J. Eur. Math. Soc. T, 31P=359 © European Mathematical Society 2005

Berardino Sciunzi Enrico Valdinoci J EMS

Mean curvature properties
for p-Laplace phase transitions

Received December 12, 2004

Abstract. This paper deals with phase transitions corresponding to an energy which is the sum of
a kinetic part ofp-Laplacian type and a double well potentig) with suitable growth conditions.

We prove that level sets of solutions af,u = h6(”) possessing a certain decay property satisfy a
mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above
level sets approach uniformly a hypersurface, the latter has zero mean curvature.
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1. Introduction

Given a domair2 € RV, we define the following functional oW 17 (Q):

Falw) = / (M + ho(u(x») dx.
Q p

In girum imus nocte et consumimur ignive are very much indebted to Ovidiu Savin, whose
magnificent work[[1B8] has deeply inspired the present paper. This research has been supported
by MIUR Variational Methods and Nonlinear Differential Equations.

B. Sciunzi, E. Valdinoci: Dipartimento di Matematica, Univeasiti Roma Tor Vergata, Via della
Ricerca Scientifica, 1, 1-00133 Roma, Italy;
e-mail: sciunzi@mat.uniroma?2.it, valdinoci@mat.uniroma2.it



320 Berardino Sciunzi, Enrico Valdinoci

Here and in what follows, we suppose<lp < oo andhg € CO([—1, 1DNCL1((—1, 1)).
We will also assume that, for some<0c < 1 < C and somé&* € (0, 1),

ho(¢) >0 forany¢ € (—1,1), (1.1)
foranyd €[0,1], 0?7 <ho(—1+0) < COP andcH? < ho(1—0) < CoP, (1.2
foranyd € [0,6%), hy(—1+6) > 0Pt andhy(l—6) < —coP~L. (1.3)

Quantities depending only on the constants above will be referred to as “universal con-
stants”. We also assume a convexity propertyohear+1, namely that is ncreasing
in(-1,-14+6"U@-06%1).
As a model example for a potentig} satisfying the conditions stated above, one may
consider
ho(¢) i= (1= ¢®)P.

In the literature /i is often referred to as a “double well” potential, while its derivative
hg is sometimes called a “bi-stable nonlinearity”.

In light of the hypotheses above, with no loss of generality, possibly reducing the size
of 6*, we may and do assume that

ho(§) = ho forany¢ e [-1+4 6%, 1—6%]. (1.4)

max
[-1,—1+6*]U[1-0%,1]
Notice that, ifu € WP (Q), |u| < 1, is critical for Fq, thenu satisfies in the weak sense
the following singular/degenerate elliptic equatiorpeELaplacian type:

Apu(x) = ho(u(x)) (1.5)
for anyx € Q. Here and in what follows, we make use of the standard notation
Apu = div(|Vu|"~2Vu).

Notice also that, if1g can be extended to a function whichGg in a neighborhood of
[—1, 1], then ) holds for any critical for Fq Stﬂthat|u| <1

The functionalF, above has been widely studied both for pure mathematical reasons
and for physical applications.

For p = 2, the model was introduced by [7] in order to approximate the behavior of
minimal surfaces and a famous conjecture concerning level sets of soluti¢ns| of (1.5) was
presented (see al<d [2]/ [1], [18] and [22]).

In [14] and [13] the connection betweef, and minimal surfaces was developed,
proving, withI"-convergence methods, thatiis a Class A minimizer for the functional
(i.e., if Fx () < Fxu + ¢) for any compact seK ¢ RY and any¢y e Cy(K)),
andu.(x) := u(x/e), thenu, has a subsequence, say, which converges to a step
function xg — xgn\ g, WheredE is a minimal surface (in the sense 0f [10]) apd is

the characteristic function of a s&t< RY. A more geometric version of this result was

1 For other comments on the relation between conditjens< 1 and|u| < 1, see the footnote

on pag¢ 327.
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obtained inl[5], showing that the level séts; = O} converge locally uniform to E.
Remarkably, the proof ir_[5] also showed a “density estimate” property for such level
sets, stating that they somehow “behave in measure as if they were codimension 1 sets”
(see alsa[21] for further details).

The results in[[14] and [13] have been extended to the page2 in [4], while the
ones in|[5] have been extended to the caseé 2 in [15] and [16].

Some of the results of this paper can be seen as viscosity versions of the adnes in [4]:
indeed, we will show that if the level sets of solutions approach a limit hypersurface, then
this is a zero mean curvature equation in the viscﬁsignse. Differently from_[4], we
are able to consider here also non-minimal solutions, replacing the minimality condition
of [4] by a weaker decay assumption (sge](2.1) below); the counterpart of dropping the
minimality assumption in our results is that the limit surface obtained is not necessarily
minimal (as in[[4]), but only of zero mean curvature.

What is more, we show that level sets of solutions also enjoy a weak viscosity zero
mean curvature property. Roughly speaking, we will prove that the levdkset 0}
cannot be touched from below by a convex paraboloid in a neighborhood of the origin
(which gets small withe). In some sense, we may think thiat, = O} attains a zero
mean curvature property (though in a weak viscosity sense) even “before” converging
to the limit surface. The fact that level sets inherit further properties from the minimal
surface limit case is related with the flatness regularity of low dimensional level sets first
conjectured by De Giorgi fop = 2. In this setting, the weak viscosity equation fulfilled
by level sets that we prove in this paper will play a decisike rin the forthcoming
paper [22].

Independently of its importance in pure mathematics, the functional studied in this
paper has also some physical relevance, since it appears in the study of the equilibrium
of elastic rods under tension (see [3]) and in the van der Waals—Allen—Cahn-Hilliard
and Ginzburg—-Landau theories of phase transition (see, for instance, [17]). In the latter
situation, the termiVu/|? in the functional represents a penalization to the total energy,
which keeps under control the formation of interfaces (see [11]).

2. Statement of results

To state our result, we need to recall some standard convention about the sign of the mean
curvature of a paraboloid. Let us consider a hyperptane R" with normal vecton.

Let S be a hypersurface amla paraboloid with vertex at some poitand let us assume

that they are tangent to each other and tat x. We say thatP touchesS from below at

xin B,(x) ifforany y € S andz € P with y, z € B,(x) andy — z in the same direction

asv, we have(y — z) - v > 0. An analogous definition can be given for a paraboloid
touching from above.

2 For a formal definition of such locally uniform convergence, (2.2) below.

3n spite of the natural variational setting of the problem, viscosity solution methods-for
Laplacian operators are coming into fashion and they are producing quite a number of interesting
results (see, for instancé, |12] and the references therein). In this paper, however, there will be some
interplay between viscosity and weak Sobolev formulation.
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P touchesS from below atx

Of course, up to a suitable choice of coordinates, one may assume th&, = =
{xy = 0} andv = ey. In this set of coordinates, the paraboldidakes the fon[ﬂ

1
{(x’,xN) eRV 1xR:xy = Ex’ : Mx’}

for someM € Mat((N — 1) x (N — 1)). We say thatP hasnon-negative mean curvature
if tr M > 0. Analogously, one may define positive, hegative, non-positive and zero mean
curvature. Obviously, the sign of the mean curvature depends on the orientatioreaf
changingy to —v turns a positive mean curvature into a negative one, and so on. Similarly,
changingy to —v transforms touching from below into touching from above.

The solutions: of (1.5) we deal with are assumed to have the following decay prop-
erty: givenw € SV~1, there exists a universal constdnt- 0 so that, for any > L,

o if {u=0}N{lx — (0 X)w|lw <1} C {w-x > —cjl}, thenu(x) < =1+ 0*
foranyx = (x’, xy) € R¥N-1 x R satisfying
w-x <—cyl and |x — (o x)wle < c3l;
(2.1)
o if fu=0}N{lx — (0 x)w|lw <1} C {w-x <cjl}, thenu(x) > 1 - 0*
foranyx = (x’, xy) € R¥N~1 x R satisfying

w-x>c5l and |x — (o X))ol < c3l.

4 We will freely use the standard notatian= (x’, xy) € R¥~1 x R to denote a point € RV.
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Herec; > ¢] € (0,1) andcj € (0,1 — ¢3) are intended to be positive constants, to be
fixed once for all. For definiteness, we will takp:= 1/10,c; := 1/5 andcj := 1/2.

In §9, we will give further details and motivation for assumptipn](2.1), showing also
that it is fulfilled by Class A minimizers aof.

here u<—1+6™

Condition [2.1)

Quantities depending only oN, p and on the quantities introduced [n (1.7), {1.3)
will often be referred to as “universal constants”. With these conventions, we are ready to
state our main result:

Theorem 2.1. Letu € Wé’cp (RM) be a Sobolev weak solution @) in the wholeRY
satisfying), with |u| < 1. LetS = 3€ be a continuous hypersurface R". Let
ug(x) := u(x/e). Assume that, converges irLﬁJc to xe — xmv\g and that{u, = 0}
converges locally uniformly t8, i.e., for any compact s&& c R,

lim sup dist(x,S) =0. (2.2)
=0y e(u,=0)nNK

ThenS satisfies the zero mean curvature equation in the viscosity sense.
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More explicitly, letx* € S be so that, for any > 0,
L£B,HNERY\E) >0 and £B,x"HNE) >0, (2.3)

where £ denotes theV-dimensional Lebesgue measure. Assume alsoShatimits a
tangent hyperplane in*. Then:

o if a paraboloid with vertex at* touchesS from below atc*, then its mean curvature
at x* must be non-positive;

o if a paraboloid with vertex at* touchesS from above atc*, then its mean curvature
at x* must be non-negative.

In particular, if x* € S'is so thatS is C? in a neighborhood af*, then the mean curvature
of S atx* is zero in the classical sense.

The proof deeply relies on the ideas bf[18], which deals with the gase 2, and it
is geometric in nature. The technique presented seems very flexible, and it may also be
appropriate for further interesting extensions (such as more general functionals related
with non-flat metrics on manifolds or fluid dynamics, operators in non-divergence form,
fully nonlinear equations, etc.). In the case# 2, some additional care is needed in the
sliding procedure, since, due to the singularity or degeneracy gf-lteplacian operator
at points wherévu vanishes, no general maximum and comparison results are available
in the literature. Also, a careful choice of parameters is necessary to deal with the more
severe nonlinearities provided by tpe_aplace equation.

Theorenj 2.]1 will follow from a stronger result concerning a mean curvature property,
in a weak viscosity sense, for level sets of rescaled solutions. That result is the following:

Theorem 2.2. Letu ¢ Wli’C”(RN) be a Sobolev weak solution ) in the wholeR”,
satisfying(2.J) for « = ey, so thatju| < 1 andu(0) = 0. Letd € (0,1) and M €
Mat((N — 1) x (N — 1)) with

trM>0o|M| and |M| <ol

Letu,(x) := u(x/e) and
1
= {x =, xny) eERVIXR: xy = Ex’ . Mx’}.

Then there exist a universal > 0 and a functionog : (0,1) — (0, 1) such that if
¢ € (0, 00(d)) ando € (0, o*), thenI" cannot toucHu, = 0} from below inBDﬁ/m;
more explicitly,
1 0/

ue =0}N{x <—x/-Mx’}ﬂ{x <—} @. 2.4
We remark that Class A minimizers @f are particular solutions satisfying the assump-
tions of Theoremk 2|1 ard 2.2 (providegladmits ac* extension in a neighborhood of
[—1, 1]); thus the above theorems imply the following result:
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Theorem 2.3. Assume thakg admits aC extension in a neighborhood ¢#1, 1] and
letu be a Class A minimizer of with |u| < 1. Then the claims of Theoreifis] and2.2
hold true. More precisely, fat. (x) ;= u(x/¢), the following results hold:

e If u, converges irL&)C to xs — xrnv\e and{u, = O} converges locally uniformly t6,
whereS = 9€ is a continuous hypersurface R, thenS satisfies the zero mean
curvature equation in the viscosity sense.

o Letu(0)=0,0€ (0,1) andM € Mat((N — 1) x (N — 1)) with

trM>o|M| and M| <0t

and let 1
= {x =0, xny) eRVIXxR:xy = 5x’~Mx’}.

Then there exist a universal > 0 and a functionog : (0, 1) — (0, 1) such that if
e € (0, op(0)) ando € (0, 0*), thenI” cannot toucHu, = 0} from beIowinBaﬁ/Jn—M.

The paper is organized as follows. In| §3 we recall some standard PDE notions, such as
viscosity solutions and some comparison/maximum principles that will be of use in this
paper. To make the proofs of the main results more readable, we collected some technical
lemmata, mostly elementary in nature, i) 84. Of course, the expert reader maly|skip §3 and
§4 and dedicate himself to the proofs of the main results, the core of which is contained in
g5 and EB. In particular[ 85 is devoted to the construction of suitable barriers, built via the
one-dimensional solution, which will be used [rj §6 for the sliding method. That geometric
construction is an extension of the one presented ih [18]. The proof of Th¢orem 2.2 will
be completed in[§7, while the one of Theorlem 2.1 igih §8[In §9 we make comments on
the assumption iff (2} 1) and prove Theofenj 2.3.

3. PDE tools

We recall here the definition of viscosity supersolution (and subsolution, and solution)
for p-Laplacian type operators. Roughly, the notion of viscosity supersolution requires a
pointwise evaluation of the-Laplacian of smooth functions touching from below. How-
ever, since thg-Laplacian diverges at critical points ford p < 2, we need t@xclude

this caserom the following definition:

Definition 3.1. LetQ < R" be an open domain and lat e co(Q). If p > 2, we say
that u is aviscosity supersolutioof ) (orthat A,u < hy(u) in the viscosity sense)
if, wheneverng € Q and¢ € C2() are such thati(xg) = ¢ (xo) andu(x) > ¢(x) in ,
we have

Apo(x0) < h(¢(x0)).
If 1 < p < 2, we say thatl is aviscosity supersolutionf (I.5)if, wheneveng € € and
¢ € C2() are such thaWVe (xg) # 0, u(xp) = ¢(x0) andu(x) > ¢ (x) in Q, we have

Ap¢(xo) < ho(¢(x0))-
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Analogously, ifp > 2, we say that is a viscosity subsolutiorf (1.5) (or that A ,u >
h(u) in the viscosity sense) if, whenewgre Q and¢ e C2() are such thait(xg) =
¢ (x0) andu(x) < ¢ (x) in 2, we have

Ap¢ (x0) = ho(¢(x0));

if 1 < p < 2, we say that is aviscosity subsolutiomf (1.5)if, wheneverg € © and
¢ € C2(Q) are such thaWVe (xg) # 0, u(xp) = ¢ (xo) andu(x) < ¢(x) in Q, we have

Ap¢(x0) = ho(¢(x0))-

If u is both a supersolution and a subsolution in the viscosity sense, we say ithat
viscosity solution.

Of course, ifu € C?(2) andp > 2, thenu is a viscosity solution 05) if, and only if,
[VulP~4(|\Vul?Au + (p — 2(D?uVu, Vu)) = hy(u) (3.1)

pointwise. However, if 1< p < 2, the expression above may be ill defined even for
smooth functions, due to the vanishing of the gradient. Therefore<f < 2, for a
functionu € C2(S2), being a viscosity solution of (1.5) is equivalent fto {3.1) holding at
points whereVu # 0.

One of the greatest difficulties when dealing wjghLaplace equations is that the
solutions belong generally only to the cla€$® with « e (0, 1) (see [8] and[[20]).
Also, the p-Laplace operator is singular or degenerate elliptic (respectivelyifi < 2
or p > 2). A consequence of such pathologies is that there is no general comparison
theorem for solutions in case # 2. Therefore, no complete analogy is possible, in
general, between the cases= 2 andp # 2.

In this paper, we will need to compare weak Sobolev solutior[s df (1.5) with viscosity
supersolutions of (I]5). Even if there are no general results in the literature dealing with
this problem, we will succeed in doing this by applying some results obtained in [6],
together with Hopf’s Lemma fop-Laplace equations [23], and thanks to some geometric
properties of the barriers that we will introduce.

We now recall the maximum and comparison principles needed in our proofs. First of
all, in [6] (see, in particular, Theorem 1.4 there) the following result is obtained:

Theorem 3.2 (Strong Comparison Principle 1).Let Q be an open (not necessarily
bounded or connected) subset®¥, and letA € R andu, v € C1(Q) satisfy

—Apu+Au<—-Apv+Av, u<v inQ. (3.2)
DefineZ,, = {x € Q : |Du(x)| + |Dv(x)| = 0}if p #2,Z,, =0if p =2.1f

x0 € @\ Z,, andu(xg) = v(xo), thenu = v in the connected component@f\ Z, ,
containingxg.
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An easy consequence of the above result is the following one, which will be suitable for
our applicatiorﬁ

Corollary 3.3 (Strong Comparison Principle 1l). Let 2 be an open (not necessarily
bounded or connected) subseff¥, and letu, v € C1(RQ) satisfy

—Apu+ f(u) <—Apu+ fv), u<v IinQ, (3.3)

with f locally Lipschitz continuous. Defirg, , as in Theorerf8.24 Then the conclusion
of Theoreni8.2holds.

Proof. Lete > 0 be so thaB. (xg) C © and let

[fWU) — f(V)]
M, v = maxX{|u|ro(B, (xo)» [VILoB. o)) A = sup ——.
U#V U = V]|
[ULIVISEMy
Then

—Apu+Au < =Apv+ f() — fu)+Au < —Apv+ Alv —u| + Au
—Apv+ AW —u) + Au=—Apv + Av,

hence the result follows from Theorém13.2. O

We recall that a similar result was proved[in][19], under stronger assumptions.

We now state a result which will allow us to take care of the points at which solutions
of (I.5) may have a vanishing gradient. To this end, we recall the following version of a
more general result prm@dh [23]:

5 As a technical remark, we point out that we will use Corollary 3.3 on s 3d 345, with
f = h{. In our casehg is not assumed to be’1 in the closed interval-{1, 1], but only in
(-1, 1). Nevertheless, we will be able to exclude touching points-atwith a direct argument,
hence we will apply Corolla3 in the domain whergis C1-1.

6 Although we do not explicitly assume| < 1 here, but onlyu| < 1, we think it is appropriate
to notice that, in many cases of interest, the two conditions are equivalent, thanks to the results
mentioned. Indeed, the conditigw| < 1, under suitable assumptions, is fulfilled by any solution
such thatu| < 1 with |u| not identically equal to 1. For instance, assume that fordaay{0, 6*),
hy(—=1+6) < 9P~ andhy(l — 6) > —c/0P~1 (this condition is in particular satisfied by
ho(¢) =1 - ;“2)1’). Suppose there are points whare- 1 (the cases = —1 follows in the same
way). Sincelu| is not identically 1, there exists a ba} (x) with u < 1inintB,(x) andu(y) =1
for somey € 3B, (x). Thenw := 1—u is not identically zero in inB, (x) andw(y) = 0. Moreover,

hh(l—w
o )w

p=1s _ -1
wp—1 - ’

—Apw = hy(u) =

ie. —Apw + cwP~1 > 0 weakly. We can therefore exploit the Strong Maximum Principle of
Theorenj 34 and prove that< 1. In the same way we also get> —1.
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Theorem 3.4 (Strong Maximum Principle and Hopf’'s Lemma).Let 2 be an open
connected (not necessarily bounded) sétfhand suppose that € C1(Q2),u > 0in ©,
weakly solves

—Apu+cu? =g=>0 inQ
withg > p—1,¢ > 0andg € L5 (). If u is not identically zero, then > 0in Q.
Moreover, for any pointg € 92 where the interior sphere condition is satisfied, and such
thatu is C1 in a neighborhood of2 U {xo} andu(xg) = 0, we havedu/ds > O for any
inward directional derivative.

Remark 3.5. The proof of Theorerp 3|4 follows at once by applying Theorem 5 df [23]
with B(s) = ¢s?,q > p — 1 andc > 0. In particular, the conditiop > p — 1 ensures
that conditions (13) andl3) in [23] are fulfilled. Moreover, the condition > 0 causes

B to be nondecreasing wit$(0) = 0.

4. Technical and elementary lemmata

This section, which may be skipped by the expert reader, collects some elementary lem-
mata that will be of use in the course of the proofs of the main results.

Lemma 4.1. There exists a positive constatit depending only op, such that

Yp _ pip a—b
a b = Ca(p—l)/p + bpp=b/p’

foranya > b > 0,a # 0.
Proof. Fort € [0, 1), set

(1— Py + 1P~ D/p)

f) = 1

Notice thatf e C°([0, 1)), f(0) = 1 and
. 2
lim f(t) = —.
t—1 p
Hence,f (t) < C foranyr € [0, 1) and so

(a¥P — pYPy(gP=D/p 4 pr=D/pr)
a—>b

= f(b/a) = C. O

Lemma4.2. Forany0 <s <r < 0%,
ho(=1+1) — ho(—=1+5) > c(t¥ —sP)

for a suitable universal constant> 0.
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Proof. From [1.3),
4 t
ho(=1+41) —ho(=1+s) =f ho(—=1+40)do > const/ or~tap,
N s

which implies the desired result.

Lemma 4.3. There exists a positive constafif depending only op, so that

/0 ¢ < 5(1+ lo })
v (A1 0P —an)r = 9%

foranyO<a<b <1

Proof. Let
. J1ifb<1/2,
10 ifb>1/2.

Using the substitution := (1 4 ¢)/b, we bound the integral above by

/1/" dt </1/f’ dt
1 @ = /NP =)y @Dl

</2 dt n /‘l/b dt
“h @y T, oo

2r -1
2P

Noticing that

P —1> TP

if t > 2and
P —-1>7-1

if z > 1, we bound the quantity above by

const| /2 de +/1/b de < const| 1+ lo -
1 (r =1l 2 T ) gZB ’

which proves the desired result.

O

Lemma 4.4. Let U be an open subset &. Letg € C2(U) and assume thaj has no

critical points. Define
W (x) = g(lx =yl = D).
Then, forr = |x — y| —1 € U andx # y, we have

N-1
Ap(W" () = (p = Dg" (&' )2 + (g' @) e =yl
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Proof. Note that
xX—y

Vwl(x) = g'(1)
lx — yl

and

w0 = g0 =2 ii();jﬁ_ SN0 (

lx — Ix — y|3

Sij (i =y — yj)>
X
Since
Ap(¥ (x))
= VO 0P 2w () + (p = 219 )17 (0w ()W) (o),
we get
o — ¥ — yp)?
lx =yl

Ap(W (@) = (g )" %"+ (p—2) Y (g1 %" (1)

ij

+(p—2)(g' ()Pt
|x — | |x — |

1 i
— @) ————(p-2) (W) S

lx =yl T

+ (g )Pt

— ¥)2(xj — yj)?
lx — yI®

—2 4N-1
= (P = DE OO + ()
Lemma4.5. LetU andg be as in Lemm@ LetI" be a smooth hypersurface R
and letdr (x) be the signed distance functionfoSuppose that if € Q thendr(x) € U.
Then

Apg(dr(x)) = (p — DIg'(dr(x)P~%¢" (dr (x)) + 1g'(dr ()|~ ¢’ (dr (x)) Adr (x).

O

(4.1)
Proof. Easy calculations show that
Vg(dr(x)) = g'(dr(x))Vdr(x) (4.2)
and
gij(dr(x)) = g"(dr (x))(dr)i (x)(dr); (x) + &' (dr (x))(dr);j (x). (4.3)

By rotation invariance, it is not restrictive to consider a coordinate system for which
Vdr(x) =(0,0,...,0,1)
and
—k1 —kn—_1
1—drky’ 7 1—drky_1
where thek;’s are the principal curvatures dfat the point where the distance is realized

(see, for instance, 814.6 6f [9] for details). Therefore, taking into accpunt (4.2) and (4.3),
we get

Apg(dr(x)) = (p—D)|g'(dr (x))|P~2g" (dr (x)) + | (dr (x))|P~2¢' (dr (x)) Adr (x). O

ﬁ@=mm< ,@eMNNxm,
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Lemma 4.6. Let/ > 0 be an interval ofR and leth € C1(I) satisfyh(s) > O for any
s e€l.Let Y
S(p—1YPd
H(s) = (p—1 - ¢
o (ph()Yr

Define alsog as the inverse of{, that is, g(r) := H~1(r) for anyr € H(I). Then
g € C%2(H(I)) and

, Vsel.

_ (ph(g))@n)/r

TG

p 1/p
g = (—h(g(t))) . &'
p—1
foranyt € H(I).

Proof. The first identity follows easily by differentiatingf (¢(z)) = ¢. For the second
claim, notice that using the first identity twice gives

yood( p VP (ph(g(n)¥r-t
g = E(m“ﬂﬂ)) = W

_ (ph(gn)?/r~t
- (p-DEr

h'(g(1))g' ()
h'(g(1)). O

Lemma4.7. Let Q@ be an open domain ilRY and letxg € Q. Letw € CX(Q) and
v := Vw(xg). Assume that there exists € RV \ {0} such that

w(xo +x) < v-x+ w(xo)

for anyx € RV so thatx + xp € Q andw - x > 0. If P € C%(Q) is a quadratic function
touchingw from below atxg, thenA , P (xp) < 0in the viscosity sense. Analogously, if

w(xo +x) > v-x + w(xo)

foranyx € R sothatx+xp € Qandw -x > 0,andP € C2(R) is a quadratic function
touchingw from above afg, thenA, P(xg) > Oin the viscosity sense.

Proof. We prove the first claim, the second one being analogous. Fincechesw at xq,
w € CL(Q) andVw(xg) = v, we have

1
P(x) = Z5M(x = x0) - (x = x0) + v+ (x — X0) + w(x0)

for someM € Mat(N x N). Notice thatM must be non-positive definite: indeed Mf
had a strictly positive eigenvaluewith corresponding eigenvecteand|e| = 1, possibly
changinge into —e we may assume that - e > 0 and therefore, for a small> 0,

2
ev-e+ w(xg) > wxg+ee) > P(xo+ce) = %Me-e—i—sv-e—i—w(xo)

£2)

7+8v'e+w(xo)>8v~e+w(xo),

v
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which is a contradiction. Hencé{ is non-positive definite and thusP = trmM < 0.
Now, if p > 2,
A,P = |VPIP74(VPIPAP 4 (p — 2(D*PV P, VP))
= P4 (PtrM + (p —2)Mv -v) <0
at xo, which proves the claim fop > 2.

Now assume k p < 2. If v = 0, then by Definitiofi 3]1, there is nothing to check;
we may therefore assume£ 0. Leti1 < --- < Ay < 0 be the eigenvalues af. Then

1 v v 1
AP:—(trM— 2 M—-—>< Mty — (2= pA
PP = @ P L) < G A — @ i)

ZMTp((p_l))‘1+)‘2+"'+)‘N)SO

atxp, which ends the proof for & p < 2. O
Next, we point out an easy property of the signed distance function to paraboloids:

Lemma4.8. LetM € Mat((N — 1) x (N — 1)) andV € RV~ Define the paraboloid
1
= {x = x) eRVI xR :xy = Ex/~Mx/+ 1% -x/}.

Letdr be the signed distance 1, with the sign convention thay > 0 abovE]F. Then,
foranyt > 0,

dr(x + tey) > dr(x).
Proof. Two cases are possibleis either above or below. Consider the first case. Then

dr(x) = 0 andBg(x)(x) touched from above. ThereforeB. ) (x + tey) is abovel’
and thus, given any € T,

lp — (x + ten)| = dr(x).
This proves the desired claim.ifis aboverl.
If x is belowI" we distinguish two subcasesdf+ tey is aboverl’, then
dr(x + 1) > 0>dr(x)

and we are done. If, on the contrary, batlandx + rey are belowI’, we consider the
reflection

R() =R, yv) =G, —yn) VyeRY
and we defing := R(x + tey) andl” := R(I"). Thens is abovel". Since the claim was
proved in the first case, we know tht(x + rey) > dp(%). Hence,
dr(x) = —drr)(R(x)) = —dp (X + Tey)
< —dfw()%) = —dR(r)(R(x + ten)) =dr(x + Tey). O

7 Of course, “above” here is with respect to the-direction.
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5. Useful barriers

The core of the proof of our results begins here. Before going into the details of the ar-
guments, which will be quite technical, we would like to point out some heuristic ideas
underlying the construction given below. Roughly, the crucial idea, which goes back to
De Giorgi, is that one-dimensional solutions are the ones which encode much information
on the system. Following this belief, we will construct two barriers, which are a suitable
modification of one-dimensional solutions. The first barrier, built in Lehmp 5.1, is radi-
ally symmetric. More precisely, it is flat in a ball and then radially increasing. Clearly,
since the solution we consider does not possess such symmetry, this barrier may provide
good bounds in some direction, but poor bounds in another direction. Therefofé, in §6,
we will have to slide this barrier to obtain information in all the domain we are interested
in. In a very non-rigorous way, we may think that the radial growth of this barrier will
provide information on “how the solution grows froril to+1", while the flat part of the
barrier controls the “directions along which the level sets of the solution lie”. The second
barrier we need is constructed in Lemimd 5.2. This is a modification of a one-dimensional
solution which takes into account the distance from the level sets. EqUatipn (1.5) will then
relate second derivatives of this barrier with the mean curvature of the level sets of our
rescaled solution, leading to the estimates we need.

We now construct the first comparison function that will be used in the proof of the
main result. The function needed to construct such barrier is sketched in the picture.

Y

172

The functiong; introduced in Lemmp5]1

Lemma 5.1. There exist universal constants- 1 and0 < ¢ < 1/2 so that, ifl > [, we
can find7; € [¢l, [/2] and a non-decreasing function

g € CO%—o0, T1) N CH(—00,0) N C?((—¢l, T) \ {O})
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which is constant in an intervdl containing(—oo, —I/2], withg; > O outside/, satisfies
g1(0) =0, g/(Ty) = 1, and if we define

() = gi(lx — y| = D), (5.1)

thenw?(x) is a strict supersolution ofL.5)in the viscosity sense By, (y) \ 9B;(y).
More preciselyg; is constructed as follows. There exist constdhts ¢; < C1, C»
so that, if we define

5; 1= e U,

C
ho(S)—/’lo(S]—l)—72((1+S)p—slp) if s —1<s <0,
hi(s) = _
C2 p—l .
ho(s) + ho(1—s7) + T((l —5)P+s; "A—-s) f0<s<1,

S (p—1lr
H = —de,
) A TG

Y A
Ho(s) = /(; Wd{, for anys € (-1, 1),

then the following holds:

(i) hi(s) > 0ins; — 1 < s < 1;in particular, H; is well defined and strictly increasing
fors; — 1 < s < 1and thus we may defing(¢) := H,‘l(t) fort € Hi(s; — 1, 1);
(ii) g/(2) is defined to be constantly equalsto— 1 for r < H;(s; — 1);
(i) the following estimates oH; hold:

Hi(1) <1/2; (5.2)

Hi(s; — 1) > —-1/2; (5.3)
lm@»smu>—%imm1—mn Vis| < 1— e c1l/2 (5.4)
Hy(1—e /2 > ¢, (5.5)

Hj(e 2 — 1) < —al. (5.6)

Proof. The idea of the proof is that, oné# is well defined, estimatef (5.2)—(b.4) and the
viscosity supersolution property far*/ are the core of the matter. Inde€d, (5.3) says, in
particular, that, by constructiog; is constant in(—oo, —1/2]. Also, estimateq (5]4) and

(1.2) imply that

1—e—C11/2 de

Hy(l— e /%) > const[ i7" const= const — 1 > ¢l,
A _

provided! is large enough anélsmall enough, and, analogously,

Hy(e™®/2 — 1) < —él,
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proving [5.%) and(5]6). These estimates also imply ghi strictly increasing at least in
(—¢l, cl).

Also, if T; := H;(1), by (5.2) and[(5)5), we havB € [cl,1/2]. Some careful com-
putation will be needed to show?" to be a strict viscosity supersolution @1.5) at any
point where it is defined, except possibly on the splipre- y| = I} (the fact that;; may
be discontinuous at 0 makesnot necessarily smooth at 0 and deprives us of information
on the value oﬁp\w” on the aforesaid sphere). We also remark that the extension in (ii)
is C11, since, by Lemmh 4}6, if= H;(s; — 1),

, P Y P
gi(1) = (p z 1h1(g1(t))> = (p ]

We now deal with the actual proof of Leminas.1: in light of the arguments above, we

will focus on proving|(5.2)£(5]4) and the viscosity supersolution propertyfof.
The proof will consider separately the cases- 1 <s < 0and 0< s < 1. Letus

first consider the casg — 1 < s < 0. From [T.4),
hi(s) = ho(0* — 1)/2 (5.7)

1/p
hi(s; — 1)) =0.

if 0* — 1 <s < 0, provided is suitably large. Also, in light of Lemnja 4.2, we get
ho(s) — ho(si — 1) = c((L+ )P —s7), (5.8)
fors; —1 < s < 0* — 1, therefore
const(ho(s) — ho(s; — 1)) < hu(s) (5.9)

if s —1 < s < 6*— 1, provided! is sufficiently large. This[(1]4) andl (5.7) say that
hi(s) > 0ins; — 1 < s < 0, showing thatd; is well defined and strictly increasing in
this case. Also, from the definition @f; and [5.7)-{(5.9) we gather

—H, — 1) = const _—
=) /S,_l (1 () VP

- g1 (@NYP  J 1 ()P
9**1 dé—
< const 1+f —)
( g1 (h(e)Yr
*—1 d;
= Con5t<l+ /ﬂ-l (@10 — s{’)lfp>

< const(l + /0 ¢ )
- a-1 (@A+ )P =sPH¥r )

hence, from Lemm@a 4.3, we get

Hi(ss —1) > —1/2

providedc, is suitably small, provind (5]3).
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We now show thatt?! is a viscosity supersolution .5) whén— y| < [ (i.e.,
whens = g;(t) < 0; here and in what follows, we often use the notatiea |x — y| — [
ands = g;(1) = ¥l (x)).

Of course, iflx — y| < 1/2, then¥?!(x) = 5; — 1 by ) and the definition of;,
and therefore, by Lemnja 4.7,

AWl (x) <0 < k(s — 1) = h(W ! (x)), (5.10)

showing that the viscosity supersolution propertydof’ holds in{¥>! = s, — 1} (and
thus, in particular, ifx — y| < [/2). Hence, we can now concentrate on the dae<
lx —y| < I (and, by[(5.1p), we may assume thiat! (x) > s; —1). In light of Lemmd 4.5,

(phi(g(1)))@ep/p
(p—1)2/p

p Yp ,
g/ (1) = ( hz(g(t))> . gl = hy(gi(1)).

p—1
Thus, by Lemm@ 4]4, we have
N-1
]

1
< hy(gi1()) + K(N — 1)(h,(gl(t)))@—l)/pH
2K (N — 1) (1)) P~/

!

AW () = (p = D" (O )P+ (g 1)" T

< hj(gi(t)) +

(5.11)

for |x — y| > 1/2, providedK > 0 is suitably large.
Hence, by definition of; we get (using again the notation= g;(¢))

hi(s) < ho(s) — ho(s; — 1) < ho(s)
and

C
() = ho(s) = 2 @45y
ins; —1<s <0, hence

Ap(WYl(x)) < hy(s) — pTC2(1+ )P~ 4 w

fors; — 1 < s < 0. By (1.2), we get, foC suitably large,

(ho(s)) P~ V7P (5.12)

; (ho(s))P~1/P (5.13)

and therefore
Ap (W () < h(W¥ (x)) (5.14)

fors; —1 < g;(t) and|x — y| > 1/2.

Estimates]|(5.10) anfi (5.]14) shaw/ to be a strict viscosity supersolution bf (L.5) at
any pointx so thatjx — y| < [.
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Let us now prove] (5]4) foe=1//2 — 1 < s < 0. Observe that, by definition df;,
recalling [1.2),

ho(s) — hi(s) < hols — 1) + %((H 97 —sP) < Cs + %((1 L5 —sP)

_ %

(1+s5)? (5.15)

provided! is sufficiently large. Furthermore, frofn (5.7)—(5.9), it follows that
hi(s) > const(1 + s)” (5.16)
if e=“11/2_ 1 < s < 0 and! is large enough. Also, using Leminal4.1, we obtain
1 1
SLyhi@)YP (GEpho(0))MP

0 1/p _ 1/
— const (ho($))™P — (hi(¢)) pdg
5 (ho($)hi(E)YP
(ho(§) —hi(£))dg

0
/s ((ho(@)P=D/P + (hy(£))P=D/P)(ho(O)hi (§))Y/P
0 —
< COI"ISt/ Md;

0
Ho(S)—Hz(S)=/ ( d¢

< const

ho(§) (hy(§)MP
Consequently, fronj (I} 2), (5.]16) arid (5.15),
t 0 1 t
How) = i) = 5 [7 e < -2 log1+),

thus proving ) fore=¢1/2 _ 1 < s < 0. This completes the proof in the case
si—1<s<0.

Let us now consider the case 8 s < 1. In this cases; > 0 by inspection,
thus H; is well defined and strictly increasing in,[0). Settingr = |x — y| — [/ and
s = g1(t) = W' (x), we notice that > 0 corresponds tpr — y| > [, therefore, arguing
as in [5.11), we have

(hi(s))P~1/P (5.17)

K(N -1
8@ @) < B + F =D

if |x — y| > [, providedK is large enough. Since, by definitionafand [1.2),
hi(s) < const(ho(s) + ho(1 — s1))

for C5 large enough, it follows that

8@ @) < 15~ P pa—sP s H 4 D

l

(ho(s) +ho(1—sp)) P~ /P
< ho(s)
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if C» is suitably large, where, in the last estim(1.2) has been used once more together
with the simple inequalitya 4+ b)7 < 27 (a? +b?) with ¢ := (p —1)/p . Thusw>! (x) is
a strict viscosity supersolution df (1.5) for — y| > £, providedw>(x) is well defined.
We now need to prov.4) in the case® < 1 — e~1//2, To this end, first notice
that, if0< s < 1 — ¢~“/2 we have 1- s > ,/5; and therefore

1
st <sfPA-s5)" = A9y (5.18)

if 7 is large enough. The definition éf, (1.2) and[(5.18) imply that

const const
hi(s) — ho(s) < consts/ + T(l —5)P < T(1 —5)?, (5.19)

for 0 < s < 1— ¢~1/2, On the other hand, the definition bf and [1.2) lead to
hi(s) > ho(s) + ho(1 — s;) > const(1 — s)? (5.20)

for0 <s < 1— e /2 Also, from Lemma 41,

s 1 1
Ho(s) — Hi(s) = a ¢
o) = 10) = [ e~ CEm T
; h(g) = ho(¢)
) d
ECO”Sfo @) D77 + (ho(@) P77 (i ©hote )7
5 hi(¢) — ho(¢)
f @ —ho®) 5.21
SCO”S/O RO .
Then, from[(5.Ip)-{(5:31) anfi(1.2),
Ho(s) — Hi(s) < ConSt/S Sp =T e
0 Ry l N = l 0 1_ é‘ — l g N

if0 < s < 1— ¢ /2 This indeed prove§ (5.4) in the case® < 1 — ¢~1//2,
Let us now prove[(5]2). Using the definitions &f, #; and [1.2), we get

Hi(1) < const/l at < const/l dg
ne = o (ho(0) + ho(l— s))r = 0 (L—g)P +sDHY»

1 de 1
<const| ————— < constlog—.
0 1-¢+ws s1

This proves[(5]2) provided; is chosen to be suitably small, and ends the proof of
Lemmd5.l. O

We now introduce an appropriate modification of the barrier in Lefnmia 5.1, in order to
deal with the distance function:
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Lemma5.2. LetO<es <o <8 <1, & € RV-1 andM € Mat((N — 1) x (N — 1)).
LetI" be the hypersurface defined as

r:= {XN = %x’~Mx'~|-a$ -x’} N{lx'| < o/e}

and assume that
trM>38, (M| <2/8 & <1/5.

Definedr (x) to be the signed distance framto I", with the assumption that- is posi-
tive?| abover .

Then there exist functionrg : (0, +o0) — (0, 1) andCp : (0, +o0) — [1, +00) and
T:.s € [0, Co(8) log(1/e)] suchthat, it < o < 0g(8), we can find a non-decreasing func-
tion gr € CH1(—o0, Ty.s), constant in(—oo, —Co(8) log(1/e)], such thatgr(0) = O,
gr(Te.s) = 1, gr is C? with g non-vanishing outside the set wherés constant, and
for which gr (dr (x)) is a strict viscosity supersolution ¢L.5)in its domain of definition
(that is, providedir (x) < T¢s).

More preciselygr is constructed as follows. Let > 0 be suitably small and let
p € CL(R) be a non-decreasing function so tha) = 0, p(s) = —1fors < —1/2 and
p(s) =1fors > 1/2. For anys € (—1, 1), define

hr(s) :=max0, ho(s) + c18ep(s)}. (5.22)
Letss . be the point near-1 for whichho(ss, ) = c18¢. Define also

S (p—=DYrdg

H = —_—.
A A L
Then:

(i) There exists a constant € (0, 1) so that
T 1 sup.
c*(8e)7P < 1485 = —(86)77; (5.23)
c
(i) foranyss, <s <1,

hr(s) > 0; (5.24)

in particular, Hr is well defined and strictly increasing [s ¢, 1] and thus we may
definegr(¢) = Hr_l(t) for anyt € [Hr(ss.¢), Hr(1)] and extend;r(¢) to be con-
stantlyss . fort < Hr(ss,). In particular, if gr () > s5., thengp-(r) > 0.

8 Again, “above” is with respect to they-direction. For some properties of the distance function,
seel[9].
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Proof. First observe thaf (5.23) follows frofn (1.2): indeed; &ndC are as in[(1]2), then

1/p 1/p
(%) 6P <1+s5. < <%) CONE

Also, with no loss of generality, we may assume < —1 4+ 6%, in order to use
(1.3). Note that since by (1.3 is increasing in {5 ., 0*), we getho(ss ) > c1de
in (ss,¢, 0*). Moreover, from|(1.p), it-1 is small enough, we may supposg(s) > c18e
for ss.. < s < 0. From the above discussior@.%) follows.

Notice that the constant extensionggfis C~~ since, by Lemm6, if= Hr(ss.),

, p Yp
gh (1) = (p . 1hr(gr(f))) - (

1/p
b— 1hl“(55,8)> =0.

To estimate the domain on whigl is strictly increasing we have therefore to estimate
Hr(s5,¢) andHr(1). Using Lemma 4]2, one obtains

hr (s) = ho(s) — 188 = ho(s) — ho(ss.¢) = CONSK(L+ ) — (1+55.)")? (5.25)
foranys € [ss5,c, —146*]. On the other hand, for anye [—1+6*, 0], (1.4) implies that
hr(s) > ho(—1+4 6%) — c18e > ho(—1+ 6%)/2. (5.26)

Therefore, using the definition @i, (6.23), [5.25) and (5.26), and making use of Lem-
ma[4.3, we get

CHra = [ DYy /0 (p— VY7 dg /—“"* (p—DVPdg
T S e @Y g (phr@)YP T s (phr ()M
—1+0*
< const(1+/ ¢ I > < Co(d) Iog},
we (@O = Tt 5007 E

or, equivalently,
Hr(s5.e) > Co(3) loge. (5.27)

This completes the desired estimate/n(ss ).
Let us now estimaté/r(1): from the definition ofir and [1.2),

He (D) = Lip-—1nVrac - /1/2 constd¢ /1 constd¢
CUT ) @)V T o 1=t T Jip c@=0)r + erse)r
- /1/2 constd¢ +/1 constd¢
—Jo 1-¢ 121—¢+ @Be)l/r
< const(1 —log(ée)) < —Cop(8) loge. (5.28)

The claims on the domain @f- are thus consequences [of (5.27) dnd (5.28).
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Now we deal with the proof of the viscosity supersolution propertyrofFirst of all,
notice that in an appropriate coordinate system we have
—k1 —kn-_1
1—drki’ 7 1—drky_1’
where thek;’s are the principal curvatures dfat the point where the distance is realized
(see 8§14.6in[9] for further details). We also defibas the paraboloid describirig i.e.,

D%dr = diag( 0) € Mat(N x N),

/! 8/ / /
P(x)izéx -Mx"+ ok -x.

Notice that, by constructiony P| < 1, thus, by the mean curvature equation (see, for
instance, equation (14.103) 61 [9]), it follows that

Iilk 3 3< 9 P ) AP (D?PVP)-VP
i = i ———— ) = _
i=1 1=i=N-1 1+|VP? 1+ (vP2 (1+|VP32
1 2 2
> SAP —consV P || D2P].

Consequently, if is so thatidr (x)| < Co(8) log(1/¢), sincelk;| < C1(8)e, we have

N-1 k; N-1

- 1
Adr < < — Y ki +2(C1(8)¢)?log =
F—l.;l—drki— ;14'(1()8) 9-

1
—EAP + const{V P|?||D?P|| + C1(8)e%/?

IA

Therefore, ifdr(x) € (Hr(sse), Hr(1)) (and thus, by[(5.27) and (5]28)r(x)| <
Co(8) log(1/¢) andgf(dr(x)) > 0), by Lemm we have

Ap(gr() = (p — D(gh )P gl (1) + (gh(1))? L Adr (1)
< (p— D(grO)P gl (1) — gw — Ca(®)oY?) (gr(1))P~L, (5.30)

5 5
< —‘% + Co(8)(e0? + £%2) < —% + C3(8)ec ™2, (5.29)

where we are using the notation= dr(x). Taking into account Lemnfa 4.6, by (5/30)
we get

e ol P (p-D/p
Ap(gr(t)) < hp(s) — 5(5 — C4(8)o )(mh‘(”) ,

where we are using the notation= gr (dr (x)).

Now we chooser(s) small such thas — C4(8)0 /2 > §/2 foro < o0(8). Thus, if
ldr(x)| < Co(8) log(1/¢) (and sos = gr(dr(x)) > s5.), we gather (recall als¢ (5.p4))
that

Ap(gr (1) < hi(s) — consBe (hr(s)) P ~D/7
< hy(s) + c18ep' (s) — conswe (ho(s) + c18ep(s) P~ VP, (5.31)
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We now claim that
c1p'(s) — const(hg(s) + c18ep(s) P~ VP <0 (5.32)

for anys € (ss.¢, 1), providedc; is small enough. Indeed, §if< —1/2 ors > 1/2, then

0'(s) = 0 and therefore the left hand side pf (5.32) is under control. On the other hand,
if s € (=1/2,1/2), then setting™ := infse[_1/2,1/2] ho(s) (Which is strictly positive on
account of[(1.R)), we bound the left hand sidefof (5.32) by

Cl”,O/ loo — COﬂSt(c*)(p—l)/p’

which is negative for suitably smal. This proves[(5.32).
Therefore, by virtue of (5.31) anfl (5]32) 4 (x) € (Hr(ss.c), Hr (1)), we get

Ap(gr(n) < ho(gr(1)).
If elsedr(x) < Hr(ss.¢), we have
Ap(gr 1)) =0 < hg(ss.e) = holgr (1)),
thanks to Lemmpa4l7. ]

6. Sliding methods

We now use the barriers introduced in] 85 and an appropriate sliding technique to de-
duce an estimate on the curvature of touching paraboloids for solutigns]of (1.5). Roughly
speaking, the barrieng”"! defined above provide a good constraint for touching points,
since the latter can lie only in the set where the barriers fail to be supersolutions (that is,
on their zero level set). More precisely, the following results hold:

Lemma 6.1. Letu be a weak Sobolev subsolution (if5). Thenu and ¥/ cannot co-
incide in any open domain.

Proof. For short, let¥ := ¥/ B := Br,41(y), B’ := Bi(y). Furthermore, let (/)
[1/2, (1 — ¢)I] be so that¥ is flat in B” := B;)(y). ThenB” C B’ C B, the domain

of definition of W is B, and W is C? outsided B’ U 9 B”. Suppose by contradiction that
u = ¥ in some baltB € B. Possibly taking a smaller ball, we may and do assume that

BC(QNB)\ (BB UIB"),

hencex = W is C? in %B; therefore, for any non-negative smooth functiosupported
in 9B, we deduce fron{ (1]5) that

/ho(‘l—’)gp > —/ IVW|P2VW . Vg = —/ |VulP2Vu - Vo > /ho(u)gp

_ / ho(W)p.

which is obviously impossible. O
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Lemma 6.2. Fix y € RN and let/ > 0 be suitably large. Lei: be a weak Sobolev sub-
solution of)in some domaii2. Suppose that € C1(Q) an(ﬂthat|u| < 1. Suppose
that >/ touches: from above atc*, that is, >/ > y in their common domain of defi-
nition Q N By, (y) and WYL (x*) > u(x*), with x* in the closure of2 N Br,41(y). Then
eitherx* € 9Q or u(x*) = WY (x*) = 0.

Proof. For short, we writel ;= W/, B := B1,41(y), B’ := Bi(y). Assume that

xX* & 0%; (6.1)
we will show that thenl (x*) = 0. For this, first we prove that

x* ¢ 0B. (6.2)
Indeed, suppose the contrary. Let us consider the “radial direction”

x*—y

o=yl

Then, by the construction in Lemrha p¥(x*) = 1 andVW¥ (x*) - w > 0. On the other
hand.u < 1 and, since:(x*) = 1, we haveVu(x*) = 0 (thanks to[(6]1) and the assump-
tion thatu € C1(Q)). Lets := u — . From the above discussiof,< 0 in B N € and
i(x*) = 0, therefore

Vi(x*)-w > 0.

But then
0<Vu—-¥E" -w=-V¥x" w <0,

which is a contradiction. This proves (6.2).
Due to [6:1) and (6]2),

x* isin the interior of2 N B. (6.3)

Moreover, by construction has no points with vanishing gradient outside the region
where it is flat: more precisely is flatin B” := B (y) for somer (/) € [I/2, (1—¢)l],
B"” C B' C B, V¥ is constantly equal te-1 4 ¢~%°"S" in B”, and if
Zyw = {|Vu| + |V¥| = 0},
then .
Zyw C{IV¥| =0} c B". (6.4)
Also, by Lemma®6.]L,

u andW¥ cannot agree in any open domain. (6.5)

Then, by [(6.1),[(6]5) and Corollafy 3.3 (and recalling(6.8))may only lie either ord B’

(whereWw = 0 and it fails to be a supersolution) or in the closureB6f

9 The assumptions on the subsolutiom Lemm (and in the other analogous results of this
section) are, in particular, fulfilled in cagds a weak Sobolev solution df (1.5) satisfying < 1,
since theC1-regularity is given by the results ifl[8] dr [20].
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Thus, Lemma 6]2 is proved once we show that
x* does not lie in the closure df”. (6.6)

The proof of [6.6) is, once more, by contradiction[If {6.6) were false, theh (6.5) implies
that we have: < W in the interior of a suitable baB € B” andu(y’) = ¥(y’) for some
y' € dB. SinceVW¥!(y') = 0 andu € C! by assumption, we have

Vu(y') =0. (6.7)

Setu* := —u + 1 — ¢~ Then, by[(1.B), it is sufficiently large, we have, in a weak
sense,
—Apu* = Apu > hy(u) > const(l +u)?~1 >0

in B; alsou* > 0in the interior of8 andu*(y’) = 0; consequently, by Theor.4 (with
¢ = 0 andg = 0) it would follow thatVu*(y") # 0 and soVu(y’) # 0, contradicting

©.7).
This proves[(6J6) and thus completes the proof of Letfhmia 6.2. o

Here is another result which allows us to bound subsolutio@f (1.5) by the bairtiérs

Proposition 6.3. Let u be a weak subsolution ofL.5) in the domainQ@ < R¥, with
lu(x)] < 1foranyx € Q. Assume that € C1(Q). Lety € RN and! > 0 be such that

By (y) C{x e Q:iulx) < —146%}. (6.8)

Then
u(x) < W (x)
for anyx € Bi7;(y), provided! is sufficiently large.

Proof. Notice that¥>-! is defined omB7; (y) and that, ifx € By 7,(y) \ Bi(y), then
Uix) > 0> —1+406" > u(x).

Therefore, due tq (6]8), if the claim of Proposit[on|6.3 were false, there would be an open
setil such that
UC B CcnN{u <—-1+06%), (6.9)

so that¥! < u in 4, and¥”-! = i on d4l. Consequently, there exists> 0 so that :=
u—rk <Wlin, v < W in a andv(x*) = W(x*) for somex* € 4. Note also that

v(x*) = U(x*) € (-1, 0), (6.10)

sincex* € 4 C By(y), and therefore
e Wi=Un{v < 1. (6.11)
Sincehy is increasing inB;, 7; (y) (thanks to) and our assumption on 320),
Apv = Apu > ho(u) = hg(v + k) > hg(v) (6.12)

weakly in. Consequently, from Lemna 6.2 we deduce that either 90 or v(x*) = 0.
The first assertion would contradit (6/11), while the second one is ruled o[lit by (6.10).
This provides the contradiction which proves the desired result. O
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Propositior] 6.3 can be easily sharpened, giving a strict inequality, in the following way:

Corollary 6.4. Let u be a weak subsolution off.5) in the domainQ < R, with
lu(x)| < 1foranyx € Q. Assume that € C1(Q). Lety € RY and/ > 0 be such that

Bian(y) C{x € Q1 u(x) < —1+ 6%} (6.13)

Then
u(x) < wrhx)

for anyx € Biy7;(y), provided! is sufficiently large.

Proof. By Propositio 6.3, we know that < w>'!. If there existed:* for which equality
holds, then[(6.13) and Lemrha .2 would imply that*) = W/ (x*) = 0, in contradic-
tion with (6.13). O

A result analogous to Lemnjia 6.2 holds for the bargiedr) constructed in Lemniaj.2.
For the convenience of the reader we will now provide some details on this:

Lemma 6.5. Letu be a weak Sobolev subsolution(@H) in some domairf2. Suppose
thatu € C1(Q) and that|u| < 1. Suppose thagr (dr) touches: from above at*. Then
x* e 9Q.

Proof. First notice thatx and gr(dr) cannot be identically equal in any open set: this
can be proven by an easy modification of the argument in Lemma 6.1. By Cofollary 3.3,
we infer that interior contact points may only lie in the region whgré&ir) is flat. This
possibility, however, is ruled out by Theorém|3.4 (see the arguments orf page 344, and
in particular the proof of[ (6]6) for further details). Thus, cannot be an interior point.
This proves that either* € 9 or it lies on the boundary of the domain gf (dr). We
now show that the latter possibility cannot hold. Indeed, on the boundary of the domain
of gr(dr) we havegr (dr) = 1. On the other hand, if* lies on that boundary (but in the
interior of ), then

u <1=u(x*) = grdrix"))

would giveVu(x*) = 0. Let nowe be any direction pointing from* outside the domain
of gr(dr) and letii := u — gr(dr). Then, by constructioni(x* — re) < 0 for any small
positivez, while iz (x*) = 0. Thereforep,ii(x*) > 0 for any outer derivative. I is taken
to be the outer normal, however, then

de(gr o dr)(x*) = gr(dr (x*))d.dr (x*) = gr(dr(x*)) > 0.
Collecting the above estimates, we have
0> —d,(gr odr)(x*) = d.u(x*) > 0, (6.14)

and this contradiction sho@that the contact point may only lie &1f2. O

10 The reader will observe that the argumen.14) is indeed the same as ge 343.
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The next result plays a crucidle, since it establishes that the zero mean curvature prop-
erty of the limit surface is somehow already attained by solutiong of (1.5), though in a
weak viscosity sense.

Lemma 6.6. Let/, 0, > 0andM1 € Mat((N —1) x (N —1)). Letu be a weak Sobolev
solution of(L.5)in [, ]V . Assume thajte| < 1in [, ]V, u(0) = O andu(x) < Ofor
anyx = (x, xy) € [-1,1]" so that

XN < ix’ - Mix' + gé ax’.
22 l
Assume also the2.])) holds foro = ey. Then there exist a universal constagt> 0
and a functiors : (0, 1) — (0, 1) so that, if
5€(0,60], 6=6, 6/l€(0.0(d)]. [Mill=1/s, [§]=1/s,
thentr M1 < 6.

Proof. We remark that, by our assumptioh,> §/0(5§) may and will be assumed to
be a large quantity. Leg; and W>-! be the functions defined in Lem@.l. Let also
¢ € (0,1/10) be such that

Tyja > cl. (6.15)

Define also
. / N . 0 / / 0 /
Mpi=3x=G"xny) e [-L1]"Y 1 xy = =x' - Myx" + =& -x'¢.
212 l

Let us make some elementary observations on the above paraboloid. First of all, by con-
struction,u is negative below'y in [—1, 1]V . Furthermore, by our assumptions,

I'1 € {lxy| < cons®/8} C {|xy| < consio (8)1/8} < {|xy| < ¢l/8}. (6.16)
Therefore,

xy —cl/8 <dr,(x) <xy+cl/8 (6.17)
foranyx e [—,1]V.
GivenX e I'1 letvy be the normal direction tb1 at X pointing downwards. Let also

Ci={x'| <1/4) x {xy € [-1/2,1/8]}.

We claim that

¢c U By1/a1(X + (1/4)vx). (6.18)
Xel'y

To prove this, take any € € and letX = X (r) € I'; realizedr,. By (6.17), we have

1 a1 él
——— =, =+ . 1
ﬁme[z 98+J (6.19)
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This says in particular thair, (x)| < 3//4, hence the defintion & implies thatX lies
in the interior of [-1, /]V and therefore — X is orthogonal td"; at X, that is,

r=X+tlvy
for a suitabler € R. Hence,
dr,(t) = —7l (6.20)
and
[t — X+ {/Hvx)| = |t — 1/4]l. (6.21)

Then, by [(6.2D) and (6.19), we have

and so
1e 3 51+EC 1 51+E
T— = —— ==, =+ = —— ==, =4 = .
4 8 84 8 4 84 8
This and|[(6.2]L) imply that € B(z+1/4y(X + (I/4)vx). This proves[(6.18).
We now observe that

<o <729 22
2 =<1 (6.22)

The bound on the curvature &% given in [6.22) implies that, i (5)/8 is sufficiently
small, then, given an¥ e I'1, there exists a ball of radiug4 which touched™; from
below atX.

The following is the decisive step towards the proof of the desired result. We claim
that

u(x) < gi/a(dr; (x)) (6.23)
foranyx e €. To prove[[6.2B), first notice that, frofn (2.1) and Corollary 6.4, we infer that

u(x) < WO-0-2U40 - vx € Bjary ,0,...,0,—1/2).
Then, for a giverX e I'y we define
X' = X'(X):= X + (/bvy,

where, as above, we denoted iy the normal direction td'; at X pointing downwards.
In particular, from the above observatid 4(X’) touched"; from below atX. We now
slide the surfacay(©---0.=1/2.1/4 in the direction of the vector

v=0vX):=X —(,...,0,—1/2),
that is, we consider the surfade := Ww(©.--.0.=/2+tv.l/4 for ¢ = 0. We will show that
Wi (r) > u(x) foranyr € [0, 1) and anyx € Bijay1,,((0,...,0,=1/2) +1v). (6.24)

Indeed, let € [0, 1) be the first time at which’ touchesu. First of all, note that, since
t <1, we haver < 00ndB;4((0,...,0,—1/2) +tv), while W' = 0 there. Thereforey
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Touching betweers® andI';

cannot be equal t&’, and no touching points occur @B;,4((0, ..., 0, —1/2) 4+ tv). On
the other hand, Lemnja 6.2 says that touching points cannot occur anywhere else. This
proves|[(6.24).

We are now in a position to complete the proof|[of (6.23) by arguing as follows. We
deduce from|(6.24) thab*(x) > u(x) for anyr € Byjai7,,(X'), hence, a fortiori, for any
t € Bjare(X)), thanks to|(6.1/5). Therefore, taking now any: ¢ and lettingX’ be so
thatx € B(1/4+5:(X’) (recall [6.18)), we have

g1/a(dry (X)) = gijalx — X'| = 1/4) = WX 400 = W) > u(n).
This proves[(6.23).

We now complete the proof by supposing thautr > §: under this assumption, by
Lemmd 5.2¢r,(dr,) is a strict supersolution of (1.5), where

Iy = {x = xn) e[-L0Y 1 xy = ix’ - Myx + QS x' = LWF}
’ ’ 212 [ 2(N -1 ’
_ 0
=5z
Note that
2 C{lxn| <086 +1/8)1} < {|xy| < cl/8}. (6.25)

Moreover, we claim that, i#/! ands are sufficiently small, then

hry(s) < hyja(s)  if s <5 < —1+ (3017217, (6.26)
hry(s) > hya(s) i1 —(8017HYP <5 < 1. (6.27)
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Indeed, ifar, (s) = 0, then[(6.2p) follows from item (i) in Lemnja §.1. If, on the contrary,
hry(s) > 0 ands € [ss., —1+ (8¢)%”], then, by the definitions ofir, and/a, (1.9)
and [5.2B),

const const
hr,(s) — hi/a(s) < —conste + T(l +5)P —

$$a+ho(=1+ s14)

80  const » »
—constl—2 + T(l +5)P + constsl/4

IA

IA

30 Se ,
—const-y + const—- + consts; ,
50 56
= —COﬂStl—z =+ ConStl_S + Conste—ConSTl’

which is negative for sufficiently large completing the proof of (6.26). To prm@]Z?),
use (1.2),[(5.23) and the definitions/af, andh,,4 to deduce that, if 1- (861-3) 17 <

s <1,
hr,(s) — hija(s) > ho(s) + constse — hya(s)

const
= conste — ho(1— si/a) — ——((1 = )P +5014)

const
> consie — consts/), — — (@ =P+ s11)

86
> constse — constl—3 — conste—%onst

60 80
= const— — const— — Constg—constl.
12 I3

Taking! large enough provides the proof pf (6.27).

According to ) and (6.27), the functien— Hr,(s) — Hj/4(s) is increasing for
s < —14 (801=5T7P and decreasing far > 1 — (80127, therefore its maximum
occurs in 1+ (801=2)YP 1 — (501=2)¥/P], i.e.,

max (Hr,(s) — Hj/4(s)) = max Hr,(s) — Hj/4(s)). (6.28
se[sml]( T, (s) — Hja(s)) se[—1+(691*2)1/1’,1—(89l*2)1/1’]( ,(s) — Hya(s)). (6.28)

Also, recalling the definition ot in Lemmd 5.1, ifs € [0, 1 — (86172)%/7],
Sp=DYPdr (P (p-DYPde

H, = _— - = H , 6.29
RO = o @ =l “hoeye 0 (629
and analogously, if € [-1+ (801727, 0],
0 -1 1/p d 0 -1 l/pd
CHps = [ @D P mDIRAE g, (6.30)

s (PhryNYP [ (pho(E)YP

Hence, from[(6.29) andl (6.30),

Hr,(s) < Ho(s)
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for anys € [—1+4 (80/-%)Y/7, 1 — (501-3)%/7]. Consequently, fron] (5]4), if € [-1 +
(801=2)V/r 1 — (801=%)1/r], then
const  [?
Hr(s) < Hija(s) + ——log .
Therefore, by[(6.78),
12

const
Hro(s) < Hija(s) + —— log 5 (6.31)

for anys € [ss ¢, 1]. Furthermore, by definition dfy andl'y, if |x'| = [/4, then
dr,(x) > dr;(x) +c(3)

for a suitablec(§) € (0, 1). Hence, using[(6.31) and takirigappropriately large, with
s = g1/4(dr, (x)),
const, 2
Hr(814(dry (1)) < Hija(g1/a(dr; () + —— log 5
const [?
= dl"l(x) + T |Og£ = drz(x)

providedg; 4(dr, (x)) > ss.. and|x’| = [/4; therefore, sincélr, is strictly increasing in
[S(S,Sv 1]1
g1/a(dr;(x)) < gr,(dr,(x)) (6.32)

for any x so thatg;/a(dr,(x)) > s5,. and|x’| = /4. Of course, ifg;/a(dr,(x)) < 85,
then [6.32) holds sincgr, > ;.. by construction (recall item (ii) of Lemnja$.2). Thus,

g1/a(dr, (x)) < gr,(dr,(x)), vix'| =1/4, (6.33)

provided thatdr, (x) is in the domain ofg;/4 anddr,(x) in the domain ofgr,. Notice,
however, that the first of these conditions is implied by the second:

if dr,(x) is in the domain ogr,, thendr, (x) is in the domain og; 4. (6.34)

To prove this, take so thatdr, (x) is in the domain ogr,. Then, by Lemm§ 5]2 and our
choice of parameters,
12
dr,(x) < Co($) log rE
and thus, from[(6.15)[ (6.16) an{d (6]25), we deduce that

él 12 e a
dr,(x) <dr,(x) + 7 < Co(8) |Og§ + 2 < > < Tjya,

which says thadlr, (x) is in the domain og; 4, thus proving[(6.34).
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Now, (6-33), [(6.2B) and (6.84) imply that
u(x) < gry(dr,(x)) (6.35)

for anyx so that/x’| = [/4 anddr,(x) is in the domain ogr,.

With these estimates, we are now ready to deduce the contradiction that will finish the
proof of the desired result. To this end, we sliglg (dr,) (as constructed in Lemnja $.2)
in theey-direction till we touchu in €, i.e., we consider, for € R,

g'(x) 1= gr,(dr,(x — tey)).

If we denote byDg the domain ofgr, (dr,), then Lemma 5]2 shows th@X, is the sub-
graph of a paraboloid, namely

Do = {dr,(x) < T¢ s} (6.36)

Also, on the top of the paraboloi@y,(dr,) takes value 1, i.e., ifir,(x) = T s then
gr,(dr,(x)) = 1. Notice that, with this notatiorg’ is defined inD; := Dg + tey and
g' takes value 1 on the top @;. Thus, ift <« 0, theng’ > u in D, N &, sinceu < 0
belowI'1. On the other hand,

g%(0) = gr,(dr,(0)) = gr,(0) = 0 = u(0),

therefore, there is a time < 0 of first touch ofg’ andu in D; N €. Hence, in light of
Lemma 6.5, contact points may only happen either on the lateral side of the cydinder
(i.e., on|x’| =1/4) or on its bottom (i.e., ony = —I/2; the casey = /8, correspond-
ing to the upper face of the cylind€r cannot hold because < 0, henceD; lies way
belowxy = 1/8, due to[(6.3p)).

We now exclude the possibility of touching.ay = —//2 by arguing as follows. By
applying [6.28),[(6.17) and the fact thaj is constant in—oo, —/8], we deduce that,
if xy = —1/2, then

cl l cl l
u(x) < gryaldr,(x)) < g1/4<XN + §> = g1/4<—§ + §> < g1/4<—§>
=1+ <55, < g' (),

which rules out the possibility of touching &t = —1/2.
Therefore, a contact point € D, N ¢ betweern: andg’ does occur whepx'| = 1/4.
Notice now that, from Lemn{a 4.8,

dr,(x* —ten) > dr,(x*).
But then, sincer, is non-decreasing, we deduce frgm (6.35) that
gr,(dr,(x* —tey)) = g'(x*) = u(x*) < gr,(dr,(x*)) < gr,(dr,(x* — tey)).

This contradiction concludes the proof of Lemjmg 6.6. O
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7. Proof of Theorem[2.2

The proof of Theorerp 2]2 can now be completed as follows. We will apply Lemra 6.6
with the following choice of parameters:

l = , 6:=0:=0, Mp.=——M, &:.=0.
JetrM trM

If the claim of Theorer 2|2 were false, by scaling back and using the above parameters,
we would infer thaf"; touches from below the zero level setwinside [-7, ]V, where

0 0
= {x:(x’,xN) eRV IxR:xy = ﬁx’~Mlx’+7§~x’}.

By Lemmg 6.6, we gather that1 § > tr My = 1, which is the contradiction that proves
Theoreni 2.P.

8. Proof of Theorem[2.1

We are now in a position to prove Theorgm|2.1. kebe a point whereS admits a tan-

gent plane. With no loss of generality, we may assume that the normal ve@&aatto*

isey. Let P be a paraboloid touching from below. We will show that the mean curvature

of P is non-positive; an analogous proof gives thatPiis a paraboloid touching from

above, then its mean curvature is non-negative, and this ends the proof of Tfiedrem 2.1.
By construction, ifP touchesS from below atx*, then

P = {(x/,x) eRVIxR:xy = %(x/ — @) - ME =@M +x;‘\,}

for someM € Mat((N — 1) x (N — 1)). Letly_1 be the(N — 1) x (N — 1) identity
matrix and set

Mi=M- —"Iy_1. (8.1)

Notice that
tr M = = tr M. (8.2)

Let us also define
P = {(x’,x) eRV I R:xy = %(x/ — () -/\//\l(x/ — (") +x7\,}.

Assume, by contradiction, thattf > 0. Then ttM > 0in light of ), and]3 also
touchesS from below atx*. Letr € (0, 1), to be chosen suitably small later, and consider
the cubeQ := {|x — x*| < r}. Notice that, by the tangency ¢fy = x} } andS, if r is
small enough, we have

SNQ < {lxny —xyl <r/4h (8.3)
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Also, by [2.2), if we fix anyy > 0, we have
dist(x, S) < (8.4)
foranyx € {u, = 0} N B1(x*), providede is small enough. We also claim that
B, (x*) N {ug = O} # ¢ (8.5)

if ¢ is small enough. To prove this, assume that, say< 0 in B,(x*). Then, since:,

converges i, . to x = xg — xgwv\g, We have

0> Iim/ |ug—x|=|im/ |u€—l|+/ lue + 1|
e—>0" JB, (x*) e=>0" JB, (x»)NE B, (x")NRN\E)

> £(B,(x*)NE),
whereg is the N-dimensional Lebesgue measure, so
L£(B,x*)NE) =0;

this contradicts (2]3) and provgs (8.5).
We will now consider the touching of a suitable slidingfwith {z, = 0} in Q. In
order to formalize the argument, define

P, = {(x/, X)eRVIXR:xy = %(x/ — (M) - M@ = () +xy - t},

and letr € R be so thaf3; N {u, = 0} N Q # @, while P, N {u, = 0} N Q = @ for any
s > t. Notice that, from[(8}4) an{ (§.5),

|t < 2n. (8.6)
Letx® € P, N{u, = 0}N Q. We now show that® is in the interior ofQ; more precisely,
xP e {Ix = x*oo < 1/2). (8.7)

First of all, by [8.3) and (8]4),
{ue =01N Q < {lxy — xyl <r/2} (8.8)

providede is small enough. Hence, to pro.7), it remains to showljiﬁat xr|<r/2
forl<i<N-1.
For this, recalling[(8]4), let € S be so that

¥ —x%| <. (8.9)

Then, sinceS is aboveP,

1
XN > E(i’ — @) ME = @) +xy. (8.10)
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Since, on the other hand? € 3,
1 NOAA / * *
xy = 505 = () MO = (@) +af -1,
which, from [8.1) and (816), implies
tr M 1
g _ BN V12 8 S BV — (%Y BN/ ok *
V=g — g O T OIS =) M) = (")) +xy+21. (8.11)
Subtracting[(8.70) andl (8.]11), and making usg of|(8.9), one gets
consty > xy — xf\,
tr M

= m“xﬁ)/ — P+ %(x/ — oY) ME - M)

1
- §(<xﬁ>/ — (M) MP = M) =2

tr M V4 *\/ 2
= 3N 1)I(x ) — (x™)'|” — const(1 + [ M]])n.
Since trM > 0, this shows in particular tha;tl.ti —x}| <r/2forl<i < N-1, provided
n (and sc) is suitably small, thus completing the proof pf (8.7).

With no loss of generality, we may now assume tivat= 0. Notice that, with this
assumption, by[ (8] 7)1, touches{u, = 0} from below in{|x|o < r/2}. Hence, either
ug < 0oru, > 0 below; in [—r/2,r/2]"; we will consider the first possibility, the
second being analogous. Namely, we assume that

us <0 below, in[—r/2,r/2]V. (8.12)
Also, since Oc B3;, the equation ofg, takes the form
1 A
XN = Ex' Mx'+ VX (8.13)
with e
V| < const|M||r.

We now apply Lemma 6]6 with the following choices: kte (0, 1) be a fixed small
quantity, My := M/tr M, [ := r/(2¢), 6 = el®tr M, & := [V /0. Let us check that
the hypotheses of Lemnjia §.6 are fulfilled in the setting above if we choeswll (in
dependence on a fixed, sméjlande small (in dependence ahandr). Indeed,

r2 tr.//\/T
£

6 = const

is greater thad if ¢ is small enough. On the other hand,

0 — —
7= el tr M = constr tr M



p-Laplace phase transitions 355

is less tharw (8) if » is small. Furthermore|M|| is obviously less than/s if § is small
enough and also

IMiirt | Mallr
——— =co

< const
&1 = 5

which is less than & if § is small. The last hypothesis to check in order to use Lemma
is that

nst

= const| M|,

u<0 (8.14)
for anyx e [—1, []V with
o b, 0
xN<ﬁx - Mqx +7§~x.
To prove this, letx be as above and set= sx. Then

[yloo < el <r/2
and
0 ’ / 0 ’ 1/ 'O ’
IN < oy My + 8y =Sy My Ve

hencey is below, thanks to[(8.13), and therefore, recallifg (8.12), we deduce that
0> ug(y) = u(x).

This proves[(8.T4). Since the assumptions of Lepmp 6.6 are fulfilled, we deduce from
Lemmd6.6 that
1>6>trM1=1.

This contradiction, caused by the assumption thatfte 0, shows that the mean curva-
ture of P must be non-positive. This completes the proof of Thedrein 2.1.

9. Comments on the decay property{ (2]1) and proof of Theorein 2.3

In this section we assume thiag admits aC! extension to a neighborhood oL, 1].

We would like to show that conditions of type (R.1) are somehow natural. First of
all, a condition of this kind is necessary to avoid, for instance, periodic one-dimensional
solutions. Also, Class A minimizers of fulfill (2.1). This follows from some density
estimates for minimizers of, proved in[16]. In our setti@ we may state this result as
follows. We say that is alocal minimizeEfor}‘ in some bounded domafnif Fq (1) <
Fa(u + ¢) for any smooth functiop supported irf2. Then the following result holds:

11 |n (part of) [16] a uniform Lipschitz assumption @ is assumed. Such a condition is fulfilled
here, because, for agye (-1, —1+ 6*) and¢ € (1 — 0*, 1), we have

lhg&)| = hg(€) < hop(=1+0%) and |hg(0)| = —hg(Z) < —hg(1—6%).

Hence, sup_1 1) |h| < const.
12 The reader will note that, with this definition, a Class A minimizer is simply a local minimizer
in any domain.
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Theorem 9.1 ([16]). Letu be a local minimizer ofF in a domain$ such thatju| < 1.
Fix e € (0,1) and suppose € {—1+ ¢ < u < 1 — €}. Then there exist positivg(¢)
andc(e) such that

LB,x)N{u>-1+¢€}) > c)rN and £(B,(x)N fu<l-—e€}) > cerN (9.2)

for anyr > ro(e), whereg is the N-dimensional Lebesgue measure, providgdi(x)
C Q.

Further details on the above result are given in Theorem 1.1 of [16]. This implies that
local (and hence Class A) minimizers satigfy [2.1):

Corollary 9.2. Any local minimizer ofF in [—1, []Y satisfie) for anyw € S¥71,
provided that is large enough.

Proof. Suppose that
u=0Nn{lo-x| <} x{lx—(0-x)o| <I}) Clo-x > —cil}

and letx = (x’, xy) € RV-1 x R satisfyw - x < —cyl and|x — (o - x)w| < cjl. FiX
€ > 0, and assume by contradictianx) > —1 + €. By Theorenj 91 withi sufficiently
large with respect tog(e), we see thaB(Cz_Cp,/z(x) contains points where = 0. This
contradiction shows thgt (3.1). ]

The proof of Theorerp 2|3 is now completed via Corol(ary 9.2.

Thanks to Lemmp 66 and Corollgry P.2, we can now state the following result, which
will be of use in the forthcoming paper [22]:

Lemma9.3. Let/,0,8 > 0and M1 € Mat((N — 1) x (N — 1)). Letu be a local
minimizer of F in [—1, 1]V, with [u| < 1in [, 1]V, u(0) = 0 andu(x) < O for any
x = (', xy) € [-1,1]V sothat

XN < ix’ - Mix' + QS - x!
212 [ ’

Then there exist a universal constdpt> 0 and a functions : (0, 1) — (0, 1) so that, if
§€(0,80], 6=<6, 0/1€(0,00)], Ml =<1/5, & =<1/s,
thentr M1 < 6.

To end this paper, we note that, as a matter of fact, the barriers constructed here also show
that Class A minimizers approadhl exponentially fast, once the zero level set is under
control. Though this result is not explicitly used here, we believe it is useful to clarify the
picture of Class A minimizers:
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Lemma9.4. Letu e Wli’c”(RN) be a weak Sobolev solution ) so thatu(x) <

—1+6* for anyx € RN with xy < —« for somec > 0. Then
u(x) < —1 4 GFe N f xy < —k,
u(x)>1-— g* e (K=xN) if xy > «,

(9.2)

for a suitablex’ > 0.
What is more, let: be a Class A minimizer faF with |u| < 1. Leté > 0 and as-
sume thaut(x) < 0if xy < —0, andu(x) > 0if xy > 0. Then there exist, ko > 0,

depending only ol and on universal constants, so that
u(x) < =14 0% 1N if o < —pep, ©.3)
u(x) > 1— g*ealka=n) if xy > ko. .

Proof. Letu be a Class A minimizer. By arguing as in Coroll@ry|9.2, one easily deduces
from Theorenf 9]1 and the inclusign = 0} C {|xy| < 6}, that

u(x) < —1+6* foranyx e RN with xy < —«>, (9.4)

for a suitablec, (depending only o®, 6* and universal constants). This shows that the
claim in {9.3) reduces to the one [n (9.2). Now, far 7) € RN x [0, 6*] let
BO(x) := —1+ g*erlatan) 4 ¢ (9.5)

Notice that, by[(9.4) and (9.5),
B > 146" >u (9.6)
in {xy < —«2}. Also, with a straightforward computation, recallifig {1.2), one gets
ApBY = 8,89 = (p — Dif(L+ g0y
< (p = D™+ B < (8
provideds; is small enough. Then we sliggé”), decreasing from 6* towards 0 until we
possibly touchs in {xy < —«2}. We prove in fact that no touching occurs unti= 0,

that is,
Y >u (9.7)

for anyx € RN with xy < —«2 and anyr € (0, 6*]. To prove ), assume the converse;
then, in light of ), a touching point occurs at soxtevith x3, < —«o2.
Note now that
VB (x)] = O*kpetat V) 5 0,
In particular, if we consider the s&, (x*) with p := —x} — k3 it follows thatu < g
at least at some point diB, (x*). Therefore, by Theore@.&

BY >u inB,(x*), (9.8)

which is a contradiction. This proves (D.7). From thiss ©, which proves the first
estimate in[(92)£(9]3). The second one can be proven in a similar way. O
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