Note thatA;(M;) = a;; = O implies thatJ is not a singleton, i.eK # @. Then by
Lemmg 4.2 it follows that\; is identically zero on the edge connectiby to M. For
eachm we construct a path,, : (—o0, 0) — B(M) connectingd to M as follows. For
simplicity we omit the subscript. First, on(—oco, —m — 1) we set

Mttt if j e K,
=17 7
0 if j ¢ K.

Then -
/ F(z,Z)dt = c1 (4.12)

—0Q0
for some constant; independent ofn. On[—m — 1, —1] we connectMk to M; by
setting

M; if j €K,
2j(t) = { Mjt/m if j =i,
0 if j & J.

Then

-1 -1
M.
/ F(z,7Z)dt = / Zilogzdt = Milog— — —oco0  asm — oo. (4.13)
_ m

m—1 —-m—1

Finally, on[—1, 0] we connectM, to M by z(¢) = (—t)M; + (1 + t)M, which gives

0
| Fezdi=c (4.14)
-1
Combining [4.1P)£(4.14) yields
0
lim F(Zm, 2,,) dt = —00,
m—oo J_ o

and thus[(4]3) does not hold. o
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5. Proofs of the main results

In this section we prove our main results, Theoréfjg 2-5. We divide the assumptions on
A into two cases. The first case, afnonnegative (i.e. satisfying (2.1)), will be treated

in Subsectiof 5]1. The second case, studied in Subséction 5.2, isuifidblock collab-

orating systemi.e. when, up to a permutation of the indices/ofA consists ofK > 2
nonnegative blocks on the diagonal and outside these blocks all the elements are nonpos-
itive (see[(2.1]7)). The case of nonnegatiecorresponding to the cagé = 1, is then
entitled:single-block collaborating system

5.1. Single-block collaborating systems

We begin with the proof of Theorefr] 5(i), which is concerned with the problem on a
bounded domai® c R2. It extends[[7, Lemma 2.1] to the critical case.

Proof of Theorem|5(i).By the duality principle of([7, Proposition 2.1] proving bound-
edness ofg will imply (B.28). Using Schwarz symmetrization as in the proof[df [7,
Lemma 2.1] we see that it suffices to consider the case wiketeBg, the disc centered

at 0 with radiusR, and where eacp; is radially symmetric and nonincreasing. We next
sketch the argument froml[7, Lemma 2.1] in order to obtain an equivalent expression for
Wq(p). Denoting, for each, by u; the solution to—Au; = p; in Bg with zero boundary
condition we have

1
Yo(p) = E fB pilogp; dx — > E ai,jfB piujdx. (5.1)
R R

iel i,jel
Putm; (r) = [, pidx =27 [§ tpi(r)dT S0 thatu}(r) = —%52. Then
R
/ PiIngidXZZTf/ pilog p; rdr
Bgr 0
R R
= /0 m. logm’ dr — /0 m; logr dr — m;(R) log(2r)
R R
= / m; logm; dr +/ — dr —m;(R)log(2n R) (5.2)
0 0
and

R
/ piujdx=/ miujdr
Bgr 0

1 R m - 1 R -
== [ " g mi(Ryu(R) = —/ M gr. (5.3)
27 Jo r 21 Jo r
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Plugging [5.2)H(53) i (5]1) yields
Ya(p) = / Zm logm; dr

iel

mim
/ [ZT__UEI,;U " }dr—log(ZnR)ZM

iel iel

(5.4)

Finally, settingw; (s) = m;(e*) for all s € (—o0o, logR] andi € I, we may rewrite[(5}4)
as

logR
Ya(p) = / Zw logw; ds

iel
logR
+/ |:22w,——Za,lw,wj}ds—log(ZnR)ZMl,
iel i,jel iel
and the result then follows directly from Propositjon|4.1. o
Next we present the proof of the entropy inequality of Thedrém 4.

Proof of Theorerp]4(i).We begin by proving sufficiency of the conditions. First we show
that it is enough to consider radially symmetficin fact, settings™ = (p;)!_,, where
for eachi, p; is the symmetric decreasing rearrangement; pfve clearly have

fﬁi*logﬁi*dx=/ pilog p; dx, /ﬁi‘llogﬁi*ldx=/ pillog pi| dx,
R2 R2 R2 R2
and

/ A log(L + |x|?) dx < / i log(1 + |x|?) dx.
R2 R2

In particular we deduce tha@* € I'y(R%) whenevers € T'y(R?). By a variant of the
Riesz rearrangement inequality (see [4, Lemma 2]) we have

L, [ wdogie—snaardy = [ [ reodogix-—siijmdeay.  viij.
R2 JR2 R2 JR2

ThusWp2 (") < Wp2(6), and we may assume in what follows that egglis a radially
symmetric and decreasing function:of |x|. For each let —u; denote theNewtonian
potentialof 5;, i.e.

1 -
) = 5= [ Aol ~yldy.
T JR2
Thusu; (x) = u;(r) is a radial function satisfying Au; = g; in R2. Our assumption that

Jge i (x)10g(L + |x]?) dx < oo (cf. (2:8)) implies thatp; is regular at infinity (see [[8,
Ch. 11, 83]), and in particular, sincg is radial, we have

|
—ui(r) = Z?Trf pz(y)dy+—/ pi(y)logly|dy (5.5)
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(seel[8, Ch. Il, 83, Lemma 9]). By (3.5) we deduce easily that
M;
li (R) + — logR = 0. 5.6
Rinoo u;(R) + o 0og ( )
We definem; (r) = 27r [3 pi(v) d as above. Since fak > 1,

0 < (log R)(M; — m;(R)) = (log R)/ pi(y)dy < / pi(y)loglyldy,
R2\Bg R2

\Br
we obtain
lim (M; —m;(R))logR = 0. (5.7)
R—>o0
Clearly,
Wp2(p) = lim Wr(4), (5.8)
R—o0
where

\I’R(P) Z/ pilogp; dx — - Z ai, j / piujdx. (5.9)

iel le[

Using [5.2) and the first two equalities ii (.3) yields(5) = Ggr(m) — log(2r)
. Ziel m; (R) with

Gr(m) = / > " m}logm; dr+/ [ZT _t i,jmi;nj]dr

iel iel ij€[

> m; (R)(IogR + = Za, ,u,(R)) (5.10)

iel /EI

Next, settingw; (s) = m; (e*) as above we get

log R log R
GR(m)zf Zw |ng ds+/ [ Zw,——Za,]wle

- el iel i,jel
=Y m (R)(Z logR + = Za, ,u,(R)> (5.11)
iel /EI

Further, by[(5.5) and (5].7) we obtain

I|m Zm (R)(2I09R+ ZaljuJ(R)> - iAI(M) logR

Jjel

= lim (logR)- > (mi(R) — M)<2——Za,, >—o. (5.12)

iel jel
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By (5.8)-{5.12) we finally conclude, using our assumptioiiM) = 0, that

_ ) log R
Up2(p) = Rllmoo/ E w; logw; ds
- —00

iel

log R 1
+ w; — — a; jwijw; | ds — log(2r M;. 5.13
[ [z 4ﬂz] 9er Y M. (513
The result follows from[(5.93) and Propositipn 4.1, granfed (2.16), where we replace
w; (s) by w; (s + log R) for all i.

Next we turn to the necessity of the conditions. We assume\patis bounded
below onT 4 (R?). Fix p € T 3 (R?) with compact support itB1. For eachr > 0, define
pa(x) = a?p(ax). Itis easy to verify thap, € I'j(R?) and that

) 1
g2 (Pa) = W2 (h) + 5 A1 (M) loga. (5.14)

From [5.14) we get immediately the necessity of the conditigaM) = 0. To see why
(2.18) is necessary as well, we shall use Thedrem 5@ith By. Extendp € T y(Q2) by

0 ontoR? \ By. From [5.18) Wp2(p) = Wa(p) —log(27) 3., M;, and the necessity of
(2.18) follows from the analogous result in Theorfgm 5. ]

Proof of Theorerpl4(ii).We shall prove existence of a minimizer using the construction of
an entire solution to a Liouville system in [7, Theorem 1.4]. Below is a short description of
this construction. First, using our assumption (2.26) we can find a sequbte} such
thatM™ — M andA;(M") > 0for all J C I. By the results ofi[7] it follows that

for eactvn there exists a radially symmetric and decreasing minim®?, for W, over
Iy, (B1). Itwas shown in the proof of [7, Theorem 1.4] that for an appropriate choice of

asequenc®&™ — oo, the rescaled sequengé” (x) = (R™)~2p™ (x /R™) satisfies

lim 5™ = 5  locally uniformly onRR?, (5.15)

m—0o0

with ﬁl.(oo) > 0 and . pl.(°°> = M; for alli € I. Moreover, setting

. 1 ~ .
i (x) = —2—/ 5 (nloglx — yldy, Viel,
T JR2
we obtain an entire solution to the Liouville system
—Aa> =1 exp( Y a;a).  Viel, onR?, (5.16)

Jjel

for some positive constant§™, i = 1,...,n. Clearly, eachg™ is a minimizer for

W5, OVerT ym (Bgam). It will also be useful to consider, as in [A™ = log 5™
for all i € I, which satisfies

—A5" =Y exp(aj.’")) on Bpon . (5.17)
jel
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We want to prove thap® is a minimizer for@g. over I'y (R?). Note first that each
p € Ty (Bran) can also be considered as a member jp,) (R?), by extending it by
zero outsideB z . For suchp we have (sed (5.9))

_ 1
YR2(p) = W g (p) = Z/B pilogp; dx — > Z ai,j/B piujdx,

iel R(m) i,jel R(m)
with 1
ui<x>=—2—f pi(y)loglx — yldy, Viel.
T JB
R(m)
Define also

vi(x)=f PGB (X, ¥)dy, Vi€l
R2

Thenu; — v; is a radial harmonic function oB e, which must be identically equal to
the constant

(m)
M.
i (R™) — v;(R™) = u;(R™) = ———log R™  (using [55))
JT

Therefore, by definition oy, ,

1
Wga(p) = Va0 () = 5 D ai,,»fB pi(vj — uj)dx

i,jel R(m)
1

= > ai ijM{™ M log R™. (5.18)
TT

i,jel
It follows from (5.18) that for eachw, 5 is a minimizer forwy. (equivalently, of

ER(m)) OVerrM(m) (BR(m) ) .
Put

1
u™ (x) = —2—/ A" (y)loglx — yldy, Viel. (5.19)
7T JB

R(m)

A simple but important consequence of our assumpfion{2.26) is
10A 1 . -
=y =2- > Y aijM; <0, Viel (seel7,Lemma5.}] (5.20)

4 OM; e

which implies the existence ef > 0 andRp > 0 such that
1 - .
Z/;? Zai,jpi(oo)(x)dx >2+4+2¢g, Viel
Ro jel
Using [5.1%) we deduce that, forg large enough,
1
Z/B Za,-,jﬁl.(m)(x) dx >2+¢ey, Viel, VYm>mg. (5.21)

Ry jeI
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By (6.17) and[(5.21) we obtain
_Ljer M <) < S0 e  [Ro. R™. Vi€ I (5.22)
2mr or r
An immediate consequence pf (5.22) apd (b.15) is that for some constamtk-1,
Cai M
c1— % logr < 5™ (r) <c— (2+¢0)logr, Vr € [Ro, R™], Vi €I,
(5.23)
and therefore
(o
~(m) .
p; () < e Vr > Rg, Vi € I. (5.24)
From [5.24),[(5.28)[(5.15) and dominated convergence we obtain
im We2(p"™) = Wpa(5°°). (5.25)
m— 00

Fix now anys € ' (R?). As explained in the proof of assertion (i), it is enough
to considerp whose components are radially symmetric and decreasingx Bix0 and
8 > 0 such that

pi(x) =68, VxeBy Viel. (5.26)

Let the functiorn; be defined by = n—i'tz)(ga. DefineM by settingZVIi(m) = /3 - p; for
R m
alli e 1, and then
P = Xy P+ M — ™).

Form large enougkﬁ(’") € I yon (Bgon ), and sinces™ is a minimizer ford ) over
Iy o (Bgan ), We have

Wp2(p) < Wga (5™). (5.27)
By (5.21), dominated convergence apd (5.25) we infer that

W2 (B) = M W2(x,,,0) = M Wga(3™) = lim Wga(5") = W2 (5,

and the result follows.

Finally, the necessity of condition (2]26) for the existence of a minimizer is an imme-
diate consequence 6f [7, Theorem 1.4]. Indeed, the existence of a mingfizemplies
the existence of an entire solution to the Liouville system {5.16). But it was showh in [7]
that [2.26) is necessary for the latter to hold. ]

Finally, we turn to the proof of our main result 68, Theorenf p.

Proof of Theoreri|2We first remark that by the duality principle of Corolldry 3.1, it is
enough to prove assertion (i), which implies assertion (ii). Next we prove the sufficiency
of condition [2.16). For eache 1, denote by the symmetric decreasing rearrangement
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of p; (with respect to the north pole). Clearfy, p; log p;* = [ pi log p; for all i and
by a result of Baernstein and Taylor [2, Theorem 2] (see al<d [3, 4]) we have

//pi(X)(|09|x—y|)pj(y)dxdy2/ / p; ()(loglx —yDpj(y)dxdy, Vi, j.
52 Js2 52 Js2

Therefore, we may assume that eaghis radially symmetrically decreasing from the
north pole. Moreover, by a simple density argument, we may assume that the support of
eachp; does not intersect a certain neighborhood of the north pole. Next we use stereo-
graphic projection in order to restate the variational problem in an equivalent folRA.on
More precisely, defining by (2.4) we deduce by (2.6) thdts2(p) = Wr2(6). More-

over, our assumption on the supportmfmplies thatp is supported in some disBg,.
Therefore, for any® > Rp we have,

~ 5 B 5 1 B B
Wpa(p) = Z/ pilogpidx +— > a,-,,-/ / pi(x)(log|x — yp;(y) dx dy
Br 4 Br J B

iel i,jel

+) v f pilog(1 + |x]?) dx.
Br

iel

As in the proof of Theorein|4 we shall use
1 <
) = 5= [ AG)logls —yldy.
T JR2

m;i(r) = 2w /r spi(s)ds and w;(s) = m;(e®).
0

From
R
/ pilog(1 + |x|?) dx = f m’(r)log(1 + r?) dr
Br 0
R 2m; (r)r
= M;log(1+ R?) — f L d
1 g( + ) 0 1+I"2 r
g R 2, (5)e?
= M; log(1 Rz—/ = d 5.28
i log(1+ R%) - 11 e2 s ( )
and [5ID)f(5.12) we get
- logR logR 1
\Ile(ﬁ)zf Zwlflogwl’»ds—i—/ |: Zwi—4— Zai,jwiwj:|ds
-0 gf —00 iel T el

1
- Z[ZM,- log(2T R) + EMi Zai,juj(R):|

iel jel

logR ZUTEZS
| M; log(1 + R? —/ T ds|. 5.29
+i621v,[ ilog+ RS = | T ds (5.29)
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Using [5.8) and the identit$ 2 = $°. _, v; M; we obtain

_ Z[zM logR + = M Za”uj(R)] + Y viM;log(1+ R?)

iel jel iel

:|: Ar(M) ZZU, ]IogR—i-o(l)

iel

_ DD R 4 0(D),
4

with o(1) denoting a quantity which goes to 0 Rs— oo. Therefore we may write

Ug2(5) = J—oo(w) + JX (w) — 2l0g2r) > M; + 0(D), (5.30)
iel
where
0
J_o(Ww) = / Zw logw; ds—i—/ [ZZw,——Za,]w,w]]
0 jel iel i,jel
0 2w;e®
-2 i Tra s (5.31)
icl te
and
logR
JR(w) = / Z w; logw; ds
0 icl
logR Ar(M
/ [Zw,——Za,/w,w+ 1 ):|
iel i,jel
logR 2w 2s
—Z"i/ D ds. (5.32)
ier Y0 1+e2
Since clearly,

0 2w: 2s 0
/ o 52M,-/ e ds = M;,
—oo L+ e& o0

it follows from Propositiofi 4]1 that_.(w) > —C for some constar. Hence it remains
to find a lower bound forlo’g(w), uniformly in R € [Ro, 00).
Since

logR Zw,-e logR logR 2w;
_ZIW/O l—l—eZ‘ 21),2/ w,ds—l—Zu,/ 1—|—eZV

ie iel iel

logR

> 21),2/ wids—2|vi|Mi,

iel iel
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it suffices to prove that the functional

logR
Ggo(w) :=f Zw logw; ds

iel

logR
/ [22(1— Vw; — — Z a; jwiw; + A;(;”)}ds (5.33)

iel l/G]

is bounded below. A simple computation shows that

22(1— V)w; — Z a; jwiw; + AI(M)

icl T i Gel o

= 2M; - Z ai j(M; — wi)(M; — w)).

iel leI

Therefore, setting for eache 1, z; (1) = M; — w;(—t) fort € [-log R, 0] andz; (1) =0
fort € (—oo0, —log R), we infer from [5.3B) that

Ggo(w) = / |:Z z;logz; + iAI(Z):| dt. (5.34)
- iel 4

Sincez;(—o0) = 0 andz; (0) = M; — w; (0) < M; for all i, we can apply Propositidn 4.1

to conclude that the r.h.s. df (5]34) is bounded from below, completing the proof of the

sufficiency assertion.

For the proof of necessity of (2]16), we consm{[q[gz(p) for p with support inBj.
SinceJ (w) = 0 for the corresponding, we conclude fron{(5.30) tha(tRz is bounded
below on the class of sudhis iff J_ is bounded below on the corresponding class of
w’s. But the necessity assertion of Proposifior] 4.1 implies fhat](2.16) is necessary for the
latter to hold. o

5.2. Multi-block systems

We start with the proof of assertion (i) of Theorgm 3, dealing with a general collaborating
system withK blocks.

Proof of Theoreri]3(i).(i) Setting foreaci=1,...,K

Wi (p) = / pilog pi + Z ai.j f i fS it (loglx — y))p; (y) dx dy.

i€l i,j€l
(5.35)
we may write

Vsa(p) = Zw<”>(p>+ =DIDIDINT / / pi)(logx — yp; () dx dy.

=1 T Fl i€l jel, (5.36)
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Using the inequalityx — y| < 2 for all x, y € 2, and the assumptiof (2]17), we get

S Ya [, [, eodogls = ey dxdy
52 Js2

11#l iGI]l j€1]2
> (|Og 2) - Z Z Z ai,jMiMj. (537)

Li#licly jel,
Therefore, if condition[(2.31) is satisfied, then from Theofém 2 it follows that
vWp)= —C, VpeTy(s), I=1.. K,
and by [[5.3p) and (5.37) we obtain
Wga(p) = —C.  Vp € Ty (5?).
To prove the necessity of conditidn (2/21), assume by negation that for senie<l X,
condition [2.2]) is violated. Then by Theorin 2 there exists a sequence
(0" = (pien} C Ty (52,
with T, (S?) denoting the restriction oF (S?) to the coordinates of;, such that

iMoo \pg?(pm) = —oo. Extend each™ to T y;(S?) by setting

P (x) ifi eI,
M;f(x) ifi¢l,
where f is a smooth positive function o with sz f()dx = 1. Then it is easy to

verify, as in the proof of the necessity part of Theo@m 2, thatlim, W2 (™) = —o0.
O

pi'(x) = {

We next give the proof of assertion (ii) of Theorgn 5 which deals with the multi-block
case for a system on a bounded domain.

Proof of Theorerp|5(ii). The proof uses the same argument as in Thepiem 3(i). It suffices
to note thatG o (x, y) = — 5= log|x — y| + Ry (x) with R, (x) a harmonic function o,
which is bounded above t% log(diam(€2)) for all y € Q. o
For the proof of assertion (ii) of Theorgm 3 we shall need the following lemma. For a

symmetricn by n matrix A satisfyinga; ; < O for alli # j (here the diagonal elements
play no role) consider the functional

1w =iy [ [ loghe = yldui (o) die; ) (5.38)
i#) 5252
defined over the following set af-vectors of finite Borel measures:

On(5?) = {u s ) i 2 Oandfszdm _m, w}. (5.39)

Note thatJ is well defined onGy;(S2) if we allow it to take the value-oco, since the
kernel loglx — y| is bounded above and ; < O fori # j.
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Lemma 5.1. Let A be a symmetric matrix with; ; < Oforall i # j and letM e R,
Then

sup J(p) = max W(y) (see(2.23), (5.40)
neGp(S?) ye(s?r

and the supremum is attained at measures of the form
= (M18y,, ..., My8y,), Withx = (x1,...,x,) € (SZ)" a maximizer ofv. (5.41)

Moreover, if A does not contain a row of zeros (ignoring the diagonal elements), then
all the maxima of/ and all the weak limits, in the sense of measures, of maximizing

sequences are of the for(5.47)

Proof. Consider any € Gy (S?). For each e I set

Uk =2 (i) [ Toglx = yldu; ().
i 52

Then we have

Iw= Y (-aj0 / / log x — ¥l dpa; (x) dpu(y) + / UL () dpui (x).
(i Ak #) 5252 h

Itis known thatU* is upper semicontinuous (s€e[17]), and therefore its maximuston
is attained. For any e I defineT; ,, (k) € Gar(S?) by

iz
(Thy, ()} = {“ J orj #i (5.42)

M;éy,  for j =i,
wherey; € §2 is any maximum point oUl.". Itis clear that/ (T; ,, () > J(u). Setting

mw="T,y 0T, 1y ,0---0T1y (n)=(Midy,..., Mydy,),

we have
W(y) =J) = J(w), (5.43)

and [5.4D) follows.

To prove the last claim, lgt be a maximizer fo overGy,(S2). Assume by negation
that for one of the components pf sayu1, SUpfgu1) is not a singleton. Consider then

n = Tn,yn o Tn—l,y,,_l ©---0 T2,y2(ﬂ) = (u1, M28yz’ cees Mnayn)-

By construction,u is also a maximizer, for whiclﬁ]f must be constant on su@pr)

(otherwise, we would havé(Ty y, () > J (i) for y; a maximum point on). For two
distinct pointsx1, z1 € supp1) put

oy = Tixy () = (M18yy, M2Sy, .., MySy,),
"y = T, () = (M18;,, M2y, ..., M,éy,).
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Then alsqu,, andu, are maximizers fov, i.e. (x1, y2, ..., y») and(za, y2, ..., y,) are
maximizers forW. We must then have for eagh 1,
aw 4
— (1, y2, .., V) X yj = —(21,¥2, ..., ¥n) X y; =0,
ayj dyj
ie.
(yj —x1) X yj (yj — i) X yj
0= (_al,j)Mlej—ZJ + Z (—ai,j)MiMj%
lyj — X1l e lyj — il
(vj —z1) X yj (yj —yi) X yj
= (—ay MM == 4 N (g MM (5.44)
ly;j — zal iZ lyj — yil

By assumption, there exisfs # 1 withay j, < 0. For thisjo we deduce fron{(5.44) that

(yjo —x1) X Yijo _ (yjo —z1) X Yijo
|¥jo — 112 lyjo — z1l?

This last equality forces; = z1. Contradiction. Finally, the statement about the weak
limits of maximizing sequences follows from the upper semicontinuity with respect to
weak convergence of measures and the characterization of the maxima. O

Proof of Theorerfi|]3 completedii) Since K = n, (5.35) takes the form
\I/(I’)(p) Vi(pr) = / o1 |ngz+—/ / pr(x)(log|x—yDpi(y)dxdy, Vil el.
52
Here, in the critical case @f ; M; = 8x for all i, by Theorenj P (se¢ (3.1.0)) we have
M; M; .
VYi(pi) > =—co+ M;log—, Viel. (5.45)
2 4
Moreover, by Lemmpa5]1,

= Z ai / / P0Gl —)ps () dxdy = 2= SUpW(x).  (5.46)

(82"

Plugging [5.4b)+(5.46) irj (5.86) we are led to

1

inf We > [M Iog + —co] — — supW(x). (5.47)

rM(SZ) S ; 4 (52);1

Letz € (52" be a maximizer fow. For eachx > 0 definep@ = (%)™ applying

(2.2) componentwise with® = (My/4x, ..., M, /4r). By Theorenﬂl, for eache I,
(“) gives equality in[(5.45). Combining it W|th

lim = di / / i () (logx — yD o (y) dx dy = W (2)

a—>00
i#j
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we are led to

. M, M, 1
lim We(p®)=>" [M,- log— + —’co] — — supW(x).
a—> 00 el 47T 27T 47'[ (SZ)"

This together with[(5.47) leads fo (2]22).

(iii) Suppose by negation that there exigtss T'37(S?) which realizes the infimum
in (2.23). It follows from the above that for eache 1, p; is a minimizer ofy; over
'y, (52), and thatw = (o1dx, . .., p,dx) is @ maximizer for/ overGy (5?) (see[(5.38),
(5.39)). But this contradicts the description of the maximd given by Lemm&5]1. The
statement about the weak limits of minimizing sequences follows similarly. O

Remark 5.1. For the special case of the Toda system withiven by [2.19), the critical
case isM; = 4x for all i € I. Here we find

n—1

W(x) =2 log|xi+1 — xil,
i=1

which achieves its maximum only at configurations of the form

y1 if jis odd

xj = L
"7 lys if jiseven

wherey; andy; are antipodal points i§2.
We now present a generalization of Theofgm 3(ii),(iii) to a larger class of systems
than [2.IB). Consider a symmetric matdxwith the following properties:
(P1) The sef is a disjoint union of seté,, ..., Ix where each submatri®[7f;, ;] is a
conformal blockthat is, foreacli =1, ..., K,
aij>0, Vi jel and Y a;M;=8r, Viel.
JEh
(P2) Ifl #mthena; ; =aj; <Oforalli € I;, j € I,.
Let us define a “renormalization” of the system in the following sense. We dﬁiﬁeﬂRf

by
M=) M;, Vi=1...K, (5.48)

iel

andX:{a,m}, I,m=1,...,K, by

~ Ziell, jely, ai, jM;M;

“ MM, ( )
The associated functiow is defined by
W®) =) (~aim) MMy log[%i = Tul.  VE € (SHX. (5.50)

I#m
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The new problem is to minimize the functionﬁlsz, associated with, over FM(SZ).
Note that for each k I < K we have, by condition (P1),

EIJM[ = ( Z a,"jM,'Mj>/M] = 8.
i,jel

Therefore, the conditions of Theorér 3(ii) are satisfied by the new system. We do not
know however whether results analogous to Thedrem 3(ii),(iii) hold, in general, for the
original problem of minimizing¥. over T'y(S%). We were only able to handle two
special cases given below. The first cas&is= 2. Note that in this case, for eagh=

(X1, x2) € (592 we have

W@®) =2(og[f1— %) > (—aij)M;iM;. (5.51)
iel, jelp
Therefore,
sup W@ =2(log2) > (—a;j)MiM;. (5.52)
Xe(52)2 iel, jelp

Proposition 5.1. Assumed and M are such that condition1)—(P2)are satisfied with
K =2.Then

2

. M; M; |Og2

FALTEZ) ‘-IJSZ = Z_E . E |:Ml' |Og E + ZCO} — 7 ' E (—a,-,j)MiMj. (553)
=liel iely,jel

If, in addition, there exist; € Iy and j1 € I> witha;, j; # O, then the infimum if5.53)
is not attained and any weak limit of a minimizing sequence is of the form

| Mmisy ifien,
Hi= Mss, ifiel,

wherex; andx> are antipodal points.

Remark 5.2. The Toda system, which was already seen to be a special case of Theo-
rem[3, is also a special case of Proposifion 5.1. Indeed, we caniité; U I> with I1
and/» the even and odd indices respectively.

For the proof we shall need the following lemma.

Lemma5.2. Let A be an irreducible symmetrie by n matrix satisfying(2.7)), and let
M e R”. be such thaZ.I1)holds. Suppose that™ is a minimizing sequence forf ¥
overT y (5?) such thate™ — u weakly in the sense of measures. TMu; = M;u;
forall i, j.
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Proof. We use a similar argument to the one used in the proof of Thepfem 1. By (2.11)
we may write, for any € T (52,

.
Ve(p) =) ﬁ[Mj/Sz pi log pi
i,j
+Mi/ p,-logp,+4/ / p,-<x><log|x—y|)p,-(y>dxdy}.
52 S2 S2

By (3.10) it follows that

lim | M;[ o™ logp™ + M;| p" logp!™
52 52 J J

m— o0
MM,
1672

M;M;
+4 fs i /S zp,‘m><x><log|x—y|>p§’"><y>dxdy}= —co+ M;Mj log

for all i, j such that; ; > 0. Fixing any pair of sucth, j and definingF,"™ = %p,ﬁm)
for all k (so thath2 Fk(’”) = 47r) we conclude that

lim [./52 F™ log F™ + /;2 F;’") log F}’")

m—o0
1 (m) (m)
+= E™ (0)(oglx — yDF™ (v dx dy | = 4co.  (5.54)
T SZ SZ K

Note that by[(3.P) we have

~ 1
F(EM™) ;:/ ™ Iong(’")Jr—/ / F (x)(oglx — yDE™ (y) dx dy
S2 2 s2.Js2
> 2co,  Vk. (5.55)

Since
[ [ = Ditogls = yh(r ) = Ddrdy <0, Vf € Tar(s?),
we deduce that
G(F™) + ¢ (F™) 5/ Fm IogF.(m)—i—/ F'™ log F'™
i j o i @ j
1
#2 [ [ ol =y F () dxdy. (6:56)
T Js2,)s2

Combining [5.5p) with[(5.54) and (5.55) we are led to

lim ¥ (F™) = lim §(F"™) = 2co. (5.57)
m— 00 m— 00 J
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Plugging [(5.5F) in[(5.54) yields

m— 00

lim {// 2F}"’)(x)(log|x—y|)Fj’")(y)dxdy
52/ 52

- /S ) /S LE (o loglx — yDF™ () + F™ () (og|x — yDF{™ (1)) dx dy} =0,

(5.58)
But setting
m,y_ L (m)
Uy (X)——Z— F () loglx — yldy, Vi,
T Js2
we may rewrite[(5.58) as
lim / V™ —umP=o.
m—>00 J¢2 J
Therefore, for every € C*®(52) we have
4 4
— dpi — — du; = lim F™ — F'™ypd
M Jo O IH M, o P m%ofsz(, ; ydx
= lim / V™ —u™).ve =0,
m—o00 [¢2 J
i.e. M;u; = M;u;. The result follows by the irreducibility of. O

Proof of Propositiol.By Theorerr[]l, applied to eaohéé’) (see[(5.3h)), we have

o M;
W (p) = ) 5 M+ Milog o V. (5.59)

iel)

Further, by[(5.5R)

2 Y ap [, [, mogl = ey dxdy = 20092 3" (~ai MM,
iel, jel, 52J52 iely, jelp
= sup W@). (5.60)

xe(52)2

If g; j =0foralli € Iyandj € I>thenWg = \I/é’zl) + \11(122) and the result follows from
(5.59) and Theorefn 1. Assume now that at least one of tygseis nonzero. Then the
inequality in [5.60) is strict and combining it with (5]59) we obtain, for@l Ty (5?),

W (p) ZZ:Z [M log M1 Mi ] Lo e (5.61)
s2(p) > ilog— 4+ —co| — — X). .
I=1iel; v 27 AT ge(s2)2
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To finish the proof of[(5.53) it is enough to show thiag>(p) can get as close as we wish
to the value of the r.h.s. of (5.p1). To this end, we fix a pairx, € $? of antipodal
points, and for every > 0 definep@ e I';(5?) as follows:

Ioi(a) = (p?)f}\m,ot’ Vl E Ima m = 13 2 (5'62)

It is easy to see that the limit lign, oo W2(p®) equals the r.h.s. of (5.p1) and the proof
of (5.53) is complete.

Next we turn to the proof of the statement about the weak limits of minimizing se-
quences. Lefp™} be such a sequence wip™ — pu weakly in the sense of measures.
By the above,

. M;
lim W (o) =3 zc—gM,» +Milogzt, 1=12, (5.63)

i€l

i.e. the restriction 0p™ to the indices of;, I = 1, 2, is a minimizing sequence far
overT ,,u) (5?) (MY denotes the restriction & to the indices of;). Recall thatA is
irreducible, but the submatrik[/1]/1] may be reducible. So assume it is decomposable
into K1 > 1irreducible factorsA[J1|J1], ..., A[Jk,|Jk,]. Similarly, A[ 2] I2] is decom-
posable intoK? irreducible factorsA[Ji|J1l, ..., AlJk,|Jk,]. Fix any 1< k < Ki.
SinceA is irreducible there exisy € J; andiz € I such that;, ;, < 0. From [5.6D)
and Lemm@l it follows that;, = Mi18x,-1 andu,;, = M,»28Xi2 with x;; andx;, a pair
of antipodal points. By[(5.63), the restriction @f™ to the indices of/; is a minimizing
sequence foﬂféé“ over M®)  so that by Lemm2 we deduce that= M; 3z, for all
i € Ji, for somex; € S2. This holds for every 1< k < Ki. Similarly, u; = M; 85, if
i€l forl<k<Ko.

Next we claim thak;, = X for all k andy; = y for all k, wherex andy are antipodal,
i.e.y = —x. We define a bipartite graph whose vertices are given by the pb?ip}ggzll,

{Sz‘k},fzzl. This graph contains an ed@®, 3] if and only if there exisi € Ji, j € J; with

a; j # 0. We recall that ifix;, ;] is an edge the@;, = —Yy;. By assumption, this is a
connected graph and the claim follows. O

The second case that we are able to treat allows for an arbitrary number of blocks, but
requires a very particular structure of the matfix

Proposition 5.2. AssumeA and M are such that condition®1)—(P2)are satisfied. Sup-
pose further that there exigtnonnegative numbeks, ..., o, and a symmetric matrix
B = (bl,m){fm:l with nonpositive off-diagonal elements such #hat = o;«;b; ,,, for all

j € Iy, i € I; whenevem # [. Then

K M: M; 1 ~
inf W= [M- log — + —lco] — — sup W@). (5.64)
rM(SZ) S IZ:;; ! 4 2 47 36\6(52)[{
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If, in addition, A does not have a row of zeros (ignoring the diagonal), then the infimum
in (5.64)is not attained and any weak limit of a minimizing sequence is of the form

/,L,'ZM,‘(S}‘Z ifie[l,lflfK,
wherex is a maximizer oV

Proof. We may rewrite[(5.36) as

K
1 _ _
Wsa(0) = W)+ o= Yt [ [ Aog e~ yaa() drdy. (569
=1 T | Zm §2.J52

where
o =Zai,0h I=1...,K.

iel]

Applying Lemmg5.]L we get

1 ] ] R
= b [, [ A0000GI = yDpn(dxdy = 4 sup W, (560
T I#m YA AY 4

T xe(s9)K
where . o
W) =Y (—bm)Mi My 10g |5 — % (5.67)
I#£m
andM; := Yien@iMi, 1 =1,...,K. Using the identityay,,, M; My, = by M;M,, We

see thatW = W. Hence, from[(5.65)[(5.66) and (5]59) we infer that the r.h.d.in|5.64)
is a lower bound folV 2. The optimality of this bound follows by considering the limit
Mg 00 Ug2(p@), where

P = (p))Tma,  Viely, m=1,... K,

andx = (x1, ..., xx) is a maximizer forW. If A does not have a row of zeros (outside
the diagonal) then the same holds ®rApplying Lemmg5.]L to

T(w) =Y (=bim) / / log |x — y|d i (x) dptm(y)
I#£m 52.J52

over
gﬁ(52)={ﬂ=(ul,.-.,w<) : Miioandfzdﬂizﬁi, i=1,-.-,K},
s

we deduce as in the proof of Theor¢in 3(iii) the nonexistence of a minimizer and the
description of the weak limits of the minimizing sequences. O
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