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Abstract. We study the flat region of stationary points of the functiofiglF (| Vu(x)|) dx under

the constraint < M, whereQ is a bounded domain iR2. Here F (s) is a function which is con-

cave fors small and convex fos large, and¥ > O is a given constant. The problem generalizes
the classical minimal resistance body problems considered by Newton. We construct a family of
partially flat radial solutions to the associated stationary problem whisra ball. We also analyze
some other qualitative properties. Moreover, we show the uniqueness of a radial solution minimiz-
ing the above mentioned functional. Finally, we consider nonsymmetric dorteaarsd provide
sufficient conditions which ensure that a stationary solution has a flat part.

Keywords. Newton problem, obstacle problem, quasilinear elliptic operators, flat solutions

1. Introduction

Seventy years prior to the derivation of the conservation laws for a nonviscous compress-
ible fluid by L. Euler in 1755 ([100]), I. Newton introduced, in 1685, one of the pioneering
problems in the Calculus of Variations: find the shape of a symmetrical revolution body
moving in a fluid with minimal resistance to motion (seel[16]). As a matter of fact, the
problem had already been suggested by Galileo in his farBegsursiin 1638 (for a
detailed history see Goldstine |11]). Newton was able to derive the resistance law of the
body under the following assumptions. Firstly, he supposed that particles do not interact
with each other, “a rare medium consisting of equal particles freely disposed at equal
distancesﬂ and that each particle impacts the body at most once. Secondly, the impacts
were assumed to be elastic and the resistance proportional to the impact angle. If we write
the problem in terms of a vertical flow, we can describe the body as{(x, z) : x € €,

0 < z < u(x)}, with u(x) = 0 forx € 3K and for a given bottom s&® in R2. In this
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1 In Newton’s original formulation.
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framework it is not too difficult to show (see, for instance, [L], [6] and [17]) that the total
resistance of the body is proportional to the integral

1
1) = fg T Ve @)

As mentioned in Armanini((J1]), in the same historical book Newton also considered other
resistance assumptions leading to different power expressions of the type

1
——d 2
/91+|W(x)|" * @
with n > 1.

In order to guarantee a single impact, itis common to assume the body to be concave.
Nevertheless, some other profiles have been considered in the literature for the more gen-
eral case in which any particle hitting the graphuodvith vertical velocity does not hit
again (see [8]).

If some of Newton'’s original assumptions are weakened, one might derive a similar
functional, by adding a correction term. For instance| ir@]a?}esistance functional of
the type

1
/g2—1+|Vu(x)|” dx+/§2p(x,u(x))dx

was proposed. Nevertheless, it is worth mentioning that even though Newton’s resistance
model is only a crude approximation, it appears to provide good results in many contexts,
for instance, when dealing with a rarified gas in hypersonic aerodynamics. Many distin-
guished specialists in this area, von Karman, Ferrari, Lightill, and Sears have used this
model (see the exposition in the NASA repart [9] and the book [15]).

In Newton’s formulation one looks for a minimum of the functiofjdl (1) [dr (2)) in the
class of (suitably regular) functions satisfying twnoilateral condition®0 < u(x) < M
for x € Q. Due to that fact, the associated Euler-Lagrange equations must be suitably
understood, for instance, in terms of some variational inequality (for a general exposition
of this theory see, for instance, [13]). It can be shown thaltigrange multiplier term
associated with the unilateral condition<0 u vanishes due to the fact that the special
form of the functional leads to the concavity of any possible stationary paintof that
functional, and thus this unilateral condition is trivially satisfied once we assume the other
(and crucial) unilateral conditiom < M (which, to the contrary, leads to a nonvanishing
Lagrange multiplier term).

It is worth mentioning that the integrand [ (1) (afdl (2)) is not globally convein
(although it is a convex function wheWu(x)| > « for some suitablec > 0). More-
over it is not coercive (in fact it converges to zero|®&(x)| — +00). Those two facts
arise quite often in many other special (but relevant) problems of the Calculus of Varia-
tions (see, for instance, some other classical and more recent examples mentiohed in [2]).

2 Here Wagner allows multiple impacts.
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This motivates us to consider a general class of functionals (invariant under symmetrical
changes of coordinates) of the form

/QF(|Vu(x)|)dx (3

with

F(|Vu|) - 0 as|Vu| - + (4)
(the case of integrands of the forB(|Vu(x)|) — f(x)u(x) with f(x) # 0 will be the
subject of a separate study [7]). Actually, we shall not deal with the associated minimiza-
tion problem, but with the more general case of the Euler—Lagrange variational inequality
satisfied by any stationary pointfulfilling the unilateral constraink < M. So, given
M > 0, we shall consider a class of quasilinear obstacle problems which can be formu-
lated as follows:

(OP)

—div(A(jVu|)Vu) + B(u) 0 inQ, (5)
u=~0 onog,

whereg is the maximal monotone graph (see BreZls [3]Rthgiven by

Bw) = {0} ifu <M,
B(M) = [0, +00),
Bw) =0 ifu>M,

andA e C1(0, +00) satisfies the following set of assumptions: there exigts> 0 such
that

the functions — ¢t A(¢) is decreasing o0, a4) and increasing ol 4, +00), (6)

A <0 on[0+oc0) and t_liJrrnootA(t) =0, (7)
. ¢ dr
Am A@ oy TAT) ®

In order to establish the existence of solutions for this typeasfcoerciveproblems,
several different additional conditions have been introduced in the literature (mainly the
concavity ofu: see([5] and its list of references). In this paper we shall deal with solutions
of the obstacle problem (OP) in the class of functions such that

ue Hy(Q) and [Vu(x)|>as if u(x) < M. (9)

We first consider the radial case corresponding2te= B(0, R) andu in the class of
radially symmetric functions satisfying](9). It is easy to see that then the problem reduces
to the study of the one-dimensional free boundary value problem

1d _
—;d—r(rA(lu’l)u’) =0 in(p,R),
u(R)=0, u(p)=M, (10)
—u'(R7) > a4,

wherep € [0, R) must be determined. Notice that the functiomxtended byM to Q
satisfies (OP). Our main result is
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Theorem 1.1. Let R > 0 be given. Assume thait satisfies the above conditions. Then,
for everyM > 0, there existey, € (0, R) such that for anyn € (a4, +00) there exists
a solutionu(r) = u(r; m) of the obstacle problem which satisfies

(i) u=Min|[0, p,] for somep,, € [pm, R),
(i) —u'(om) =m,
(iii) u is strictly concave ifp,,, R) andu € WH>®(0, R).

Finally, the mapM +— py, is decreasing and convex.

We prove this theorem in Section 3, even under more general conditiafis on

Moreover, we prove that although there is not a unique solution to proplgm (10), there
is a unique radial minimizer for the functionf] (3) in the class of solutions of the associated
problem [(10).

In the Newton case, P. Guasoni established_in [12] the existence of a function in
H&(Q) which is not radially symmetric, for which the value of the functional is smaller
than any value arising from a radial function. On the other hand, T. Lachand-Robert and
E. Oudet found in [14] numerically another function leading to an even smaller value of
the functional. We conjecture that similarly, radial solutions are not minimizers either for
the more general class of functioAsconsidered in this paper.

Another consequence of our results is that they reveal some kind of optimality of the
structure assumptions made in the regularity result by H. Brezis and D. Kinderlehrer.
Indeed, these authors establishedlin [4] that, if the quasilinear opetai®rlocally
coercive”, the solution of the associated obstacle problem fulfils W2* for every
1 < s < +oo0. In contrast, we show here that the solutions of (OP) are not of ¢lass

Finally, a study of the coincidence set (the flat region of the body) without any sym-
metry assumption is presented in Section 4. In particular, we obtain some answers to a
guestion raised in [6, question (vi) on page 11].

2. Statement of the problem

We consider the problem

—div(A(|Vu)Vu) + Bw) 30 ing, 1)
ue HHQ), |Vul=asifu <M,
whereg is the maximal monotone graphR? given by

Bw) = {0} ifu<M,
B(M) = [0, +00),
Bu) =19 if u> M,

and
A e (0, +00) (12)

is such that there exists, > 0 for which

the functionr — tA(¢) is decreasing oKD, a4). (13)
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We also assume one the following sets of conditi@itsier

t — tA(t) is increasing offa 4, +00), (14)
A <0 on|Q +o0), lim tA@¢) =0, (15)
t— 400
. ¢ dr
QETOOA(a) v/(;A TAQ) <1, (16)

or there exist84 > a4 > 0 such that

t — tA(t) is increasing ofia 4, B4), a7

A <0 on[0Ba), A(Ba)=0, (18)
B~ dr

/ A < +o00. (29)

Throughout, we will refer to assumptiorjs [17), |(18),](1f),] (15) @ndl (16)a=e 1
and assumption§ (112), (13) {17), [18) and (19¢ase 2

Example 1. In the classical Newton obstacle problem, we search
Mlin / F(|Vu))dx, F@t)=@1+1>)1,
Q

whereK = {u € H&(Q) : u < M andu concavé. Thus, the associated Euler-Lagrange
formulation (in terms of maximal monotone graphs) is given by

Vu
[Vul

- div(F/(|vu|) )+ﬂ(u) 5 0.

In order to simplify the presentation for nonnegative functin(s), we notice that in the
radial case and for nonincreasing functians: u(r), r = |x|, we have

Vu
|Vul

—div<F/(|Vu|) ) =r(F'(lu'(r)).

In particular, we can identify the above Euler-Lagrange equation with formultipn (11)
by choosing

At = F'(t) = _—2t
(1+12)2
and so
At) = _—2
(1+12)2

(seell16],111],[5]). Itis easy to see that the functibsatisfies the assumptions of Case 1.

In particular
lim A()/a v _1
a0 ) TA@ T A
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Example 2. The functionA(r) = —"~2/(1+ t™)2, with m > 1, corresponds to other
type of resistance forces already proposed by Newton.

Example 3 A function A satisfying the conditions of Case 2 is, for instandé;) =
—(Ba — )7 with o € (0, 1).

3. Radially symmetric solutions

This section is devoted to the study of radially symmetric solutions. Then (11) leads to
the question: GivetM > 0, find p € (0, R) andu satisfying

—}i(rA(lu/l)u/) +Bu)>0 in(0,R),
rdr

u(R) =0, —u'(R7) > aa,
u(ry=M in[0,p] and u(r) <M in(p,R].

(20)

Our study will mainly focus on the properties of the coincidence set:

Theorem 3.1. Let R > 0 be given. Assume that satisfies the conditions of Cade
Then, for everyM > 0, there existey, € (0, R) such that for anyn € (a4, +00) there
exists a solutiom () = u(r; m) of the obstacle problem satisfying

(i) u=Min|[0, p,] for somep,, € [ppm, R),
(i) —u'(om) =m,
(iii) u is strictly concave if(p,,, R) andu € W1>(0, R).

In Case 2, for ever < M < Rf4 there exisO < py, < pm, < R such that for any
m € (x4, B4) there exists a solution(r) = u(r; m) of the obstacle problem satisfying

() u=Min[0, p,] for somep, € [pm;, Puy),
(i) —u'(om) =m,
(iii) u is strictly concave ifp,,, R) andu € WH>°(0, R).

Finally, in both cases, the mald — py, is decreasing and convex.

Remark 3.1. In the Newton caseys = 1/+/3, and the solution of the obstacle problem
which corresponds to a minimum of energy is associated with 1; seel[16] and [11].

In the following we will writex instead ofx4 andg instead of8,4 in order to simplify
the notations. The equation we have to deal with is

d
d—(rA(Iu/(V)I)u/(V)) =0 (21)
;

and thus — rA(Ju’(r))u’(r) is constant. We look for solutionssuch that:

u is defined in [Q R], u(R) = 0 andu(p) = M for somep € (0, R). (22)
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The fact that-u’(R™) > « implies there exist8 > 0 such that
—u'>a on(R -S4, R)forsomes > 0. (23)

Developing|[(2lL) we then obtain

A(lu () (r) + (A" (W’ () D1 ()| + Al () ])u” (r) = 0. (24)
Employing [23) and (24) witl] (15) in Case 1 apd](18) in Case 2 yields
(A(|lu' (D' ()| + A(lu' () )u" (r) < 0. (25)

Lemma 3.1. For every solution of (21)) satisfyingd < u < M, we have-u’ € (&, +00)
in Casel and—u’ € (a, B) in Case2.

Proof. Case 1.Since forr in (R — §, R) we have—u'(r) € («, +00), and since:” < 0,

it follows that —u’ is increasing in this neighborhood and the property will be satisfied
as long as-u’ does not reach the value Let us denote by the maximal value of in

(0, R) such that-u’ = a, if it exists. Then—u’ € (a, +00) for everyr € (y, R). But we
also know that/(y) = —«, and then taking = y in (24) leads toA («)a = 0. On the
other hand, we know that > 0 and from[(Ib) tha# > 0, hence we get a contradiction.

Case 2.The proof is the same as the previous one, withi(r) € («a, +00) replaced by
—u/(r) € (a, p) and the assumptions|(6) Hy {17) ahd](15)[by] (18).

Now we will try to solve the equatiofj (21) under the conditigns (22) employing a
parametric method as inl[8]. Frofn {21) we have

rA(lu’' (r)hu'(r) = RA(lu' (R))u'(R). (26)
Since the value of’ (R ™) will play a crucial role, we introduce = —u'(R™).
As u is concaveg will be the maximal value of the functionu’(r) in the interval
(p, R). Now, the idea is to take a new parameter to solve the differential equation. We use
t = —u'(r) and observe that, sineeis assumed to be concave decreasing,0 and—u’
is bijective. The equalityf (26) can be written in the form
—rA(t)t = —RA(a)a

so that

_ RaA(a) _
= TA0 - r(t). (27)

We differentiatex with respect ta to obtain

(tA(D)

d . _d ) = '@ = tRaa
U = Swor@) =5 = tRaA@ g
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Using the fact that (R) = 0, we then obtain

u(R) —u(t) = / —dr —u(t)

— RaA(a) / A(t);;;(f)(r) dr

_RaA()/ <A(f) ! )dr
A2(0) " TAM)

(AW
= Ra(A(t) —l) + Ra A(a)/ A(r)'

u(t) = Ra — Ra m—R ()/

Thus, the problem can be rephrased as followsplet (0, R) andM > 0 be given.
We want to findz > « such that there existga) with

That is,

A (28)

pt(a)A(t(a)) = RaA(a) (29)

and

M= Ra— Ra2? _ Raaa) f v (30)
At) ¢ TA(T)

We have the following theorem:

Theorem 3.2. Let M > 0 be a given number. In Case there existpy such that(Z29)—
(30) admits a solution i belongs ta(pp, R), and none ifo € (0, ppr).

In Case2, if M > Rp there is no solution and i#7 < Rp there exists a solution if
and only ifo € (oar. (R — pm)B).

Remark 3.2. In Case 1, if we consides € (py, R) and look for solutions tq (11) in

the annulus2 = (p, R), we see that the functional is convex, therefore the minimizer
is unigue, and since we have found a radial solution, it is the unique solution. The same
happens to be true in Case 2 under suitable assumptions.

In order to prove the above theorem we will need the following two lemmas:
Lemma 3.2. The functiona +— t(a) defined in(29) is an increasing function from
(ap, +00) into (a, +00) in Casel, and from(a,, B) into («, B) in Case2, wherea,

is the solution opa A(x) = Ra,A(a,).

Remark 3.3. The existence of, is ensured by the fact thatA («) is the minimum of
the functionr A(¢) (which is negative) and singe < R.
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Proof. Case 1.From the assumptiofi}(6) we know that the functiors ¢ A(z) is increas-
ing on («, +00) and then using Lemnja 3.1, we obtai@) < a. Indeed, suppose not.
Thent(a)A(t(a)) > aA(a) with equality if and only iff (a) = a. This contradictd (29) if
t(a) # a.Inthat last cas¢ (29) impligs= R, which is not possible sinag(p) = M > 0
andu(R) = 0.

Now we differentiate[(29) with respect toto obtain

d
Pé(z‘\(l(a)) + A'(t(a))t(a)) = R(A(a) +aA'(a)).

The two terms in brackets are positive py (6) and Lerimp 3.1, sa/thidt > 0. Finally,
we know thats(a) has to be greater tham, hence the minimal value far arises for
t(a) = «. Passing to the limit i (39) astends to+-oco leads to

ﬂrﬂoo pt(a)A(t(a)) = 0.

Thereforep > 0 implies lim,_, ;o t(a) = +o0.

Case 2. The proof is the same as the previous one upon replaaingoo) by (¢, 8) and
assumption(6) by (17). By passing to the limit[in}(29aends tos, we obtain

|imﬁ pt(a)A(t(a)) = 0.
Then, sinceo > 0O, the only possibility is lim_. 4 1 (a) = B in view of assumptiong (17)
and [18).

Lemma 3.3. The functioru — u o t(a) defined by(30) is increasing and converges to
+00 asa converges tot-oo in Casel. The functiona — u o t(a) defined by(30) is
increasing and converges t® — p)B asa converges t@ in Case2.

Proof. We have

d d ( Aa) ¢ dt )
—uot(a)= —| Ra— Ra —RaA(a)/ .
da da A1) : TA(T)

Using [29) we can express it as

d d < /“ dt )
—uot(a)=—| Ra — pt(a) — RaA(a)
da da t(a)

TA(T)
R dt RA()/a dt RA/()/u dt
=R—-—p— — a — RaA'(a
Pda 1) TA(T) 1) TA(T)
[ 1 1 dtj|
— RaA(a) — —
aA(a) t(a)A(t(a)) da

4 dr

= — R(A(a) +aA'(a)) » A




404 M. Comte, J. |. Daz

Using Lemma 31 together with](6) in Case 1 and together (17) in Case 2, we get
d
—uot(a) > 0. (31)
da

Thus, if a solution of[(30) exists it is unique.
Now, we split up the remainder of the proof into two cases.

Case 1. We have to compute

4 dr
a—“>m (Ra ~ pi(@) — Rad(a) 1(a) rA(r)>’ (32)

and prove that it is equal tdoco. Employing [6) we obtain

> (R — p)t(a)

Ra — pt(a) — RaA(a) /(a) TA@ 2

and sinceo < R and lim,_, 1 t(a) = +00, we find the result.

Case 2.Here, we have to compute

. 4 dr
alinﬁ (Ra — pt(a) — RaA(a) » tA(t))' (33)

From ) we havéR — p)a = Ra — pt(a) — 20— On the other hand, from
(I7) and[(IB) we get
RaA(a)(a — t(a))

Ra = prta) = =A@y = Re—pr@ - Radla) /«a)

TA(T)
> (R — p)t(a).
Then since lim_, g (a) = B, we pass to the limit in the inequality to obtain the result.

Proof of Theorenj 3]2. Step We will now compute the minimal value of. From
Lemma[ 3.2 we know that the smallest admissible valuezfoccurs whert(a) = «o;
we denote this value by, . In that case we have

A
wot(ay) = u(a) = Rap<l— A((“;)) — Ala p)/ rA(f)) (34)
and using[(36) we can express it as
ap d
u(e) = Ra, — po — ,oozA(ot)/ ‘[A.(E‘L')‘ (35)

This is the minimal value ofi sinceu is increasing ine and if M < u(«) there is no
solution of [29)4(3D) in both cases. Additionally,d > (R — p)B, there is no solution
in Case 2.
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Step 2. The next point is to find @ such that[(29){(30) has a solution. If we write
paA(ae) = Ra,A(a,) (36)

and

u(p) = Ra, — pa — paA(a) / (37)

‘L’A(T)

then for any giverp € (0, R), there existst(p) > 0 such that the equatiop (30) can be
uniquely solved in Case 1 for all € [u(p), +0o0) and in Case 2 for alM e [u(p),
(R — p)Bl.

We will first prove that the functiop +— w(p) defined by|[(3]) is decreasing from
400 to 0in Case 1 and fromRB to 0 in Case 2. In both cases it is convex. To this end, we
differentiate [(3}) with respect to to obtain

d,u(,o) dap _ / dt _ paA(ax) dﬂ
dp —a—ad@) TA(T)  apAlay) dp (38)
Using [36) we get
du(p) _
i A("‘)/ A %9

which is negative by[ (15) in Case 1 ¢r[18) in Case 2. This allows us to establish that the
mapM — py is decreasing.
We now distinguish two cases.

Case 1. Passing to the limit ag tends to 0 in[(3p) leads i@, converging to+-oo. Com-
bining (36) and[(3]7) we obtain

1(p) = Ray — pa — RapA(ay) / v % (40)
or
1(p) = —pa + Ra, (1 Aay) / - m) (41)
Then, thanks td (16), we obtain
LU (1 A(“")/ rA(r)) 0 (42)
hence
lim () = (43)

ap,——+00

On the other hand, {6 converges t&k, we deduce fron{ (36) and the assumptign (6) that

lim a, = a, (44)
p—R

thus lim, . g 1(0) = 0 by (37).
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Case 2.Passing to the limit ag tends to 0 in@p) leads t@,A(a,) converging to O.
Sincea, > a > 0, the only possibility isz, — B. Then passing to the limit irf (B7)
yields

I R — lim pad@) [ - 45
p@ou(p) = Rp — lim pot (a)/a TAG) (45)
Since
: /“p dt /ﬂ dt
lim = ,
p—0J, TA(T) o TA(T)
which is finite under the assumptidn {19), we obtain
lim w(p) = RB. (46)
p—0
We use[(3p) and the assumptipn](17) to get
lim a, =« (47)

p—R

and thus from[(37), we obtain lim, g u(p) = 0.
In order to prove the convexity af, we twice differentiatg (37) with respect toand,
employing [36), we see that

d?u(p) _ oA da, 48)
dp? a,Alap) dp
Differentiation of [36) with respect tp yields
da, d
aA(x) =R d—pp E(zA(z))tzap. (49)
The assumptiorj {6) in Case 1 pr[17) in Case 2 guarantee that
d
2 _ (50)
dp
and substituting this int¢ (48) leads to
d?u(p)
o2 > 0. (52)

This implies that the maps — py, is convex, finishing the proof of the theorem.

We will now deal with the property of minimum solutions. We set= B(0, R) and
consider the following problem associated[to] (10):

I\/Iin/ F(|Vu|)dx, (52)
K Jo
whereK = {u € H&(Q) . u satisfies the assumptions@) and is radially symmetric

Notice that the formulation corresponding to the stationary points of the funct[orjal (52)
leads toA(|Vul) = F'(|Vul)/|Vu|. We have:
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Theorem 3.3. Let M > 0 be given. Then there exists a unique value:of (a4, +00)
in Casel, andm € (x4, B4) in Case2, such that the solution(r; m) given in Theorem
[3-3is minimal among all solutions given in that theorem.

Proof. Letu, be a solution tq(20). We have to compute

R P
E(p) = / rF(ul/o(r)) dr —i—/ rF(u;)(r)) dr,
P 0
which can be written as
R F(O
E(p) :/ rF @, (r)dr + %pz.
P

SinceE (p) cannot be expressed in a simple way as a functign afe will use the former
parameterization, that is,= —u’(r) and

—rA(t)t = —RA(a)a
so that

_ RaA(a)
TtA®)

=r(). (53)

Integration by parts leads to

E(p) = W(T,a) = —R?

/“ F'(a)?F"(t)F(7)
dt
T F'(7)3

R2 F(T)F'(@)? , , (% dr F(0)
2 (F( T Frame @ /T F/(r)+F/<T)2)'

The function¥ (T, a) has to be minimized under the constralin (30), that is,

M:Ra—RTF/(T) F'(a )/ ) = B(T, a). (54)
A careful computation shows

i‘IJ(T )= Py F'(T)(F(T) — F(0))

or ¢ F/(T)?’ ’

i _ F'(a) " 2/ _

aa\IJ(T, a) = F/(T)ZF (a )(F(T)+F (T) O F(O)),

9 8(T,a) =R Fla) F'(T)T

T F'(T)? ’

d 1 "
aa;_J(T a) = F’(T)F (a)(T—i—F (T)/ F’(r))
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Therefore, the Lagrange conditidf 22 = 21 3 reduces to
s [ 0 0 , ¢ dt
F(T F (T - F T=(F({T)—-F T+ F(T
(<)+ a2 [ ()) (F(T) ())(+ ()/TF,(T)>

since the other terms do not vanish. This, again, can be simplified as
F) = F(T)—- F(T)T (55)

which can be written in terms of as
T
f tA(t)dt = T?A(T). (56)
0

Setg(r) = [y TA(t)dt — 1?A(t). Thus,
g't) =—1(tA@)) (57)

and henceg is increasing from 0 t@(«,) and then decreasing (we usgdl (6) in Case 1 or
(I7) in Case 2). In particular, the equatipn|(56) has at most one soluti@ int-co) in
Case 1 orinaa, B4) in Case 2. On the other hand, employipp (6) [01] (17)) we have

t
/ tA(T)dt <tA@)(t —ay) forr > ay (0rt € (aq, Ba)). (58)

A
Hence

g = /aA TA(T)dt +tAR)(t — aa).
0

Now thanks to[(1p) in Case 1,
oA

lim g(@) 5/ TA(r)dt <0,
0

t—+00

and using[(IB) in Case 2,

aa
lim g(t) 5/ tA(t)dt < 0.
t—Ba 0

This implies the uniqueness of the value®fsatisfying [55), which is called: in the
theorem, and it concludes the proof.
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4. On the flat region for the non-radially symmetric case

In this section we give a partial answer to the following question raised by Buttazzo and
Kawohl ([6]): letu be a solution of the Newton problem of minimal resistance. Is there
always a flat region for such a solution, i.e. does there exist an op€&xp set2 such that
u=MonQgy?

The results obtained in the previous section allow us to give the following answer:

Theorem 4.1. Let A and 8 be as in the previous sections. Let H&(Q) be such that

—div(A(|Vu|)Vu) + B(m) 20 inQ,
O<u(x)<M forxeQ.

Assume that

IVu| >ag ifu<M,
there existtg € Q andR > 0 such that
X — X0
—A(Vu(x))Vu(x) -

ol < A@)a (59)

for somea > a4 anda.e. x € B(xo, R), whereu(x) < M.
Then there existg, € (0, R) such thatu(x) = M for a.e.x € B(xo, pa)-
In order to prove this we need the following result:

Lemma 4.1. Letu be as before, and let, (x) = u(]x — xo|; @) be the radially symmetric
solution of the obstacle problem given in Theof@d(i.e., such that, (x) = M for a.e.
x € B(xo, pa)). Define

Quo.R.p. = {x € B(x0, R) \ B(x0, pa) : u(x) < M}.
Thenu,(x) < u(x) fora.e.x € Qg r,p, -

Proof of Theorem 4]1Sinceu(x) < M, we deduce from the comparison stated in the
previous lemma that, in particular(x) = M on B(xo, pa).

Proof of Lemml.Taking [ua(x) — u(x)]* as test function in the definitions of weak
solution of the problems satisfied by andu, and subtracting both expressions we arrive
at

J

(A(\Vua)Vua—A(Vu)Vu)-V [ug — u]™ dx+/ (ba—b) [ug —u]™ dx

QX().R,ﬂa

= / [ua — u]™ (A(|Vuu)Vuy — A(\Vu|)Vu) - ndx =1,
Q2

x0:R.pa

x0: R, pa
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whereb € LY(Q), b, € LY(B(xo, R)), andb(x) € B(u(x)), ba(x) € B(uq(x)) for a.e.
x € Q andB(xo, R) respectively. Writéd2,, r,,, = TR Uy UT,,, where

Cr = 1{x € 0Qx.R,p, - | X — x0l = R},
Lo, i=1{x € 0Qx,R,p, - |X — x0| = pa},
Ly = {x € 0Qxq,R,p, - U(x) = M},

we deduce thal > 0 (recall thatg is a monotone graph and that, since the function
t — A(?)t is nondecreasing, the vectorial functiem— A(|v|)v is a monotone operator
fromRY toRV). But

/ [t — u]* (A(|Vita|)Vitg — A(Vul) Vi) - ndx = 0
'rUT

becauséu, — u]*™ = 0 there, and thus

/ [ta — u]t (A(|Vug|) Vg — A(Vul)Vu) - ndx > 0.

F,Da

OnT,,, n=x — xo/|x — xo| and so, SiNC¢Vu,(x)| = —Lu,(ps) = aif x € Ty, by
using the assumptiop (p9), we arrive at

(A(|Vug|)Vug — A(|Vul)Vu) -n <0 onl,,.

Then

(A(IVua))Vug — A(Vu)Vu) - Vug —u]™ dx =0,

QXOvRan

which, by the strict monotonicity af on this range of values, implies the conclusion.
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