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Abstract. We prove several optimal Moser–Trudinger and logarithmic Hardy–Littlewood–Sobolev
inequalities for systems in two dimensions. These include inequalities on the sphereS2, on a
bounded domain� ⊂ R2 and on all ofR2. In some cases we also address the question of ex-
istence of minimizers.

1. Introduction

The Moser–Trudinger (MT) inequality (see [13]) on the two-sphereS2 reads:

fM(u) :=

∫
S2

1

2
|∇u|2 dω−M log

(∫
S2
eu
dω

4π

)
≥ −C, ∀u ∈ H 1(S2),

∫
S2
u dω = 0,

(1.1)
where 0< M ≤ 8π . The MT inequality plays an important role in problems of prescrib-
ing Gauss curvature (see Aubin [1], Chang–Yang [5] and the references therein). A sharp
version of (1.1), which is due to Onofri [15], states that (1.1) is valid with the optimal
C = 0 on the right hand side. Moser’s original proof of (1.1) was obtained as a corollary
of his stronger inequality:∫

S2
e4πu2

≤ C, ∀u ∈ H 1(S2) with
∫
S2
u = 0 and

∫
S2

|∇u|2 = 1. (1.2)

Onofri’s proof of the sharp form of (1.1), i.e. withC = 0, used estimates of Aubin [1]
and the conformal invariance of the functional. Other proofs of Onofri’s result were later
given by Hong [10] and by Osgood, Phillips and Sarnak [16]. Of particular interest to us
is the alternative derivation of Onofri’s inequality by Beckner [3] (see also Carlen and
Loss [4]), which is based on a duality principle and on Lieb’s sharp form of the Hardy–
Littlewood–Sobolev inequality.1 OnS2 the dual inequality takes the form

ψS2(ρ) :=

∫
S2
ρ logρ +

1

4π

∫
S2

∫
S2
ρ(ω1)(log |ω1 − ω2|)ρ(ω2) dω1dω2 ≥ −C (1.3)
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1 Actually Beckner’s result generalizes Onofri’s inequality to any dimension.



414 Itai Shafrir, Gershon Wolansky

for all ρ ∈ 0M(S
2) if M ≤ 8π , where

0M(S
2) :=

{
ρ ≥ 0 :

∫
S2
ρ logρ < ∞ and

∫
S2
ρ = M

}
, (1.4)

and|ω1 − ω2| stands for the Euclidean distance betweenω1 andω2 in R3.
The generalization of the functionalψS2 to the system case is the functional

9S2(ρ) =

∑
i∈I

∫
S2
ρi logρi+

1

4π

∑
i,j∈I

ai,j

∫
S2

∫
S2
ρi(ω1)(log |ω1−ω2|)ρj (ω2) dω1 dω2,

(1.5)
considered on the domain

0M(S
2) =

{
ρ = (ρi)i∈I : ρi ≥ 0,

∫
S2
ρi logρi < ∞ and

∫
S2
ρi = Mi, ∀i

}
, (1.6)

whereI := {1,2, . . . , n} andA := {ai,j } is a symmetricn by n matrix. In what follows
we assume thatai,j ≥ 0 for all i, j , but later we shall also study other classes of matri-
ces. The duality relation between (1.1) and (1.3) can be extended, under the additional
hypothesis thatA is positive definite, to a duality between (1.5) and the functional

FM(u) =
1

2

∑
i,j∈I

ai,j

∫
S2

∇ui∇uj −

∑
i∈I

Mi log

(
1

4π

∫
S2

exp
(∑
j∈I

ai,juj

))
(1.7)

over the class

Hn(S
2) :=

{
u ∈ (H 1(S2))n :

∫
S2
ui = 0, ∀i

}
.

Note that in thescalar casen = 1 it follows from the MT inequality that a necessary
and sufficient condition for the boundedness from below offM andψS2 overH1(S

2) and
0M(S

2), respectively, isM ≤ 8π . The analogue of this condition to the system case turns
out to be a set of 2n − 1 inequalities involving the quadratic polynomials

3J (M) = 8π
∑
i∈J

Mi −

∑
i,j∈J

ai,jMiMj =

∑
i∈J

Mi

(
8π −

∑
j∈J

ai,jMj

)
, (1.8)

for every nonempty subsetJ ⊆ I . The polynomial3I was first introduced by Chanillo
and Kiessling [6] in their study of entire solutions of Liouville systems inR2. A set of
conditions (“subcritical”),

3J (M) > 0, ∀J ⊆ I, J 6= ∅, (1.9)

was used in [7] for the study of a related variational problem on bounded domains inR2

and the associated minimizers (see also below). On the other hand, a simple rescaling
argument (as in [7, Lemma 2.2]) shows that if forsomeJ , 3J (M) < 0, thenFM and
9S2 are unbounded from below. Wang [20] proved an analogous result to that of [7]
for compact surfaces, showing that thesubcritical condition (1.9) is sufficient for the
boundedness of (the analogue of)FM in this case. A natural question that we address
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here is whether the bound still holds in thecritical case, i.e. when we turn some, or all,
of the inequalities in (1.9) into equalities to get the weaker condition

3J (M) ≥ 0, ∀J ⊆ I, J 6= ∅. (1.10)

One of our main results, Theorem 2, asserts that the bound for9S2 (res.FM ) indeed holds
under assumption (1.10) ifai,i > 0 for all i, but a slightly stronger condition is needed
if we allow zero diagonal elements (see (2.16) below). So far, results for thecritical case
were obtained only for very special systems by Wang [20] and by Jost and Wang [11] (see
(2.11) and below). We shall also consider analogous functionals on the whole planeR2

as well as on bounded domains� ⊂ R2. In certain cases, when the bound is verified, we
shall address the question of the existence of minimizers.

In the next section we introduce the full details of our main results. Some of them
were announced in [18]. The proofs are given in the following sections.

2. Description of main results

Before stating our main results we want to focus on two important notions which demon-
strate the similarities and differences between the scalar problem and the vectorial one.
The first notion isduality.

In thescalar casen = 1, the functionals (1.1) onH1(S
2) and (1.3) on0M(S2) are dual

in the sense that both are bounded or unbounded from below, simultaneously. Moreover, a
minimizeru for fM , if exists, is related to a minimizerρ of ψS2 viaρ = Meu/

∫
S2 e

u and
−1u = ρ −M/4π . This duality extends to the vector functionals9S2 (on0M(S

2)) and
FM (onHn(S

2)) provided the matrix{ai,j } is positive definite(see Section 3). However,
our results for9S2 do not require this condition. Our basic assumption is

ai,j ≥ 0, ∀i, j, (2.1)

but we shall also study other classes of matrices in Subsection 5.2.
Next we turn to the notion ofconformal invariance. It is known thatψS2(ρ) is con-

formally invariant in the critical caseM = 8π . By this we mean that the l.h.s. of (1.3) is
invariant under the conformal action,

ρ 7→ ρτ := (ρ ◦ τ) · |Jτ |, (2.2)

whereτ is any conformal automorphism ofS2 andJτ is its Jacobian (here and in the
following we do not distinguish between conformal and anti-conformal automorphisms).
We shall often apply (2.2) for a special class of automorphisms,{τy,α : y ∈ S2, α ∈ R+},
defined as follows:

τy,α(x) = Sy−1(αSy(x)), ∀x ∈ S2, (2.3)

whereSy is the stereographic projection satisfyingSy(y) = ∞. However, in the vectorial
case (i.e.n ≥ 2) it turns out that the condition analogous toM = 8π , namely3I (M) = 0,
is notsufficient, in general, to ensure the conformal invariance of9S2 on0M(S

2).
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In fact,9S2 is clearly invariant with respect to the action (2.2) (applied toρ = ρi ,
i ∈ I ) whenτ is an isometryof S2. But the conformal group also contains other auto-
morphisms whose action is more transparent when we use the stereographic projection to
transform the problem toR2. UsingS = SN (N denoting the north pole) we associate to
eachρ : S2

→ Rn a functionρ̃ : R2
→ Rn via the transformation (see [3, 4])

ρ̃i ↔ ρi = [ρ̃i · (1 + |x|2)2/4] ◦ S,

ρi ↔ ρ̃i =
4

(1 + |x|2)2
· (ρi ◦ S−1),

∀i ∈ I. (2.4)

Note that

|S−1(x)− S−1(y)| =
2|x − y|

(1 + |x|2)1/2(1 + |y|2)1/2
, ∀x, y ∈ R2. (2.5)

By a simple computation, using (2.5), we obtain forρ andρ̃ which are related by (2.4),

9S2(ρ) = 9̃R2(ρ̃) :=

∑
i∈I

∫
R2
ρ̃i log ρ̃i dx

+
1

4π

∑
i,j∈I

ai,j

∫
R2

∫
R2
ρ̃i(x)(log |x − y|)ρ̃j (y) dx dy

+

∑
i∈I

νi

∫
R2
ρ̃i log(1 + |x|2) dx −

1

4π
3I (M) log 2, (2.6)

with

νi = 2 −
1

4π

∑
j∈I

ai,jMj , ∀i ∈ I. (2.7)

It is clear that ∫
R2
ρ̃i =

∫
S2
ρi, ∀i ∈ I.

Moreover, using the arguments of [4] it can be shown that9S2 is bounded below over
0M(S

2) (see (1.6)) if and only if̃9R2 is bounded below on

0M(R2) =

{
ρ̃ : ρ̃i ≥ 0,

∫
R2
ρ̃i |log ρ̃i | < ∞,∫

R2
ρ̃i = Mi,

∫
R2
ρ̃i log(1 + |x|2) < ∞, ∀i ∈ I

}
. (2.8)

Now we can observe that the functional

9R2(ρ̃) =

∑
i∈I

∫
R2
ρ̃i log ρ̃i dx +

1

4π

∑
i,j∈I

ai,j

∫
R2

∫
R2
ρ̃i(x)(log |x − y|)ρ̃j (y) dx dy

(2.9)
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is invariant with respect to translations, i.e.ρ̃i(x) 7→ ρ̃i(x + v) for all i ∈ I (for any
fixedv ∈ R2), and dilatations, i.e.̃ρi(x) 7→ α2ρ̃i(αx) for all i ∈ I (for any fixedα > 0),
provided that3I (M) = 0. But clearly the difference between the two functionals,

9̃R2(ρ̃)−9R2(ρ̃) =

∑
i∈I

νi

∫
R2
ρ̃i log

1 + |x|2

2
dx, (2.10)

is not invariantwith respect to translations and dilatationsunlessνi = 0 for all i ∈ I . We
shall call this last case, i.e. when∑

j∈I

ai,jMj = 8π, ∀i ∈ I, (2.11)

theconformal case. Indeed, from the above we see that (2.11) is a necessary and sufficient
condition for thefull invarianceof the functional9S2 with respect to the conformal group
of the sphere. Evidently, (2.11) implies that3I (M) = 0, but as explained above, the
converse is false in general. We should mention that Wang [20] studied a special case of
the conformal case (2.11) in which the positive definite matrixA is stochastic, that is,∑

i∈I

ai,j = 1, ∀j ∈ I, (2.12)

and the vector of massesM satisfiesMi = 8π for all i ∈ I . Under these assumptions he
proved that the functionalFM is bounded below onHn(S

2) (this clearly implies bound-
edness also whenMi ≤ 8π for all i). Actually, the result of Wang is more general since
he studied a functional which is defined on any closed surface6 (i.e. two-dimensional
compact Riemannian manifold without boundary). In Section 3 we shall prove the fol-
lowing optimal result for the conformal case onS2, which can be viewed as the natural
generalization of the results of Onofri and Beckner to the system case (since it gives the
optimaladditiveconstant). Here again we see the advantage of using the dual formulation:
it allows us to deduce easily the system analogue from Beckner’s scalar result.

We recall that a symmetric matrixA is called irreducible if for all i, j ∈ I , there
exist {k1, . . . , kl} ∈ I with k1 = i andkl = j such thatak1,k2 · ak2,k3 · · · akl−1,kl 6= 0.
Equivalently,A is irreducible if there is no∅ 6= J & I such thatai,j = 0 for all i ∈ J and
j /∈ J . Any symmetric matrixA can be decomposed into a sum of irreducible matrices,
inducing a decomposition of the functional9S2 into a sum of independent functionals,
each corresponding to an irreducible factor. The assumption of irreducibility is useful for
some uniqueness questions.

Theorem 1. LetA be a symmetric matrix satisfying(2.1)andM ∈ Rn+ such that(2.11)
holds. Setting

ρ0
=

(
M1

4π
, . . . ,

Mn

4π

)
and ρ̃0

=

(
M1

π(1 + |x|2)2
, . . . ,

Mn

π(1 + |x|2)2

)
we have:
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(i)
min

0M (S
2)
9S2 = 9S2(ρ0) (2.13)

and
min

0M (R2)
9R2 = 9R2(ρ̃0). (2.14)

(ii) The conformal images (as defined in(2.2)) of the constant vectorρ0 are minimizers
in (2.13).

(iii) The conformal images of̃ρ0 (i.e. (ρ̃0
◦ τ) · |Jτ |, τ : R2

→ R2 conformal) are
minimizers in(2.14).

(iv) If, in addition, the matrixA is positive definite, then

FM(u) ≥ 0, ∀u ∈ Hn(S
2), (2.15)

with equality if

u =

(
M1

8π
log |Jτ |, . . . ,

Mn

8π
log |Jτ |

)
+ c,

wherec is a constant vector.
(v) Assume now thatA is irreducible. Then the minimizers given explicitly in(ii)–(iv)

are the unique minimizers. Also, in thesubconformal case, i.e. whenνi ≥ 0 for all
i ∈ I with at least one strict inequality,ρ0 is the unique minimizer in(2.13), and if
A is positive definite, thenu = 0 is the unique minimizer in(2.15).

As explained above, forn ≥ 2 the conformal case is exceptional among the critical con-
figurations ofA andM. Our next theorem provides an optimal criterion for boundedness
from below of the functionals9S2(ρ) andFM in the general case. It turns out that this
criterion requires a slightly stronger condition than (1.10), namely,{

3J (M) ≥ 0 for all ∅ 6= J ⊆ I,

if 3J (M) = 0 for someJ , thenai,i +3J\{i}(M) > 0, ∀i ∈ J.
(2.16)

Remark 2.1. Note that (2.16) is equivalent to (1.10) if the matrixA has a positive diag-
onal, that is,ai,i > 0 for all i ∈ I .

Theorem 2. LetA be a symmetric matrix satisfying(2.1)andM ∈ Rn+. Then:

(i) Condition(2.16) is necessary and sufficient for the boundedness from below of9S2

on0M(S
2).

(ii) If, in addition, the matrixA is positive definite, then condition(2.16)is necessary and
sufficient for the boundedness from below ofFM onHn(S

2).

Remark 2.2. In the general nonconformal critical case, in contrast with the conformal
case, we do not know whether minimizers exist, both in (i) and (ii). What we do know is
thatρ0

= (M1/4π, . . . ,Mn/4π) is not a minimizer for9S2 and thatu0
≡ 0 is not a min-

imizer forFM (although both are solutions of the corresponding Euler–Lagrange equa-
tions); see Proposition 3.1 below. In [19] we obtained a generalization of Theorem 2(i)
for compact manifolds in dimensionN ≥ 2.
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So far we considered only nonnegative matricesA (i.e. those satisfying (2.1)). How-
ever, there is interest in studying a more general class of systems, namely that ofcollabo-
rating systems. These are systems associated with symmetric matricesA which have the
following structure: there exists a decomposition ofI as a disjoint union ofK (1 ≤ K

≤ n) subsetsI1, . . . , IK such that{
ai,j ≥ 0, ∀i, j ∈ Il, l = 1, . . . , K,

ai,j ≤ 0, ∀i ∈ Il, ∀j ∈ Im, ∀l 6= m, 1 ≤ l, m ≤ K.
(2.17)

The caseK = 1 corresponds of course to a nonnegative matrix, but forK ≥ 2, an
assumption that we shall make in what follows, we obtain new types of matrices. Of
particular interest is the extreme caseK = n. Here all theIl ’s are singletons and we get
the condition

ai,i ≥ 0, ∀i and ai,j ≤ 0, ∀i 6= j. (2.18)

In fact, Jost and Wang studied in [11] a special system of this type, the Toda system,
which corresponds to the case whereA is the Cartan matrix forSU(n+ 1), i.e.

A =



2 −1 0 . . . . . . 0

−1 2 −1
. . . 0

...

0 −1
. . .

. . .
. . .

...
...
. . .

. . .
. . . −1 0

... 0
. . . −1 2 −1

0 . . . . . . 0 −1 2


. (2.19)

For A in the class (2.18) the condition (1.10) (which is easily seen to be equivalent to
(2.16) in this case) simplifies to

0 ≤ 3{i}(M) = 8πMi − ai,iM
2
i , ∀i. (2.20)

Indeed, the validity of (1.10) for all singletons,J = {i} for all i, implies its validity for
all J ⊆ I , since all the off-diagonal elements ofA are nonpositive. In fact, in [11] it
was proved that for the Toda system condition (2.20), i.e.Mi ≤ 4π for all i, is suffi-
cient for the correspondingFM to be bounded below onHn(S

2) (necessity is known to
hold true). Actually, Jost and Wang proved the analogue result on every 2-dimensional
compact surface. Using the dual formulation we are able to obtain a very simple proof of
the boundedness from below of9S2 on 0M(S

2) in this case. Moreover, we are able to
compute the exact value of the infimum and to prove that the infimum is not achieved. We
summarize our results for general collaborating systems in the following theorem.

Theorem 3. LetA be a symmetric matrix corresponding to a collaborating system with
K ≥ 2 blocks and letM ∈ Rn+ be given. Then:
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(i) The validity of(2.16)for eachIl , i.e.

∀l = 1, . . . , K :


3J (M) ≥ 0 for all ∅ 6= J ⊆ Il, and

if 3J (M) = 0 for someJ ⊆ Il ,

thenai,i +3J\{i}(M) > 0, ∀i ∈ J,

(2.21)

is a necessary and sufficient condition for the boundedness from below of9S2 on
0M(S

2), and whenA is positive definite, for the boundedness from below ofFM on
Hn(S

2).
(ii) If K = n, i.e.A satisfies(2.18), and if the critical case conditions,ai,iMi = 8π for

all i, are satisfied, then

inf
0M (S

2)
9S2 =

∑
i∈I

[
Mi log

Mi

4π
+
Mi

2π
c0

]
−

1

4π
sup
(S2)n

W(x), (2.22)

where
W(x) :=

∑
i 6=j

(−ai,j )MiMj log |xi − xj | (2.23)

and

c0 =

∫
S2

log |x − y| dy = 2π(log 4− 1). (2.24)

(iii) Under the assumptions of (ii), if we suppose in addition thatA does not have
a row of zeros (ignoring the diagonal), then the infimum in(2.22) is not attained.
Moreover, any weak limit (in the sense of measures) of a minimizing sequence is of
the formρ = (M1δx1, . . . ,Mnδxn), wherex = (x1, . . . , xn) ∈ (S2)n is a maximizer
ofW .

In Subsection 5.2 we shall present a variant of Theorem 3(ii),(iii) for a more general class
of matrices than (2.18).

Remark 2.3. Since the proof of part (i) of Theorem 3 uses only the scalar Moser–Trudin-
ger inequality, which is known to be true on any two-dimensional compact surface (see
[9, 14]), it follows that the assertion in (i) is valid in this more general setting (as proved
in [11] for the Toda system).

Next we present two results on related variational problems, onR2 and on a bounded
domain� ⊂ R2. In the following we shall assume again thatA satisfies (2.1). We shall
first describe an entropy inequality which involves the functional9R2, already defined
in (2.9). We claim that this functional is well defined on0M(R2) for everyM ∈ Rn+.
Indeed, using (2.5), the stereographic projection and the obvious fact that the Euclidean
distance between any two points on the unit sphere is less than or equal to 2, we get the
elementary inequality

log |x − y| ≤
1

2
log(1 + |x|2)+

1

2
log(1 + |y|2), ∀x, y ∈ R2. (2.25)
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By (2.25) we obtain for anỹρ ∈ 0M(R2), as in [4],∫
R2

∫
R2
ρ̃i(x)(log |x − y|)ρ̃j (y) dx dy < ∞, ∀i, j.

On the other hand, using (3.3) below, we get∫
{|y−x|≤1}

ρ̃i(y) log

(
1

|x − y|

)
dy ≤ C, ∀x ∈ R2, ∀i.

Hence ∫
R2

∫
R2
ρ̃i(x)(log |x − y|)ρ̃j (y) dx dy > −∞, ∀i, j,

and our claim follows. From the discussion after (2.8) it follows that9R2 is invariant with
respect to translations and dilatations, but, in general, not with respect to the other con-
formal actions ofR2. The invariance with respect to the noncompact actions, translations
and dilatations implies that3I (M) = 0 is a necessary condition for boundedness below
of 9R2. Using similar techniques to those used in the proof of Theorem 2, we obtain an
analogous result concerning the boundedness of the functional. In addition, we establish
an existence result for minimizers.

Theorem 4. LetA be a symmetric matrix satisfying(2.1)andM ∈ Rn+. Then:

(i) 3I (M) = 0 and (2.16)are necessary and sufficient conditions for the boundedness
from below of9R2 on0M(R2).

(ii) There exists a minimizerρ for 9R2 over0M(R2) if and only if

3I (M) = 0 and 3J (M) > 0, ∀J & I. (2.26)

Finally we turn to a version of the Moser–Trudinger inequality for systems on bounded
domains. By Moser’s inequality [13],

1

2

∫
�

|∇u|2 − 8π log

(∫
�

eu
)

≥ −C, ∀u ∈ H 1
0 (�), (2.27)

where� is a bounded domain inR2. The extension to systems is expected to take the
form

1

2

∑
i,j∈I

∫
�

ai,j∇ui∇uj −

∑
i∈I

Mi log

(∫
�

exp
(∑
j∈I

ai,juj

))
≥ −C, ∀u ∈ (H 1

0 (�))
n,

(2.28)
whereA is a matrix satisfying (2.1). In [7] it was shown that (2.28) holds in thesubcritical
case(1.9). The question whether the same result remains valid in thecritical casewas left
open. Our last theorem provides a positive answer to that question. Here again we use a
dual formulation, involving the Green functionG�(x, y) for the operator−1 on� with
Dirichlet boundary conditions.

Theorem 5. Let� be a bounded domain inR2, A a symmetric matrix andM ∈ Rn+.
Then:
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(i) If A satisfies(2.1) then condition(2.16) is necessary and sufficient for the bounded-
ness from below of

9�(ρ) =

∑
i∈I

∫
�

ρi(x) logρi(x) dx −
1

2

∑
i,j∈I

ai,j

∫
�

∫
�

ρi(x)G�(x, y)ρj (y) dx dy

(2.29)
over

0M(�) =

{
ρ = (ρi)i∈I : ρi ≥ 0,

∫
�

ρi logρi < ∞ and
∫
�

ρi = Mi, ∀i

}
.

(2.30)
If, in addition, the matrixA is positive definite, then condition(2.16)is necessary and
sufficient for(2.28)to hold.

(ii) More generally, ifA corresponds to a collaborating system withK blocks, then(2.21)
is a necessary and sufficient condition for the boundedness from below of9� on
0M(�), and whenA is positive definite, for the validity of(2.28).

3. On duality and conformal invariance

In this section we explore the two important notions of duality and conformal invariance.
In particular, we shall prove Theorem 1 on the conformal case.

We begin by presenting a duality principle which connects the Moser–Trudinger func-
tionalFM with 9S2. An analogous statement for the problem on a bounded domain was
proved in [7, Proposition 2.1]. A simple adaptation of the argument yields the result for
our context too, but we prefer to present a slightly different approach which involves the
functional

8(ρ,u) =

∑
i∈I

∫
S2
ρi logρi +

∑
i,j∈I

ai,j

[ ∫
S2

1

2
∇ui · ∇uj − ρiuj

]
,

defined on0M(S
2)×Hn(S

2).

Lemma 3.1. LetA be a symmetricn×nmatrix. Then, for any fixedu ∈ Hn(S
2),8(·,u)

is bounded from below on0M(S
2) and

inf
ρ∈0M (S

2)
8(ρ,u) = FM(u)+

∑
i∈I

Mi log
Mi

4π
. (3.1)

Moreover, the infimum in(3.1) is uniquely attained at̄ρ given by

ρ̄i = Mi

exp(
∑
j∈I ai,juj )∫

S2 exp(
∑
j∈I ai,juj )

, ∀i ∈ I. (3.2)
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Proof. Applying the elementary inequality

ab ≤ b logb − b + ea, ∀a ∈ R, ∀b ∈ R+, (3.3)

with a = uj (x)/γ andb = γρi(x), and using (1.1), we find that for alli, j ∈ I and
γ > 0,∫
S2
ρiuj ≤ γ

∫
S2
ρi logρi+

∫
S2
euj /γ +γMi log(γ /e) ≤ γ

∫
S2
ρi logρi+C(uj ,Mi, γ ).

Therefore, for someε > 0 andC = C(u,M, ε) we have

8(ρ,u) ≥ ε
∑
i∈I

∫
S2
ρi logρi − C.

Hence, for each fixedu ∈ Hn(S
2) the functional8(·,u), which is continuous and strictly

convex on the closed and convex subset0M(S
2) of the reflexive Banach space (Orlicz

space)

X =

{
ρ = (ρi)i∈I :

∫
S2
((1 + |ρi |) log(1 + |ρi |)− |ρi |) < ∞, ∀i

}
satisfies the coercivity condition

8(ρ,u) → ∞ as
∑
i∈I

∫
S2
ρi logρi → ∞, for ρ ∈ 0M(S

2).

It follows that the minimum of8(·,u) over0M(S
2) is attained, and the unique minimizer

ρ must satisfy (3.2). Plugging it in8 we are led to (3.1). ut

Next we examine the infimum of8(ρ, ·) with respect tou, for a fixedρ, under the addi-
tional assumption thatA is positive definite.

Lemma 3.2. SupposeA is positive definite. Then, for any fixedρ ∈ 0M(S
2), the infimum

of8(ρ, ·) overHn(S
2) is attained atū given by

−1ūi = ρi −
Mi

4π
in S2, ∀i ∈ I. (3.4)

Moreover,

min
u∈Hn(S2)

8(ρ,u) =

∑
i∈I

∫
S2
ρi logρi

+
1

4π

∑
i,j∈I

ai,j

∫
S2

∫
S2

(
ρi(x)−

Mi

4π

)
(log |x − y|)

(
ρj (y)−

Mj

4π

)
dx dy. (3.5)
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Proof. Similarly to the proof of Lemma 3.1 we deduce that8(ρ, ·) is strictly convex
and coercive overHn(S

2) (here we use the assumption thatA is positive definite), and
it follows that the minimum is attained at a uniqueu ∈ Hn(S

2). Taking the variation of
8(ρ,u) with respect to eachuj yields (3.4). The Green functionG(x, y) for −1 on S2

is by definition a solution to

−1yG(x, y) = δx −
1

4π
onS2. (3.6)

The solution to (3.6) is unique up to an additive constant, and we can choose as a repre-
sentativeG(x, y) = −

1
2π log |x−y| (here again|x−y| stands for the Euclidean distance

in R3). Therefore, we may rewrite (3.4) as

ūi = G ∗

(
ρi −

Mi

4π

)
∀i ∈ I. (3.7)

Plugging (3.7) in8 and using the equality∫
S2

(
1

2
∇ūi ·∇ūj −ρi ūj

)
=

∫
S2

(
1

2

(
ρi−

Mi

4π

)
ūj −ρi ūj

)
= −

1

2

∫
S2

∫
S2

(
ρi(x)−

Mi

4π

)
G(x, y)

(
ρj (y)−

Mj

4π

)
dx dy,

we are led to (3.5). ut

A simple corollary of the above is the following analogue to [7, Proposition 2.1].

Corollary 3.1. LetA = (ai,j ) be a positive definite matrix. Then9S2 is bounded from
below on0M(S

2) iff FM is bounded from below onHn(S
2) and

inf
ρ∈0M (S

2)
9S2(ρ) = inf

u∈Hn(S2)
FM(u)+

∑
i∈I

Mi log
Mi

4π
+

c0

16π2

∑
i,j∈I

ai,jMiMj , (3.8)

wherec0 is defined in(2.24). Moreover, existence of minimizers for the two problems is
equivalent, and the minimizers are related via(3.2)and (3.4).

Proof. The result follows immediately from Lemmas 3.1 and 3.2 by using

inf
u∈Hn(S2)

inf
ρ∈0M (S

2)
8(ρ,u) = inf

ρ∈0M (S
2)

inf
u∈Hn(S2)

8(ρ,u). ut

Next we turn to the notion of conformal invariance and present the simple proof of The-
orem 1 concerning the conformal and subconformal cases.

Proof of Theorem 1.By the duality principle of Corollary 3.1 it follows that, for positive
definiteA, (2.13) is equivalent to (2.15). Indeed, it suffices to note that the functionw =

log |Jτ | satisfies the equation

−1w = 2(ew − 1) = 2(|Jτ | − 1).
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Hence, forρi =
Mi

4π |Jτ |, (3.4) givesūi =
Mi

8π log |Jτ | + ci . As explained in Section 2,
(2.13) is equivalent to (2.14) in the conformal case. It suffices thus to prove the assertions
about9S2. We recall the following form of the logarithmic Hardy–Littlewood–Sobolev
inequality (see [3, Theorem 2]; it is equivalent to the critical case of (1.3)):∫

S2
F logF +

∫
S2
G logG+

1

π

∫
S2

∫
S2
F(x)(log |x − y|)G(y) dx dy

≥ 4c0, ∀F,G ∈ 04π (S
2), (3.9)

with equality iff F andG both equal the same conformal image of the constant function
H ≡ 1. Applying (3.9) toF =

4π
Mi
ρi andG =

4π
Mj
ρj yields, for eachi, j ∈ I ,

Mj

∫
S2
ρi logρi +Mi

∫
S2
ρj logρj + 4

∫
S2

∫
S2
ρi(x)(log |x − y|)ρj (y) dx dy

≥
MiMj

π
c0 +MiMj log

MiMj

16π2
. (3.10)

Multiplying (3.10) by
ai,j
16π and summing oni, j yields

∑
i∈I

∑
j∈I ai,jMj

8π

∫
S2
ρi logρi +

1

4π

∑
i,j∈I

ai,j

∫
S2

∫
S2
ρi(x)(log |x − y|)ρj (y) dx dy

≥
c0

16π2

∑
i,j∈I

ai,jMiMj +
1

16π

∑
i,j∈I

ai,jMiMj log
MiMj

16π2

=
c0

16π2

∑
i,j∈I

ai,jMiMj +

∑
i∈I

(
1 −

νi

2

)
Mi log

Mi

4π
, (3.11)

which may be rewritten as

9S2(ρ) ≥ 9S2(ρ0)+

∑
i∈I

νi

2

∫
S2
ρi log(4πρi/Mi), (3.12)

whereνi is defined in (2.7). In the conformal case,νi = 0 for all i ∈ I, and (2.13) fol-
lows from (3.12). Moreover, (ii) follows from conformal invariance, and the uniqueness
assertion for this case in (v) follows from the characterization of uniqueness in (3.9).

In the subconformal case (νi ≥ 0 for all i andνi0 > 0 for somei0) we apply Jensen’s
inequality ∫

S2
(4πρi/Mi) log(4πρi/Mi) ≥ 0 (3.13)

to the r.h.s. of (3.12) to infer that

9S2(ρ) ≥ 9S2(ρ0). (3.14)

For ρ0 there is equality in (3.14). Therefore,ρ0 is a minimizer. Moreover, ifρ is any
minimizer, then equality must hold in (3.10) for alli, j ∈ I such thatai,j > 0. Under the



426 Itai Shafrir, Gershon Wolansky

assumption thatA is irreducible, it follows thatρ is a conformal image ofρ0. We claim
that actuallyρ = ρ0. Indeed, assume by negation thatρ is a nontrivial conformal image
of ρ0, and thus all its components are nonconstant. This yields strict inequality in (3.13)
for all i ∈ I . By assumption there is ani0 ∈ I for whichνi0 > 0, and therefore, by (3.12)
the inequality in (3.14) too is strict. Contradiction. ut

Our next result shows that the minimizing property of the constant configurationρ0 char-
acterizes the conformal case among the critical cases. More precisely, we have

Proposition 3.1. LetA be a symmetric matrix satisfying(2.1). Assume that3I (M) = 0
but that (2.11) is not satisfied, i.e., there existsi0 such thatνi0 6= 0. Thenρ0 is not a
minimizer for9S2 over0M(S

2).

Proof. Assume by negation thatρ0 is a minimizer. Then alsõρ0 is a minimizer for9̃R2

over0M(R2). Using our assumption3I (M) = 0 (i.e.
∑
i∈I νiMi = 0) and the fact that

the components of̃ρ0 are proportional to each other in (2.10) yields

9R2(ρ̃0) = 9̃R2(ρ̃0). (3.15)

Moreover, whenever3I (M) = 0 we also have

inf
0M (R2)

9̃R2 ≤ inf
0M (R2)

9R2. (3.16)

Indeed, fix anyρ̃ ∈ 0M(R2). Then the functional9R2 is invariant with respect to dilata-
tions, i.e.9R2(ρ̃(α)) = 9R2(ρ̃) for all α > 0, whereρ̃(α)(x) = α2ρ̃(αx). Moreover,

lim
α→∞

∫
R2
ρ̃
(α)
i log(1 + |x|2) dx = lim

α→∞

∫
R2
ρ̃i log(1 + |x/α|

2) dx = 0, ∀i ∈ I,

and thus limα→∞ 9̃R2(ρ̃(α)) = 9R2(ρ̃). This clearly implies (3.16). Combining (3.16)
with (3.15) it follows thatρ̃0 is also a minimizer of9R2 over0M(R2). However, every
minimizer ρ̃ of 9̃R2 over0M(R2) satisfies the Euler–Lagrange equations

ρ̃i(x) = λi(1+|x|2)−νi exp

(
−

1

2π

∑
j∈I

ai,j

∫
R2
ρj (y) log |x−y| dy

)
, ∀i ∈ I, (3.17)

for some positive constantsλ1, . . . , λn. On the other hand, any minimizer of9R2 satisfies
(3.17) withνi = 0 for all i ∈ I . Sinceρ̃0 is a minimizer for both functionals, we get a
contradiction fori = i0. ut

4. A basic estimate

Proposition 4.1 below provides the main tool for the proofs of Theorems 2, 4 and 5. Since
in all these results condition (2.16) plays an important role, we begin with an interpreta-
tion of it. The proof of the following elementary lemma requires a simple modification of
the proof of [7, Lemma 5.1].
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Lemma 4.1. LetA be a symmetric matrix and letM ∈ Rn+ satisfy3I (M) = 0. Then for
eachi ∈ I the following two conditions are equivalent:

∂3I

∂Mi

(M) < 0, (4.1)

3I\{i}(M)+ ai,iM
2
i > 0. (4.2)

Proof. Since∂3I
∂Mi

(M) = 8π − 2
∑
j∈I ai,jMj , we have

0 = 3I (M) = 3I\{i}(M)+ ai,iM
2
i +Mi

(
8π − 2

∑
j∈I

ai,jMj

)
= 3I\{i}(M)+ ai,iM

2
i +Mi

∂3I

∂Mi

(M),

and the result follows. ut

The next lemma explains the significance of condition (2.16).

Lemma 4.2. LetA be a symmetric matrix withai,i ≥ 0 for all i ∈ I , and letM ∈ Rn+
satisfy(1.10). Then(2.16) is satisfied if and only if3I is identically zero on no edge of
the box

B(M) = {N ∈ Rn+ : N ≤ M}.

Proof. The 2n vertices ofB(M) are0 and{MJ }∅6=J⊆I where

(MJ )j =

{
Mj if j ∈ J,

0 otherwise.

Assume first that (2.16) is not satisfied. Then there existJ ⊆ I and i ∈ J such that
3J (M) = 0, ai,i = 0 and3K(M) = 0 forK = J \ {i}. Sinceaj,j ≥ 0 for all j ∈ I, and
3I ≥ 0 on all the vertices ofB(M) (by (1.10)), it follows from the maximum principle
that3I ≥ 0 onB(M). Let fJ : [0,Mi] → [0,∞) denote the restriction of3I to the
edge connectingMK to MJ . Sinceai,i = 0, fJ is a linear function on[0,Mi] satisfying
fJ (Mi) = 3J (M) = 0 andf ′

J (Mi) = 0 (by Lemma 4.1). ThereforefJ ≡ 0 on[0,Mi],
i.e.3I = 0 on the edge connectingMK to MJ .

Assume next that3I is identically zero on some edge connectingMK to MJ with
J = K ∪ {i}. Clearly3I (MJ ) = 3I (MK) = 0 and ∂3I

∂Mi
(MJ ) = 0. Therefore, by

Lemma 4.1 we infer that3K(M) = ai,i = 0 and (2.16) fails to hold. ut

Now we are in a position to present the main result of this section.

Proposition 4.1. Let A be a symmetric matrix withai,i ≥ 0 for all i ∈ I, and let
M ∈ Rn+. Then there exists a constantC0 such that∫ 0

−∞

∑
i∈I

w′

i logw′

i ds +
1

4π

∫ 0

−∞

3I (w) ds ≥ −C0 (4.3)
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for all w = (w1, . . . , wn)whose components are absolutely continuous onR− and satisfy

w′

i ≥ 0 on (−∞,0), lim
s→−∞

wi(s) = 0 and wi(0) = Mi, ∀i, (4.4)

if and only ifM satisfies condition(2.16).

Proof. (i) We first prove the sufficiency of condition (2.16). Put

F(w,w′) =

∑
i∈I

w′

i logw′

i +
1

4π
3I (w).

Applying the elementary inequality (3.3) witha = log 3I (w)
4πn andb = w′

i yields for each
s ∈ (−∞,0),

w′

i logw′

i +
3I (w)

4πn
≥ w′

i[log3I (w)− log 4πn+ 1].

Therefore,∫ 0

−∞

F(w,w′) ds ≥

∫ 0

−∞

( ∑
i∈I

w′

i

)
log3I (w) ds − log

(
4πn

e

) ∑
i∈I

Mi . (4.5)

For eachi we have∫ 0

−∞

w′

i log3I (w) ds ≥

∫ 0

−∞

w′

i logλi(wi) ds =

∫ Mi

0
logλi(m) dm, (4.6)

where
λi(m) := inf{3I (N) : N = (N1, . . . , Nn) ∈ B(M), Ni = m}. (4.7)

Sinceaj,j ≥ 0 for all j, the minimum in (4.7) is attained at one of the vertices of the
n− 1-dimensional box{N ∈ B(M) : Ni = m}.

Let us fix anyi ∈ I . Setting for eachJ & I (J = ∅ is allowed, and we denote
M∅ = 0) andj /∈ J ,

gJ,j (m) = 3I ((1 −m/Mj )MJ + (m/Mj )MJ∪{j}) for m ∈ [0,Mj ],

we then have

λi(m) = min{gJ,i(m) : J ⊆ I \ {i}} for m ∈ [0,Mi]. (4.8)

For eachJ ⊆ I \ {i}, gJ,i is a concave quadratic polynomial in the variablem (since
ai,i ≥ 0) which is nonnegative on[0,Mi]. If gJ,i(0) = 0 then we must haveg′

J,i(0) > 0.
Indeed,g′

J,i(0) = 0 would imply that3I is identically zero on the edge joiningMJ

to MJ∪{i}, contradicting (2.16) and Lemma 4.2. By the same argument we have: either
gJ,i(Mi) > 0, or, if gJ,i(Mi) = 0, theng′

J,i(Mi) < 0. We conclude that there exists
αJ,i > 0 such that

gJ,i(m) ≥ αJ,im(Mi −m) on [0,Mi].
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In view of (4.8), we obtain for̄αi := min{αJ,i : J ⊆ I \ {i}},

λi(m) ≥ ᾱim(Mi −m) on [0,Mi]. (4.9)

Clearly, ∫ Mi

0
log(m(Mi −m)) dm > −∞, (4.10)

and (4.3) follows from (4.5), (4.6), (4.9) and (4.10).
(ii) Next we prove the necessity of (2.16). Assume that (2.16) is not satisfied. If

3J (M) < 0 for some∅ 6= J ⊆ I , then by the argument of [7, Lemma 2.2] it fol-
lows that (4.3) cannot hold. Assume then that (1.10) is satisfied, but for somei ∈ I and
∅ 6= K ⊆ I \ {i} we have, forJ = K ∪ {i},

3I (MK) = 3I (MJ ) = ai,i = 0. (4.11)

Note that3I (MJ ) = ai,i = 0 implies thatJ is not a singleton, i.e.K 6= ∅. Then by
Lemma 4.2 it follows that3I is identically zero on the edge connectingMK to MJ . For
eachm we construct a pathzm : (−∞,0) → B(M) connecting0 to M as follows. For
simplicity we omit the subscriptm. First, on(−∞,−m− 1) we set

zj (t) =

{
Mj e

t+m+1 if j ∈ K,

0 if j /∈ K.

Then ∫
−m−1

−∞

F(z, z′) dt = c1 (4.12)

for some constantc1 independent ofm. On [−m − 1,−1] we connectMK to MJ by
setting

zj (t) =


Mj if j ∈ K,

Mi t/m if j = i,

0 if j /∈ J.

Then∫
−1

−m−1
F(z, z′) dt =

∫
−1

−m−1
z′i logz′i dt = Mi log

Mi

m
→ −∞ asm → ∞. (4.13)

Finally, on[−1,0] we connectMJ to M by z(t) = (−t)MJ + (1 + t)M, which gives∫ 0

−1
F(z, z′) dt = c2. (4.14)

Combining (4.12)–(4.14) yields

lim
m→∞

∫ 0

−∞

F(zm, z
′
m) dt = −∞,

and thus (4.3) does not hold. ut
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5. Proofs of the main results

In this section we prove our main results, Theorems 2–5. We divide the assumptions on
A into two cases. The first case, ofA nonnegative (i.e. satisfying (2.1)), will be treated
in Subsection 5.1. The second case, studied in Subsection 5.2, is of amulti-block collab-
orating system, i.e. when, up to a permutation of the indices ofI , A consists ofK ≥ 2
nonnegative blocks on the diagonal and outside these blocks all the elements are nonpos-
itive (see (2.17)). The case of nonnegativeA, corresponding to the caseK = 1, is then
entitled:single-block collaborating system.

5.1. Single-block collaborating systems

We begin with the proof of Theorem 5(i), which is concerned with the problem on a
bounded domain� ⊂ R2. It extends [7, Lemma 2.1] to the critical case.

Proof of Theorem 5(i).By the duality principle of [7, Proposition 2.1] proving bound-
edness of9� will imply (2.28). Using Schwarz symmetrization as in the proof of [7,
Lemma 2.1] we see that it suffices to consider the case where� = BR, the disc centered
at 0 with radiusR, and where eachρi is radially symmetric and nonincreasing. We next
sketch the argument from [7, Lemma 2.1] in order to obtain an equivalent expression for
9�(ρ). Denoting, for eachi, by ui the solution to−1ui = ρi in BR with zero boundary
condition we have

9�(ρ) =

∑
i∈I

∫
BR

ρi logρi dx −
1

2

∑
i,j∈I

ai,j

∫
BR

ρiuj dx. (5.1)

Putmi(r) =
∫
Br
ρi dx = 2π

∫ r
0 τρi(τ ) dτ so thatu′

i(r) = −
mi (r)
2πr . Then

∫
BR

ρi logρi dx = 2π
∫ R

0
ρi logρi r dr

=

∫ R

0
m′

i logm′

i dr −

∫ R

0
m′

i logr dr −mi(R) log(2π)

=

∫ R

0
m′

i logm′

i dr +

∫ R

0

mi

r
dr −mi(R) log(2πR) (5.2)

and ∫
BR

ρiuj dx =

∫ R

0
m′

iuj dr

=
1

2π

∫ R

0

mimj

r
dr +mi(R)uj (R) =

1

2π

∫ R

0

mimj

r
dr. (5.3)
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Plugging (5.2)–(5.3) in (5.1) yields

9�(ρ) =

∫ R

0

∑
i∈I

m′

i logm′

i dr

+

∫ R

0

[ ∑
i∈I

mi

r
−

1

4π

∑
i,j∈I

ai,j
mimj

r

]
dr − log(2πR)

∑
i∈I

Mi .

(5.4)

Finally, settingwi(s) = mi(e
s) for all s ∈ (−∞, logR] andi ∈ I , we may rewrite (5.4)

as

9�(ρ) =

∫ logR

−∞

∑
i∈I

w′

i logw′

i ds

+

∫ logR

−∞

[
2

∑
i∈I

wi −
1

4π

∑
i,j∈I

ai,jwiwj

]
ds − log(2πR)

∑
i∈I

Mi,

and the result then follows directly from Proposition 4.1. ut

Next we present the proof of the entropy inequality of Theorem 4.

Proof of Theorem 4(i).We begin by proving sufficiency of the conditions. First we show
that it is enough to consider radially symmetricρ̃. In fact, settingρ̃∗

= (ρ̃∗

i )
n
i=1, where

for eachi, ρ̃∗

i is the symmetric decreasing rearrangement ofρ̃i , we clearly have∫
R2
ρ̃∗

i log ρ̃∗

i dx =

∫
R2
ρ̃i log ρ̃i dx,

∫
R2
ρ̃∗

i |log ρ̃∗

i | dx =

∫
R2
ρ̃i |log ρ̃i | dx,

and ∫
R2
ρ̃∗

i log(1 + |x|2) dx ≤

∫
R2
ρ̃i log(1 + |x|2) dx.

In particular we deduce that̃ρ∗
∈ 0M(R2) wheneverρ̃ ∈ 0M(R2). By a variant of the

Riesz rearrangement inequality (see [4, Lemma 2]) we have∫
R2

∫
R2
ρ̃i(x)(log |x−y|)ρ̃j (y) dx dy ≥

∫
R2

∫
R2
ρ̃∗

i (x)(log |x−y|)ρ̃∗

j (y) dx dy, ∀i, j.

Thus9R2(ρ̃
∗) ≤ 9R2(ρ̃), and we may assume in what follows that eachρ̃i is a radially

symmetric and decreasing function ofr = |x|. For eachi let −ui denote theNewtonian
potentialof ρ̃i , i.e.

ui(x) = −
1

2π

∫
R2
ρ̃i(y) log |x − y| dy.

Thusui(x) = ui(r) is a radial function satisfying−1ui = ρ̃i in R2. Our assumption that∫
R2 ρ̃i(x) log(1 + |x|2) dx < ∞ (cf. (2.8)) implies thatρ̃i is regular at infinity(see [8,

Ch. II, §3]), and in particular, sincẽρi is radial, we have

−ui(r) =
logr

2π

∫
Br

ρ̃i(y) dy +
1

2π

∫
R2\Br

ρ̃i(y) log |y| dy (5.5)
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(see [8, Ch. II, §3, Lemma 9]). By (5.5) we deduce easily that

lim
R→∞

ui(R)+
Mi

2π
logR = 0. (5.6)

We definemi(r) = 2πr
∫ r

0 ρ̃i(τ ) dτ as above. Since forR > 1,

0 ≤ (logR)(Mi −mi(R)) = (logR)
∫

R2\BR

ρ̃i(y) dy ≤

∫
R2\BR

ρ̃i(y) log |y| dy,

we obtain

lim
R→∞

(Mi −mi(R)) logR = 0. (5.7)

Clearly,

9R2(ρ̃) = lim
R→∞

9R(ρ̃), (5.8)

where

9R(ρ̃) =

∑
i∈I

∫
BR

ρ̃i log ρ̃i dx −
1

2

∑
i,j∈I

ai,j

∫
BR

ρ̃iuj dx. (5.9)

Using (5.2) and the first two equalities in (5.3) yields9R(ρ̃) = GR(m) − log(2π)
·
∑
i∈I mi(R) with

GR(m) =

∫ R

0

∑
i∈I

m′

i logm′

i dr +

∫ R

0

[∑
i∈I

mi

r
−

1

4π

∑
i,j∈I

ai,j
mimj

r

]
dr

−

∑
i∈I

mi(R)

(
logR +

1

2

∑
j∈I

ai,juj (R)

)
. (5.10)

Next, settingwi(s) = mi(e
s) as above we get

GR(m) =

∫ logR

−∞

∑
i∈I

w′

i logw′

i ds +

∫ logR

−∞

[
2

∑
i∈I

wi −
1

4π

∑
i,j∈I

ai,jwiwj

]
ds

−

∑
i∈I

mi(R)

(
2 logR +

1

2

∑
j∈I

ai,juj (R)

)
. (5.11)

Further, by (5.6) and (5.7) we obtain

lim
R→∞

∑
i∈I

mi(R)

(
2 logR +

1

2

∑
j∈I

ai,juj (R)

)
−

1

4π
3I (M) logR

= lim
R→∞

(logR) ·

∑
i∈I

(mi(R)−Mi)

(
2 −

1

4π

∑
j∈I

ai,jMj

)
= 0. (5.12)
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By (5.8)–(5.12) we finally conclude, using our assumption3I (M) = 0, that

9R2(ρ̃) = lim
R→∞

∫ logR

−∞

∑
i∈I

w′

i logw′

i ds

+

∫ logR

−∞

[
2

∑
i∈I

wi −
1

4π

∑
i,j∈I

ai,jwiwj

]
ds − log(2π)

∑
i∈I

Mi . (5.13)

The result follows from (5.13) and Proposition 4.1, granted (2.16), where we replace
wi(s) bywi(s + logR) for all i.

Next we turn to the necessity of the conditions. We assume that9R2 is bounded
below on0M(R2). Fix ρ̂ ∈ 0M(R2) with compact support inB1. For eachα > 0, define
ρ̂α(x) = α2ρ̂(αx). It is easy to verify that̂ρα ∈ 0M(R2) and that

9R2(ρ̂α) = 9R2(ρ̂)+
1

4π
3I (M) logα. (5.14)

From (5.14) we get immediately the necessity of the condition3I (M) = 0. To see why
(2.16) is necessary as well, we shall use Theorem 5 with� = B1. Extendρ ∈ 0M(�) by
0 ontoR2

\B1. From (5.13),9R2(ρ) = 9�(ρ)− log(2π)
∑
i∈I Mi , and the necessity of

(2.16) follows from the analogous result in Theorem 5. ut

Proof of Theorem 4(ii).We shall prove existence of a minimizer using the construction of
an entire solution to a Liouville system in [7, Theorem 1.4]. Below is a short description of
this construction. First, using our assumption (2.26) we can find a sequence{M(m)

} such
thatM(m)

→ M and3J (M(m)) > 0 for all J ⊆ I . By the results of [7] it follows that
for eachm there exists a radially symmetric and decreasing minimizer,ρ(m), for9B1 over
0M(m)(B1). It was shown in the proof of [7, Theorem 1.4] that for an appropriate choice of
a sequenceR(m) → ∞, the rescaled sequenceρ̃(m)(x) = (R(m))−2ρ(m)(x/R(m)) satisfies

lim
m→∞

ρ̃(m) = ρ̃(∞) locally uniformly onR2, (5.15)

with ρ̃(∞)
i > 0 and

∫
R2 ρ

(∞)
i = Mi for all i ∈ I . Moreover, setting

ũ
(∞)
i (x) = −

1

2π

∫
R2
ρ̃
(∞)
i (y) log |x − y| dy, ∀i ∈ I,

we obtain an entire solution to the Liouville system

−1ũ
(∞)
i = λ

(∞)
i exp

(∑
j∈I

ai,j ũ
(∞)
j

)
, ∀i ∈ I, onR2, (5.16)

for some positive constantsλ(∞)
i , i = 1, . . . , n. Clearly, eachρ̃(m) is a minimizer for

9B
R(m)

over0M(m)(BR(m)). It will also be useful to consider, as in [7],ṽ(m)i = log ρ̃(m)i

for all i ∈ I, which satisfies

−1ṽ
(m)
i =

∑
j∈I

ai,j exp(ṽ(m)j ) onBR(m) . (5.17)
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We want to prove thatρ(∞) is a minimizer for9R2 over 0M(R2). Note first that each
ρ ∈ 0M(m)(BR(m)) can also be considered as a member in0M(m)(R2), by extending it by
zero outsideBR(m) . For suchρ we have (see (5.9))

9R2(ρ) = 9R(m)(ρ) =

∑
i∈I

∫
B
R(m)

ρi logρi dx −
1

2

∑
i,j∈I

ai,j

∫
B
R(m)

ρiuj dx,

with

ui(x) = −
1

2π

∫
B
R(m)

ρi(y) log |x − y| dy, ∀i ∈ I.

Define also

vi(x) =

∫
R2
ρi(y)GB

R(m)
(x, y) dy, ∀i ∈ I.

Thenui − vi is a radial harmonic function onBR(m) , which must be identically equal to
the constant

ui(R
(m))− vi(R

(m)) = ui(R
(m)) = −

M
(m)
i

2π
logR(m) (using (5.5)).

Therefore, by definition of9B
R(m)

,

9R2(ρ)−9B
R(m)

(ρ) =
1

2

∑
i,j∈I

ai,j

∫
B
R(m)

ρi(vj − uj ) dx

=
1

4π

∑
i,j∈I

ai,jM
(m)
i M

(m)
j logR(m). (5.18)

It follows from (5.18) that for eachm, ρ̃(m) is a minimizer for9R2 (equivalently, of
9R(m) ) over0M(m)(BR(m)).

Put

u
(m)
i (x) = −

1

2π

∫
B
R(m)

ρ̃
(m)
i (y) log |x − y| dy, ∀i ∈ I. (5.19)

A simple but important consequence of our assumption (2.26) is

1

4π

∂3I

∂Mi

(M) = 2 −
1

2π

∑
j∈I

ai,jMj < 0, ∀i ∈ I (see [7, Lemma 5.1]), (5.20)

which implies the existence ofε0 > 0 andR0 > 0 such that

1

2π

∫
BR0

∑
j∈I

ai,j ρ̃
(∞)
i (x) dx ≥ 2 + 2ε0, ∀i ∈ I.

Using (5.15) we deduce that, form0 large enough,

1

2π

∫
BR0

∑
j∈I

ai,j ρ̃
(m)
i (x) dx ≥ 2 + ε0, ∀i ∈ I, ∀m ≥ m0. (5.21)
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By (5.17) and (5.21) we obtain

−

∑
j∈I ai,jMj

2πr
≤
∂ṽ
(m)
i

∂r
(r) ≤ −

2 + ε0

r
, ∀r ∈ [R0, R

(m)
], ∀i ∈ I. (5.22)

An immediate consequence of (5.22) and (5.15) is that for some constantsc andc1,

c1 −

∑
j∈I ai,jMj

2π
logr ≤ ṽ

(m)
i (r) ≤ c − (2 + ε0) logr, ∀r ∈ [R0, R

(m)
], ∀i ∈ I,

(5.23)
and therefore

ρ̃
(m)
i (r) ≤

ec

r2+ε0
, ∀r ≥ R0, ∀i ∈ I. (5.24)

From (5.24), (5.23), (5.15) and dominated convergence we obtain

lim
m→∞

9R2(ρ̃
(m)) = 9R2(ρ̃

(∞)). (5.25)

Fix now anyρ̃ ∈ 0M(R2). As explained in the proof of assertion (i), it is enough
to considerρ̃ whose components are radially symmetric and decreasing. Fixα > 0 and
δ > 0 such that

ρ̃i(x) ≥ δ, ∀x ∈ Bα, ∀i ∈ I. (5.26)

Let the functionζ be defined byζ =
1
πα2χBα . DefineM̃ by settingM̃(m)

i =
∫
B
R(m)

ρ̃i for

all i ∈ I, and then

ρ̂
(m)

= χB
R(m)

ρ̃ + ζ(M(m)
− M̃

(m)
).

Form large enougĥρ(m) ∈ 0M(m)(BR(m)), and sinceρ̃(m) is a minimizer for9R(m) over
0M(m)(BR(m)), we have

9R2(ρ̃
(m)) ≤ 9R2(ρ̂

(m)
). (5.27)

By (5.27), dominated convergence and (5.25) we infer that

9R2(ρ̃) = lim
m→∞

9R2(χB
R(m)

ρ̃) = lim
m→∞

9R2(ρ̂
(m)
) ≥ lim

m→∞
9R2(ρ̃

(m)) = 9R2(ρ̃(∞)),

and the result follows.
Finally, the necessity of condition (2.26) for the existence of a minimizer is an imme-

diate consequence of [7, Theorem 1.4]. Indeed, the existence of a minimizerρ̃(∞) implies
the existence of an entire solution to the Liouville system (5.16). But it was shown in [7]
that (2.26) is necessary for the latter to hold. ut

Finally, we turn to the proof of our main result onS2, Theorem 2.

Proof of Theorem 2.We first remark that by the duality principle of Corollary 3.1, it is
enough to prove assertion (i), which implies assertion (ii). Next we prove the sufficiency
of condition (2.16). For eachi ∈ I , denote byρ∗

i the symmetric decreasing rearrangement
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of ρi (with respect to the north pole). Clearly
∫
S2 ρ

∗

i logρ∗

i =
∫
S2 ρi logρi for all i and

by a result of Baernstein and Taylor [2, Theorem 2] (see also [3, 4]) we have∫
S2

∫
S2
ρi(x)(log |x−y|)ρj (y) dx dy ≥

∫
S2

∫
S2
ρ∗

i (x)(log |x−y|)ρ∗

j (y) dx dy, ∀i, j.

Therefore, we may assume that eachρi is radially symmetrically decreasing from the
north pole. Moreover, by a simple density argument, we may assume that the support of
eachρi does not intersect a certain neighborhood of the north pole. Next we use stereo-
graphic projection in order to restate the variational problem in an equivalent form onR2.
More precisely, defining̃ρ by (2.4) we deduce by (2.6) that9S2(ρ) = 9̃R2(ρ̃). More-
over, our assumption on the support ofρ implies thatρ̃ is supported in some discBR0.
Therefore, for anyR ≥ R0 we have,

9̃R2(ρ̃) =

∑
i∈I

∫
BR

ρ̃i log ρ̃i dx +
1

4π

∑
i,j∈I

ai,j

∫
BR

∫
BR

ρ̃i(x)(log |x − y|)ρ̃j (y) dx dy

+

∑
i∈I

νi

∫
BR

ρ̃i log(1 + |x|2) dx.

As in the proof of Theorem 4 we shall use

ui(x) = −
1

2π

∫
R2
ρ̃i(y) log |x − y| dy,

mi(r) = 2π
∫ r

0
sρi(s) ds and wi(s) = mi(e

s).

From ∫
BR

ρ̃i log(1 + |x|2) dx =

∫ R

0
m′

i(r) log(1 + r2) dr

= Mi log(1 + R2)−

∫ R

0

2mi(r)r

1 + r2
dr

= Mi log(1 + R2)−

∫ logR

−∞

2wi(s)e2s

1 + e2s
ds (5.28)

and (5.10)–(5.12) we get

9̃R2(ρ̃) =

∫ logR

−∞

∑
i∈I

w′

i logw′

i ds +

∫ logR

−∞

[
2

∑
i∈I

wi −
1

4π

∑
i,j∈I

ai,jwiwj

]
ds

−

∑
i∈I

[
2Mi log(2πR)+

1

2
Mi

∑
j∈I

ai,juj (R)

]

+

∑
i∈I

νi

[
Mi log(1 + R2)−

∫ logR

−∞

2wie2s

1 + e2s
ds

]
. (5.29)
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Using (5.6) and the identity3I (M)
4π =

∑
i∈I νiMi we obtain

−

∑
i∈I

[
2Mi logR +

1

2
Mi

∑
j∈I

ai,juj (R)

]
+

∑
i∈I

νiMi log(1 + R2)

=

[
−
3I (M)

4π
+ 2

∑
i∈I

νiMi

]
logR + o(1)

=
3I (M)

4π
logR + o(1),

with o(1) denoting a quantity which goes to 0 asR → ∞. Therefore we may write

9̃R2(ρ̃) = J−∞(w)+ JR∞(w)− 2 log(2π)
∑
i∈I

Mi + o(1), (5.30)

where

J−∞(w) =

∫ 0

−∞

∑
i∈I

w′

i logw′

i ds +

∫ 0

−∞

[
2

∑
i∈I

wi −
1

4π

∑
i,j∈I

ai,jwiwj

]
ds

−

∑
i∈I

νi

∫ 0

−∞

2wie2s

1 + e2s
ds, (5.31)

and

JR∞(w) =

∫ logR

0

∑
i∈I

w′

i logw′

i ds

+

∫ logR

0

[
2

∑
i∈I

wi −
1

4π

∑
i,j∈I

ai,jwiwj +
3I (M)

4π

]
ds

−

∑
i∈I

νi

∫ logR

0

2wie2s

1 + e2s
ds. (5.32)

Since clearly, ∫ 0

−∞

2wie2s

1 + e2s
≤ 2Mi

∫ 0

−∞

e2s ds = Mi,

it follows from Proposition 4.1 thatJ−∞(w) ≥ −C for some constantC. Hence it remains
to find a lower bound forJR∞(w), uniformly inR ∈ [R0,∞).

Since

−

∑
i∈I

νi

∫ logR

0

2wie2s

1 + e2s
ds = −2νi

∑
i∈I

∫ logR

0
wi ds +

∑
i∈I

νi

∫ logR

0

2wi
1 + e2s

ds

≥ −2νi
∑
i∈I

∫ logR

0
wi ds −

∑
i∈I

|νi |Mi,
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it suffices to prove that the functional

GR∞(w) :=

∫ logR

0

∑
i∈I

w′

i logw′

i ds

+

∫ logR

0

[∑
i∈I

2(1 − νi)wi −
1

4π

∑
i,j∈I

ai,jwiwj +
3I (M)

4π

]
ds (5.33)

is bounded below. A simple computation shows that∑
i∈I

2(1 − νi)wi −
1

4π

∑
i,j∈I

ai,jwiwj +
3I (M)

4π

=

∑
i∈I

2(Mi − wi)−
1

4π

∑
i,j∈I

ai,j (Mi − wi)(Mj − wj ).

Therefore, setting for eachi ∈ I , zi(t) = Mi −wi(−t) for t ∈ [− logR,0] andzi(t) = 0
for t ∈ (−∞,− logR), we infer from (5.33) that

GR∞(w) =

∫ 0

−∞

[∑
i∈I

z′i logz′i +
1

4π
3I (z)

]
dt. (5.34)

Sincezi(−∞) = 0 andzi(0) = Mi −wi(0) ≤ Mi for all i, we can apply Proposition 4.1
to conclude that the r.h.s. of (5.34) is bounded from below, completing the proof of the
sufficiency assertion.

For the proof of necessity of (2.16), we consider9̃R2(ρ̃) for ρ̃ with support inB1.
SinceJ 1

∞(w) = 0 for the correspondingw, we conclude from (5.30) that̃9R2 is bounded
below on the class of such̃ρ’s iff J−∞ is bounded below on the corresponding class of
w’s. But the necessity assertion of Proposition 4.1 implies that (2.16) is necessary for the
latter to hold. ut

5.2. Multi-block systems

We start with the proof of assertion (i) of Theorem 3, dealing with a general collaborating
system withK blocks.

Proof of Theorem 3(i).(i) Setting for eachl = 1, . . . , K,

9
(Il)

S2 (ρ) =

∑
i∈Il

∫
S2
ρi logρi +

1

4π

∑
i,j∈Il

ai,j

∫
S2

∫
S2
ρi(x)(log |x − y|)ρj (y) dx dy,

(5.35)
we may write

9S2(ρ) =

K∑
l=1

9
(Il)

S2 (ρ)+
1

4π

∑
l1 6=l2

∑
i∈Il1

∑
j∈Il2

ai,j

∫
S2

∫
S2
ρi(x)(log |x − y|)ρj (y) dx dy.

(5.36)
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Using the inequality|x − y| ≤ 2 for all x, y ∈ S2, and the assumption (2.17), we get∑
l1 6=l2

∑
i∈Il1

∑
j∈Il2

ai,j

∫
S2

∫
S2
ρi(x)(log |x − y|)ρj (y) dx dy

≥ (log 2) ·

∑
l1 6=l2

∑
i∈Il1

∑
j∈Il2

ai,jMiMj . (5.37)

Therefore, if condition (2.21) is satisfied, then from Theorem 2 it follows that

9
(Il)

S2 (ρ) ≥ −C, ∀ρ ∈ 0M(S
2), l = 1, . . . , K,

and by (5.36) and (5.37) we obtain

9S2(ρ) ≥ −C, ∀ρ ∈ 0M(S
2).

To prove the necessity of condition (2.21), assume by negation that for some 1≤ l ≤ K,
condition (2.21) is violated. Then by Theorem 2 there exists a sequence

{ρm = (ρmi )i∈Il } ⊂ 0M(l)(S
2),

with 0M(l)(S2) denoting the restriction of0M(S
2) to the coordinates ofIl , such that

limm→∞9
(Il)

S2 (ρ
m) = −∞. Extend eachρm to 0M(S

2) by setting

ρmi (x) =

{
ρmi (x) if i ∈ Il,

Mif (x) if i /∈ Il,

wheref is a smooth positive function onS2 with
∫
S2 f (x) dx = 1. Then it is easy to

verify, as in the proof of the necessity part of Theorem 2, that limm→∞9S2(ρm) = −∞.
ut

We next give the proof of assertion (ii) of Theorem 5 which deals with the multi-block
case for a system on a bounded domain.

Proof of Theorem 5(ii).The proof uses the same argument as in Theorem 3(i). It suffices
to note thatG�(x, y) = −

1
2π log |x − y| +Ry(x) with Ry(x) a harmonic function on�,

which is bounded above by12π log(diam(�)) for all y ∈ �. ut

For the proof of assertion (ii) of Theorem 3 we shall need the following lemma. For a
symmetricn by n matrixA satisfyingai,j ≤ 0 for all i 6= j (here the diagonal elements
play no role) consider the functional

J (µ) =

∑
i 6=j

(−ai,j )

∫
S2

∫
S2

log |x − y| dµi(x) dµj (y), (5.38)

defined over the following set ofn-vectors of finite Borel measures:

GM(S
2) =

{
µ = (µ1, . . . , µn) : µi ≥ 0 and

∫
S2
dµi = Mi, ∀i

}
. (5.39)

Note thatJ is well defined onGM(S
2) if we allow it to take the value−∞, since the

kernel log|x − y| is bounded above andai,j ≤ 0 for i 6= j .
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Lemma 5.1. LetA be a symmetric matrix withai,j ≤ 0 for all i 6= j and letM ∈ Rn+.
Then

sup
µ∈GM (S

2)

J (µ) = max
y∈(S2)n

W(y) (see(2.23)), (5.40)

and the supremum is attained at measures of the form

µ = (M1δx1, . . . ,Mnδxn), with x = (x1, . . . , xn) ∈ (S2)n a maximizer ofW. (5.41)

Moreover, ifA does not contain a row of zeros (ignoring the diagonal elements), then
all the maxima ofJ and all the weak limits, in the sense of measures, of maximizing
sequences are of the form(5.41).

Proof. Consider anyµ ∈ GM(S
2). For eachi ∈ I set

U
µ
i (x) = 2

∑
j 6=i

(−ai,j )

∫
S2

log |x − y| dµj (y).

Then we have

J (µ) =

∑
{i 6=j 6=k 6=i}

(−aj,k)

∫
S2

∫
S2

log |x − y| dµj (x) dµk(y)+

∫
S2
U

µ
i (x) dµi(x).

It is known thatUµ
i is upper semicontinuous (see [17]), and therefore its maximum onS2

is attained. For anyi ∈ I defineTi,yi (µ) ∈ GM(S
2) by

(Ti,yi (µ))j =

{
µj for j 6= i,

Miδyi for j = i,
(5.42)

whereyi ∈ S2 is any maximum point ofUµ
i . It is clear thatJ (Ti,yi (µ)) ≥ J (µ). Setting

µ̄ = Tn,yn ◦ Tn−1,yn−1 ◦ · · · ◦ T1,y1(µ) = (M1δy1, . . . ,Mnδyn),

we have
W(y) = J (µ̄) ≥ J (µ), (5.43)

and (5.40) follows.
To prove the last claim, letµ be a maximizer forJ overGM(S

2). Assume by negation
that for one of the components ofµ, sayµ1, supp(µ1) is not a singleton. Consider then

µ̄ = Tn,yn ◦ Tn−1,yn−1 ◦ · · · ◦ T2,y2(µ) = (µ1,M2δy2, . . . ,Mnδyn).

By construction,µ̄ is also a maximizer, for whichU µ̄
1 must be constant on supp(µ1)

(otherwise, we would haveJ (T1,y1(µ̄)) > J (µ̄) for y1 a maximum point ofU µ̄
1 ). For two

distinct pointsx1, z1 ∈ supp(µ1) put

µx1
= T1,x1(µ̄) = (M1δx1,M2δy2, . . . ,Mnδyn),

µz1 = T1,z1(µ̄) = (M1δz1,M2δy2, . . . ,Mnδyn).
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Then alsoµx1
andµz1 are maximizers forJ , i.e.(x1, y2, . . . , yn) and(z1, y2, . . . , yn) are

maximizers forW . We must then have for eachj 6= 1,

∂W

∂yj
(x1, y2, . . . , yn)× yj =

∂W

∂yj
(z1, y2, . . . , yn)× yj = 0,

i.e.

0 = (−a1,j )M1Mj

(yj − x1)× yj

|yj − x1|
2

+

∑
i 6=j,1

(−ai,j )MiMj

(yj − yi)× yj

|yj − yi |2

= (−a1,j )M1Mj

(yj − z1)× yj

|yj − z1|
2

+

∑
i 6=j,1

(−ai,j )MiMj

(yj − yi)× yj

|yj − yi |2
. (5.44)

By assumption, there existsj0 6= 1 with a1,j0 < 0. For thisj0 we deduce from (5.44) that

(yj0 − x1)× yj0

|yj0 − x1|
2

=
(yj0 − z1)× yj0

|yj0 − z1|
2

.

This last equality forcesx1 = z1. Contradiction. Finally, the statement about the weak
limits of maximizing sequences follows from the upper semicontinuity with respect to
weak convergence of measures and the characterization of the maxima. ut

Proof of Theorem 3 completed.(ii) SinceK = n, (5.35) takes the form

9
(Il)

S2 (ρ) = ψl(ρl) :=

∫
S2
ρl logρl+

al,l

4π

∫
S2

∫
S2
ρl(x)(log |x−y|)ρl(y) dx dy, ∀l ∈ I.

Here, in the critical case ofai,iMi = 8π for all i, by Theorem 2 (see (3.10)) we have

ψi(ρi) ≥
Mi

2π
c0 +Mi log

Mi

4π
, ∀i ∈ I. (5.45)

Moreover, by Lemma 5.1,

1

4π

∑
i 6=j

ai,j

∫
S2

∫
S2
ρi(x)(log |x − y|)ρj (y) dx dy ≥ −

1

4π
sup
(S2)n

W(x). (5.46)

Plugging (5.45)–(5.46) in (5.36) we are led to

inf
0M (S

2)
9S2 ≥

∑
i∈I

[
Mi log

Mi

4π
+
Mi

2π
c0

]
−

1

4π
sup
(S2)n

W(x). (5.47)

Let z ∈ (S2)n be a maximizer forW . For eachα > 0 defineρ(α) = (ρ0)
τxi ,α applying

(2.2) componentwise withρ0
= (M1/4π, . . . ,Mn/4π). By Theorem 1, for eachi ∈ I ,

ρ
(α)
i gives equality in (5.45). Combining it with

lim
α→∞

−

∑
i 6=j

ai,j

∫
S2

∫
S2
ρ
(α)
i (x)(log |x − y|)ρ

(α)
j (y) dx dy = W(z)
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we are led to

lim
α→∞

9S2(ρ(α)) =

∑
i∈I

[
Mi log

Mi

4π
+
Mi

2π
c0

]
−

1

4π
sup
(S2)n

W(x).

This together with (5.47) leads to (2.22).
(iii) Suppose by negation that there existsρ ∈ 0M(S

2) which realizes the infimum
in (2.22). It follows from the above that for eachi ∈ I , ρi is a minimizer ofψi over
0Mi

(S2), and thatµ = (ρ1dx, . . . , ρndx) is a maximizer forJ overGM(S
2) (see (5.38),

(5.39)). But this contradicts the description of the maxima ofJ given by Lemma 5.1. The
statement about the weak limits of minimizing sequences follows similarly. ut

Remark 5.1. For the special case of the Toda system withA given by (2.19), the critical
case isMi = 4π for all i ∈ I . Here we find

W(x) = 2
n−1∑
i=1

log |xi+1 − xi |,

which achieves its maximum only at configurations of the form

xj =

{
y1 if j is odd,

y2 if j is even,

wherey1 andy2 are antipodal points inS2.

We now present a generalization of Theorem 3(ii),(iii) to a larger class of systems
than (2.18). Consider a symmetric matrixA with the following properties:

(P1) The setI is a disjoint union of setsI1, . . . , IK where each submatrixA[Il, Il] is a
conformal block, that is, for eachl = 1, . . . , K,

ai,j ≥ 0, ∀i, j ∈ Il and
∑
j∈Il

ai,jMj = 8π, ∀i ∈ Il .

(P2) If l 6= m thenai,j = aj,i ≤ 0 for all i ∈ Il , j ∈ Im.

Let us define a “renormalization” of the system in the following sense. We defineM̂ ∈ RK+
by

M̂l =

∑
i∈Il

Mi, ∀l = 1, . . . , K, (5.48)

andÂ = {̂al,m}, l, m = 1, . . . , K, by

âl,m =

∑
i∈Il , j∈Im

ai,jMiMj

M̂lM̂m

. (5.49)

The associated function̂W is defined by

Ŵ (̂x) :=

∑
l 6=m

(−âl,m)M̂lM̂m log |̂xl − x̂m|, ∀x̂ ∈ (S2)K . (5.50)
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The new problem is to minimize the functional̂9S2, associated witĥA, over0M̂(S
2).

Note that for each 1≤ l ≤ K we have, by condition (P1),

âl,lM̂l =

( ∑
i,j∈Il

ai,jMiMj

)
/M̂l = 8π.

Therefore, the conditions of Theorem 3(ii) are satisfied by the new system. We do not
know however whether results analogous to Theorem 3(ii),(iii) hold, in general, for the
original problem of minimizing9S2 over 0M(S

2). We were only able to handle two
special cases given below. The first case isK = 2. Note that in this case, for eacĥx =

(̂x1, x̂2) ∈ (S2)2 we have

Ŵ (̂x) = 2(log |̂x1 − x̂2|)
∑

i∈I1, j∈I2

(−ai,j )MiMj . (5.51)

Therefore,

sup
x̂∈(S2)2

Ŵ (̂x) = 2(log 2)
∑

i∈I1, j∈I2

(−ai,j )MiMj . (5.52)

Proposition 5.1. AssumeA andM are such that conditions(P1)–(P2)are satisfied with
K = 2. Then

inf
0M (S

2)
9S2 =

2∑
l=1

∑
i∈Il

[
Mi log

Mi

4π
+
Mi

2π
c0

]
−

log 2

2π

∑
i∈I1,j∈I2

(−ai,j )MiMj . (5.53)

If, in addition, there existi1 ∈ I1 andj1 ∈ I2 with ai1,j1 6= 0, then the infimum in(5.53)
is not attained and any weak limitµ of a minimizing sequence is of the form

µi =

{
Miδx̂1 if i ∈ I1,

Miδx̂2 if i ∈ I2,

wherêx1 and x̂2 are antipodal points.

Remark 5.2. The Toda system, which was already seen to be a special case of Theo-
rem 3, is also a special case of Proposition 5.1. Indeed, we can writeI = I1 ∪ I2 with I1
andI2 the even and odd indices respectively.

For the proof we shall need the following lemma.

Lemma 5.2. Let A be an irreducible symmetricn by n matrix satisfying(2.1), and let
M ∈ Rn+ be such that(2.11)holds. Suppose thatρ(m) is a minimizing sequence forinf9S2

over0M(S
2) such thatρ(m) ⇀ µ weakly in the sense of measures. ThenMjµi = Miµj

for all i, j .
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Proof. We use a similar argument to the one used in the proof of Theorem 1. By (2.11)
we may write, for anyρ ∈ 0M(S

2),

9S2(ρ) =

∑
i,j

ai,j

16π

[
Mj

∫
S2
ρi logρi

+Mi

∫
S2
ρj logρj + 4

∫
S2

∫
S2
ρi(x)(log |x − y|)ρj (y) dx dy

]
.

By (3.10) it follows that

lim
m→∞

[
Mj

∫
S2
ρ
(m)
i logρ(m)i +Mi

∫
S2
ρ
(m)
j logρ(m)j

+ 4
∫
S2

∫
S2
ρ
(m)
i (x)(log |x − y|)ρ

(m)
j (y) dx dy

]
=
MiMj

π
c0 +MiMj log

MiMj

16π2

for all i, j such thatai,j > 0. Fixing any pair of suchi, j and definingF (m)k =
4π
Mk
ρ
(m)
k

for all k (so that
∫
S2 F

(m)
k = 4π ) we conclude that

lim
m→∞

[ ∫
S2
F
(m)
i logF (m)i +

∫
S2
F
(m)
j logF (m)j

+
1

π

∫
S2

∫
S2
F
(m)
i (x)(log |x − y|)F

(m)
j (y) dx dy

]
= 4c0. (5.54)

Note that by (3.9) we have

ψ̃(F
(m)
k ) :=

∫
S2
F
(m)
k logF (m)k +

1

2π

∫
S2

∫
S2
F
(m)
k (x)(log |x − y|)F

(m)
k (y) dx dy

≥ 2c0, ∀k. (5.55)

Since ∫
S2

∫
S2
(f (x)− 1)(log |x − y|)(f (y)− 1) dx dy ≤ 0, ∀f ∈ 04π (S

2),

we deduce that

ψ̃(F
(m)
i )+ ψ̃(F

(m)
j ) ≤

∫
S2
F
(m)
i logF (m)i +

∫
S2
F
(m)
j logF (m)j

+
1

π

∫
S2

∫
S2
F
(m)
i (x)(log |x − y|)F

(m)
j (y) dx dy. (5.56)

Combining (5.56) with (5.54) and (5.55) we are led to

lim
m→∞

ψ̃(F
(m)
i ) = lim

m→∞
ψ̃(F

(m)
j ) = 2c0. (5.57)
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Plugging (5.57) in (5.54) yields

lim
m→∞

{ ∫
S2

∫
S2

2F (m)i (x)(log |x − y|)F
(m)
j (y) dx dy

−

∫
S2

∫
S2
(F

(m)
i (x)(log |x − y|)F

(m)
i (y)+ F

(m)
j (x)(log |x − y|)F

(m)
j (y)) dx dy

}
= 0.

(5.58)

But setting

U
(m)
k (x) = −

1

2π

∫
S2
F
(m)
k (y) log |x − y| dy, ∀k,

we may rewrite (5.58) as

lim
m→∞

∫
S2

|∇(U
(m)
i − U

(m)
j )|2 = 0.

Therefore, for everyϕ ∈ C∞(S2) we have

4π

Mi

∫
S2
ϕ dµi −

4π

Mj

∫
S2
ϕ dµj = lim

m→∞

∫
S2
(F

(m)
i − F

(m)
j )ϕ dx

= lim
m→∞

∫
S2

∇(U
(m)
i − U

(m)
j ) · ∇ϕ = 0,

i.e.Mjµi = Miµj . The result follows by the irreducibility ofA. ut

Proof of Proposition 5.1.By Theorem 1, applied to each9(Il)
S2 (see (5.35)), we have

9
(Il)

S2 (ρ) ≥

∑
i∈Il

c0

2π
Mi +Mi log

Mi

4π
, ∀l. (5.59)

Further, by (5.52)

2
∑

i∈I1,j∈I2

(−ai,j )

∫
S2

∫
S2
ρi(x)(log |x − y|)ρj (y) dx dy ≤ 2(log 2)

∑
i∈I1,j∈I2

(−ai,j )MiMj

= sup
x̂∈(S2)2

Ŵ (̂x). (5.60)

If ai,j = 0 for all i ∈ I1 andj ∈ I2 then9S2 = 9
(I1)

S2 +9
(I2)

S2 and the result follows from
(5.59) and Theorem 1. Assume now that at least one of theseai,j ’s is nonzero. Then the
inequality in (5.60) is strict and combining it with (5.59) we obtain, for allρ ∈ 0M(S

2),

9S2(ρ) >

2∑
l=1

∑
i∈Il

[
Mi log

Mi

4π
+
Mi

2π
c0

]
−

1

4π
sup

x̂∈(S2)2
Ŵ (̂x). (5.61)
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To finish the proof of (5.53) it is enough to show that9S2(ρ) can get as close as we wish
to the value of the r.h.s. of (5.61). To this end, we fix a pairx̂1, x̂2 ∈ S2 of antipodal
points, and for everyα > 0 defineρ(α) ∈ 0M(S

2) as follows:

ρ
(α)
i = (ρ0

i )
τx̂m,α , ∀i ∈ Im, m = 1,2. (5.62)

It is easy to see that the limit limα→∞9S2(ρ(α)) equals the r.h.s. of (5.61) and the proof
of (5.53) is complete.

Next we turn to the proof of the statement about the weak limits of minimizing se-
quences. Let{ρ(m)} be such a sequence withρ(m) ⇀ µ weakly in the sense of measures.
By the above,

lim
m→∞

9
(Il)

S2 (ρ
(m)) =

∑
i∈Il

c0

2π
Mi +Mi log

Mi

4π
, l = 1,2, (5.63)

i.e. the restriction ofρ(m) to the indices ofIl , l = 1,2, is a minimizing sequence for9(Il)
S2

over0M(Il )(S
2) (M(Il) denotes the restriction ofM to the indices ofIl). Recall thatA is

irreducible, but the submatrixA[I1|I1] may be reducible. So assume it is decomposable
intoK1 ≥ 1 irreducible factors:A[J1|J1], . . . , A[JK1|JK1]. Similarly,A[I2|I2] is decom-
posable intoK2 irreducible factors:A[J̃1|J̃1], . . . , A[J̃K2|J̃K2]. Fix any 1 ≤ k ≤ K1.
SinceA is irreducible there existi1 ∈ Jk andi2 ∈ I2 such thatai1,i2 < 0. From (5.60)
and Lemma 5.1 it follows thatµi1 = Mi1δxi1

andµi2 = Mi2δxi2
with xi1 andxi2 a pair

of antipodal points. By (5.63), the restriction ofρ(m) to the indices ofJk is a minimizing
sequence for9(Jk)

S2 overM(Jk), so that by Lemma 5.2 we deduce thatµi = Miδx̂k for all

i ∈ Jk, for somêxk ∈ S2. This holds for every 1≤ k ≤ K1. Similarly,µi = Miδŷk if
i ∈ J̃k for 1 ≤ k ≤ K2.

Next we claim that̂xk = x̂ for all k andŷk = ŷ for all k, wherêx andŷ are antipodal,
i.e. ŷ = −x̂. We define a bipartite graph whose vertices are given by the points{̂xk}

K1
k=1,

{ŷk}
K2
k=1. This graph contains an edge[̂xk, ŷl] if and only if there existi ∈ Jk, j ∈ J̃l with

ai,j 6= 0. We recall that if[̂xk, ŷl] is an edge then̂xk = −ŷl . By assumption, this is a
connected graph and the claim follows. ut

The second case that we are able to treat allows for an arbitrary number of blocks, but
requires a very particular structure of the matrixA.

Proposition 5.2. AssumeA andM are such that conditions(P1)–(P2)are satisfied. Sup-
pose further that there existn nonnegative numbersα1, . . . , αn and a symmetric matrix
B = (bl,m)

K
l,m=1 with nonpositive off-diagonal elements such thatai,j = αiαjbl,m for all

j ∈ Im, i ∈ Il wheneverm 6= l. Then

inf
0M (S

2)
9S2 =

K∑
l=1

∑
i∈Il

[
Mi log

Mi

4π
+
Mi

2π
c0

]
−

1

4π
sup

x̂∈(S2)K
Ŵ (̂x). (5.64)
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If, in addition,Â does not have a row of zeros (ignoring the diagonal), then the infimum
in (5.64)is not attained and any weak limitµ of a minimizing sequence is of the form

µi = Miδx̂l if i ∈ Il, 1 ≤ l ≤ K,

wherêx is a maximizer of̂W .

Proof. We may rewrite (5.36) as

9S2(ρ) =

K∑
l=1

9
(Il)

S2 (ρ)+
1

4π

∑
l 6=m

bl,m

∫
S2

∫
S2
ρ̄l(x)(log |x − y|)ρ̄m(y) dx dy, (5.65)

where
ρ̄l =

∑
i∈Il

αiρi, l = 1, . . . , K.

Applying Lemma 5.1 we get

1

4π

∑
l 6=m

bl,m

∫
S2

∫
S2
ρ̄l(x)(log |x − y|)ρ̄m(y) dx dy ≥ −

1

4π
sup

x̂∈(S2)K
W(̂x), (5.66)

where
W(̂x) :=

∑
l 6=m

(−bl,m)M lMm log |̂xl − x̂m| (5.67)

andM l :=
∑
i∈Il

αiMi, l = 1, . . . , K. Using the identitŷal,mM̂lM̂m = bl,mM lMm we

see thatW = Ŵ . Hence, from (5.65), (5.66) and (5.59) we infer that the r.h.s. in (5.64)
is a lower bound for9S2. The optimality of this bound follows by considering the limit
limα→∞9S2(ρ(α)), where

ρ
(α)
i = (ρ0

i )
τx̂m,α , ∀i ∈ Im, m = 1, . . . , K,

andx̂ = (̂x1, . . . , x̂K) is a maximizer forŴ . If Â does not have a row of zeros (outside
the diagonal) then the same holds forB. Applying Lemma 5.1 to

J̄ (µ) =

∑
l 6=m

(−bl,m)

∫
S2

∫
S2

log |x − y| dµl(x) dµm(y)

over

GM(S
2) =

{
µ = (µ1, . . . , µK) : µi ≥ 0 and

∫
S2
dµi = M i, i = 1, . . . , K

}
,

we deduce as in the proof of Theorem 3(iii) the nonexistence of a minimizer and the
description of the weak limits of the minimizing sequences. ut
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