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Arbitrary number of positive solutions for
an elliptic problem with critical nonlinearity
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Abstract. We show that the critical nonlinear elliptic Neumann problem

. . 0
Au—uu+u7/3:0 N2, u>0 InQ, a—M:O onos2,
v

whereQ is a bounded and smooth domain[&?, has arbitrarily many solutions, provided that

n > 0is small enough. More precisely, for any positive inteffetthere existgt g > 0 such that

for 0 < u < ug, the above problem has a nontrivial solution which blows ufi @bterior points

in @, asu — 0. The location of the blow-up points is related to the domain geometry. The solutions
are obtained as critical points of some finite-dimensional reduced energy functional. No assumption
on the symmetry, geometry nor topology of the domain is needed.
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1. Introduction

Lin and Ni [28] considered the following nonlinear elliptic equation:
. 0
Au—pu+u?=0 onQ, u>0 IinQ, a—”:O onog, 1.1)
V

whereQ c RY (N > 3) is a smooth bounded domajn;> 0 and 1< g < (N +2) /(N —2)
are parameters. Such problems arise in mathematical models of chermiotaxis [29] and bio-
logical pattern formatiori [17],[32].

The situation is known to depend highly on the paramgteXi and Takagi showed
that for u large enough and k ¢ < (N + 2)/(N — 2), i.e. in the subcritical case, a
nontrivial least energy solution exists, which concentrates at a boundary point maximizing
the mean curvature of the frontiér |34], |35] agoes to infinity. Higher energy solutions
also exist, which concentrate at one or several points, located on the bounddry![7], [37],
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[13], [20], [24], [2€], [49], [50], in the interior of the domain[[8], [12], [14], [18], [19],
[22], [48], or some of them on the boundary and others in the interior [23].

Many works have also been devoted to the critical case; Ee(N +2) /(N — 2). As
in the subcritical case, nonconstant solutions exisifdarge enough [1],[143], and the
least energy solution blows up, asgoes to infinity, at a unique point which maximizes
the mean curvature of the boundakry [3],1[33]. Higher energy solutions have also been
exhibited, blowing up at oné 2], [44], [39], [21] or several (separated) boundary points
[15], [30], [45], [4€]. The question of interior blow-up is still open. However, in contrast
with the subcritical situation, at least one blow-up point has to lie on the bouridary [16],
[40]. Some a priori estimates for those solutions are given in [21], [27].

In the case of small, Lin, Ni and Takagi[[29] proved in the subcritical case that
problem (1.1) admits only the trivial solution (i.e.= 1Y/(*~V). Based on this, Lin and
Ni [28] asked:

Lin—Ni’s Conjecture. For u small andg = (N +2)/(N — 2), problem[(L.]) admits only
the constant solution.

The above conjecture was studied by Adimurthi-Yadava [4], [5] and Budd—Knapp—
Peletier[[10] in the cas@ = Bg(0) andu radial. Namely, they considered the following
problem:

Au— pu +uNt2/N=2 — 0 inBr(0), u >0 inBg(0),

0 1.2)
u is radial a—u =0 o0ndBk(0).
V

The following results were proved:
Theorem A ([4], [5], [B], [10]). For u sufficiently small

(1)if N =3or N > 7, problem(L.Z) admits only the constant solution;
(2)if N = 4,5 or 6, problem(1.2) admits a nonconstant solution.

Theorem A reveals that Lin—Ni’s conjecture depends very sensitively on the dime¥ision

A natural question is: what about general domains? (For Dirichlet boundary conditions,
Brezis and Nirenberg proved that a qualitative difference occurs betWeen 3 and

N > 4 ]9].) The proofs of Theorem A use radial symmetry to reduce the problem to an
ODE boundary value problem. Consequently, they do not carry over to general domains.
In the general three-dimensional domain case, M. Zhu [52] proved:

Theorem B ([62], [51]]). The conjecture is true iV = 3 (¢ = 5) and2 is convex.

Zhu's proof relies strongly on a priori estimates. Recently, Wei and Xu [51] gave a direct
proof of Theorem B, using only integration by parts.

The purpose of this paper is to establish a result similar to (2) of Theorenyénieral
five-dimensional domains, with important additional information abuouttiplicity and
shape of solutions. Namely, we consider the problem

. _ 9
Au—pu+u®=0 inQ, u>0 inQ, 8-“:0 ona,  (1.3)
v
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where is a bounded and smooth domairif andy. > 0 is small. Our main result can
be stated as follows:

Main Theorem. For any integerk € N*, there existgtgx such that for0 < u < ug,
problem(I.3) has a solutior:,, which blows up at exactlk interior points in$2. As a
consequence, fqr small, problem(I.3) has an arbitrary number of nonconstant distinct
positive solutions.

In order to make this statement more precise, some notations have to be introduced. Let
G (x, Q) be the Green'’s function defined as

1 _ 3G
AxG(x,Q)+8Q—@:0 nQ, —==0 ond, /QG(x,Q)dx:O. (1.4)

We decompose
Gx, Q) =K(lx— Q) —H(x, Q),
where

1
K(r)=—5. c5=235% (1.5)
csr

is the fundamental solution of the Laplacian operatdR(|S*| denotes the area of the
unit sphere).
Foré§ > 0 sufficiently small, we define a configuration space as

My = (Q=(01,..., 0x) € @ [ mind(Q;, 49 > 5, min|Q; — 0;1 > 8). (1.6)

LetQ = (01, ..., Q) € Ms. We set

K K
1
FQ) = E H(Qj, Q) — E G(Qi, Qj) — KFo E / ———=dx (1.7)
=1 iz o lx =0l

whereFp > 0 is a constant which depends @ronly.
For normalization reasons, we consider throughout the paper the following equation:

. 9
Au—pu+1573=0, u>0 inQ, a—”zo onoQ (1.8)
V

instead of the original one. The solutions are identical, up to the multiplicative constant
1534, We recall that, according tb [11], the functions

£3/2
Vo) = o —pppr £ 0 Q¢ R®, (1.9)

are the only solutions to the problem
—Au=15"3 u>0 inR> (1.10)

Our main result can be stated precisely as follows:
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Theorem 1.1. Let Q be any smooth and bounded domainkif, and K € N*. There
existsug > Osuchthatfol0 < u < ug, problem@)has a nontrivial solutior, with
the following properties:

(1) u, hask local maximum point®'‘,i = 1,..., K, such that

F(O",..., O" max F as 0,
(07 QK)_)QEMa Q) "=

@ uu) = X5, Uyzp,.0(x) + O(u?), whereA; — Ao, and Ag > 0 is some
=
generic constant. As a consequem:@(Q;‘) ~ n=3and u,(x) — Oforanyx e

Q\ UK, Bs(0!), wheres > 0is any small number, andl, blows up atk points
01,...,0k inQsuchthatQ = (01, ..., Q) maximizes in Ms.

Remarks. 1. The existence of a global maximum for the functiB() in M; follows
from the properties of the Green'’s function—see the proof of Lemma 6.1.

2. We believe that Theorem 1.1 should also be true in dimengioas4 andN = 6.
WhenN = 4, our computations show that the blow-up rate shoula®@” for some
c1 > 0 (instead ofu~2 here). WhenV = 6, the blow-up rate should he~2. In both
cases, the blow-up rate also depends on the location of the blow-up points. We shall come
back to this question in a future work.

3. There have been many works on the multiplicity of solutions for elliptic equations
with critical nonlinearity—see€ [31]/ [30]/.[44]_[45]._[46] and references therein. As far
as the authors know, all the multiplicity results are proved with some additional assump-
tions either on the symmetry, geometry, or topology of the domain. In Theorem 1.1, no
condition is required.

As we commented earlier, PDE methods have to be used to prove Theorem 1.1. Note
that the least energy solution has to be constaptif small (see [52] and [29]). There-
fore, the solutions in Theorem 1.1 must have higher energy. To capture such solutions, we
use the so-called “localized energy method”, a combination of the Lyapunov—Schmidt re-
duction method and variational techniques. Namely, we first use the Lyapunov—Schmidt
method to reduce the problem to a finite-dimensional one, with sexhgced energy
Then the solutions in Theorem 1.1 turn out to be generated by critical points of the re-
duced energy functional. This idea has been used in [22] to study the interior spike so-
lutions of problem[(T]1) whep is large and; is subcritical. This kind of argument has
been applied in many other papers (see [12], [36], [19], [22], [24], [41], [42] and refer-
ences therein). However, a new functional setting has to be introduced, and an appropriate
variational argument to be developed to make the approach followed in our earlier works
[41], [42] successful.

We set

e=pu2 Q. =Q/e={z]|¢eze Q). (1.11)

Through the transformatiom(x) > ¢~%2u(x/¢), (1.8) becomes the rescaled problem
we shall work with:

. 3
Au—e?u+157=0, u>0 inQ,, a—u =0 0nJQ,. (1.12)
V
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We set
Selu] = —Au+ %% — 1543, uy = maxu,0), (1.13)
and we introduce the following functional definedAft (2,):
1 5/2 9
Je[u] = _/ VulP+ [ w2 - —/ uz’® (1.14)
2 Qe 2 Q; 2 £

whose nontrivial critical points are solutions o (1.12)[¢] = S [u]).

The paper is organized as follows: In Section 3, we construct suitable approximate
K-bubble solutionsW, and list their properties. In Section 4, we solve the linearized
problem atW in a finite-codimensional space. Then, in Section 4, we are able to solve the
nonlinear problem in that space. In Section 5, we study the remaining finite-dimensional
problem and solve it in Section 6, finding critical points of the reduced energy functional.
The proof of two technical lemmas may be found in Appendices A and B.

Throughout the paper, the lettefs C; will denote various positive constants inde-
pendent ok small.s will always denote a small constant.

2. Approximate bubble solutions

This section is devoted to the construction of suitable approxirkiabeibble solutions,
in the neighbourhood of which solutions of Theorem 1.1 will be found.

Let ¢ be as defined a@l). We considere 2, A > 0 a constant, an@/» o/. as
defined in[(1.p). In view of (1.30) anfi (1.9). ¢/ provides us with a first approximate
solution to [(1.8) as goes to zero (equivalently, goes to zero). However, because of the
additional linear termuu in (1.8), such an approximation has to be improved. To this end,
we consider the equation

AV +Up =0, WYp(x)— 0 as|x|]— +oo (2.1

whereU, denoted/, o. It is known that there exists a unique radially symmetric solution
W 4, which satisfies

Wa(x) = E<1—i— 0(%)) for |x| > 1 (2.2)
x| x|

whereB = A%?/2 > 0. Fora € R, we set
Ypa(x) = Wp(x —a).
(Note thatda Wy, = O(lx —a|™!) andd,, Wa . = O(lx — al~?) as|x — a| goes to
infinity.)
An additional correction is hecessary, in order to obtain approximate solutions which
satisfy the required boundary conditions. With this aim in view, we define

Un.0/e(2) = —Wp 0/e(2) — c5e?A¥?H ez, Q) + Rep 0@ x(e2)  (2.3)



454 Olivier Rey, Juncheng Wei

whereRr; 4 ¢ is defined byAR: 5.0 — ?R..a.0 = 0in Q. and

0R: A0 _
ov

Lastly, x (x) is a smooth cut-off function ii2 such thaty (x) = 1 ford(x, 9Q) < §/4
andy (x) =0 ford(x, 0Q2) > §/2.

We notice that[(2]2), an expansion @} /. and the definition off imply that the
normal derivative oRR; o is of orders%2 on the boundary of2., from which we deduce

3
5[UA,Q/S —&2Wy g/ — c5e3AY?H(ez, Q)] 0N 0L (2.4)

IR a0l + 1672V Re a0l + 16 72V2Re a0l < Ce™2. (2.5)

Such an estimate also holds for the derivative®of ¢ with respect taA and Q. It will
ensure thaR, 4 o play no role in further computations, being negligible.

We are now able to define the appropriate approxink&teubble solutions we are
looking for. LetA = (A1, ..., Ag) andQ = (Q1, ..., Qk) be such that

1/Co < |A| < Co, Qe Ms. (2.6)

In view of the rescaling, we write

- 1 _ _ -
QiZEQi» Q=(01,...,0k) (2.7)
and we define our approximate solutions as
K A
W, a5 =D (Uj+e20;) + ne? (2.8)
j=1
with
5 o~ 32
n= - 3"2%2 (2.9)
9] = J

To simplify our notations, we wrot&; ande instead ofUx;.0;/e andl?Aj,Qj/g. For the
same reason, we shall also omit the dependend® oh ¢, A, Q. The last termys®/?2

in (2.9) has been added to cancel, in the LaplaciaWothe Laplacian off introduced
through thel}j 's. By construction, the normal derivative 8f vanishes on the boundary
of Q., andW satisfies

K K
7/3 A .
—AW + 2w =153 UP + 65 0 — e¥2A(Reox(e)  InQe.  (2.10)
j=1 j=1
According to ), the last term occurring in that equation is dominated by

We note thatW depends smoothly on, Q. Setting, forz € @,

K _
(2= Q) =min(1+ |z - 0,152
]:
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we derive from the definition o the inequalities

IW(2)| < C¥2 + (z —Q)79), (2.11)
IDAW (2)] < C(e”?+ (z — Q)% (2.12)
and
IDaW ()| < Ce®+ (z — Q)™ (2.13)
whereD, and DQ denote the first partial derivatives with respecAte= (A1, ..., Ag)

andQ = (Qx, ..., Ok) respectively.
By our choice of W, we have the following error and energy estimates, proved in
Appendix A.
Lemma 2.1. We have
1S:[WI(@)] < C(e%%z = Q) + 6%z = Q2. (2.14)

The same estimate holds fory S.[W](z) and DQSE[W] (z), and

K
JIW] = Ao+ e%2B(A) + s3Eo[Z ARH(Q;. 0) = Y APAY?G(0i. 0))
j=1

i)
_F( K A3/2>ZK:A3/2/ d—x:l +0(83) (2 15)
’ j=1 ! j=1 7oy =0 ' .
Moreover
DA(J[W]) = e72DpAB(A) + O(e®) (2.16)

wheregS(A) is defined by
K 3/2 2 K
B(A) = —BO<ZAj/) +Do Y A% (2.17)
j=1 j=1

Ao, Bo, Do, Eg, Fp are all generic strictly positive constants.

3. Finite-dimensional reduction: a linear problem

According to our general strategy, we first consider the linearized problée, @nd

we solve it in a finite-codimensional subspace, i.e. the orthogonal space to the finite-
dimensional subspace generated by the derivativé® efith respect to the parameters

Aj andQ; ;. Namely, we equig 1(Q;) with the scalar product

(u,v), = / (Vu -Vv + 85/2uv).
Qe
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Orthogonality to the functions

oW . W
Y J=1’-"5K7 Y]l
A ’

Yio= <i<5j=1...,K, (31

- BQJJ’ — i

in that space is equivalent to the orthogonality.#(2,), equipped with the usual scalar
product(-, -), to the functionsZ; ;, 1 < j < K,0 <i <5, defined as

ow aw
Zj,O = —A— + 85/2—',

A, A, (3.2)
Zig=—a W 52 W s o1k

00;j.i 00,

Note that differentiating] (2.30) with respectag and Q;; and straightforward com-
putations provide us with the estimate

1Zji()] = CE2 +(z = Q). (33)
Now, we consider the following problem: givén find a functiong which satisfies
—Ap+ %% —3WPp=h+ Y, iz In Qs
dp/ov =0 onoag2,, (3.4)
(Zji,¢) =0, 0<i=<51=<j=K,

for some numbers; ;.

Existence and uniqueness @fwill follow from an inversion procedure in suitable
function spaces. Just as del Pino, Felmer and Musso _in [36], we use weigbleer H
spaces, defining here (among other possible choices) the two norms:

ol = 11z — QY20 @ lloos I fllsx = 471+ 1z = Q2 f(@)lloss  (3.5)
where|| fllo = Maxeq, | f(2)] and f = [Q|~* fgg f(z) dz denotes the average ¢f
in Q.

Before stating an existence result tbrwe need the following lemma, whose proof
is given in Appendix B:

Lemma 3.1. Letu and f satisfy

. d _
—Au=f inQ, 8—”=0 onoQ., ii=f=0.
v
Then
wnzc [ U0, .
Q. 1x —

As a corollary, we have:
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Corollary 3.1. Suppose and f satisfy

. 0
—Au+e%u=7f inQ,, a—u =0 onag,.
v
Then

Proof. Integrating the equation yields= ¢ %2 f. We may write

A —it) =% —i) — (f — f).

Lemmd 3.1 gives
u(y) —ii] < c85/2/ lubo —u] +c/ e =11,
2 =l 0. -yl
Since .
<y—Q>3/2f 3(X—Q)_7/2dx<oo
RS X =l
we obtain

Iy — Q¥ 2u — illlos < Ce?I{y — Q)2 lu — itllloc + ClIl(y — Q)/?(f — Plloo
< CeY2)(y = Q)¥?lu — itllloo + CIl Y — Q)?(f = F)lloos

which gives B B )
Iy — Q¥ 2u — itlllos < Cllty — Q2 f — Fllloo,
whence
Iy — Q¥ 2ullco < Clly — Q¥ lit] + Ce™ 211 + 1y = Q2 fllow

< C”f”** O
We now state the main result of this section:

Proposition 3.1. There existsg > 0 and a constant > 0, independent of, A andQ
satisfying(2.g), such that for all0 < ¢ < gp and allh € L>(,), problem(34) has a
unique solutionp = L (k). Furthermore

ILe(A) Il < CllAlss, |Cj,i| < C||h]sx. (38)
Moreover, the mag. (h) is C1 with respect toA, Q and theL2°-norm, and
”D(A)Q) Le(h)”* = C”h”** (39)

The argument follows closely the ideas|in[[36],/[41] and [42]. We repeat it since we use
different norms. The proof relies on the following result:

Lemma 3.2. Assume thap, solves(3.4)for h = h.. If ||h.|l«« goes to zero as goes to
zero, so doefo, || «.
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Proof. Arguing by contradiction, we may assume tljat ||, = 1. Multiplying the first
equation in[(3.4) by ; and integrating irf2., we find

4/3
ch,i(zj,ia Yig) = (—AYi; + &Y — 35W+/ Yii, @e) — (he, Yig).
i

On the one hand we check, in view of the definitionzgf, Yy,

Zio. Yo = Yol2=y+o@l), 1<j<K,
{( 7.0, Yj.0) = Y0l = vo+ o(1) J (3.10)

(Zji. Vi) =1Yil2=yi+01), 1<i<5

whereyyp, y1 are strictly positive constants, and
(Zji» Yei) =01,  j#k, i #L (3.11)
On the other hand, in view of the definition Bf ; and W, straightforward computations
yield
4/3

(—AYes + %Y — 35 °Yes, de) = olige )

and
(he, Yir) = O(llhelss)-

Consequently, inverting the quasidiagonal linear system solved ly tlsewe find

cii = O(l|hellss) + o([|@el+). (3.12)

In particular,c;; = o(1) ase goes to zero.

Since||¢¢ |« = 1, elliptic theory shows that along some subsequence, the functions
O, i (¥) = ¢ (y — Qj) converge uniformly in any compact subsetRf to a nontrivial
solution of

80y =303
Moreover,|¢; (y)| < C(1+ ly])~%/2. A bootstrap argument (see e.g. Proposition 2.2 of
[47]) implies|¢; (y)| < C(A+ ly)~3. As a consequence; can be written as

UA0 = 0Ua0
— I+ ) o
aAj i1 8y,-

¢j = o
(see([38]). On the other hand, the equaliti&s;, ¢.) = 0 yield
dUA; 0 473 0UA;.0
A—L¢p, = [ U I¢; =0,
fRs IA; iz /Rs A0 gA; i

U, 0 aUA, 0
f A ¢j=/ Urs A0 —0, 1<i<5.
R5 ay; RS U 0y

2
=1y >0, / v
RS

As we also have

/ VaUAj,o
RS 0A;

2

U,
MO -0 1<i<s,

dyi
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and

f VaUAj'O,VaUAj’():/ VaUAj'O.VaUAj'Ozo, Q£
g 0A; Oy Jes dw 9yi

thea;’s solve a homogeneous quasidiagonal linear system, yietdirg0, 0 < i < N,
and¢; = 0. So¢,(z — Q;) — 0in CL.(Q).
Now, we remark that Corollary 3.1 provides us with the inequality

4/3
”d’a”* = C||W+/ ¢8||*>k + C||h£||** +C Z |Cj,i|||Zj,i ”** (313)
Jsi
Let us estimate the right hand side. We deduce ffom[2.11) that
2 — Q72w .| < Ce %3z — Qells + Clz — Q) Y2(gsel.

Sincel|¢; ||« = 1, the first term on the right hand side is dominated#y. The last term
goes uniformly to zero in any baBg(Q;), and is also dominated bl — Q) ~2[|¢ ||

= (z — Q)~2, which, through the choice oR, can be made as small as desired in
Q¢ \ U; Br(Q;). Consequently,

1z — QPW 3. = 0(1)

ase goes to zero, uniformly if2.. (2.11) also yields

e WP, <Ce | (€4 (2 — QYo

Qe
<e / (1930 — Q) ¥2) 4+ (2 — Q) W)y |, < 508,
QS

Finally, we obtain
4/3
IW 20 s = 0(1).

At the same time[(3]3) yields
z-Q"Z;i 1 < Ce™2(z - Q"+ (z - Q) "? = 0(1)
and
70 <6 /Q 2 - Q)+ = Q) = 0.

Then, coming back td (3.13), we finti.[l. = o(1) contrary to the assumption that
||¢£||* =1 O

Proof of Propositiotj 3J1.We set
H=(¢eH Q)| (Zi¢)=00<i<51<j<K)

equipped with the scalar produ6t -).. Problem [(3.4) is equivalent to finding € H

such that
(#.0) = (35W°¢ +h, 0) Vo€ H,
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that is,
¢ =T.($) +h, (3.14)

h depending linearly oh, and7, being a compact operator #. Fredholm’s alternative
ensures the existence of a unique solution, provided that the kernel-oflds reduced
to 0. We notice that ang, € Ker(ld — T;) solves[(3.4) withh = 0. Thus, we deduce
from Lemmd 3. thalt$; || = o(1) ase goes to zero. As Kegtd — T;) is a vector space, it
is {0}. The inequalitieq (3]8) follow from Lemnjia 3.2 afd (3.12). This completes the proof
of the first part of Propositign 3.1.

The smoothness df, with respect toA andQ is a consequence of the smoothness of
T, andh, which occur in the implicit definitio4) @f = L.(h), with respect to these
variables. Inequality[ (3]9) is obtained by differentiatifg |3.4), writing the derivatives of
¢ with respectA andQ as linear combinations of thg;’s and an orthogonal part, and
estimating each term using the first part of the proposition—ise€e [36], [25] for detailed
computations. O

4. Finite-dimensional reduction: a nonlinear problem

In this section, we turn our attention to the nonlinear problem, which we solve in the
finite-codimensional subspace orthogonal to 3¢'s. Let S¢[«] be as defined af (1.13).
Then [1.12) is equivalent to

. 9
Se[u] =0 N3, uy £0, a—” —0 onag.. (4.1)
V

Indeed, ifu satisfies[(4]1) the Maximum Principle ensures that 0 in 2, and [1.1D) is
satisfied. Observe that

SIW + ¢] = —A(W + ¢) + e 2(W + ¢) — 15(W + ¢)"/>

may be written as

SeIW + @] = —A¢ + %2 — 35W 3¢ + R® — 15N, (¢) (4.2)
with
;
Ne(@) = (W + ) = w3 — 2wl (4.3)
and
R® = S;[W] = —AW +&%?W — 15w /3, (4.4)

From Lemma& 2]1 we derive estimatesrst:

IR s + 1D 4 ) RS 2 < £%/2. (4.5)
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We now consider the following nonlinear problem: figdsuch that, for some numbers
Cj,ii

—AW +¢) +52W +¢) —15W + ) > =¥ ¢ Zji in Qe
8¢/8v =0 onan, (4.6)
(Zji.¢)=0, 1<j<K,0<i<5
The first equation ir{ (4]6) reads
—Ap +&%%p — 35WH3p = 15N.(¢) + R* + Y ¢;.i Zj.i 4.7)

Jsi
for some numbers; ;. The functionalV, may be estimated as follows:

Lemma 4.1. There exist1 > 0, independent of\, Q, andC, independent of, A, Q,
such that fore < g7 and||¢]l« < ¢,

[Ne(@)lsx < CY8p ]l (4.8)
and for||¢; ||+ < 1,
I Ne($1) — Ne(@2)|lss < Ce”®llp1 — 2l (4.9)
Proof. We deduce fron{ (4]3) that
IN:@) < CW 31612 + 16)773). (4.10)

In view of (2.11), we compute

e WPpl2 + 19173 < Ce | (%0 + (z — Q) YHIgI2 +1917/3)
Qe

< CS/Q (% — Q)3+ = QNI + (z — Q) 2113

_ _ 7/3
< CEe Y812 + V2o %) < Ce58.

On the other hand,
1z — Q72W 21612 + 161 e < ClIgII2
and [4.8) follows. Concerning (4.9), we write

Ne(¢1) — Ne(@2) = 3y Ne(n) (1 — ¢2)
for somen = x¢1 + (1 — x)¢2, x € [0, 1]. From

7
0y Ne () = 5 (W + )Y = W)
we deduce U3
|8y Ne ()] = COW (] + [n]*73) (4.11)
and the proof of (4]9) is similar to the previous one. O

We now state the following result:
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Proposition 4.1. There existL, independent of and A,_Q satisfying), such that
for smalle problem) has a unique solutiop = ¢ (A, Q, &) with

Il < Ce¥2. (4.12)
Moreover,(A, Q) — ¢(A, Q, ¢) is C* with respect to the-norm, and
1D 4. 0@l < C&¥2. (4.13)

Proof. Following [36], we consider the map, from F = {¢ € HY(Q,) | o)« <
C’e%/2) to HY(2,) defined as

Ag(¢) = L:(15N,(4) + R").

HereC’ is a large number, to be determined later, &pds given by Propositioh 3]1. We
remark that finding a solutiog to problem [(4.5) is equivalent to finding a fixed point of
A,. On the one hand, we have fg¢re F, using [4.5), Propositign 3.1 and Lemfnal4.1,

IAe(@)lls < ILe(Ne(@) s + 1Le (R s < C1(INe (@)l + %)
< CoC'e%25/6 4 1632 < /632

for C’ = 2C1 ande small enough, implying thal, sendsF into itself. On the other
hand,A; is a contraction. Indeed, f@gr, andg, in F, we write

1
IAc(@1) — Ac(@2)llx < ClINe(p1) — Ne(@2) lax < C™°ll$1 — 2l < 1191 — o2l

for ¢ small enough. The Contraction Mapping Theorem implies thdias a unique fixed
point in , that is, problem (4]6) has a unique solutipsuch that¢ |, < C'e%/2.
In order to prove thatA, Q) — ¢ (A, Q) is C1, we remark that if we set fof € F,

B(A,Q,n) =n— Lc(15N:(n) + R?)

theng is defined as
B(A.Q.¢) =0. (4.14)

We have )
oy B(A, Q, m[0] =0 — 15L (63, N¢)(n)).

Using Propositiof 3]1 anfl (4]11) we write

ILe @@y N )l < CIO@y N llar < Cllz = Q)~>2(@y Ne) )[4« 101

A\ — 1/3
< Clliz = Q) 2AW2 1 + 1Y) s 16l

In view of (3.5), [2.11) and) € F, we obtain
ILe @@ N () [l < Ce¥2|10)].
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Consequentlyg, B(A, Q, ¢) is invertible with uniformly bounded inverse. Then the fact
that(A, Q) — ¢ (A, Q) is C* follows from the fact thatA, Q, n) — L.(N(n)) is Ct
and the implicit function theorem.

Finally, let us show how estimate (4]13) may be obtained. Differentigfing|(4.14) with
respect taA, we find

NG = (3 B(A, &, $) (97 Le) (Ne(9)) + Le((9aANe)(9)) + Le (95 RY)),
whence, according to Propositipn 3.1,
[0A@ 1« < CUINe @) llx + [1(3A Ne) (D)l + 104 R [l)-
From Lemma 4.1 andl (4.]12) we know that
1N ()l < C¥2.
Concerning the next term, we notice that according to the definitiav, pf

7 4
((DANE)@)] = Z|(W + )2 —wi - §Wi/3¢> EN4R

whence again, using (211, (2]12) ahd (4.12),

1(OANE) (@) s < CE¥/2.

Finally, using [(4.5), we obtain

gl < Ce¥2.

The derivative ofp with respect tdQ may be estimated in the same way. This concludes
the proof of Propositiop 4] 1. O

5. Finite-dimensional reduction: reduced energy

Let us define a reduced energy functional as
I(A, Q) = Je[Wp 5+ ¢, 46l (5.1)
Then we state:

Proposition 5.1. The functioru = W + ¢ is a solution to problenI.13)if and only if
(A, Q) is a critical point of ;.

Proof. We notice thatt = W + ¢ being a solution ta[1.12) is equivalent to being a
critical point of J;.. It is also equivalent to the cancellation of tg's in (4.6) or, in view

of (3.10) and[(3.111),
JIIW+¢][Y;i]=0, 1<,j<K,0<i<5 (5.2)
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On the other hand, we deduce fr5.1) tha, Q) = O is equivalent to the cancella-
tion of J/(W +¢) applied to the derivatives 6¥ + ¢ with respect taA andQ. According
to the definition[(3.]L) of the’; ;’s and Propositiof 4|1 we have

IW+9) . (W + ¢)
=Yjo+yo 1<j<K, ———
OA; 20,

with [|yj.ill« = 0o(1),1< j < K,0<i < 5. Writing

=Y+, 1<i<5,

Yii = yj/-,,- + Zaji,szk,z, (yj/',,', Ziy) = (y]/»,,», Y;ii)e=0, 0<i=<51=<j=<K,
Kl
and
JIAW 4+ 9llY;i] = o,

it turns out thatl/(A, Q) = 0 is equivalent, sincd/[W + ¢][0] = O for (0, Z; ;) =
0,Y):=01<j<K,0<i<5t0

(d + [aji kiD[eji] = 0.

As ajit = O(llyrills) = o(1), we see thaf/(A, Q) = 0 means exactly thaf (8.2) is
satisfied. O

In view of Propositiof 51, to prove the theorem, we have to find critical poins. df/e
establish an expansion &f.

Proposition 5.2. For ¢ sufficiently small, we have
I:(A, Q) = J.[W] + %0 (A, Q) (5.3)

whereo, = 0(1) and Dyo, = O(1) ase goes to zero, uniformly with respect & Q

satisfying(2.6).
Proof. We first prove that

I:(A, Q) = J[W] = o(e?). (54)
Actually, in view of (5.1), a Taylor expansion and the fact tht + ¢][¢] = 0 yield

1
1o(A, Q) = Je[W] = Jo[W + ¢] — [ W] = —/0 W + 1), 9t di

1
— _f ( (IVp|? + 5242 — 35(W +r¢)i/3¢2))zdt,
0 Qe
whence

Ie(A, Q) — J[W]
1

z_/ (15/ (N8(¢)¢+g[Wi“—(W+z¢)i/3]¢2))zdr—/ R°¢. (5.5)
0 Qe Qe
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From [4.3),[(2.111) and Proposition 4.1, we deduce that the first term on the right hand
side satisfies

fQNg(cm SC/Q(Wi/3|¢|3+|¢|1°/3)scs4.

Similarly, for the second term on the right hand side we obtain

’ / W2 (W + 17392

1/3
< C/Q W16 4 161193) < ce*.

Concerning the last integral, we remark that accordinf o [2.14),
R < Ce®2(z = Q)7 + Ce®z = Q712

uniformly in Q.. Therefore

[, o

This concludes the proof df (5.4).

An estimate for the derivative with respect Ais established exactly in the same
way, differentiating the right hand side [n (b.5) and estimating each term separately, using
(4.3), [4.5) and Lemma 2.1 (see Proposition 3.4 in [25] for detailed computations).

5C||¢||*/ 85/2<z—Q>*”/2+65||¢||*/ (z—-Q)2<ce’l?
Qe

Q

6. Proof of Theorem[1.1

In view of Propositiofi 5]1, proving Theorem 1.1 turns out to be equivalent to proving the
existence of a critical point of; (A, Q). According to Propositiof 512 and Lemma 2.1,
setting

I(A,Q) — A
Ke(h, Q= A = A0

we have the expansion

K
K:(A,Q) = ﬂ(A)+81/2Eo[ZA H(Q;. 0) =Y A*AY%G(0i, 0))
Jj=1 i#j
K 3/2 K 3/2 1/2
AS e -|- 6.1
(LA A [ ) et e
and
DAK.(A, Q) = DAB(A) + O(e¥/?) (6.2)
with

K K
B(A) = —Bo( Y A%7) 4 Do) A2
=1

=1
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We notice tha(A) — —oo as|A| — oo. Except fork = 1, the maximum points of
in ]R_’,f lie on the boundary of this set. However, computing the first derivatives
K 32\ 102
dn, B(A) = —330(21\/ )A/ + 2DgA; (6.3)
j=1

we see that, in any casé has a (unique) critical poink in the interior ofRf such that

. 2Dy . 4D}
Ao=(Aog,...,ANg), ANo=—, Aog) = . 6.4
0= (Ao 0) 0= 3B,k B(Ao) 27B2K (6.4)
We compute
93,4,8(A0) = Do(=3/K + 5;)).
Thus, the eigenvalues @’ arer™ = Do, with multiplicity K — 1, andA™ = —2Dy,
with multiplicity one. ConsequentlyAg is @ maximum point in thél, .. ., 1) direction,

corresponding ta.”, and a minimum point in the orthogonal hyperplane (wiken 2).
We also remark that fak = Ao, the term in square brackets in the expan (6.1) of
K, can be written a&\3F (Q) with

K K
d
FQ =Y H(Q; 0) - G0, 0)— FoK S j/ _ 2 (65
Z 2 2 Joix—0jl

Note also tha¥ achieves its maximunf' in the interior ofMs. More precisely, we shall
prove:

Lemma 6.1. There exists a constagt > 0 such that

sup F(Q) <—C/8% ass — 0. (6.6)
QedaM;

Considering these facts, our aim is to prove thatf@mall enoughk, has a critical
point (A, Q), with A close toAg andQ close to a maximum point af . In order to use a
linking argument, we set

T={(A,Q1QeM;, 1/Co < A;j <Co, 1 <i <K}
whereCy is a large constant. We also define a closed subsgt of
B={(A,Q Q€U |A—-Ad <a),

wherel/ is a closed contractible neighbourhood of a maximum poirff ohnde > 0 is
a fixed small number. Lastly, we defiffy, a closed subset &, as

Bo=1{(A,Q) | Qel, |A— Aol =a, (A—Ag)-Ag=0}.
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In view of the behaviour of atAo, « is chosen small enough so that for aay, Q) € By,
B(A) > B(Ap). Finally, we set

r = c%B, = = Id}, = in K.(p(A, Q).
{p € C( ) | ¢lB, | TeiiFX(Afr(lgl)rlB ¢(p(A, Q)

We show that is a critical value ofK,. To this end, standard deformation arguments
ensure that it is sufficient to prove:

(Hl) min(A’Q)EBO KE(A, Q) > C.
(H2) Forall (A, Q) € 9X such thatk, (A, Q) = c, there existg(, q), @ tangent vector
todX at (A, Q), such that

BT(A,Q) K&‘(Aa Q) # O

Before proving (H1) and (H2), we need to estimaté/e remark that for any
in I, there exists soméA’, Q') = ¢(A, Q), (A, Q) € B, such thatA’ is proportional
to (1,...,1). (This follows from the fact thap € C%(B, %) andg|p, = Id.) Then,

according to[(6]1) andl (8.5),
Ke(A'.Q) = B(A) + 2 EoA°F(Q) + o(eV?).

Maximizing the right hand side with respect Ad proportional to(1, ..., 1) andQ’ in
M, we see that for any in T, there exists some\’, Q') such that

K:(A', Q) < B(Ao) + eY2EQAZF + o(sV/?),

whence also . .
¢ < B(Ao) + eY2EQASF + o(V/?). (6.7)

On the other hand, we consider a spegiauch that, if we setA’, Q") = ¢(A, Q) jor
(A, Q) € B, thepA’ is the orthogonal projection of over the diskD = {A | [A — Aq|

< a, (A—Ap)-Ag = 0}. Moreover, we choosg in such a way that, forA — Ag| < «/2,
Q' is a maximum point ofF (this is possible, since we assumed t#as a closed con-
tractible neighbourhood of a maximum point®j. In view of (6.1) and the behaviour of
B, for suchgp ande small enough we have

min K. (p(A, Q) = B(Ao) + 2 EoAGF + o(e?),
(A,QeB

whence the reverse inequality fo (6.7), and the final estimate
¢ = B(Ao) + eYPEQASF + 0(sV/?). (6.8)

Let us now show that (H1) and (H2) are satisfied. In view of|(6.8), the inequality in
(H1) follows directly from the expansiof (6.1), the definition/®f and the properties of
B, provided that is small enough.
We are left with the proof of (H2). We note th&t (A, Q) = c implies, through[(6]1),
that
B(A) = c + 0(Y?). (6.9)
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As already stated3(A) — —oo as soon as som&; goes to infinity. Therefore[ (6.9)
implies thatA; < C1, 1 < i < K, for some constanf1. On the other hand, suppose
that A; goes to zero for some indices, say<li < m. If m = K, thenB8(A) goes to
zero, a contradiction with (6.9). I < K, there exists some indgx> m + 1 such that
da; B(A) # 0. Indeed, if not, in view 0@3) we would obtain

A= 2P0 g +1<j<K
T 3By(K —my O MTE=I=R
whence
B(A) 4Dp +o(1)
= —-— o] s
27B3(K —m)

and again, comparing with (§.4), a contradiction wjith(6.9). Consequently, there exists an
indexj > m + 1 such thab; B(A) # 0, implying through@]z) thads, K. (A, Q) #0
for ¢ small enough. Then we see that if we choGge> C; large enough in the definition
of 2, (H2) is satisfied wheriA, Q) € 9% with K.(A, Q) = c is such thatA; = Cg
(impossible) orA; = 1/Co (takingz(a.q) = 4, for some appropriate indey.

It only remains to consider the casgy < Aj < Co, 1 < j < K, andQ € dM;. If
there exists some indgxsuch that; K. (A, Q) # 0, then (H2) holds. If not, it follows

from (6.2) and[(6.B) that
A=Ao+0(Y? and B(A)=B(Ag) + O(e).

Thus, [6.1) yields
K:(A, Q) = B(Ag) + eV2EqAZF (Q) + o(sY/?).

Then the assumptiok. (A, Q) = ¢, together with), implies that(Q) = F +o(1),
a contradiction with Lemmfa §.1, providéds chosen small enough. This concludes the
proof of (H2).

Proof of Lemm& 6]1 We first note the existence of a positive constanndependent of
0 € Q such that

1
/Q —omdi=C. (6.10)

So the integral term i (Q) is uniformly bounded ir8.
Let O € Q2 be close t@)2, andQg be the nearest point 6f2 to Q. It is easily checked
that

H(x,Q0)=— asd(Q,99) — 0

1 1
5o+ lamr)
cslx — Q3 (d(Q, 9))?
uniformly in @, whereQ* is the reflection ofD across the boundary, that is, the symmetric
point to Q with respect toQg (see Appendix B). In particular,

1 1
H, O =—g o aae t O(W)'
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On the other hand, we have

G(Qi, Q) = — H(Q;, 9)).

1
cslQi — Q)13
Then, in view of [(6.5), we see that

max F(Q) < —C/8° ass — 0
anax Q) =< /

whereC is some strictly positive constant. O

Proof of Theorem 1.1 completedVe proved that for small enough/, has a critical
point (A¢, Q°).

Letus = Wpe ge , + @pe g .- Thenu, is a nontrivial solution to problenf (1.[12).
The strong maximum principle shows that> 0in Q. Letu,, = e~%?u.(x/¢). By our
constructiony,, has all the properties of Theorem 1.1. O

7. Appendix A: Proof of Lemma[2.]

From the definition[(2]8) of¥, (2.10) and[(Z]5), we know that

Se[W] = —AW + 32w — 15w/

K 7/3
7 3 A A
—15 §. 1 AN 2 0; - 15( §’ (U +&520)) +ne%2) 7+ 0B
j= j=1 =

K
— 5 Z 0 + [Z U4/3(U i 85/2) 4 glo3 Z Ui + 835/6]
j=1 i#]j j=1

According to the definition ol/; = Uy, ¢,/ and the fact that in\s the pointsQ;
remain far apart, we have

U=0:-Q7., UPu=0c3-Q forizj  (7.1)
From [2.3),[(2.R) and (25), we also have
Uy =0(z-Q 7. (7.2)

Combining these facts yields estlm- te (2.14). Estimate®fps.[W] and Dy S.[W] are
obtained exactly in the same way.

We now turn to the proof of the energy estimdte (.15). Frjom [2.10)[and]| (2.11) we
deduce that

/|VW|2+85/2/ W2=15Z/ u/ W+852/ UiW + 0.  (7.3)
Qe Qe Jj=
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The definition[(2.B) o and [7.2) yield W — %2 = 0((z — Q)~3), whence, in view
of (7.2) and[(2.p),

K K
852/ UjW = n85/285/ Z(—\Ifj - C581/2A?/2H(8Z, 0j)) + o(%)
Q Qe 5
£ e j=1
K
_...3 3/2 , 3
= —csne ZAJ. /QH(x, 0;)dx + o(e®)

A32
77832 //|X_Qj|3dx+0(83).

Concerning the first terms on the right hand sidg of](7.3), we remark that in view of the
definitions ofU;, U; and (2 ) fori # j we have onB; = B(Q;, §/2¢),

3A3/2

m - C583A?/2H(Qj» 0i)+ 0(84|z — QJ| + 87/2)_

(U; 4+ %20:)(z) =

AsU; + &%20; = 0((z — Q)3 + £%?) and, outsideB;, U/.7/3 = O(¢"), we obtain, for
i #Jj,
372, 3/2

15 [ 0]+ 570) = E2ATPAY6(01. 0 + oled)
Qe

noticing that

15 fR i Ul® = csn¥? (7.4)
In the same way we find, far= j,
15/ u/Rw; +£520;)
Q
— 15/RS urgd - 1555/2/Q Uj7/3\11 — c23A3H(Q;, 0)) + o(e¥).

Thus we obtain

K
/ VW24 | w2=15K /Rs ULy - 1585/22/5Uj7/3\11j

e []Z ARH(Q). 0)) — ; A2AY26(01 0))]

3/2 3
+n85/2cszAj/ 32 /2/ - Q |3 dx +o(%). (7.5)
i=1 J

Qe
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It only remains to estimate

10/3 < 5/27; 5/2 10/3
in / (Z(Uj+8 U;j) + ne )
Qe Qe j=1 +

- [ (o)™ 3 () (5 0)

j=1

+ 5/2/ (ZU1>7/3 </S'L (85ZUJ4/3+825/3)>

]:
K
— /Ujm/3+
j=175%

oY IVLTRTIRS 20 o) e
i#]

10 5w 7/3 3
+ e 2/ U™+ o(e®
j=17%%

since, as a consequence of the definition oftthis and the fact that th€;’s remain far
apart inM; (see for instancg (7.1)),

&5 / Uf/ S_06h
Q
and, fori # j,
[ U, = 0(£?), / U4/3 = 0(%).
Qe J Qe

Therefore, the same computations as above yield
wios _ g 10/3 10 5,5 J 73y 2 5 X RE
U 8 Z s Uj i+ §178 CS; j

2 [Z AH(Q;, 0~ ¥ A7PAY76(01, 0 | +06),
i#]

Combining this expansion with (7.5), we obtain

1 5/2
JS[W]=§/Q VW] +—/ w? — —f wios
15
:31{/ Uio” + 5 5/22/ u// ‘IJ——na ZAW
RS

+ css [ZA:"H(Q;,QJ)—ZAM 37601, 0))]
i#]
K

3/2 3/2 1 3
2|Q| (ZA] );A,‘ /dexwto(s ).

j=1
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Lastly, we notice that in view of (21),

7/3 2 2 2 _ 65T 2
'/12&5 UJ J /Rs U] < /Rs Ul’0> T

whence, according to the definitidn (2.9)mf
K
C5TT C 2
152] Py, —ncsZA3/2 or ZAZ lg;(ZAf/Z) .
j= j=1 j=1

Finally, we obtain

J[W] = /ZDO(ZAS/z) te /ZBOZA2+83E0[ZA H(Q;. 0))

ZA3/2A3/2G(Q,, 0)— FO(ZAS/Z Z 3/2/ — Q s dxj|+0(83)
i#]

where Ao, Bo, Do, Eg, Fo > 0 are all generic constants which can be traced back from
the computations, namely:

3mcy TTCh 65 cé 1
—_, = -, D E = — F =
256 0= 32 °Z2qr ° 0

2’ 5|
To prove estimat¢ (2.16), we observe that

Ag =

D, Je[W] = /Q Se[Wlda, W = /Q S[W1da, (Uj +%20; + ne®?) + 0(e3).

Then the rest of the proof is similar to the previous one. (Note that here we just need an
error in 0 (¢3).)

8. Appendix B: Proof of Lemma 3.1

To prove [3.6), we show that there exists a constgrihdependent of andy, such that

IG(x, )| =

lx — ¥
We recall the decomposition @f:
G(x,y)=K(x —y) — H(x,y)

where K (]x — y|) is the singular part ofG and H (x, y) is the regular part. Since
|K(lx —yD| = L ppal it remains to show that

c5lx—

|H(x, y)| = (8.1)

lx —y®
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Note that if for some fixedo > 0,d(x, 3Q) > dg ord(y, Q) > do, then|H (x, y)| < C
and [8.1) holds. So we just need to estimatex, y) for d(x, 9Q) andd(y, 92) small.
Fory € Q such thatd = d(y, aQ2) is sufficiently small, there exists a unique point
y € 32 such thatd = |y — ¥|. Let y* be the reflection point of through the boundary,
i.e.y* —y = 2(y — y), and consider the auxiliary function

H*(x,y) = K(Ix — y*]).

ThenH* satisfiesA H* = 0in Q and, ond <2,

1
o (H ) = =2 K =50+ 0 75

Since bothK (|x — y|) andK (|x — y*|) are uniformly bounded, we derive that

1
H(x,y)=—H"(x, y)+0<d2)

which proves|(8]1) fox, y € Q. This implies, forx € Q,

ueol < ¢ [ 0 dy. ©.2)

If x € 02, we consider a sequence of pointse Q with x; — x € a2 and take the limit
in (8.2). Lebesgue’s Dominated Convergence Theorem applie$ ahd (3.6) is proved.
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