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Arbitrary number of positive solutions for
an elliptic problem with critical nonlinearity
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Abstract. We show that the critical nonlinear elliptic Neumann problem

1u − µu + u7/3
= 0 in �, u > 0 in �,

∂u

∂ν
= 0 on∂�,

where� is a bounded and smooth domain inR5, has arbitrarily many solutions, provided that
µ > 0 is small enough. More precisely, for any positive integerK, there existsµK > 0 such that
for 0 < µ < µK , the above problem has a nontrivial solution which blows up atK interior points
in �, asµ → 0. The location of the blow-up points is related to the domain geometry. The solutions
are obtained as critical points of some finite-dimensional reduced energy functional. No assumption
on the symmetry, geometry nor topology of the domain is needed.
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1. Introduction

Lin and Ni [28] considered the following nonlinear elliptic equation:

1u − µu + uq
= 0 on�, u > 0 in �,

∂u

∂ν
= 0 on∂�, (1.1)

where�⊂RN (N ≥ 3) is a smooth bounded domain,µ>0 and 1<q ≤(N +2)/(N −2)

are parameters. Such problems arise in mathematical models of chemotaxis [29] and bio-
logical pattern formation [17], [32].

The situation is known to depend highly on the parameterµ. Ni and Takagi showed
that for µ large enough and 1< q < (N + 2)/(N − 2), i.e. in the subcritical case, a
nontrivial least energy solution exists, which concentrates at a boundary point maximizing
the mean curvature of the frontier [34], [35] asµ goes to infinity. Higher energy solutions
also exist, which concentrate at one or several points, located on the boundary [7], [37],
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[13], [20], [24], [26], [49], [50], in the interior of the domain [8], [12], [14], [18], [19],
[22], [48], or some of them on the boundary and others in the interior [23].

Many works have also been devoted to the critical case, i.e.q = (N +2)/(N −2). As
in the subcritical case, nonconstant solutions exist forµ large enough [1], [43], and the
least energy solution blows up, asµ goes to infinity, at a unique point which maximizes
the mean curvature of the boundary [3], [33]. Higher energy solutions have also been
exhibited, blowing up at one [2], [44], [39], [21] or several (separated) boundary points
[15], [30], [45], [46]. The question of interior blow-up is still open. However, in contrast
with the subcritical situation, at least one blow-up point has to lie on the boundary [16],
[40]. Some a priori estimates for those solutions are given in [21], [27].

In the case of smallµ, Lin, Ni and Takagi [29] proved in the subcritical case that
problem (1.1) admits only the trivial solution (i.e.,u ≡ µ1/(p−1)). Based on this, Lin and
Ni [28] asked:

Lin–Ni’s Conjecture. Forµ small andq = (N + 2)/(N − 2), problem (1.1) admits only
the constant solution.

The above conjecture was studied by Adimurthi–Yadava [4], [5] and Budd–Knapp–
Peletier [10] in the case� = BR(0) andu radial. Namely, they considered the following
problem:  1u − µu + u(N+2)/(N−2)

= 0 in BR(0), u > 0 in BR(0),

u is radial,
∂u

∂ν
= 0 on∂BR(0).

(1.2)

The following results were proved:

Theorem A ([4], [5], [6], [10]). For µ sufficiently small

(1) if N = 3 or N ≥ 7, problem(1.2)admits only the constant solution;
(2) if N = 4, 5 or 6, problem(1.2)admits a nonconstant solution.

Theorem A reveals that Lin–Ni’s conjecture depends very sensitively on the dimensionN .
A natural question is: what about general domains? (For Dirichlet boundary conditions,
Brezis and Nirenberg proved that a qualitative difference occurs betweenN = 3 and
N ≥ 4 [9].) The proofs of Theorem A use radial symmetry to reduce the problem to an
ODE boundary value problem. Consequently, they do not carry over to general domains.
In the general three-dimensional domain case, M. Zhu [52] proved:

Theorem B ([52], [51]). The conjecture is true ifN = 3 (q = 5) and� is convex.

Zhu’s proof relies strongly on a priori estimates. Recently, Wei and Xu [51] gave a direct
proof of Theorem B, using only integration by parts.

The purpose of this paper is to establish a result similar to (2) of Theorem A ingeneral
five-dimensional domains, with important additional information aboutmultiplicity and
shape of solutions. Namely, we consider the problem

1u − µu + u7/3
= 0 in �, u > 0 in �,

∂u

∂ν
= 0 on∂�, (1.3)
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where� is a bounded and smooth domain inR5 andµ > 0 is small. Our main result can
be stated as follows:

Main Theorem. For any integerK ∈ N∗, there existsµK such that for0 < µ < µK ,
problem(1.3) has a solutionuµ which blows up at exactlyK interior points in�. As a
consequence, forµ small, problem(1.3)has an arbitrary number of nonconstant distinct
positive solutions.

In order to make this statement more precise, some notations have to be introduced. Let
G(x, Q) be the Green’s function defined as

1xG(x, Q)+δQ−
1

|�|
= 0 in �,

∂G

∂ν
= 0 on∂�,

∫
�

G(x, Q) dx = 0. (1.4)

We decompose
G(x, Q) = K(|x − Q|) − H(x, Q),

where

K(r) =
1

c5r3
, c5 = 3|S4

|, (1.5)

is the fundamental solution of the Laplacian operator inR5 (|S4
| denotes the area of the

unit sphere).
For δ > 0 sufficiently small, we define a configuration space as

Mδ := {Q = (Q1, . . . ,QK) ∈ �K
| min

i
d(Qj , ∂�) > δ, min

i 6=j
|Qi − Qj | > δ}. (1.6)

Let Q = (Q1, . . . ,QK) ∈Mδ. We set

F(Q) =

K∑
j=1

H(Qj , Qj ) −

∑
i 6=j

G(Qi, Qj ) − KF0

K∑
j=1

∫
�

1

|x − Qj |
3

dx (1.7)

whereF0 > 0 is a constant which depends on� only.
For normalization reasons, we consider throughout the paper the following equation:

1u − µu + 15u7/3
= 0, u > 0 in �,

∂u

∂ν
= 0 on∂� (1.8)

instead of the original one. The solutions are identical, up to the multiplicative constant
15−3/4. We recall that, according to [11], the functions

Uε,Q(x) =
ε3/2

(ε2 + |x − Q|2)3/2
, ε > 0, Q ∈ R5, (1.9)

are the only solutions to the problem

−1u = 15u7/3, u > 0 in R5. (1.10)

Our main result can be stated precisely as follows:



452 Olivier Rey, Juncheng Wei

Theorem 1.1. Let � be any smooth and bounded domain inR5, and K ∈ N∗. There
existsµK > 0 such that for0 < µ < µK , problem(1.8)has a nontrivial solutionuµ with
the following properties:

(1) uµ hasK local maximum pointsQµ
i , i = 1, . . . , K, such that

F(Q
µ
1 , . . . ,Q

µ
K) → max

Q∈Mδ

F(Q) asµ → 0,

(2) uµ(x) =
∑K

j=1 Uµ23j ,Q
µ
j
(x) + O(µ2), where3j → 30, and 30 > 0 is some

generic constant. As a consequence,uµ(Q
µ
j ) ∼ µ−3 anduµ(x) → 0 for anyx ∈

� \
⋃K

i=1 Bδ(Q
µ
i ), whereδ > 0 is any small number, anduµ blows up atK points

Q1, . . . ,QK in � such thatQ = (Q1, . . . ,QK) maximizesF inMδ.

Remarks. 1. The existence of a global maximum for the functionF(Q) in Mδ follows
from the properties of the Green’s function—see the proof of Lemma 6.1.

2. We believe that Theorem 1.1 should also be true in dimensionsN = 4 andN = 6.
WhenN = 4, our computations show that the blow-up rate should beec1/µ

2
for some

c1 > 0 (instead ofµ−3 here). WhenN = 6, the blow-up rate should beµ−2. In both
cases, the blow-up rate also depends on the location of the blow-up points. We shall come
back to this question in a future work.

3. There have been many works on the multiplicity of solutions for elliptic equations
with critical nonlinearity—see [31], [30], [44], [45], [46] and references therein. As far
as the authors know, all the multiplicity results are proved with some additional assump-
tions either on the symmetry, geometry, or topology of the domain. In Theorem 1.1, no
condition is required.

As we commented earlier, PDE methods have to be used to prove Theorem 1.1. Note
that the least energy solution has to be constant ifµ is small (see [52] and [29]). There-
fore, the solutions in Theorem 1.1 must have higher energy. To capture such solutions, we
use the so-called “localized energy method”, a combination of the Lyapunov–Schmidt re-
duction method and variational techniques. Namely, we first use the Lyapunov–Schmidt
method to reduce the problem to a finite-dimensional one, with somereduced energy.
Then the solutions in Theorem 1.1 turn out to be generated by critical points of the re-
duced energy functional. This idea has been used in [22] to study the interior spike so-
lutions of problem (1.1) whenµ is large andq is subcritical. This kind of argument has
been applied in many other papers (see [12], [36], [19], [22], [24], [41], [42] and refer-
ences therein). However, a new functional setting has to be introduced, and an appropriate
variational argument to be developed to make the approach followed in our earlier works
[41], [42] successful.

We set
ε = µ2, �ε := �/ε = {z | εz ∈ �}. (1.11)

Through the transformationu(x) 7→ ε−3/2u(x/ε), (1.8) becomes the rescaled problem
we shall work with:

1u − ε5/2u + 15u7/3
= 0, u > 0 in �ε,

∂u

∂ν
= 0 on∂�ε. (1.12)
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We set
Sε[u] := −1u + ε5/2u − 15u7/3

+ , u+ = max(u, 0), (1.13)

and we introduce the following functional defined inH 1(�ε):

Jε[u] =
1

2

∫
�ε

|∇u|
2
+

ε5/2

2

∫
�ε

u2
−

9

2

∫
�ε

u
10/3
+ (1.14)

whose nontrivial critical points are solutions to (1.12) (J ′
ε[u] = Sε[u]).

The paper is organized as follows: In Section 3, we construct suitable approximate
K-bubble solutionsW , and list their properties. In Section 4, we solve the linearized
problem atW in a finite-codimensional space. Then, in Section 4, we are able to solve the
nonlinear problem in that space. In Section 5, we study the remaining finite-dimensional
problem and solve it in Section 6, finding critical points of the reduced energy functional.
The proof of two technical lemmas may be found in Appendices A and B.

Throughout the paper, the lettersC, Ci will denote various positive constants inde-
pendent ofε small.δ will always denote a small constant.

2. Approximate bubble solutions

This section is devoted to the construction of suitable approximateK-bubble solutions,
in the neighbourhood of which solutions of Theorem 1.1 will be found.

Let ε be as defined at (1.11). We considerQ ∈ �, 3 > 0 a constant, andU3,Q/ε as
defined in (1.9). In view of (1.10) and (1.9),U3,Q/ε provides us with a first approximate
solution to (1.8) asε goes to zero (equivalently,µ goes to zero). However, because of the
additional linear termµu in (1.8), such an approximation has to be improved. To this end,
we consider the equation

19 + U3 = 0, 93(x) → 0 as|x| → +∞ (2.1)

whereU3 denotesU3,0. It is known that there exists a unique radially symmetric solution
93, which satisfies

93(x) =
B

|x|

(
1 + O

(
1

|x|2

))
for |x| > 1 (2.2)

whereB = 33/2/2 > 0. Fora ∈ R5, we set

93,a(x) = 93(x − a).

(Note that∂393,a = O(|x − a|
−1) and∂ai

93,a = O(|x − a|
−2) as |x − a| goes to

infinity.)
An additional correction is necessary, in order to obtain approximate solutions which

satisfy the required boundary conditions. With this aim in view, we define

Û3,Q/ε(z) = −93,Q/ε(z) − c5ε
1/233/2H(εz, Q) + Rε,3,Q(z)χ(εz) (2.3)
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whereRε,3,Q is defined by1Rε,3,Q − ε2Rε,3,Q = 0 in �ε and

∂Rε,3,Q

∂ν
=

∂

∂ν
[U3,Q/ε − ε5/293,Q/ε − c5ε

333/2H(εz, Q)] on ∂�ε. (2.4)

Lastly, χ(x) is a smooth cut-off function in� such thatχ(x) = 1 for d(x, ∂�) < δ/4
andχ(x) = 0 for d(x, ∂�) > δ/2.

We notice that (2.2), an expansion ofU3,Q/ε and the definition ofH imply that the
normal derivative ofRε,Q is of orderε9/2 on the boundary of�ε, from which we deduce

|Rε,3,Q| + |ε−1
∇zRε,3,Q| + |ε−2

∇
2
z Rε,3,Q| ≤ Cε7/2. (2.5)

Such an estimate also holds for the derivatives ofRε,3,Q with respect to3 andQ. It will
ensure thatRε,3,Q play no role in further computations, being negligible.

We are now able to define the appropriate approximateK-bubble solutions we are
looking for. Let3 = (31, . . . , 3K) andQ = (Q1, . . . ,QK) be such that

1/C0 ≤ |3| ≤ C0, Q ∈Mδ. (2.6)

In view of the rescaling, we write

Q̄i =
1

ε
Qi, Q̄ = (Q̄1, . . . , Q̄K) (2.7)

and we define our approximate solutions as

Wε,3,Q̄ :=
K∑

j=1

(Uj + ε5/2Ûj ) + ηε5/2 (2.8)

with

η =
c5

|�|

K∑
j=1

3
3/2
j . (2.9)

To simplify our notations, we wroteUj andÛj instead ofU3j ,Qj /ε andÛ3j ,Qj /ε. For the
same reason, we shall also omit the dependence ofW on ε, 3, Q̄. The last termηε5/2

in (2.8) has been added to cancel, in the Laplacian ofW , the Laplacian ofH introduced
through theÛj ’s. By construction, the normal derivative ofW vanishes on the boundary
of �ε, andW satisfies

−1W + ε5/2W = 15
K∑

j=1

U
7/3
j + ε5

K∑
j=1

Ûj − ε5/21(Rε,Qχ(ε·)) in �ε. (2.10)

According to (2.5), the last term occurring in that equation is dominated byε8.
We note thatW depends smoothly on3, Q̄. Setting, forz ∈ �ε,

〈z − Q̄〉 =
K

min
j=1

(1 + |z − Q̄j |
2)1/2
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we derive from the definition ofW the inequalities

|W(z)| ≤ C(ε5/2
+ 〈z − Q̄〉

−3), (2.11)

|D3W(z)| ≤ C(ε5/2
+ 〈z − Q̄〉

−3) (2.12)

and
|DQ̄W(z)| ≤ C(ε3

+ 〈z − Q̄〉
−4) (2.13)

whereD3 andDQ̄ denote the first partial derivatives with respect to3 = (31, . . . , 3K)

andQ̄ = (Q̄1, . . . , Q̄K) respectively.
By our choice ofW , we have the following error and energy estimates, proved in

Appendix A.

Lemma 2.1. We have

|Sε[W ](z)| ≤ C(ε5/2
〈z − Q̄〉

−4
+ ε5

〈z − Q̄〉
−1/2). (2.14)

The same estimate holds forD3Sε[W ](z) andDQ̄Sε[W ](z), and

Jε[W ] = A0 + ε5/2β(3) + ε3E0

[ K∑
j=1

33
j H(Qj , Qj ) −

∑
i 6=j

3
3/2
i 3

3/2
j G(Qi, Qj )

− F0

( K∑
j=1

3
3/2
j

) K∑
j=1

3
3/2
j

∫
�

dx

|x − Qj |
3

]
+ o(ε3). (2.15)

Moreover
D3(Jε[W ]) = ε5/2D3β(3) + O(ε3) (2.16)

whereβ(3) is defined by

β(3) = −B0

( K∑
j=1

3
3/2
j

)2
+ D0

K∑
j=1

32
j . (2.17)

A0, B0, D0, E0, F0 are all generic strictly positive constants.

3. Finite-dimensional reduction: a linear problem

According to our general strategy, we first consider the linearized problem atW , and
we solve it in a finite-codimensional subspace, i.e. the orthogonal space to the finite-
dimensional subspace generated by the derivatives ofW with respect to the parameters
3j andQ̄j,i . Namely, we equipH 1(�ε) with the scalar product

(u, v)ε =

∫
�ε

(∇u · ∇v + ε5/2uv).
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Orthogonality to the functions

Yj,0 =
∂W

∂3j

, j = 1, . . . , K, Yj,i =
∂W

∂Q̄j,i

, 1 ≤ i ≤ 5, j = 1, . . . , K, (3.1)

in that space is equivalent to the orthogonality inL2(�ε), equipped with the usual scalar
product〈·, ·〉, to the functionsZj,i , 1 ≤ j ≤ K, 0 ≤ i ≤ 5, defined as

Zj,0 = −1
∂W

∂3j

+ ε5/2 ∂W

∂3j

,

Zj,i = −1
∂W

∂Q̄j,i

+ ε5/2 ∂W

∂Q̄j,i

, 1 ≤ i ≤ 5, j = 1, . . . , K.

(3.2)

Note that differentiating (2.10) with respect to3j andQ̄j,i and straightforward com-
putations provide us with the estimate

|Zj,i(z)| ≤ C(ε11/2
+ 〈z − Q̄〉

−7). (3.3)

Now, we consider the following problem: givenh, find a functionφ which satisfies
−1φ + ε5/2φ − 35W4/3

+ φ = h +
∑

j,i cj,iZj,i in �ε,

∂φ/∂ν = 0 on∂�ε,

〈Zj,i, φ〉 = 0, 0 ≤ i ≤ 5, 1 ≤ j ≤ K,

(3.4)

for some numberscj,i .
Existence and uniqueness ofφ will follow from an inversion procedure in suitable

function spaces. Just as del Pino, Felmer and Musso in [36], we use weighted Hölder
spaces, defining here (among other possible choices) the two norms:

‖φ‖∗ = ‖〈z − Q̄〉
3/2φ(z)‖∞, ‖f ‖∗∗ = ε−4

|f̄ | + ‖〈z − Q̄〉
7/2f (z)‖∞, (3.5)

where‖f ‖∞ = maxz∈�ε |f (z)| and f̄ = |�ε|
−1

∫
�ε

f (z) dz denotes the average off

in �ε.
Before stating an existence result forφ, we need the following lemma, whose proof

is given in Appendix B:

Lemma 3.1. Letu andf satisfy

−1u = f in �ε,
∂u

∂ν
= 0 on ∂�ε, ū = f̄ = 0.

Then

|u(x)| ≤ C

∫
�ε

|f (y)|

|x − y|3
dy. (3.6)

As a corollary, we have:
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Corollary 3.1. Supposeu andf satisfy

−1u + ε5/2u = f in �ε,
∂u

∂ν
= 0 on ∂�ε.

Then
‖u‖∗ ≤ C‖f ‖∗∗. (3.7)

Proof. Integrating the equation yields̄u = ε−5/2f̄ . We may write

1(u − ū) = ε5/2(u − ū) − (f − f̄ ).

Lemma 3.1 gives

|u(y) − ū| ≤ Cε5/2
∫

�ε

|u(x) − ū|

|x − y|3
dx + C

∫
�ε

|f (x) − f̄ |

|x − y|3
dx.

Since

〈y − Q̄〉
3/2

∫
R5

1

|x − y|3
〈x − Q̄〉

−7/2 dx < ∞

we obtain

‖〈y − Q̄〉
3/2

|u − ū|‖∞ ≤ Cε5/2
‖〈y − Q̄〉

7/2
|u − ū|‖∞ + C‖〈y − Q̄〉

7/2(f − f̄ )‖∞

≤ Cε1/2
‖〈y − Q̄〉

3/2
|u − ū|‖∞ + C‖〈y − Q̄〉

7/2(f − f̄ )‖∞,

which gives
‖〈y − Q̄〉

3/2
|u − ū|‖∞ ≤ C‖〈y − Q̄〉

7/2
|f − f̄ |‖∞,

whence

‖〈y − Q̄〉
3/2u‖∞ ≤ C‖〈y − Q̄〉

3/2
‖∞ |ū| + Cε−7/2

|f̄ | + ‖〈y − Q̄〉
7/2f ‖∞

≤ C‖f ‖∗∗. ut

We now state the main result of this section:

Proposition 3.1. There existsε0 > 0 and a constantC > 0, independent ofε, 3 andQ̄
satisfying(2.6), such that for all0 < ε < ε0 and all h ∈ L∞(�ε), problem(3.4) has a
unique solutionφ ≡ Lε(h). Furthermore

‖Lε(h)‖∗ ≤ C‖h‖∗∗, |cj,i | ≤ C‖h‖∗∗. (3.8)

Moreover, the mapLε(h) is C1 with respect to3, Q̄ and theL∞
∗ -norm, and

‖D(3,Q̄) Lε(h)‖∗ ≤ C‖h‖∗∗. (3.9)

The argument follows closely the ideas in [36], [41] and [42]. We repeat it since we use
different norms. The proof relies on the following result:

Lemma 3.2. Assume thatφε solves(3.4) for h = hε. If ‖hε‖∗∗ goes to zero asε goes to
zero, so does‖φε‖∗.
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Proof. Arguing by contradiction, we may assume that‖φε‖∗ = 1. Multiplying the first
equation in (3.4) byYk,l and integrating in�ε, we find∑

j,i

cj,i〈Zj,i, Yk,l〉 = 〈−1Yk,l + ε5/2Yk,l − 35W4/3
+ Yk,l, φε〉 − 〈hε, Yk,l〉.

On the one hand we check, in view of the definition ofZj,i , Yk,l ,{
〈Zj,0, Yj,0〉 = ‖Yj,0‖

2
ε = γ0 + o(1), 1 ≤ j ≤ K,

〈Zj,i, Yj,i〉 = ‖Yj,i‖
2
ε = γ1 + o(1), 1 ≤ i ≤ 5,

(3.10)

whereγ0, γ1 are strictly positive constants, and

〈Zj,i, Yk,l〉 = o(1), j 6= k, i 6= l. (3.11)

On the other hand, in view of the definition ofYk,l andW , straightforward computations
yield

〈−1Yk,l + ε5/2Yk,l − 35W4/3
+ Yk,l, φε〉 = o(‖φε‖∗)

and
〈hε, Yk,l〉 = O(‖hε‖∗∗).

Consequently, inverting the quasidiagonal linear system solved by thecj,i ’s, we find

cj,i = O(‖hε‖∗∗) + o(‖φε‖∗). (3.12)

In particular,cj,i = o(1) asε goes to zero.
Since‖φε‖∗ = 1, elliptic theory shows that along some subsequence, the functions

φε,j (y) = φε(y − Q̄j ) converge uniformly in any compact subset ofR5 to a nontrivial
solution of

−1φj = 35U4/3
3j ,0φj .

Moreover,|φj (y)| ≤ C(1 + |y|)−3/2. A bootstrap argument (see e.g. Proposition 2.2 of
[47]) implies|φj (y)| ≤ C(1 + |y|)−3. As a consequence,φj can be written as

φj = α0
∂U3j ,0

∂3j

+

5∑
i=1

αi

∂U3j ,0

∂yi

(see [38]). On the other hand, the equalities〈Zj,i, φε〉 = 0 yield∫
R5

−1
∂U3j ,0

∂3j

φj =

∫
R5

U
4/3
3j ,0

∂U3j ,0

∂3j

φj = 0,∫
R5

−1
∂U3j ,0

∂yi

φj =

∫
R5

U
4/3
3j ,0

∂U3j ,0

∂yi

φj = 0, 1 ≤ i ≤ 5.

As we also have∫
R5

∣∣∣∣∇ ∂U3j ,0

∂3j

∣∣∣∣2 = γ0 > 0,

∫
R5

∣∣∣∣∇ ∂U3j ,0

∂yi

∣∣∣∣2 = γ1 > 0, 1 ≤ i ≤ 5,
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and ∫
R5

∇
∂U3j ,0

∂3j

.∇
∂U3j ,0

∂yi

=

∫
R5

∇
∂U3j ,0

∂yi′
· ∇

∂U3j ,0

∂yi

= 0, i 6= i′,

theαi ’s solve a homogeneous quasidiagonal linear system, yieldingαi = 0, 0 ≤ i ≤ N ,
andφj = 0. Soφε(z − Q̄j ) → 0 in C1

loc(�ε).
Now, we remark that Corollary 3.1 provides us with the inequality

‖φε‖∗ ≤ C‖W
4/3
+ φε‖∗∗ + C‖hε‖∗∗ + C

∑
j,i

|cj,i |‖Zj,i‖∗∗. (3.13)

Let us estimate the right hand side. We deduce from (2.11) that

|〈z − Q̄〉
7/2W

4/3
+ φε| ≤ Cε10/3

〈z − Q̄〉
2
‖φε‖∗ + C〈z − Q̄〉

−1/2
|φε|.

Since‖φε‖∗ = 1, the first term on the right hand side is dominated byε4/3. The last term
goes uniformly to zero in any ballBR(Q̄j ), and is also dominated by〈z − Q̄〉

−2
‖φε‖∗

= 〈z − Q̄〉
−2, which, through the choice ofR, can be made as small as desired in

�ε \
⋃

j BR(Q̄j ). Consequently,

|〈z − Q̄〉
7/2W

4/3
+ φε| = o(1)

asε goes to zero, uniformly in�ε. (2.11) also yields

ε−4W
4/3
+ φε ≤ Cε

∫
�ε

(ε10/3
+ 〈z − Q̄〉

−4)|φε|

≤ ε

∫
�ε

(ε10/3
〈z − Q̄〉

−3/2) + 〈z − Q̄〉
−11/2)‖φε‖∗ ≤ ε5/6.

Finally, we obtain
‖W

4/3
+ φε‖∗∗ = o(1).

At the same time, (3.3) yields

〈z − Q̄〉
7/2

|Zj,i | ≤ C(ε11/2
〈z − Q̄〉

7/2
+ 〈z − Q̄〉

−7/2) = O(1)

and

ε−4Zj,i ≤ ε

∫
�ε

(ε11/2
〈z − Q̄〉

−1
+ 〈z − Q̄〉

−7) = O(ε).

Then, coming back to (3.13), we find‖φε‖∗ = o(1) contrary to the assumption that
‖φε‖∗ = 1. ut

Proof of Proposition 3.1.We set

H = {φ ∈ H 1(�ε) | 〈Zj,i, φ〉 = 0, 0 ≤ i ≤ 5, 1 ≤ j ≤ K},

equipped with the scalar product(·, ·)ε. Problem (3.4) is equivalent to findingφ ∈ H

such that
(φ, θ)ε = 〈35W4/3

+ φ + h, θ〉 ∀θ ∈ H,
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that is,

φ = Tε(φ) + h̃, (3.14)

h̃ depending linearly onh, andTε being a compact operator inH . Fredholm’s alternative
ensures the existence of a unique solution, provided that the kernel of Id− Tε is reduced
to 0. We notice that anyφε ∈ Ker(Id − Tε) solves (3.4) withh = 0. Thus, we deduce
from Lemma 3.2 that‖φε‖∗ = o(1) asε goes to zero. As Ker(Id−Tε) is a vector space, it
is {0}. The inequalities (3.8) follow from Lemma 3.2 and (3.12). This completes the proof
of the first part of Proposition 3.1.

The smoothness ofLε with respect to3 andQ̄ is a consequence of the smoothness of
Tε andh̃, which occur in the implicit definition (3.14) ofφ ≡ Lε(h), with respect to these
variables. Inequality (3.9) is obtained by differentiating (3.4), writing the derivatives of
φ with respect3 andQ̄ as linear combinations of theZi ’s and an orthogonal part, and
estimating each term using the first part of the proposition—see [36], [25] for detailed
computations. ut

4. Finite-dimensional reduction: a nonlinear problem

In this section, we turn our attention to the nonlinear problem, which we solve in the
finite-codimensional subspace orthogonal to theZj,i ’s. Let Sε[u] be as defined at (1.13).
Then (1.12) is equivalent to

Sε[u] = 0 in ∂�ε, u+ 6≡ 0,
∂u

∂ν
= 0 on∂�ε. (4.1)

Indeed, ifu satisfies (4.1) the Maximum Principle ensures thatu > 0 in �ε and (1.12) is
satisfied. Observe that

Sε[W + φ] = −1(W + φ) + ε5/2(W + φ) − 15(W + φ)
7/3
+

may be written as

Sε[W + φ] = −1φ + ε5/2φ − 35W4/3
+ φ + Rε

− 15Nε(φ) (4.2)

with

Nε(φ) = (W + φ)
7/3
+ − W7/3

−
7

3
W

4/3
+ φ (4.3)

and

Rε
= Sε[W ] = −1W + ε5/2W − 15W7/3. (4.4)

From Lemma 2.1 we derive estimates ofRε:

‖Rε
‖∗∗ + ‖D(3,Q̄)R

ε
‖∗∗ ≤ ε3/2. (4.5)
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We now consider the following nonlinear problem: findφ such that, for some numbers
cj,i , −1(W + φ) + ε5/2(W + φ) − 15(W + φ)

7/3
+ =

∑
j,i cj,iZj,i in �ε,

∂φ/∂ν = 0 on∂�ε,

〈Zj,i, φ〉 = 0, 1 ≤ j ≤ K, 0 ≤ i ≤ 5.

(4.6)

The first equation in (4.6) reads

−1φ + ε5/2φ − 35W4/3φ = 15Nε(φ) + Rε
+

∑
j,i

cj,iZj,i (4.7)

for some numberscj,i . The functionalNε may be estimated as follows:

Lemma 4.1. There existε1 > 0, independent of3, Q̄, andC, independent ofε, 3, Q̄,
such that forε ≤ ε1 and‖φ‖∗ ≤ ε,

‖Nε(φ)‖∗∗ ≤ Cε5/6
‖φ‖∗, (4.8)

and for‖φi‖∗ ≤ 1,

‖Nε(φ1) − Nε(φ2)‖∗∗ ≤ Cε5/6
‖φ1 − φ2‖∗. (4.9)

Proof. We deduce from (4.3) that

|Nε(φ)| ≤ C(W
1/3
+ |φ|

2
+ |φ|

7/3). (4.10)

In view of (2.11), we compute

ε−4W
1/3
+ |φ|2 + |φ|7/3 ≤ Cε

∫
�ε

((ε5/6
+ 〈z − Q̄〉

−1)|φ|
2
+ |φ|

7/3)

≤ Cε

∫
�ε

((ε5/6
〈z − Q̄〉

−3
+ 〈z − Q̄〉

−4)‖φ‖
2
∗ + 〈z − Q̄〉

−7/2
‖φ‖

7/3
∗ )

≤ C(ε−1/6
‖φ‖

2
∗ + ε−1/2

‖φ‖
7/3
∗ ) ≤ Cε5/6

‖φ‖∗.

On the other hand,

‖〈z − Q̄〉
7/2(W

1/3
+ |φ|

2
+ |φ|

7/3)‖∞ ≤ C‖φ‖
2
∗

and (4.8) follows. Concerning (4.9), we write

Nε(φ1) − Nε(φ2) = ∂ηNε(η)(φ1 − φ2)

for someη = xφ1 + (1 − x)φ2, x ∈ [0, 1]. From

∂ηNε(η) =
7

3
((W + η)

4/3
+ − W

4/3
+ )

we deduce
|∂ηNε(η)| ≤ C(W

1/3
+ |η| + |η|

4/3) (4.11)

and the proof of (4.9) is similar to the previous one. �

We now state the following result:
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Proposition 4.1. There existsC, independent ofε and 3, Q̄ satisfying(2.6), such that
for smallε problem(4.6)has a unique solutionφ = φ(3, Q̄, ε) with

‖φ‖∗ ≤ Cε3/2. (4.12)

Moreover,(3, Q̄) 7→ φ(3, Q̄, ε) is C1 with respect to the∗-norm, and

‖D(3,Q̄)φ‖∗ ≤ Cε3/2. (4.13)

Proof. Following [36], we consider the mapAε from F = {φ ∈ H 1(�ε) | ‖φ‖∗ ≤

C′ε3/2
} to H 1(�ε) defined as

Aε(φ) = Lε(15Nε(φ) + Rε).

HereC′ is a large number, to be determined later, andLε is given by Proposition 3.1. We
remark that finding a solutionφ to problem (4.6) is equivalent to finding a fixed point of
Aε. On the one hand, we have forφ ∈ F , using (4.5), Proposition 3.1 and Lemma 4.1,

‖Aε(φ)‖∗ ≤ ‖Lε(Nε(φ))‖∗ + ‖Lε(R
ε)‖∗ ≤ C1(‖Nε(φ)‖∗∗ + ε3/2)

≤ C2C
′ε3/2+5/6

+ C1ε
3/2

≤ C′ε3/2

for C′
= 2C1 andε small enough, implying thatAε sendsF into itself. On the other

hand,Aε is a contraction. Indeed, forφ1 andφ2 in F , we write

‖Aε(φ1) − Aε(φ2)‖∗ ≤ C‖Nε(φ1) − Nε(φ2)‖∗∗ ≤ Cε5/6
‖φ1 − φ2‖∗ ≤

1

2
‖φ1 − φ2‖∗

for ε small enough. The Contraction Mapping Theorem implies thatAε has a unique fixed
point inF , that is, problem (4.6) has a unique solutionφ such that‖φ‖∗ ≤ C′ε3/2.

In order to prove that(3, Q̄) 7→ φ(3, Q̄) is C1, we remark that if we set forη ∈ F ,

B(3, Q̄, η) ≡ η − Lε(15Nε(η) + Rε)

thenφ is defined as
B(3, Q̄, φ) = 0. (4.14)

We have
∂ηB(3, Q̄, η)[θ ] = θ − 15Lε(θ∂ηNε)(η)).

Using Proposition 3.1 and (4.11) we write

‖Lε(θ(∂ηNε)(η))‖∗ ≤ C‖θ(∂ηNε)(η)‖∗∗ ≤ C‖〈z − Q̄〉
−3/2(∂ηNε)(η)‖∗∗‖θ‖∗

≤ C‖〈z − Q̄〉
−3/2(|W

1/3
+ |η| + |η|

4/3)‖∗∗‖θ‖∗.

In view of (3.5), (2.11) andη ∈ F , we obtain

‖Lε(θ(∂ηNε)(η))‖∗ ≤ Cε3/2
‖θ‖∗.
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Consequently,∂ηB(3, Q̄, φ) is invertible with uniformly bounded inverse. Then the fact
that (3, Q̄) 7→ φ(3, Q̄) is C1 follows from the fact that(3, Q̄, η) 7→ Lε(Nε(η)) is C1

and the implicit function theorem.
Finally, let us show how estimate (4.13) may be obtained. Differentiating (4.14) with

respect to3, we find

∂3φ = (∂ηB(3, ξ, φ))−1((∂3Lε)(Nε(φ)) + Lε((∂3Nε)(φ)) + Lε(∂3Rε)),

whence, according to Proposition 3.1,

‖∂3φ‖∗ ≤ C(‖Nε(φ)‖∗∗ + ‖(∂3Nε)(φ)‖∗∗ + ‖∂3Rε
‖∗∗).

From Lemma 4.1 and (4.12) we know that

‖Nε(φ)‖∗∗ ≤ Cε3/2.

Concerning the next term, we notice that according to the definition ofNε,

|(∂3Nε)(φ)| =
7

3

∣∣∣∣(W + φ)
4/3
+ − W

4/3
+ −

4

3
W

1/3
+ φ

∣∣∣∣|∂3W |,

whence again, using (2.11), (2.12) and (4.12),

‖(∂3Nε)(φ)‖∗∗ ≤ Cε3/2.

Finally, using (4.5), we obtain
‖∂3φ‖∗ ≤ Cε3/2.

The derivative ofφ with respect toQ̄ may be estimated in the same way. This concludes
the proof of Proposition 4.1. ut

5. Finite-dimensional reduction: reduced energy

Let us define a reduced energy functional as

Iε(3, Q) ≡ Jε[W3,Q̄ + φε,3,Q̄]. (5.1)

Then we state:

Proposition 5.1. The functionu = W + φ is a solution to problem(1.12) if and only if
(3, Q̄) is a critical point ofIε.

Proof. We notice thatu = W + φ being a solution to(1.12) is equivalent to being a
critical point ofJε. It is also equivalent to the cancellation of thecj,i ’s in (4.6) or, in view
of (3.10) and (3.11),

J ′
ε[W + φ][Yj,i ] = 0, 1 ≤ j ≤ K, 0 ≤ i ≤ 5. (5.2)
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On the other hand, we deduce from (5.1) thatI ′
ε(3, Q) = 0 is equivalent to the cancella-

tion of J ′
ε(W +φ) applied to the derivatives ofW +φ with respect to3 andQ̄. According

to the definition (3.1) of theYj,i ’s and Proposition 4.1 we have

∂(W + φ)

∂3j

= Yj,0 + yj,0, 1 ≤ j ≤ K,
∂(W + φ)

∂Q̄j,i

= Yj,i + yj,i, 1 ≤ i ≤ 5,

with ‖yj,i‖∗ = o(1), 1 ≤ j ≤ K, 0 ≤ i ≤ 5. Writing

yj,i = y′

j,i +

∑
k,l

aji,klYk,l, 〈y′

j,i, Zk,l〉 = (y′

j,i, Yj,i)ε = 0, 0 ≤ i ≤ 5, 1 ≤ j ≤ K,

and
J ′

ε[W + φ][Yj,i ] = αj,i

it turns out thatI ′
ε(3, Q̄) = 0 is equivalent, sinceJ ′

ε[W + φ][θ ] = 0 for 〈θ, Zj,i〉 =

(θ, Yj,i)ε = 0, 1≤ j ≤ K, 0 ≤ i ≤ 5, to

(Id + [aji,kl ])[αji ] = 0.

As aji,kl = O(‖yk,l‖∗) = o(1), we see thatI ′
ε(3, Q) = 0 means exactly that (5.2) is

satisfied. ut

In view of Proposition 5.1, to prove the theorem, we have to find critical points ofIε. We
establish an expansion ofIε.

Proposition 5.2. For ε sufficiently small, we have

Iε(3, Q) = Jε[W ] + ε3σε(3, Q) (5.3)

whereσε = o(1) andD3σε = O(1) as ε goes to zero, uniformly with respect to3, Q
satisfying(2.6).

Proof. We first prove that

Iε(3, Q) − Jε[W ] = o(ε3). (5.4)

Actually, in view of (5.1), a Taylor expansion and the fact thatJ ′
ε[W + φ][φ] = 0 yield

Iε(3, Q) − Jε[W ] = Jε[W + φ] − Jε[W ] = −

∫ 1

0
J ′′

ε (W + tφ)[φ, φ]t dt

= −

∫ 1

0

(∫
�ε

(|∇φ|
2
+ ε5/2φ2

− 35(W + tφ)
4/3
+ φ2)

)
t dt,

whence

Iε(3, Q) − Jε[W ]

= −

∫ 1

0

(
15

∫
�ε

(
Nε(φ)φ +

7

3
[W4/3

+ − (W + tφ)
4/3
+ ]φ2

))
t dt −

∫
�ε

Rεφ. (5.5)
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From (4.3), (2.11) and Proposition 4.1, we deduce that the first term on the right hand
side satisfies ∣∣∣∣∫

�ε

Nε(φ)φ

∣∣∣∣ ≤ C

∫
�ε

(W
1/3
+ |φ|

3
+ |φ|

10/3) ≤ Cε4.

Similarly, for the second term on the right hand side we obtain∣∣∣∣∫
�ε

(W
4/3
+ − (W + tφ)

4/3
+ )φ2

∣∣∣∣ ≤ C

∫
�ε

(W
1/3
+ |φ|

3
+ |φ|

10/3) ≤ Cε4.

Concerning the last integral, we remark that according to (2.14),

|Rε
| ≤ Cε5/2

〈z − Q̄〉
−4

+ Cε5
〈z − Q̄〉

−1/2

uniformly in �ε. Therefore∣∣∣∫
�ε

Rεφ

∣∣∣ ≤ C‖φ‖∗

∫
�ε

ε5/2
〈z − Q̄〉

−11/2
+ ε5

‖φ‖∗

∫
�ε

〈z − Q̄〉
−2

≤ Cε7/2.

This concludes the proof of (5.4).
An estimate for the derivative with respect to3 is established exactly in the same

way, differentiating the right hand side in (5.5) and estimating each term separately, using
(4.3), (4.5) and Lemma 2.1 (see Proposition 3.4 in [25] for detailed computations).ut

6. Proof of Theorem 1.1

In view of Proposition 5.1, proving Theorem 1.1 turns out to be equivalent to proving the
existence of a critical point ofIε(3, Q). According to Proposition 5.2 and Lemma 2.1,
setting

Kε(3, Q) :=
Iε(3, Q) − A0

ε5/2

we have the expansion

Kε(3, Q) = β(3) + ε1/2E0

[ K∑
j=1

33
j H(Qj , Qj ) −

∑
i 6=j

3
3/2
i 3

3/2
j G(Qi, Qj )

− F0

( K∑
j=1

3
3/2
j

) K∑
j=1

3
3/2
j

∫
�

dx

|x − Qj |
3

]
+ o(ε1/2) (6.1)

and
D3Kε(3, Q) = D3β(3) + O(ε1/2) (6.2)

with

β(3) = −B0

( K∑
j=1

3
3/2
j

)2
+ D0

K∑
j=1

32
j .
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We notice thatβ(3) → −∞ as|3| → ∞. Except forK = 1, the maximum points ofβ

in RK
+ lie on the boundary of this set. However, computing the first derivatives

∂3i
β(3) = −3B0

( K∑
j=1

3
3/2
j

)
3

1/2
i + 2D03i (6.3)

we see that, in any case,β has a (unique) critical point̂30 in the interior ofRK
+ such that

3̂0 = (30, . . . , 30), 30 =
2D0

3B0K
, β(3̂0) =

4D3
0

27B2
0K

. (6.4)

We compute
∂2
3i3j

β(3̂0) = D0(−3/K + δij ).

Thus, the eigenvalues ofβ ′′ areλ+
= D0, with multiplicity K − 1, andλ−

= −2D0,
with multiplicity one. Consequently,̂30 is a maximum point in the(1, . . . , 1) direction,
corresponding toλ−, and a minimum point in the orthogonal hyperplane (whenK ≥ 2).

We also remark that for3 = 3̂0, the term in square brackets in the expansion (6.1) of
Kε can be written as33

0F(Q) with

F(Q) =

K∑
j=1

H(Qj , Qj ) −

∑
i 6=j

G(Qi, Qj ) − F0K

K∑
j=1

∫
�

dx

|x − Qj |
3
. (6.5)

Note also thatF achieves its maximum̂F in the interior ofMδ. More precisely, we shall
prove:

Lemma 6.1. There exists a constantC > 0 such that

sup
Q∈∂Mδ

F(Q) ≤ −C/δ3 asδ → 0. (6.6)

Considering these facts, our aim is to prove that forε small enough,Kε has a critical
point (3̂, Q̂), with 3̂ close to3̂0 andQ̂ close to a maximum point ofF . In order to use a
linking argument, we set

6 = {(3, Q) | Q ∈Mδ, 1/C0 < 3i < C0, 1 ≤ i ≤ K}

whereC0 is a large constant. We also define a closed subset of6,

B = {(3, Q) | Q ∈ U, |3 − 3̂0| ≤ α},

whereU is a closed contractible neighbourhood of a maximum point ofF , andα > 0 is
a fixed small number. Lastly, we defineB0, a closed subset ofB, as

B0 = {(3, Q) | Q ∈ U, |3 − 3̂0| = α, (3 − 3̂0) · 3̂0 = 0}.
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In view of the behaviour ofβ at3̂0, α is chosen small enough so that for any(3, Q) ∈ B0,
β(3) > β(3̂0). Finally, we set

0 = {ϕ ∈ C0(B, 6) | ϕ|B0 = Id}, c = max
ϕ∈0

min
(3,Q)∈B

Kε(ϕ(3, Q)).

We show thatc is a critical value ofKε. To this end, standard deformation arguments
ensure that it is sufficient to prove:

(H1) min(3,Q)∈B0 Kε(3, Q) > c.
(H2) For all (3, Q) ∈ ∂6 such thatKε(3, Q) = c, there existsτ(3,Q), a tangent vector

to ∂6 at (3, Q), such that

∂τ(3,Q)
Kε(3, Q) 6= 0.

Before proving (H1) and (H2), we need to estimatec. We remark that for anyϕ
in 0, there exists some(3′, Q′) = ϕ(3, Q), (3, Q) ∈ B, such that3′ is proportional
to (1, . . . , 1). (This follows from the fact thatϕ ∈ C0(B, 6) andϕ|B0 = Id.) Then,
according to (6.1) and (6.5),

Kε(3
′, Q′) = β(3′) + ε1/2E03

′3F(Q′) + o(ε1/2).

Maximizing the right hand side with respect to3′ proportional to(1, . . . , 1) andQ′ in
Mδ, we see that for anyϕ in 0, there exists some(3′, Q′) such that

Kε(3
′, Q′) ≤ β(3̂0) + ε1/2E03

3
0F̂ + o(ε1/2),

whence also
c ≤ β(3̂0) + ε1/2E03

3
0F̂ + o(ε1/2). (6.7)

On the other hand, we consider a specialϕ such that, if we set(3′, Q′) = ϕ(3, Q) for
(3, Q) ∈ B, then3′ is the orthogonal projection of3 over the diskD = {3 | |3 − 3̂0|

≤ α, (3−3̂0) ·3̂0 = 0}. Moreover, we chooseϕ in such a way that, for|3−3̂0| ≤ α/2,
Q′ is a maximum point ofF (this is possible, since we assumed thatU is a closed con-
tractible neighbourhood of a maximum point ofF ). In view of (6.1) and the behaviour of
β, for suchϕ andε small enough we have

min
(3,Q)∈B

Kε(ϕ(3, Q)) = β(3̂0) + ε1/2E03
′3
0 F̂ + o(ε1/2),

whence the reverse inequality to (6.7), and the final estimate

c = β(3̂0) + ε1/2E03
′3
0 F̂ + o(ε1/2). (6.8)

Let us now show that (H1) and (H2) are satisfied. In view of (6.8), the inequality in
(H1) follows directly from the expansion (6.1), the definition ofB0 and the properties of
β, provided thatε is small enough.

We are left with the proof of (H2). We note thatKε(3, Q) = c implies, through (6.1),
that

β(3) = c + O(ε1/2). (6.9)
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As already stated,β(3) → −∞ as soon as some3i goes to infinity. Therefore, (6.9)
implies that3i ≤ C1, 1 ≤ i ≤ K, for some constantC1. On the other hand, suppose
that 3i goes to zero for some indices, say 1≤ i ≤ m. If m = K, thenβ(3) goes to
zero, a contradiction with (6.9). Ifm < K, there exists some indexj ≥ m + 1 such that
∂3j

β(3) 6= 0. Indeed, if not, in view of (6.3) we would obtain

3j =
2D0

3B0(K − m)
+ o(1), m + 1 ≤ j ≤ K,

whence

β(3) =
4D3

0

27B2
0(K − m)

+ o(1),

and again, comparing with (6.4), a contradiction with (6.9). Consequently, there exists an
indexj ≥ m + 1 such that∂3j

β(3) 6= 0, implying through (6.2) that∂3j
Kε(3, Q) 6= 0

for ε small enough. Then we see that if we chooseC0 > C1 large enough in the definition
of 6, (H2) is satisfied when(3, Q) ∈ ∂6 with Kε(3, Q) = c is such that3i = C0
(impossible) or3i = 1/C0 (takingτ(3,Q) = ∂3j

for some appropriate indexj ).
It only remains to consider the case 1/C0 < 3j < C0, 1 ≤ j ≤ K, andQ ∈ ∂Mδ. If

there exists some indexj such that∂3j
Kε(3, Q) 6= 0, then (H2) holds. If not, it follows

from (6.2) and (6.3) that

3 = 3̂0 + O(ε1/2) and β(3) = β(3̂0) + O(ε).

Thus, (6.1) yields

Kε(3, Q) = β(3̂0) + ε1/2E03
3
0F(Q) + o(ε1/2).

Then the assumptionKε(3, Q) = c, together with (6.8), implies thatF(Q) = F̂ + o(1),
a contradiction with Lemma 6.1, providedδ is chosen small enough. This concludes the
proof of (H2).

Proof of Lemma 6.1.We first note the existence of a positive constantC independent of
Q ∈ � such that ∫

�

1

|x − Q|3
dx ≤ C. (6.10)

So the integral term inF(Q) is uniformly bounded inδ.
LetQ ∈ � be close to∂�, andQ0 be the nearest point of∂� toQ. It is easily checked

that

H(x, Q) = −
1

c5|x − Q∗|3
+ O

(
1

(d(Q, ∂�))2

)
asd(Q, ∂�) → 0

uniformly in�, whereQ∗ is the reflection ofQ across the boundary, that is, the symmetric
point toQ with respect toQ0 (see Appendix B). In particular,

H(Q, Q) = −
1

8c5(d(Q, ∂�))3
+ O

(
1

(d(Q, ∂�))2

)
.
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On the other hand, we have

G(Qi, Qj ) =
1

c5|Qi − Qj |
3

− H(Qi, Qj ).

Then, in view of (6.5), we see that

max
Q∈Mδ

F(Q) ≤ −C/δ3 asδ → 0

whereC is some strictly positive constant. ut

Proof of Theorem 1.1 completed.We proved that forε small enough,Iε has a critical
point (3ε, Qε).

Let uε = W3ε,Q̄ε,ε + φ3ε,Q̄ε,ε. Thenuε is a nontrivial solution to problem (1.12).

The strong maximum principle shows thatuε > 0 in �ε. Letuµ = ε−3/2uε(x/ε). By our
construction,uµ has all the properties of Theorem 1.1. ut

7. Appendix A: Proof of Lemma 2.1

From the definition (2.8) ofW , (2.10) and (2.5), we know that

Sε[W ] = −1W + ε3/2W − 15W7/3
+

= 15
K∑

j=1

U
7/3
j + ε5

K∑
j=1

Ûj − 15
( K∑

j=1

(Uj + ε5/2Ûj ) + ηε5/2
)7/3

+ O(ε8)

= ε5
K∑

j=1

Ûj + O
[ ∑

i 6=j

U
4/3
j (Ui + ε5/2) + ε10/3

K∑
j=1

Uj + ε35/6
]
.

According to the definition ofUj = U3j ,Qj /ε and the fact that inMδ the pointsQj

remain far apart, we have

Uj = O(〈z − Q̄〉
−3), U

4/3
j Ui = O(ε3

〈z − Q̄〉
−4) for i 6= j. (7.1)

From (2.3), (2.2) and (2.5), we also have

Ûj = O(〈z − Q̄〉
−1/2). (7.2)

Combining these facts yields estimate (2.14). Estimates forD3Sε[W ] andDQ̄Sε[W ] are
obtained exactly in the same way.

We now turn to the proof of the energy estimate (2.15). From (2.10) and (2.11) we
deduce that∫

�ε

|∇W |
2
+ ε5/2

∫
�ε

W2
= 15

K∑
j=1

∫
�ε

U
7/3
j W + ε5

K∑
j=1

∫
�ε

ÛjW + o(ε3). (7.3)
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The definition (2.8) ofW and (7.2) yield|W − ηε5/2
| = O(〈z − Q̄〉

−3), whence, in view
of (7.2) and (2.2),

ε5
K∑

j=1

∫
�ε

ÛjW = ηε5/2ε5
∫

�ε

K∑
j=1

(−9j − c5ε
1/23

3/2
j H(εz, Qj )) + o(ε3)

= −c5ηε3
K∑

j=1

3
3/2
j

∫
�

H(x, Qj ) dx + o(ε3)

= −ηε3
K∑

j=1

3
3/2
j

∫
�

1

|x − Qj |
3

dx + o(ε3).

Concerning the first terms on the right hand side of (7.3), we remark that in view of the
definitions ofUi , Ûi and (2.2), fori 6= j we have onBj = B(Q̄j , δ/2ε),

(Ui + ε5/2Ûi)(z) =
ε33

3/2
i

|Qj − Qi |
3

− c5ε
33

3/2
i H(Qj , Qi) + O(ε4

|z − Q̄j | + ε7/2).

As Ui + ε5/2Ûi = O(〈z − Q̄〉
−3

+ ε5/2) and, outsideBj , U
7/3
j = O(ε7), we obtain, for

i 6= j ,

15
∫

�ε

U
7/3
j (Ui + ε5/2Ûi) = c2

5ε
33

3/2
i 3

3/2
j G(Qi, Qj ) + o(ε3),

noticing that

15
∫

R5
U

7/3
j = c53

3/2
j . (7.4)

In the same way we find, fori = j ,

15
∫

�ε

U
7/3
j (Uj + ε5/2Ûj )

= 15
∫

R5
U

10/3
1,0 − 15ε5/2

∫
�ε

U
7/3
j 9j − c2

5ε
333

j H(Qj , Qj ) + o(ε3).

Thus we obtain

∫
�ε

|∇W |
2
+ ε5/2

∫
�ε

W2
= 15K

∫
R5

U
10/3
1,0 − 15ε5/2

K∑
j=1

∫
R5

U
7/3
j 9j

− c2
5ε

3
[ K∑
j=1

33
j H(Qj , Qj ) −

∑
i 6=j

3
3/2
i 3

3/2
j G(Qi, Qj )

]
+ ηε5/2c5

K∑
j=1

3
3/2
j − ηε3

K∑
j=1

3
3/2
j

∫
�

1

|x − Qj |
3

dx + o(ε3). (7.5)
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It only remains to estimate∫
�ε

W
10/3
+ =

∫
�ε

( K∑
j=1

(Uj + ε5/2Ûj ) + ηε5/2
)10/3

+

=

∫
�ε

( K∑
j=1

Uj

)10/3
+

10

3
ε5/2

∫
�ε

( K∑
j=1

Uj

)7/3( K∑
j=1

Ûj

)

+
10

3
ηε5/2

∫
�ε

( K∑
j=1

Uj

)7/3
+ O

(∫
�ε

(
ε5

K∑
j=1

U
4/3
j + ε25/3

))

=

K∑
j=1

∫
�ε

U
10/3
j +

10

3

∑
i 6=j

∫
�ε

U
7/3
j (Ui + Ûi) +

10

3
ε5/2

K∑
j=1

∫
�ε

U
7/3
j Ûj

+
10

3
ηε5/2

K∑
j=1

∫
�ε

U
7/3
j + o(ε3)

since, as a consequence of the definition of theUj ’s and the fact that theQj ’s remain far
apart inMδ (see for instance (7.1)),

ε5
∫

�ε

U
4/3
j = O(ε4)

and, fori 6= j , ∫
�ε

U
4/3
j Ui = O(ε2),

∫
�ε

U
4/3
j U2

i = O(ε4).

Therefore, the same computations as above yield∫
�ε

W
10/3
+ = K

∫
R5

U
10/3
1,0 −

10

3
ε5/2

K∑
j=1

∫
R5

U
7/3
j 9j +

2

9
ηε5/2c5

K∑
j=1

3
3/2
j

−
2

9
c2

5ε
3
[ K∑

j=1

33
j H(Qj , Qj ) −

∑
i 6=j

3
3/2
i 3

3/2
j G(Qi, Qj )

]
+ o(ε3).

Combining this expansion with (7.5), we obtain

Jε[W ] =
1

2

∫
�ε

|∇W |
2
+

ε5/2

2

∫
�ε

W2
−

9

2

∫
�ε

W10/3

= 3K

∫
R5

U
10/3
1,0 +

15

2
ε5/2

K∑
j=1

∫
R5

U
7/3
j 9j −

1

2
ηε5/2c5

K∑
j=1

3
3/2
j

+
1

2
c2

5ε
3
[ K∑
j=1

33
j H(Qj , Qj ) −

∑
i 6=j

3
3/2
i 3

3/2
j G(Qi, Qj )

]

−
c5

2|�|
ε3

( K∑
j=1

3
3/2
j

) K∑
j=1

3
3/2
j

∫
�

1

|x − Qj |
3

dx + o(ε3).
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Lastly, we notice that in view of (2.1),

15
∫

R5
U

7/3
j 9j =

∫
R5

U2
j =

( ∫
R5

U2
1,0

)
32

j =
c5π

16
32

j ,

whence, according to the definition (2.9) ofη,

15
K∑

j=1

∫
R5

U
7/3
j 9j − ηc5

K∑
j=1

3
3/2
j =

c5π

16

K∑
j=1

32
j −

c2
5

|�|

( K∑
j=1

3
3/2
j

)2
.

Finally, we obtain

Jε[W ] = A0 − ε5/2D0

( K∑
j=1

3
3/2
j

)2
+ ε5/2B0

K∑
j=1

32
j + ε3E0

[ K∑
j=1

33
j H(Qj , Qj )

−

∑
i 6=j

3
3/2
i 3

3/2
j G(Qi, Qj ) − F0

( K∑
j=1

3
3/2
j

) K∑
j=1

3
3/2
j

∫
�

1

|x − Qj |
3

dx

]
+o(ε3)

whereA0, B0, D0, E0, F0 > 0 are all generic constants which can be traced back from
the computations, namely:

A0 =
3πc5

256
, B0 =

πc5

32
, D0 =

c2
5

2|�|
, E0 =

c2
5

2
, F0 =

1

c5|�|
.

To prove estimate (2.16), we observe that

D3j
Jε[W ] =

∫
�

Sε[W ]∂3j
W =

∫
�

Sε[W ]∂3j
(Uj + ε5/2Ûj + ηε5/2) + O(ε3).

Then the rest of the proof is similar to the previous one. (Note that here we just need an
error inO(ε3).)

8. Appendix B: Proof of Lemma 3.1

To prove (3.6), we show that there exists a constantC, independent ofx andy, such that

|G(x, y)| ≤
C

|x − y|3
.

We recall the decomposition ofG:

G(x, y) = K(|x − y|) − H(x, y)

where K(|x − y|) is the singular part ofG and H(x, y) is the regular part. Since
|K(|x − y|)| =

1
c5|x−y|3

, it remains to show that

|H(x, y)| ≤
C

|x − y|3
. (8.1)
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Note that if for some fixedd0 > 0,d(x, ∂�) > d0 or d(y, ∂�) > d0, then|H(x, y)| ≤ C

and (8.1) holds. So we just need to estimateH(x, y) for d(x, ∂�) andd(y, ∂�) small.
For y ∈ � such thatd = d(y, ∂�) is sufficiently small, there exists a unique point
ȳ ∈ ∂� such thatd = |y − ȳ|. Let y∗ be the reflection point ofy through the boundary,
i.e.y∗

− y = 2(ȳ − y), and consider the auxiliary function

H ∗(x, y) = K(|x − y∗
|).

ThenH ∗ satisfies1H ∗
= 0 in � and, on∂�,

∂

∂ν
(H ∗(x, y)) = −

∂

∂ν
(K(|x − y|)) + O

(
1

d2

)
.

Since bothK(|x − y|) andK(|x − y∗|) are uniformly bounded, we derive that

H(x, y) = −H ∗(x, y) + O

(
1

d2

)
,

which proves (8.1) forx, y ∈ �. This implies, forx ∈ �,

|u(x)| ≤ C

∫
�

|f (y)|

|x − y|3
dy. (8.2)

If x ∈ ∂�, we consider a sequence of pointsxi ∈ � with xi → x ∈ ∂� and take the limit
in (8.2). Lebesgue’s Dominated Convergence Theorem applies and (3.6) is proved.�
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