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Abstract. We prove existence and uniqueness of entropy solutions for the Cauchy problem for the
quasilinear parabolic equation = diva(u, Du), wherea(z, §) = Vg f(z, &), and f is a convex
function of¢ with linear growth ag& || — oo, satisfying other additional assumptions. In particular,
this class includes a relativistic heat equation and a flux limited diffusion equation used in the theory
of radiation hydrodynamics.

1. Introduction

We are interested in the problem

38—’: =divau, Du) in Qr =(0,T) x RV,

u (0, x) = ug(x) inx e RY,

where 0< ug € LY(RN)NL>®[RN), a(z, £) = Ve f(z, &) and f is a function with linear
growth as||&|| — oo.

Particular instances of problefn (JL.1) have been studiedIn [12] and [19], Wher.
In these papers the authors considered the problem

(1.1)

2—? = (p(u)b(uy))x In(0,T) xR,
u(0, x) = up(x) inx e R,

(1.2)

corresponding td (1]1) wheN = 1 anda(u, uy) = ¢(u)b(u,), wherep : R — R

is smooth and strictly positive, arfal : R — R is a smooth odd function such that

b’ > 0 and lim_ o b(s) = bs. Such models appear in the theory of phase transitions
where the corresponding free energy functional has a linear growth rate with respect to the
gradient[[26]. As the authors observed, in general, there are no classical solutjonk of (1.1);
they defined the notion of entropy solution and proved existencé ([12]) and uniqueness
([19]) of entropy solutions of (I]1). Existence was proved for bounded strictly increasing
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initial conditionsug : R — R such that(up) € C(R) (whereb(ug(xo)) = boo if ug
is discontinuous ato) andb(up(x)) — 0 asx — oo [12]. The entropy condition
was written in Olénik’s form and uniqueness was proved using suitable test functions
constructed by regularizing the sign of the difference of two solutions.

In [13], Blanc considered the following Neumann problem in an intervat:of

a_u = (a(u’ ux))x In (07 T) X (Oa 1)1

o1 13
u, (1,00 = uy(1,1) =0 int e (0,T), (1.3)
u(0, x) = up(x) inx € (0, 1),

wherea(u, v) is a function of clas€ 1% ([0, co) x R) satisfying other additional assump-
tions. He associated an-accretive operator te-(a(u, u,)), with Neumann boundary
conditions, and proved the existence and uniqueness of a semigroup solufiof of (1.3). An
example of the equations considered in/[13] is the so cpllasima equatiolfsee [22])

u ( w2y,

E m)x in (O, T) X (0, 1), (14)

where the initial condition:g is assumed to be positive. In this cas@epresents the
temperature of electrons, and the form of the conductity ) = u®2u, /(1 + u|u.|)

has the effect of limiting the heat flux. But, as far as we know, existence and uniqueness
results for higher dimensional problems have not been considered in the literature. This
was the purpose of our papers [4] ahd [5] in which we studied the Neumann problem for
Lagrangiansf satisfying the following coercivity and linear growth condition:

Coll€ll — Do < f(z, &) < Mo(1+ [§1D) (1.5)

for some positive constan%y, Mp. Now, there are some relevant cases likeréhativistic
heat equatior{see[[14],[27])

D
u; = vdiv(m'—u) (1.6)
Vu?2 + a?|Du|?

for which the Lagrangiarf (z, £) = (v/a®)|z]y/z2 + a?|€|? does not satisS). Ob-
serve that, in this casé,(z, &) satisfies the following condition:

Co@I§ll = Do(z) = f(z.8) = Mo() (51l + 1) 1.7)

for any (z, £) € R x R", and some positive and continuous functi@hs Do, Mo such

that Co(z) > 0 for anyz # 0. The equation (1]6) was introduced by Ph. Rosenau in
[27] to overcome the unphysical dependence of the flux on the gradient as predicted by
the classical transport theory. He imposed the acoustic speed as an upper bound of the
permitted propagation speed in a medium. This provides the means to control the growth
of the flux; flux saturates as the gradients become unbounded. Let us also mention that
equation [(1.6) was recently derived by Y. Brenier by means of Monge—Kantorovich’s
mass transport theory ([14]). As Brenier pointed outin [14], this relativistic heat equation
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is one among the varioudBix limited diffusion equationgsed in the theory of radiation
hydrodynamics [25]. Indeed, a very similar equation

D
U = vdiV(“v—u> (1.8)
u+ ;|Dul

can be found in[[25].

The purpose of the present paper is to extend the results in [4] and [5] to the case where
the Lagrangiary satisfies[(1]7) and the initial condition is i *(RY) N L (R))*.

In [6] we have considered the elliptic problem

u—dvau, Du)=v inRV. (1.9)

By introducing a notion of entropy solution fdr (1.9) we proved [in [6] the existence
and uniqueness of an entropy solution|of (1.9) whea (L1(RY) N L®(RN))*. This
permits us to define an accretive operaom L1(RY) whose domain is contained in
(LY@RN) N L®(RN))* (which amounts to considering the right hand sidef (1.9) in
(LYRN) n L>®(RN))*) and whose closurB is m-accretive (hence, it generates a non-
linear contraction semigroup(z)) in LY(RN)* ([11], [17]). However, we have not been
able to characterizB in distributional terms. In spite of this, the knowledge of the oper-
ator B and the fact that, if is the entropy solution of (11.9), thef || < [[v]leo, Permit

us to use Crandall-Ligget’s iteration scheme and define

—n

u(®) :=T@ug = nleoo<1 + %B) ug, ug € (LY®RN)Nn L®@®RN)T.

The main purpose of this paper is to prove thét) is an entropy solution of (11) (a
notion that will be defined in Sectidr 4), and that entropy solutions are unique. As a
technical tool we shall use some lower semicontinuity results (s€e [18] and [20]) for
energy functionals whose density is a functigfx, u, Du) convex in Du with linear
growth rate a$Du| — oo. The qualitative behavior of solutions ¢f (]L.6) and the motion
of its support will be the object of a subsequent paper [7].

Finally, let us explain the plan of the paper. In Secfipn 2 we recall some basic facts
about function spaces, functions of bounded variation, denoted 2B\Green’s for-
mula, and lower semicontinuity results for energy functionals defined i(tBMn Sec-
tion[3 we state the main assumptions on the Lagrangiarecall the meaning of expres-
sions of typef (u, Du) for functionsu in BV(R") and define an associated functional
calculus. We also recall the notion of entropy solution for the elliptic probJen (1.9) and
the existence and uniqueness results for it proved in [6]. Then we translate this result into
the language of accretive operators to be able to apply Crandall-Liggett’s iteration scheme
to prove existence of solutions ¢f (1..1) for initial datge LY(RY) N L®[RY), ug > 0.
This will be the main purpose of Sectiph 4 where we define the notion of entropy solution
of (I.7) and we prove that Crandall-Liggett’s iteration scheme produces entropy solu-
tions of it. Then we prove uniqueness of entropy solutions by using Kruzhkov's doubling
variables technique.
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2. Preliminaries
2.1. Some function spacd®V functions

Let us start with some notation. We denotedy and+ " ~* the N-dimensional Lebesgue
measure and theV — 1)-dimensional Hausdorff measurelk, respectively. Given an
open set2 in RN we shall denote b{p(Q), or CSO(RN), the space of infinitely differ-
entiable functions with compact supportdh The space of continuous functions with
compact support ilR" will be denoted byC,.(RV).

We shall use several notations borrowed from [10].M&R ") be the set of Lebesgue
measurable functions fro®" into R. We denote by. (R") the spacé. (RY) := L1(R")
+ L>®(RN), which equipped with the norm

lull1ro0 i= inf{llualls + lu2lloo : u = u1 + uz, ug € LYRY), uz € L*RY)}

is a Banach space. If we set

Lo@RN) := {u e MRV : /};{qu — k)" < oo Vk > 0},

I 12400 (

we haveLo(RY) = LY(RN) N L®(RN) [10]). The dual space afo(RY) is iso-
metrically isomorphic taL 1" (RN) := LYRN) N L®°[RY), when LI"®°(R") is en-
dowed with the normfju || 1nco := MaxX{|jul 1, lulleo} (J1O]).

Givenu, v € M(RY), we shall write

u << v ifandonly if / j(u)dxf/ j(v)dx
RN RN

forall j € Jo:={j : R — [0, 00], convex, |.s.c.,j (0) = 0}.

Due to the linear growth condition on the Lagrangian, the natural energy space to
study [I.1) is the space of functions of bounded variation. Recall th@tig an open
subset ofRY, a functionu € L1(Q) whose gradienDu in the sense of distributions
is a vector-valued Radon measure with finite total variatio2is called afunction
of bounded variationThe class of such functions will be denoted by BY. Foru
BV (), the vector measur®u decomposes into its absolutely continuous and singular
parts,Du = D%+ D’u. ThenD*u = Vu LV, whereVu is the Radon-Nikodym deriva-
tive of the measurd®u with respect to the Lebesgue measgré. We also splitD*u in
two parts: thgumppart D/ u and theCantorpart D¢u. It is well known (see for instance
[2]) that

Diu=@wt - u_)quN_lLJu,

whereJ, denotes the set of approximate jump points adndv, (x) = "BZ‘ (x), Du/|Dul|

being the Radon—Nikodym derivative d@u with respect to its total variatiohDu]|.
For further information concerning functions of bounded variation we refer|to[[1], [23]
or [29].
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2.2. Lower semicontinuity of functionals definedBW

Let © be an open subset & . Given a Borel functiory : Q x R x RN — [0, c0), we
consider the energy functional

G(u) ::/ g(x,u(x), Vu(x))dx
Q

defined in the Sobolev spad&-1(Q). In order to get an integral representation of the
relaxed energy associated with i.e.,

Gu) = {inf{limigf Guy) uy € WHHQ), up — u € LY(Q)},

up}

Dal Maso introduced iri [18] the following functional fare BV (Q2):

D
R () :=/g<x,u(x),wx)>dx+/ g°<x,a<x),—“(x>) |Du|
Q Q [Dul

Uy (x)
+f (/ s, vu(x))ds> dHN " (x), (2.1)
Ju u—_(x)

where therecession functiog® of g is defined as

O, z,6) = tlirro1+ 1g(x,z,E/1). (2.2)

In the case thaf2 is a bounded set, and under standard continuity and coercivity
assumptions, Dal Maso proved [n [18] that) = R. () for all u € BV(Q). Recently,
De Cicco, Fusco, and Verde [20] have obtained a very general result abadut-tbeer
semicontinuity ofR, in BV, which contains, in particular, the following statement.

Theorem 2.1. Let Q be an open subset &Y andg : @ x R x RY — [0,00) a
locally bounded Caratiodory function such that, for evegy, £) € R x RY, the function
g(-, z, &) is of classCt. Assume that

(i) g(x,z, -)is convexirRN for every(x,z) € Q x R,
(i) g(x,-, &) is continuous irR for every(x, £) € Q x RV,

Then the functionak, (1) is lower semicontinuous with respect to thé(Q)-conver-
gence.

Let f : R x RN — [0, co) be a continuous function such thaf exists and f0(z, £)| <
M|| foranyz € R, & € RY. Given a functionu € BV(R"), we define the Radon
measuref (u, Du) in RY as

(f(u, Du), ¢) := Ryr), ¢ € C.R"). (2.3)
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Observe that iff0(z, £) = ¢(z)¥°(&), whereg is Lipschitz continuous angC is a
homogeneous function of degree 1, by applying the chain rule for BV-functions (see [1]),
we have

Du

Ry @) = /RN"“’“)f(”’V”)"”/RN“”‘”O<|DM|

)|DSJ¢,(M)|, (2.4)

whereJ, (r) = fO’ ¢(s) ds. Then, under these conditions, we have

Du

fu, Duy* = w"(m)ws Jo ). (2.5)

2.3. A generalized Green formula

We shall need several results frdm [8] (see &l$o [3]) in order to give a meaning to integrals
of bounded vector fields with divergencelirt integrated with respect to the gradient of
a BV function. Following|[[8], we define

X1(RY) = {ze L®®RY,RY) : div(z) € LYRY)). (2.6)

If z e X1®RY) andw € BVRY) n L>®@RY) we define the functionalz, Dw) :
CX(RM) — R by the formula

((z, Dw), ¢) := —/ w o div(z) dx — / wz-Vedx. (2.7)
RN RN
Then(z, Dw) is a Radon measure &Y, and
/ (z, Dw) = / z-Vwdx, VYwe WHRN)NL®RY). (2.8)
RV RV

Moreover,(z, Dw) is absolutely continuous with respect|bw|. Its Radon—Nikodym
derivative, denoted by (z, Dw, x), is a| Dw|-measurable function frolR" to R such
that

/(z, Dw) = / 6(z, Dw, x)|Dw| for any Borel se8 € RV. (2.9
B B
By writing

z-D*u = (2, Du) — (z- Vu)dL",

we see that - D°u is a bounded measure.
We have the followingsreen formuldgfor z € X1 (RY) andw € BV([RN) N L>®[RY)

([80):
/ wdiv(z) dx —1—/ (z, Dw) =0. (2.10)
RN RN
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3. The elliptic problem
3.1. Assumptions on the Lagrangign

Our purpose in this section is to introduce the main assumptions on the Lagraghgiah
recall the meaning of the expression

v=—diva(, Du) inRY (3.1)

according to[[B].
We assume that the Lagrangign: R x RY — R* satisfies the following assump-
tions, to which we refer collectively as (H):

(H1) £ is continuous oR x RY and is a convex differentiable function &fsuch that
Ve f(z, &) € C(RxRY). Further we requiref to satisfy the linear growth condition
Co@§1l — Do(z) = f(z,8) = Mo()([I§1l + 1) (3.2)

forany(z, £) € R x R, and some positive and continuous functi@is Do, Mo,
such thatCo(z) > 0 for anyz # 0. Moreover, we assumg® exists.

We consider the functioa(z, §) = Vg f(z, £) associated to the Lagrangigh By the
convexity of f,

and the following monotonicity condition is satisfied:

@z, n —ak§) -n—4§) =0 (3.4)

Moreover, it is easy to see that for eakh> 0, there is a constaf = M(R) > 0 such
that

la(z,£)l <M V(z,6) e RxRY, |z] <R. (3.5)

We also assume thatz, 0) = 0 for all z € R, anda(z, §) = zb(z, &) with
Ib(z, &) < Mo ¥(z,&) e RxRY, [z] < R. (3.6)
We consider the functioh : R x RN — R defined by
h(z,§) =a(z,§) - §.

By (3.4), we have
h(z,€)>0 VEeRM, zeR. (3.7)

Moreover, from[(3.B) and (3 2), it follows that

Co@IIENl — D1(z) = h(z, §) = M|I§]l (3.8)
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forany(z, &) €e R x RY, |z| < R, whereD1(z) = Do(z) + f(z, 0). We note that the left
inequality holds for anyz, £) € R x RY. Moreover, we assume that there exist constants
A, B > 0 anda, 8 > 1 such that

|D1(2)| < Alz|* + B|z|f  foranyz e RV, (3.9)

This condition will be used to prove some estimates during the proof of existence, and we
assume it for simplicity, since a more general condition could be used.
We assume that

(H2) $2(z,6) e CRxRY)foranyi =1,...,N.
(H3) h(z, &) = h(z, —&) forall z € R andé € RY, andh? exists.

Observe that
Co@) &l < h°(z, &) < M|l forany(z,&) e Rx RV, |z| < R.

(Ha) 19z, &) = hO(z, &) forall ¢ € RN and allz € R.

(Hs) a(z, &) -n < hOz, n) forall&, n € RN and allz € R.

(Hs) 1h°(z, &) can be written in the form®(z, £) = ¢(2)¥°(&), whereg is a Lipschitz
continuous function such thaiz) > 0 for anyz # 0, andy° is a convex function
which is homogeneous of degree 1.

(H7) ForanyR > 0, there is a constaiit > 0 such that

l(a(z, &) —a(z, &) - (€ — &) < Clz — 2| IE — & (3.10)

forany(z, £), ¢, &) e R x RN, |z], || < R.
Observe that, by the monotonicity conditipn (3.4) and uging {3.10), it follows that

@z, &) —aiE, &) - € —&) = —Clz— 2|15 — €| (3.11)

forany(z, £), (2,§) € R x RV, [z], 2] < R.
Observe that under assumptiongfldnd (H), applying [2.5), we have

Du

s __ s _ .10
f@u, Du)® = h(u, Du)’ = <|Du|

>|DSJ¢(u)|. (3.12)
Remark 3.1. There are physical models for plasma fusion by inertial confinement in
which the temperature evolution of the electrons satisfies an equation of type (1.1), where

2%
az, §) = m,

which corresponds tg'(z, £) = |z|¥2|€| — |z1Y2In(1 + |z] |£]) [22] (see also[13] for a
mathematical study in the one-dimensional case). It is easy to check thdirfipartic-
ular ) and8)) holds for anfy, £) € R x R". Notice that condition (k) holds. We
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observe that®(z, £) = |z|3/2|¢| and (Hs)—(Hs) hold. Finally, to check (H) we observe
that

aa( £) 5 %% 2g|E
—(z.8) =2 - ,
0z 21+zlE]  (A+zI§)?
and therefore

da 7 1

- < —

‘az(z,é) < 2IZI

for any(z, £) € R x RV, From this, it follows that
~ 7 1/2 ~
la(z, &) —a(z, §)| SER |z —z|

forany(z, &) € R x RV, |z] < R. Thus also (H) holds. In this case, the results below
will prove existence and uniqueness of entropy solutiong of (1.1) for any initial condition
uo € L2(@RN) N LYRN), ug > 0.

Remark 3.2. The functionf(z, &) = (v/a?)|z|v/z2 + a?|€|? satisfies the assumptions
(H1)—(H7), with
|z|&

This particular case is related to the so-caligldtivistic heat equatioifsee [14],[[27])

Uy = vdiv(w) (3.13)

Vu? + a?|Du|?

with a = v/c, ¢ being a bound of the propagation speed, arlibing a constant repre-
senting a kinematic viscosity.

az, &) =v

Let us mention that, as pointed out by Brenierlin/[14], this relativistic heat equation
can be derived using Monge—Kantorovich’s mass transport theory. On the other hand,
it is among the variouflux limited diffusion equationssed in the theory of radiation
hydrodynamics [25]. Indeed, a very similar equation

D
- vdiv(—uv " > (3.14)
u+ 2|Dul

can be found in[25]. In this case, the Lagrangjaassociated with the above equation is

fz.6) = cz (|§| — Zlog <1+ 1|s|)) ,
v CcZ

and satisfies assumptionsi(H(Hv).
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3.2. Afunctional calculus

We need to consider the following truncature functions. kok b, let T, ,(r) =
max(min(b, r), a). As usual, we writel, = T_; . We also consider the truncature func-
tionsT! ,(r) := Tu»(r) — 1 (I € R). We set

T, ={T.p:0<a<b}, T'=(T.,:0<a<b leR, T, >0}
We need to consider the function space
TBVTRY) := {u e L*®R")* : T(w) e BV(RY), VT € T,},

and to give a meaning to the Radon—Nikodym derivaliweof a functionu € TBV+(RV).
Using the chain rule for BV functions (see, for instancé, [1]), and with a similar proof to
the one given in Lemma 2.1 dfl[9], we obtain the following result.

Lemma 3.3. For everyu € TBVH(RY) there exists a unique measurable function
RN — R¥ such that

VTapW) = Va<u<y) LN-a, VT, € T;. (3.15)

Thanks to this result we defireu for a functionu € TBV+(R") as the unique function
v which satisfieg(3.15). This notation will be used throughout.

We denote byP the set of Lipschitz continuous functign: [0, co) — R satisfying
p'(s) = 0 for s large enough. We writ®+ := {p € P : p > 0}. We recall the following
result ([2, Lemma 2]).

Lemma 3.4. If u € TBVT[RY), thenp(u) € BV(RY) for everyp e P such that there
existsa > Owith p(r) = Oforall 0 < r < a. Moreover,Vp(u) = p’'(u)Vu LN-a.e.

For any functiong, let J,(r) denote the primitive of, i.e., J,(r) = fgq(s)ds. Let
S € PandT = T¢,. Given a functionu e TBV*+(RY), by Lemm, we have
Su)T (w), Jrrs(u), Jrs(u) € BV(RN). Moreover, it is easy to see that

D(Sw)T (u)) = DJrrs(u) + DJrg (u). (3.16)
Hence, ifz € X1(R"), we have
(z, D(SW)T (w))) = (z, DJrs(w)) + (z, DIrs (). (3.17)

Letg : RY x R x RN — [0, 0o) be a function satisfying the assumption of Theorem
[2.1], andT e T*. Then there is somg, , € 7; and a constant € R such thatl’ =
T,.» — c. Observe that

r=T()+c whenever e RandT’'(r) = 1. (3.18)

Consider the functional

R(g, T)(u) :=/ g, u(x), VT w(x))) dx, ue WHLRY).
RN
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Foru € TBVT(RY), define

R(g, T)(u) = Rg(Tup(u)) +/ (8(x, u(x),0) — g(x,a,0)) dx

[u<al

—i—/ (g(x,u(x),0) — g(x,b,0)) dx. (3.19)
[u>b]

By Theorem,R(g, T) is lower semicontinuous in TBY(RY) with respect to
LY(RN)-convergence. Observe that, with this notation, we have

R(g, T)(u) = R(g, Ta,p)(u).
Moreover, ifu € W-1(RV), using [3.1B) we have
R(g, T)(u) =R(g, T)(u).

It will be sufficient for our purposes to assume tlgatioes not depend an. If u €
TBVH(RY) andT € 77, we define the Radon measwe:, DT (1)) in RN by

(g(u, DT (w)), ¢) := R(pg. T)w), ¢ € C.RY). (3.20)
If T e 7;, thenT (r) = r for anyr € R such thatf’(r) = 1, and, using[(3.19)] (3.20),
and [2.3), we have

(g(u, DT (w)), ¢) = (g(T (), DT (u)), ¢) +/ ¢ (g(x, u(x),0) — g(x,a,0)) dx

[u=d]
+ /[‘ ) ¢ (g(x,u(x),0 — g(x,b,0)) dx.
Let S € Pt andT € 7. We denote byfs(u, DT (v)) andhs(u, DT (u)) the Radon

measures defined by (3]20) witiz, £) = S(z) f(z. &) andg(z, &) = S(2)h(z, §), re-
spectively. Sincéi(z,0) = Oforallz € R,if S, T € 7T, with T = T, — ¢, we have

hs(u, DT (u)) = hs(T, (), DT () = hs(Ty (), DT, (). 321)
and, by[25),
(fs(u, DT )))* = (fs(Tap ), DTy p(u)))*
=y (|DTa,b(M)|>|D Jso(Ty,p(u))]. (3.22)

Similarly, we have

DTqp(u)

s s _ 0 Zfa,b ")
(hs(u, DT ()))* = (hs(u, DTy p(u)))” = ¢ <|DTa,b(u)|

)'DXJSw(Ta,b(u))L (3.23)
Note that both singular parts are identical. By the representation formulas in Subsection
[2.2, the absolutely continuous part/of(u, DT (1)) is S(u)h(u, VT (u)). Similar identi-

ties are true whel§ = 1.
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3.3. An existence and uniqueness result for the elliptic problem

Let us recall the following concept of solution for problgm {3.1) introducedlin [6].

Definition 3.5. Givenv € L*[RY) N LYRY), v > 0, we say that: > 0is anentropy
solutionof (3.1)if u € TBV*(RV) anda(u, Vu) € X1(R") satisfies

v=—diva(u, Vu)) inD'RY), (3.24)
hs(u, DT (u)) < (@(u, Vu), DJpg(u)) as measuresS e P, T eTT, (3.25)
h(u, DT () < (@u, Vu), DT (u)) as measures7 € 7. (3.26)

Note that[(3.25) and (3.26) are equivalent to
hs(u, DT (u))* < (a(u, Vu), DJrg(u))® asmeasuregS e P, T e 7T, (3.27)

and
h(u, DT (v))* < (a(u, Vu), DT (u))* as measure¢l € 77, (3.28)

respectively.
The main result of [6] is the following existence and uniqueness result.

Theorem 3.6. Assume that assumptiod) hold. Then for anyd < v € L¥@®RY) N
LY(RM) there exists a unique entropy solutiore TBV+(RY)NL>®(RY) of the problem

u—divau, Du) =v inRV. (3.29)
Moreover, giverv, v € L®(RM)*, if u, u are bounded entropy solutions of the problems
u—diva(u, Duy=v inRY

and
u—diva@, Du) =7 inRV,

respectively, then
w-m"= [ w-o
RN RN

3.4. Semigroup solution

Following [6], we associate to the formal differential expressiodiv a(u, Vu) the fol-
lowing operator inL1(RV).

Definition 3.7. (u,v) € Bifand only if0 < u € TBVFRY) N L*RY),0 < v €
L®(RN) N LY(R") andu is the entropy solution of proble(8. 1)

The following result was proved in[6].



Cauchy problem for a degenerate quasilinear equation 373

Proposition 3.8. Under assumption@), the operatorB is accretive inL1(R"),
(L®®RY) N LY ®RV)" ¢ R(I + B)
and D(B) is dense inL1(RV)*. Moreover, giverk. > 0andv € LY(RN)™,
u=(+1B) v << (3.30)
From Propositi08, if we denote Hy the closure inLY(R") of the operatorB, it

follows thatB3 is accretive inL*(RY), and satisfies the comparison principle and the range

1 MmN
condition D(B)" ED LRyt ¢ R(I + AB) for all » > 0. Therefore, according

to Crandall-Liggett's Theorem (cf., e.d., [11]), for any<Oug € L1(R") there exists a
unique mild solution: € C([0, T], LYX(R")) of the abstract Cauchy problem

uw' () +Bu(@) >0, u() = ug. (3.31)

Moreover,u(tr) = T (t)ug for all t > 0, where(T (¢));>0 is the semigroup i YRVt
generated by Crandall-Liggett's exponential formula, i.e.,

. t \"
T(t)ug = nleoo I+ ;B uo.

On the other hand, b@O), and the results in [10], the comparison principle also holds
for T(¢), i.e., ifug, wp € LY(RN)*, we have the estimate

(T (tyuo — T (1)a0) 11 < Il (uo — o) ™ |l1- (3.32)

Remark 3.9. Since, by Propositioh 3.8L*(R"Y) N LYRY))™ c R(I + B), using
(3:30), we have

T(Ouo € (LPRY)NLY®RY)T Vi >0, Yug e (LXRY)NLERY)*. (3.33)

Remark 3.10. In the proof of the existence part of Theorem 3.6 (5ée [6]), we have proved
that the resolvent of the operat®y, associated te- diva(u, Du) — %Au converges to

the resolvent ofB, i.e., if v € LY®RY) N L®@®"Y), v > 0, andu, are solutions of

(I + By)u = v, thenu,, — u in LYRY) (and inL?(RN) for all 1 < p < oo) where
u=(+B) v,

4. Existence and uniqueness of solutions of the parabolic problem

In this section we give the concept of entropy solution for the Cauchy problein (1.1) and
we state the existence and uniqueness result for this type of solution.

To make precise our notion of solution we need to recall several definitions given
in [2].

We define the space

Z@RYY = {(z, &) € L®RY,RY) x BVRY)* : div(z) = £ in D'(RM)).
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We need to consider the space @Y ),, defined as BYRY) N L2(R") endowed
with the norm

lwllgy@yy, = llwll 2@y + 1Dw|RY).
Itis easy to see that?(RY) c BV(R")3 and

lwlgy@yy; < lwlz@yy, — Yw € LARY). (4.1)

It is well known (see[[28]) that the dual spa¢e(0, T, BV(RV),))* is isomet-
ric to the spacd.*°(0, T; BV(RN)E, BV (RY),) of all weak measurable functiong :
[0,T] —» BV(RN)§ such thaw(f) € L*°([0, T]), wherev(f) denotes the supremum of
the set{|(w, f)| : llwlgy®r), < 1} in the vector lattice of measurable real functions.
Moreover, the duality pairing is

T
(w, f) :./o (w(), f(0))dt

forw € L1(0, T,BV(RY)y) and f € L>(0, T; BV(RY)5, BV(RY),).

We denote byL}U(O, T,BV(RY)) the space of weakly measurable functians:
[0, T] — BVRY) (i.e.,r € [0, T] — (w(t), ¢) is measurable for every € BV (RV)*)
such thatfoT lw(t)||dt < oo. Observe that, since BR") has a separable predual (see
[]), it follows easily that the map € [0, T] — |Jw(¢)| is measurable. We denote by
L&)C’w(o, T, BV(RY)) the space of weakly measurable functions [0, 7] — BV (RY)
such that the mape [0, T] — |Jw(®)| is in LL (0, T)).

Let us recall the following definitions given inl[2].

Definition 4.1. Letw e L1(0, T, BV(R")). We sayW admits aweak derivativein the
spaceLl (0, T, BV(R))NL>®(Qr) ifthereis® e L (0, T, BV(RY))NL>®(Q7) such
that W (1) = [y ©(s) ds, the integral being a Pettis integrgl21]).

Definition 4.2. Leté € (L1(0, T, BV(RY),))*. We say that is thetime derivativein
the spacgL1(0, T, BV (R")»))* of a functionu € L1((0, T) x RN) if

T T
/ (@), ¥(@)dt = —/ / u(t, x)O(t, x)dx dt
0 0 JRN

for all test functions¥ € L1(0, T, BV(R")) with compact support in time, which admit
a weak derivative® e L1 (0, 7, BV(RN)) N L>®(Qr).

Note that ifw € L1(0, T, BV(RV)) N L®(Qr) andz € L®(Q7, RV) is such that there
existsé € (L0, T, BV(RM)))* with div(z) = & in D'(Qr), we can define, associated
to the pair(z, &), the distribution(z, Dw) in Q7 by

T T
((z, Dw), ¢) 1= —/ E@®), w)e(t))dt — / / zZ(t, x)w(t, x)Vyd(t, x) dx dt
0 0 JRN

4.2)
forall ¢ € D(Q7).
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Definition 4.3. Let¢ e (L1(0, T, BV(RV),))* andz € L>®°(Q7, RV). We say that =
div(z) in (L1(0, T, BV(RM),))* if (z, Dw) is a Radon measure i@7 such that

T
(z, Dw)+/ E@®),w@))dt =0
or 0

forall w e L0, T, BV(RY)) N L®(Q7).
Our concept of solution for problerp (1.1) is the following.

Definition 4.4. A measurable function : (0, T) x RN — R is anentropy solutiorof
(LDin 0r = 0.7) xRV if ue (0. T], L*RY)), Tup(w() € Lig,, (0. T. BV(RY))

loc,w

forall 0 < a < b, and there exists € (L1(0, T, BV (R"),)* such that:

() @), Vu@)), 1) € ZRN) a.e.int € [0, T],

(i) & is the time derivative af in (L1(0, T, BV(R")7))* in the sense of Definitid.2
(i) & =diva(u(r), Vu(t)) in the sense of Definitidh.3 and
(iv) the following inequality is satisfied:

T T
/ / ¢hs(u, DT (u)) dt +/ / dhr(u, DS(u)) dt
0 JRN 0 JRN

T T
< f / Jrs(u()d () dx di — / f A1), Vu(t)) - Vo T(u()Swu)) dx di
0 JRN o JrN

for truncaturesS, T € 7" and any smooth functiop of compact support, in par-
ticular of the formg (¢, x) = ¢1(t)p(x), p1 € D((0, T)), p € DRN), ¢1, p > 0.

We have the following existence and uniqueness result.

Theorem 4.5. Under assumptiongH), for any initial datum0 < ug € L®RM) N
L1(RN) there exists a unique entropy solutianof ) in Or = (0, T) x RN for
everyT > 0such that«(0) = ug. Moreover, ifu(t), u(¢) are the entropy solutions corre-
sponding to initial datag, 7o € (L®°(RY) N LY(RN))*, respectively, then

lu(t) —u(@) T 1 < (o —uo)*|l1  forallr > 0. (4.3)

Proof. Existence of entropy solution&iven 0< ug € L¥(RN) N LYRN), letu(r) =

T (t)uo, where(T (1));>0 is the semigroup il 1(RV)* generated by the accretive opera-
tor B. Then, according to the general theory of nonlinear semigroup's (j(t})is a mild
solution of the abstract Cauchy problem

uw'(t) + Bu(t) 30, u(0) = uo. (4.4)

Let us prove that is an entropy solution of (1.1) i@ 7. We divide the proof into several
steps.
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Step 1. Approximation with Crandall-Liggett's schemeetT > 0,K > 1,At = T/K,
t, =nAt,n=20,..., K—1. We define inductively’“fl, n=0,...,K,tobetheunique
entropy solution of

—diva@"™, Du"™) =0 inRY (4.5)

whereu® = ug. Recall that|u" ||, < |luoll, for alln € N andg = 1, oo. We define

K-1
wK(0) = %101 () + D u X112 ()
n=1

We know thaw X converges uniformly ta € C ([0, T], L*R")) and

lu@llp < llucll, Vp €[1,00]. (4.6)
Define
© K-1 untl oy
50 =Y Xl
n=0
and
K-1
25 () = a!, Vul) X (1) + Y a@", VT x g, 1,01 ().
n=1

Sinceu”*1 is the entropy solution of (4,5), we have
Xy =diviZ® (1)) inD'RY) (4.7
and for allS, T € 7+, we have

hsX(t + At), DT WX (t + An))) < (@5 (), DI g (r + At))) as measures (4.8)
hwS @ + An), DT WX (1 + A1) < (25 (1), DT WX (t + Ar))) as measures (4.9)

Since||zX (1)]lo < M forall K € Nand a.et € [0, T], we may assume that

X > ze L®Q7r,RY) weak. (4.10)
Moreover, sinceX (1) = uX(t + Ab(VuX (t + Ar)) with |b(VuXK( + A1) < Mo
(where the constan¥/y is independent ok andr) anduX converges uniformly ta in
C([0, T], LY(R")), we may also assume that

b(Vu®X(t + A1) = zo(t) € L®(Q7,RY)  weak

and
z2(t) = u(t)zp(t) foralmostallr € [0, T]. (4.112)
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Step 2. Working as in the proof of Theorem 3 6f[5], we can prove the following facts.

Lemma 4.6. We have
£ =divy(2 inD'(Qr). (4.12)

Moreover
£(r) =dive(z(t)) inD'(RY) fora.e.re[0,T]. (4.13)

Hence,(z(t), £(1)) € Z(R") for almost allr € [0, T].
Lemma 4.7. ¢ is the time derivative af in the sense of Definitidh.2
Lemma 4.8. &£ = div(z) in (L1(0, T, BV(RY)»))* in the sense of Definiti@

Step 3.Some auxiliary inequalitiesLet M (R") be the space of Radon measureRih
Fix p = T, € 7;, and letj be the primitive ofp. Working as in the proof of Step 5 of
Theorem 3 in[[5], we obtain the following result.

Lemma 4.9. We have

T T _ _
f f @5 (), DX (1 + AP di < f / JuK 2D PC A0 g
0 RN 0 RN

At
(4.14)
forany0 < ¢ € D((0, T) x RY). The same inequality holds for afy< ¢ € D((0, T)).
As a consequence,

{(ZX (1), Dpw™ (¢ + A1)))} is a bounded sequence i} (0, T), M(RY)). (4.15)
Moreover,p(u(-)) € LIOC , (0. T, BV([RM)).

By (4.18), by extracting a subsequence if necessary we may assume that thgre is
M(Qr) such that

T
Iim/ / (@5 (1), DpW™ (1 + A1) = (up, #) VYo € Ce(Q7).
K 0 RN

Let0< ¢ € D((0, T) x RY). Writing (4.14) as

T
/f¢(ZK(t),Dp(uK(t+At)))dt
0 RN

// juK )22 A1 W—A”

—f f K@) Vo puX(t + An)dxdr  (4.16)
0 RN

and lettingk — oo we obtain

T T
5/ / Jw@)¢'(t) dx dt —/ / z(t) - Vop(u(t)) dx dt. (4.17)
0 JRN 0 JRVN
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FixS,T € 7T and 0< ¢ € D(Qr). Working as in the proof of Step 5 of Theorem 3
in [5] we obtain both the analogue ¢f (4]16),

T
/ f &5 (0), DT WX + ADSWK (¢ + AD)))) dt
0 RN
T _ _
< / [ JrsX D00 A0y,
0 RN At

T
—/ f K@) Vo SuX @ + AT W™t + A))dxdt  (4.18)
0 RN

and the fact that
(25 (1), D(T WX (t + ADSWE (¢ + A))))}
is a bounded sequenceli},.((0, ), M(RY)). Now, by (3.17), we have
K@), DT WXt + ADSWX (1 + AD))))
= @5 @®), DIp s (t + AD)) + @ (1), DIgT WX (1 + AD))),

and, by[(4.B), the measure=f (1), DJr s (X (t + Ar))) and(ZX (1), DJs WX (t + A1)
are positive. Hence

{(@X @), DIps@® @+ An))) and (X @), DIsr @™ (1 + A1)}

are bounded sequenceslin,%c((o, T), M(RY)). By extracting a subsequence if neces-
sary, we may assume that there ex.i§t ,u§ € M(Qr) such that

im /OT |, 6@ @, DIns@k e+ a0 = ko 0). Vo eCuon. (419
and

im fOT |, #@ @, Disraka+ 800 = sf 0), Vo a0 (420
Now, passing to the limit i (4.18), and usirjg (4.19) gnd (¢.20), we obtain

T
(UL, )+ (Ul ¢) < fo fR s @) dx di

T
—/ [ z(t) - VOT (u(t))S(u(t)) dx dt, (4.21)
o JRN

and this holds for aly) € D(Qr).
Step 5. Identification of the vector fieldLet us now prove that

z(t) = a(u(t), Vu(t)) foraere (0, 7). (4.22)
We use Minty—Browder’s technique. LetOa < b, let0< ¢ € Ccl,((O, T) x RY) and
g € C?(RN) n WLoo(RN). Let

r r a
Ja; (x, 1) 2=/ ai(s, Vg(x)ds,  Joa ox; (x, 1) :=/ a—ai(s, Vg(x))ds,
0 0 Xj
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fori, j € {1,..., N}. For simplicity, write
DaJa(x, Top ™ (t 4+ A1)

Yo
= Z [EJa,- x, Tap @St + AD)) — Tog jox, (6, Tap S (2 + At)))} . (4.23)
i=1 !

Let us make some remarks concerning the meadytg (x, T, » (uX (1 + Ar))). Using
\olpert's averaged superposition

AT p WX (t + A1), Vg (x))

1
= / a(t (T p S (t + AT + (1 — O (Tup@X (1 + A1) ™, Vg(x)) dr,
0

and the chain rule for BV functions ([1, Theorem 3.96]), and working as we did in the
proof of Theorenii 316 (se&][6]), we obtain

DaJa(x, Ty p(u® (2 + A1) = (T p X (t + A1), V) - VT, ™ (t + A1)
+ AT p WX (t + AD), Vg(x)) - DT, p X (t + A1),

In particular, we observe that the absolutely continuous padbdf(x, T, (uX (t+At)))
is

a(Tap Xt + AD), V) - VT, X (t + A1) LN
=aX(t+ A1), Vg) - VT, X+ An) LV,

Using [4.9) and[(3]4), after some calculation we get
T
/ / ¢ @K (1), DT, , X (1 + A1) — Vg)) dt
0 RN
T
—/ /N S D2Ja(x, T, p (Xt + A1) — a® (1 + A1), Vg) - Vgldt
0 R
T
> —/ / ¢z (1) - VgL —T! , X (t + A1) dx dt
0 JRN ’
T
+ / / N¢[h(Ta,b(uK(r+Az),DTa,b<u’<(r+Az)>s—(DzJa(x,Tu,b(uK(r+Ar))>‘Y]dt.
0 R

On the other hand, by @), (He) and using the chain rule for BV functions, it is not
difficult to prove that

(DaJa(x, Ty p(u™ (t + A = h(Tup X (t + A1), DT, ™ (1 + A1)))*.
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Consequently,

T
/ / LA (Typ X (t + A1), DT, 5 X (1 + A1)
0 RN
— (DaJa(x, Ty p X (t + AD)))*]dt > 0.

Moreover, we have

T
/ / oZ% (1) - Vg1 — T ,(u® (r + A1) dx dt
0 JRVN ’
T
< f / oZ% (1) - Vg1 — T (™ (t + AD)T) , (u (1)) dx dt
0 JRN ’ ’
T
M1Vl [ [ o@=7)
Therefore, we obtain
T
/ / @ (1), D(T W™ (1 + A1) — g)) dt
0 RN
T
—/ /RN [ D2Ja(x, T, p ™ (r + A1) —a@X (r + A1), Vg) - Vgl dt
0
T
+/ / 2% (1) - Vg1 — T, , (™ (t + AD) T , (u(t)) dx dt
0 JRVN ’ ’

T
M1Vl [ [ o= T dxdr =0 (4.24)
0 N

Our purpose is to take limits a§ — oo in the above inequality. We assume that
@ (t, x) = n(t)p(x), wheren € D((0, T)), p € DRY), n > 0, p > 0. Let j denote the
primitive of T, ;. First, integrating by parts in the first term, far small enough we have

T
/ / (25 (1), D(Tup X (1 + AD) — g)) it
0 RN
T
- / / (Top @St + AD) — 9)Z5(1) - Ve (1) dx dt
0 RN

T
—/ / GO (Tap ™ (¢ + AD) — ) div(Z" (1)) dx dt
o Jr¥

T
— / / (Tap @t + A1) — )25 (1) - Vi (1) dx dt
0 RN

T
— / /R () (Tap ™ (1t + A1) — )X (1) dx dt.
0 N
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Now,

T
f / (T p (X (1 + AD) — &K (1) dx di
0 RN

K _ K
u®(t+ At) —u™(t) dr

T
_ / / () Tus X (1 + AD)
0 RN

At
T
- / / 6(gEX (1) di
0 RN
T LK LK T
z/ / o’ ““2) j(u (”)dr—/ / 6(1)gEX (1) di
0 RN t 0 RN
T _ _ T
= f ‘ij'(u’f(r»dr— / / P (1)gEX (1) dr.
0 JRN t 0 JRN

Hence,
T
//qs(zK(r),D(uK(HAt)—g))
0 RN

T _ _
< [ [ e ko ar
0 RN

At

T
- f / o (1)gEX (1) dt
0 RN

T
—f f (T p ™t + AD) — )25 (1) - Vi (1) dx dt.
0 RN
Then from [4.2}) it follows that

—fT ¢t — A —$(1)
0 RN At

T
JWK @) di + / / $(0gEX (1) di
0 RN
T
- / / (Tap WXt + A1) — )25 (1) - Ve (1) dx dt
0 RN
T
+ /O /R L Ol=DaJa(x, Tup X + AD)) +a@® (t + A1), Vg) - Vgl dt
T
+/ / ¢z8 (1) - Ve L —T) , ™t + A)T) ,(u(t)) dx dt
0 JRN ’ ’

T
+M||Vg||oo/ /N (1 — Ta/’b(u(t))) dxdt > 0. (4.25)
0o JR

Letting K — oo in (4.25), observing that the integral in the next to last line goes to zero,
and having in mind that

Do Ja(x, Ta,h(uK(t + A1) = DaJa(x, T, p(u(t + At))) weakly as measures
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working as in the proof of Theorem 3.6 (sée [6] and &lso [4]), we obtain

T T
/ / ¢'(1)j () dt +/ (P(t)g,5(1)) dt
o JrY 0

T
[ Tty - 920) - V.90 v
0 RN
T
[ [ A Datatr. Tuptun) +atue), Vo) - Vel
T
#MiVele [ [ oa-Ti,aonardr=0

Now, using Lemm 418, we get

T T
/ / & (1)j (u(t)) di — / / 6(2(1) - Vg dx di
0 RN 0 RN

T
_/ / Tap(®)2(t) - Ve (1) dx dt
0o JRN
T
+/0 ‘/]RN ¢’[_D2.Ia(X, Ta,b(u(t))) + a(l/l(l), Vg) . vg] dt
T
+M|IVg|Ioo/ f ¢(1— T, ,(u(r)))dxdt > 0. (4.26)
0 JRVN

For anyr > 0, we define the function® as the Dunford integral (sele [21])

1 t
0'0i= 7 [ 0T ds € BYERY)™
T Ji—1
Using this function as in the proof of Theorem 3of [5], we obtain the following result.
Lemma 4.10. We have
T T
| [ owiwana = [ a0 [ Toswozo - pdxa
o Jr¥ 0 RV
T
+/ n(t)/ 02(t) - VTapu(t)) dx dt
0 RV

T
+ / n(o) / pM|D* (Top ()] d.
0 RN
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Now, we may conclude the proof ¢f (4]22). Using Lenfma .10, and taking into account
(4.28), we obtain

T
0< / n (o) f Tus ()2(1) - Vop dx di
0 RN
T T
Lo [ oz s asar+ o [ omint @usaoniar
T T
—/ / q‘)(t)Z(t)-ngxdt—/ / T (()2(1) - Vi (1) dx di
0 RN 0 RN
T
4 /0 /R Bl-Dadal, Tup () + alu(), V) - Vel di
T
+M||Vg||oo/ / $(L— T, (u())) dx dr
0 RN
T
=/ n(t)/ pZ(t) - VT pu(t)) dx dt
0 RN
T T
4 / n(0) / pM|D* (Typ (u()))| di — / n(o) / p(0)2(1) - Vg dx di
0 RN 0 RN
T
+ /0 n(r) fR pl-a, V8) - (VT (w(t)) — Vg d di
T
- / n(0) / p(Dada(x, Tap(u(t)))' dt
0 RN
T
+M||Vg||oo/O /RN¢<1—T4,,,(u<r>>)dxdr
T
- /0 n(0) /R P — aw(r), V&) - (VT (1) — V) dx di
T
4 /0 n(r) /Hé P(MID* (T (o)) — (DaJalx, w(t))*) d

T
+ M||Vg||oo/ / b T, , () dx dt
0o JRN
forall ¢ (t, x) = n(t)p(x), n € DO, T)), p € D(RN), n, p > 0. Thus, the measure
[2(t) — a(u(t), VE)] - V(Tap(u(t)) — ) + M|D*(Ty p(u(1)))|
— (D2Ja(x, T p ()’ + M||Vglloo(L = T, ,(u(1))) = 0.

Then its absolutely continuous part is

[2(t) — a(u(r), VE)] - V(T4 u(1) — g) + M[|Vglloo(1 = T, , (u(1))) = 0.
In particular, we have

[z(t) —a(u(®),Vg)] - V(u() —g) >0 a.e.ond <u <b].
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Since we may take a countable sedA(RY) N W1 (RN) which is dense iC1(RV),
the above inequality holds for i, x) € SN[a < u < b]whereS < (0, T) x RY is such
that £V ((0, T) x RV \ §) = 0, and allg € CY(RN). Now, fix (r,x) € SN[a < u < b].
Giveny € RV, there isg € C1(RV) such thatVg(x) = y. Then
(z(t, x) —a@(), y)) - (Vu(t,x) —y) >0 VyeRN V({,x)eSN[a <u < b
By an application of Minty—Browder’s method R, it follows that
z(t,x) = a(u(t, x), Vu(t,x)) forae (t,x) e QrNla <u <b].

Since this holds for any 6< a < b, we obtain [(4.2R) at a.e. poirit, x) of Q7 such
thatu(r, x) # 0. Now, by our assumptions amand [4.1]) we deduce thatr, x) =
a(u(t, x), Vu(t, x)) = 0 a.e. on§ = 0]. We have proved (4.22).

Step 6. A final lemma and conclusion
Lemma 4.11. For the functionsS, T € 7 used above, we have
nk = hs(u, DT (u)). (4.27)
Proof. By (4.8), we have
28 (1) - D Jps® ( + AnD) = fs@® (¢ + AD), DT @ (1 + An))*

forallt € (0, T). Let0< ¢ € C.(Qr). Using this inequality and the convexity ¢f we
compute

T
/ /N dSWX(t + An)awX( + A1), VT WX + A1) - VT (u(t))) dx dt
0 R
T
5/ f dSWX(t + A ZK(t) - VT WXt + Ar)) dx dt
0 RN
T
+/ / dSWX(t + A1) FuX(t + A1), VT () dx dt
0 RN
T
—/ / dSWX(t + A1) FuX(t + A, VT X (t + A1) dx dt
0 RN
T
= f / ¢ "), DIps@™ (t + A))) dt
0 RN
T
—/ / b)) - D* I s X (¢ + Ar)) dt
0 RN
T
+ / / BSQR G+ ) FGK @+ AN, VT @) dr dr
0 R

T
—f / dSWX(t + AD) fFWX @ + A, VT WX (t + Ar))) dx dt
0 RN
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T
< / / 6@ (1), DIpisX (¢t + Ar)) di
0 RN
T
—f / dfs@® @ + A, DT WXt + Ar)))* di
0 RN
T
+/ / dSWX(t + AD) FWX(t + Ar), VT () dx dt
0 RN
T
—/ /Nqu(uK(z+At))f(u’<(t+m),vr(u’<(t+At)))dxdt
0 R
T
= / / ¢ @* (1), DIps™ (t + A1) dt
0 RN
T
+ / / BSQR G+ A0 FGK G+ AN, VT @) dr dr
0 R
T
—/ / dSWX (@t + AD) fFWX @ + A, DWX(r + Ar))) dx dt.
0 RN

On the other hand,

T
//¢S(uK(t+At))zK(t)-VT(u(t))dxdt
0 RN

T
:/ / dSWX(t + Ay awX (¢ + A, VT WXt + AD)) - VT (u(t)) dx dt + ak,
0 RN

with

ag =

T
/ / dSWX(t + AD)) (25 (1) —awX(t + A1), VT WXt + AD)))) - VT (u(1)) dx dt.
0 RN

Hence,
T
/f¢S(uK(t+At))zK(t)-VT(u(t))dxdt
0 RN
T
< / / 6@ (1), DIp sk (t + ADY) di
0 RN

T
+/ / dSWX(t + AD) fFWX (@ + Ar), VT (w)) dx dt
0 RN

T
—/ /N¢S(uK(t+ AD) fFuX @+ An), DX + Ar))) dxdt + ak.
0 R

385
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Letting K — oo, using the fact that lil_, ;o ax = 0, (4.19), and

T
//(Pfs(u(t),DT(u(t)))dt
o JrY

T
< Iiminf/ / ¢St + AD) fFWX @ + A, DUX (1 + Ar))) dr,
K 0 RN

we obtain
T
// ¢S (t))a(u(t), Vu(t)) - VT (u(t)) dx dt
0 JRV

T
= (M§,¢)+/0 /RN ¢S(n)) fu), VT (u(1))) dx dt
T
—/ / ¢fsu(r), DT (u(2))) dt
o JR¥

T
=(M§,¢)—/ / ¢fsw(@), DT (u(1)))’ dr.
o JrvY

Since the absolutely continuous partigfu, DT (1)) is S(u(t)) a(u(t), Vu(t))-VT (u(t))
we obtain [(4.2]7). O

From the above lemma, usir{g (421) we infer that the mild solutisatisfies the entropy
inequalities

T T
/ / dhs(u, DT (u)) dt +[ / dhr(u, DS()) dt
0 RN 0 RN

T T
5/ / JTS(u(t))qb’(t)dxdt—/ / a(u(t), Vu(t)) - VoT (u(t))S(u(t)) dx dt.
0 JR¥ 0 JRV 4.28)

for the truncatures, T € 7+ and any smooth functiop of compact support in time, in
particular of the formp (r, x) = ¢1(1)p(x), ¢1 € D((0, T)), p € D(RYN). This concludes
the proof of existence of solutions ¢f (IL.1).

Uniqueness of entropy solutionsetd > a > 2¢ > 0 andT (r) = T, 5(r) — a. Set

Rei(r) :=Tc(r =) +e=T—¢14e(r) +&—1,

r

IT.61(r) ::/0 T($)Rei(s)ds,  jrei(r) ::/z T($)Te(s — D ds.

Letu, u be two entropy solutions df (1.1) corresponding to the initial conditigngo €
(LY@®RN) N L®(RN))*, respectively. Then there exist€ € (L0, T, BV(RV)2))*
such that ifz(r) = a@(),Vu()) and Zt) = a(t), Vu(r)), then we have
(z(t), (1)), (Z(1), (1)) € Z(RN) for almost allr € [0, T] and
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£, are the time derivatives of, @ in (L1(0, T, BV(RV),))*, resp,  (4.29)
£ = divz(r) and& = divZ(¢) in the sense of Definition.3, (4.30)

and ifl1, Iz > &, then
T
N f / IT 6,0, (U (E))1;
0 RN
T
+/O /RN n(@)(hr u(t), DReyu(t))) + hg,, (), DT (u(1))))

T
+/ / z(t) - V() Tw(®)Re 1, (u(r)) <0 (4.31)
0 RN

and
T
- / / J1ey @O,
0 RN

T
" /0 /RN n()(hy @(t), DRe.1,@(1)) + hr,, (1), DT (1))

T
+[ / Z(t) - V() T () Re (1)) =0 (4.32)
o Jr¥

foralln € C*®°(Q7)with n > 0,7(t, x) = ¢ (t)p(x), wherep € D((0, T)), p € DRN).
Now, we can rewrite[ (4.31) and (4]32) as

r T
_/ / 18y (M) _8/ / Tr (@)
0 JRY o JrY
T
+/(; [;{N Tl(t)(hT(u(t), DRg,ll(l/l(t))) +hRs,zl(”(t), DT(M(Z‘))))

T
+/0 /I:RN z(t) - V)T (w(t))Re 1, (u()) <0  (4.33)

and
T T
- f / e @O — f [ Jr@a)m,
0 RN 0 RN

T
" /o /RN (@) (hr @), DR, (@(®))) + hr,,, @), DT (@(1))))

T
+ / / 1) - V()T @) Resy (1(1)) <0, (4.34)
0 RN

We choose two different pairs of variablégsx), (s, y) and consider, z as functions of
(t, x) andu, Z as functions of’s, y). Let 0 < ¢ € D((0, T)), p,» a classical sequence of
mollifiers inR" andz, a sequence of mollifiers iR. Define

M (1, 2, 8. 3) = P (¥ = ) (8 s)¢(t ; s).
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For (s, y) fixed, if we takely = u(s, y) in (4.33), we get
T T
- / / JT.e.i(s,y) Ut X)) (Nin,n)e dx dt — 8/ / Jr(u(t, x))(m,n)e dx dt
0 RN 0 RN
T
+ A ‘[I;N nm,n(hT(M(t» -x)a DXRS,E(S,)})(M(I’ x))) + hRgﬁ(&y) (U(l), DXT(u(t)))) dt
T
—|—/ / z(t,x) - Vitimn T(u(t, X)) Re m(s,yy(u(t, x))dx dt <0.  (4.35)
0 RN
Similarly, for (z, x) fixed, if we takel, = u(z, x) in (4.34), we get
T T
- / / jT,a,u(t,x)(ﬁ(sv y))(nm,n)s dy ds — 8/ / JT(E(Sa y))(nm,n)s dy ds
0 RN 0 RN
T
+ /0 /RN Nmn(hr W (s, ), DyRe u.x) (s, ) + R, ., @(s), DyT (u(s)))) ds

T
+ /O /ﬂ;{ 25,9+ Ve T @S, 1) R0 @G5, 1)) dyds < 0. (4.36)

Integrating[(4.3b) irs, y), (4.36) in(z, x), adding the two inequalities, using the fact
thata > 2¢, and taking into account that, ., + Vyn,,» = 0, we have

- A 0 (jT,a,E(s,y)(u(ta x))(nm,n)t + jT,a,u(t,x)(ﬁ(sv y))(nm,n)s)

- S/Q 0 Jr @@, X)) M) + I @S, ¥))mn)s)

+/ nm,nhT(u(t7x)» Dst,ﬁ(s,y)(u(t»x)))
OrxQ0r

+ f Nm,nht WU(s, y), DyRs,u(t,x) (s, y))
OrxQ0r

+/ NP R, g5y @(2), Dx T (u(1)))
OrxQ0r

+ / Motk @(S). DyT@(5))
OrxQ0r

— / Z(s,Y) - Vilu,n T (U (s, ¥)) Re ur,x) (@ (s, y))
OrxQr

- / z(t, x) - Vynm,nT(u(ta x))Rs,ﬁ(s,y)(u(ta x)) <0.
OrxQ0r

Then, since
/ Mmnh R, ., (@), DxT (u(t))) = 0
OrxQr
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and
/ nm,nhRe’u(;,X) (ﬁ(s)a DyT(ﬁ(s))) 2 05
OrxQ0r

we get

- / (jT,s,ﬁ(s,y) (u(z, x))(nm,n)t + jT,S,u(l,x)(ﬁ(S! )’))(nm,n)s)
OrxQ0r
—8/ (Jr (@, X)) Mmn)e + J7 @S, ) m.n)s)
OrxQr

+ / nm,nhT(u(t» x), Dy Rs,ﬁ(s,y) (u(t, x)))
OrxQ0r

+/ nm,nhT(ﬁ(Ss ), D)'Rs,u(t,x)(ﬁ(sv )
OrxQ0r

[ ) a6 ) Rt 5. )
OrxQr

_/ z(t, x) - Vyr]m,nT(u(t» x))Rs,E(s,y)(u(tv x)) <0. (437)
OrxQr

Let I1, I> be, respectively, the sum of the first two terms and the sum of the remaining
terms on the left hand side of the above inequality. From now on, sinzere always
functions of(z, x), andu, Z are always functions ofs, y), for brevity we shall omit the
arguments except when they appear as subscripts and in some additional cases where
we find it useful to recall them. Now, by Green’s formula and the identitiesx) =

a(u(t, x), Vu(t, x)), Z(s, y) = au(s, y), Vu(s, y)), we have

I = / nm,nhT(us Dy Rs,ﬁ(s,y) (u)) +/ nm,nhT(ﬂv DyRs,u(t,x)(ﬁ))
OrxQ0r OrxQ0r

- / zZ- Vxnm,nT(ﬁ)Rs,u(t,x)(ﬁ) - / z- Vynm,nT(u)Ra,E(s,y)(u)
OrxQ0r OrxQ0r

= / Nm,nht (U, DxRe,ﬁ(s,y) ) — / Nmpn Z D, Te(u —u)T (u)
OrxQ0r OrxQ0r
+ / Nmahr (U, DyRs,u(t,x)(ﬁ)) - / NMmn Z- DyTs(ﬁ —u)T (u).
OrxQ0r OrxQr

Let us write
I = Ix(ac) + I(s),

wherelz(ac) contains the absolutely continuous partgnfand/>(s) contains its singular
parts. Now, working as in the proof of uniqueness of Thedrein 3.6[(5ee [6]), we obtain

1
—I2 = ||plloc0(e).
€
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Hence, by[(4.37), it follows that

1

- _f (jT,a,ﬁ(s,y) (”)(nm,n)t + jT,e,u(t,x)(ﬁ)(nm,n)s)
€ JQrxQr

=< l[¢lleco(e) +/ (Jr @) )t + I @) (n,n)s). - (4.38)

OrxQ0r

Therefore, letting — 0 in (4.38) we obtain

- / (jT,Sign,E(s,y) (u)(nm,n)t + jT,Signu(l,x) () (nm,n)s)
OrxQ0r

=< / (JT(M)(nm,n)t + JT(ﬁ)(nm,n)s)v (439)
OrxQr

where ,
JT,signi(r) = [ T(r)signy(r' =D dr', 1eR, r>0.
l

Now, lettingm — oo we have

- /;0 1 (O.T) xRN (jT,signﬁ(s,x)(u(ta X)) ()t +jT,sigrLu(t,x)(ﬁ(sa X)) (Xn)s)
,T)x(0,T)x
= /(0 - RN(JT(”(taX))(Xn)t + Jr(u(s, x))(xn)s),  (4.40)
where
~ t+s
Xn = Pn(t —S)¢( 2 )
Lettinga — 0+ in (4.4Q) we get
- /(O T)%(0.1) xRV (Jo,p.signai(s,x) @t X)) (Xn)e + JTop.signue,x) @S, X)) (Xn)s)
5 X (U, X
= /(0 —— RN(JTo_h(u(t))(Xn)t + J15, () Gn)s).  (4.41)
5 X (U, X
Observe that
;jro,b,sign,z(r) — j(r)=1|r—1| asb— 0+.

Hence, dividing[(4.41) by and lettingh — 0+, we obtain

- / lu(t, x) —uls, )| ((xn)e + (Xn)s)
(0,T)x(0,T)xRN

<

/ WO O, + TS )s). (4.42)
(0,T)x(0,T)xRN
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Sincey, has compact support in time, we have

/ u(r)(xn>t=—/ <s,xn>=—/ (dvz, ) =0,
or or or

asy, does not depend on Similarly, we have

/ u(s)(xn)s = 0.
or

Since

Gt + Otn)s = put — s)¢>’(’ ;S)

we may write [(4.4R) as

lu(z, x) —u(s, x)| pu(t —S)¢/<H2rs> =0 (4.43)

/(O, T)x(0,T)xRN

Now, lettingn — oo, we obtain
- / Jut, x) — @t x)| ¢/ (1) dt dx < 0. (4.44)
(0,T)xRN
Since this is true for all & ¢ € D((0, T)), we have

T - lu(t,x) —u(t,x)|dx <O.

Hence
/ lu(t, x) —u(t,x)|dx < / lug(x) —up(x)|dx forallr > 0.
RN RN

This implies the uniqueness of entropy solutions. Since semigroup solutions with initial
conditions in(LY®RY) N L>®°(RN))* are entropy solutions, it follows that entropy so-
lutions coincide with semigroup solutions for those initial data. Then estirfpate (4.3) is a

consequence of (3.82). ]

Remark 4.12. The above result will permit us to explore the qualitative behavior of so-
lutions of the flux limited diffusion equations (3]13), (3,14), and give the evolution of the
support of its solutions in a subsequent paper [7].

Remark 4.13. The convergence of resolvents described in RerparK 3.10 and the char-
acterization of semigroup solutions ¢f ([L.1) as entropy solutions implies that solutions
of

du . 1
— =diva(u, Du) + — Au
at n

converge as — oo to the entropy solution of (11.1) (see [11]).
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Remark 4.14. Using similar techniques to the above ones for the Cauchy problem we
may prove an existence and uniqueness result for the following Neumann problem

au . .

i diva(u, Du) in Q7 =(0,T) x L,

d

a—” -0 onSy = (0, T) x 4%, (4.45)
n

u(0, x) = ug(x) inx € Q,

whereS2 is a bounded set iR" with boundaryd$2 of classC?t, ug € L*(Q)*1, a(z, &) =

Ve f(z, £), andf satisfies similar assumptions to the ones considered in the Cauchy prob-
lem.
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