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Abstract. It is known that the minimal degree of the Jones polynomial of a positive knot is equal to
its genus, and the minimal coefficient is 1, with a similar relation for links. We extend this result to
almost positive links and partly identify the next three coefficients for special types of positive links.
We also give counterexamples to the Jones polynomial-ribbon genus conjectures for a quasipositive
knot. Then we show that the Alexander polynomial completely detects the minimal genus and fiber
property of canonical Seifert surfaces associated to almost positive (and almost alternating) link
diagrams.

Keywords. Positive link, quasipositive link, almost positive link, almost alternating link, Alexan-
der polynomial, Jones polynomial, fiber surface, ribbon genus

1. Introduction

A link is calledquasipositiveif it is the closure of a braid which is the product of conju-
gates of the Artin generatorsσi [Ru2]. (We call such conjugates and their inverses positive
resp. negativebands.) It is calledstrongly quasipositiveif these conjugates are positive
embedded bandsin the band representation of [Ru2]. It is calledpositiveif it has a di-
agram with all crossings positive (in the skein sense), andbraid positive(or a positive
braid link) if it has a braid representation which is a positive word in the Artin generators.
It is calledfiberedif its complement inS3 is a surface bundle over the circle.

We have

{quasipositive links} ⊃ {strongly quasipositive links} ⊃ {positive links}

⊃ {fibered positive links} ⊃ {braid positive links}. (1)

The only non-obvious inclusions are the second and fourth one. The fourth inclusion
is a well-known fact (it follows e.g. from [Ga1]), and the second inclusion follows, as
observed by Rudolph [Ru1] and Nakamura [N], by applying the algorithm of Yamada
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[Y] or Vogel [Vo] to a positive diagram. Links in some of the above classes have been
studied, besides their intrinsic knot-theoretical interest, with different motivations and in
a variety of contexts, including singularity theory [A, BoW, Mi], algebraic curves [Ru2,
Ru3], dynamical systems [BW] and (in some vague and yet-to-be understood way) in
4-dimensional QFTs [Kr].

A different class related to positive links is the almost positive links, those with almost
positive diagrams, which are, however, not positive. (A diagram isalmost positiveif it has
exactly one negative crossing.)

Let g be the genus of a knot,gs the slice genus, andgr the ribbon genus. (The defini-
tions are recalled below.) For links similarly writeχ , χr andχs for the (Seifert), ribbon
and slice Euler characteristic resp. As any Seifert surface is a ribbon surface, and any
ribbon surface is (deformable into) a slice surface, one has the inequalitiesg ≥ gr ≥ gs

andχ ≤ χr ≤ χs .
For knots we also haveu ≥ gr , with u being theunknotting number[Li]. By the work

of Kronheimer–Mrowka [KM1, KM2] and Rudolph [Ru2], it is now known that the slice
genus is estimated below by the slice Bennequin inequality (a version of [Be, Theorem 3]
with g replaced bygs), implying that for a strongly quasipositive knotg = gs , so that
u ≥ g = gr = gs . For positive braid knotsu ≤ g was known by [BoW]. Thusu = g in
this case.

Let V be the Jones polynomial [J]. Fiedler [Fi] proved that min degV = g for a
positive braid knot, and that min cfV = 1. For positive braid linksL of n = n(L)

components, min cfV = (−1)n−1 and 2 min degV = 1−χ . This follows more generally
for positive linksL by virtue of the fact that positive diagrams are semiadequate (see
[LT]). Fiedler further conjectured (his Conjecture 1) that for arbitrary knots and linksL

which have a band representation ons strands withb bands,

min degV ≤
b − s + 1

2
.

He made a second conjecture (Conjecture 2), whose truth would imply that equality in
the above inequality is achieved only for quasipositive linksL.

In the paper of Kawamura [K], the theorems of Fiedler and Kronheimer–Mrowka–
Rudolph have been found to imply that for a positive braid knot, min degV = u, with a
similar(ly obvious) relation for links. Then Kawamura quoted a special case of Fiedler’s
first conjecture, asking whether it is true (at least) for quasipositive links, and observing
that the slice Bennequin inequality would then imply the relation min degV ≤ u for a
quasipositive knot. (That min degV = u does not extend to quasipositive knots is easy to
observe.)

In this paper, we will investigate several properties of polynomials of the above link
classes. We will start in §3 by giving counterexamples to both Fiedler conjectures of
several special types, in particular the case of the first conjecture addressed by Kawamura.
Then, in §4, we will partly identify up to three of the coefficients of the Jones polynomial
of a positive link following the minimal one, including a handy criterion (Theorem 1)
to single out positive braid links, even among fibered positive links. We will also extend
Fiedler’s result to almost positive links in Theorem 5. Some consequences are derived for
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the skein polynomial [H], in particular a description of up to two more coefficients of its
values on positive links (Corollary 6). For almost positive links, we obtain a proof of the
inequality conjectured by Morton [Mo2] (for which in the general case counterexamples
are now known [St3]).

In some of the proofs we will use the even valence graph version of the Alexander
polynomial studied in [MS] with K. Murasugi. Applying this method, we can also show
that the Alexander polynomial completely determines the minimal genus (Corollary 5)
and fiber property (Theorem 7) of canonical Seifert surfaces associated to almost positive
(and almost alternating) link diagrams. Thus we extend work of Hirasawa [Hi] and, with
a significantly shorter proof, Goda–Hirasawa–Yamamoto [GHY]. At the end we will give
a few examples showing that many of the possible extensions of these theorems are not
true, and mention some problems.

2. Preliminaries

Link polynomials.Theskein polynomialP is a Laurent polynomial in two variablesl and
m of oriented knots and links and can be defined by being 1 on the unknot and the (skein)
relation

l−1 P
(
(

)
+ l P

(
(

)
= −m P

(
(

)
. (2)

For a diagramD of a link L, we will use all of the notationsP(D) = PD = PD(l, m) =

P(L) etc. for its skein polynomial, with the self-suggestive meaning of indices and argu-
ments.

The Jones polynomialV and (one-variable)Alexander polynomial∆ are obtained
from P by the substitutions

V (t) = P(−it, i(t−1/2
− t1/2)), (3)

1(t)
.
= P(i, i(t1/2

− t−1/2)), (4)

hence these polynomials also satisfy corresponding skein relations. The sign “
.
=” means

that the Alexander polynomial is defined only up to units inZ[t, t−1]; we will choose the
normalization depending on the context.

In the following we denote the coefficient oftm in V (t) by [V (t)]m. In the case of
a 2-variable polynomial, we index the bracket by the whole monomial, and not just the
power of the variables. Theminimal or maximal degreemin degV or max degV is the
minimal resp. maximal exponent oft with non-zero coefficient inV . An explicit (one-
variable) polynomial may be denoted by the convention of [LM] by its coefficient list,
with bracketing its absolute term to indicate its minimal degree, e.g.(−3 [1] 2) = −3/t+

1 + 2t . Theminimalor leading coefficientmin cfV of V is [V ]min degV .
For an account on these link polynomials we refer to the papers [LM, J]. (Note: our

convention forP differs from [LM] by interchange ofl and l−1, that is, ourP(l, m) is
Lickorish and Millett’sP(l−1, m).)
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Link diagrams.A crossingp in a link diagramD is calledreducible(or nugatory) if D

can be represented in the form

p
P Q

D is called reducible if it has a reducible crossing, otherwise it is calledreduced.
A link diagramD is compositeif there is a closed curveγ intersecting (transversely)

the curve ofD in two points, such that both the interior and exterior ofγ contain crossings
of D, that is,D has the form

A B

prime if in any compositeOtherwiseD is prime. A link is prime if in any composite diagram replacing one ofA

andB by a trivial (0-crossing) arc gives an unknot diagram.
The diagram issplit if there is a closed curve not intersecting it, but which contains

parts of the diagram in both its interior and exterior:

A B

OtherwiseD is connectedor non-split. A link is split if it has a split diagram, and other-
wise non-split.

We call a diagramD k-almost positiveif D has exactlyk negative crossings. A link
L is k-almost positive if it has ak-almost positive diagram, but nol-almost positive one
for any l < k. We call a diagram or linkpositive if it is 0-almost positive (see [Cr1,
O, Yo, Zu]), andalmost positiveif it is 1-almost positive [St2]. Similarly one definesk-
almost negative, and in particularalmost negativeandnegativelinks and diagrams to be
the mirror images of theirk-almost positive (or almost positive or positive) counterparts,
and(k-)almost alternatingdiagrams and links [Ad1, Ad2]. Thevalencyof a Seifert circle
s is the number of crossings attached tos. We call such crossings alsoadjacentto s.

Link surfaces.A Seifertresp.slicesurface ofL ⊂ S3
= ∂B4

⊂ B4 is a smoothly em-
bedded compact orientable surfaceS ⊂ S3 resp.S ⊂ B4 with ∂S = L. A ribbon surface
is a smoothly immersed compact orientable surfaceS ⊂ S3 with ∂S = L, embedded
except at a finite number of double transverse (ribbon) singularities, whose preimages
are two arcs, one lying entirely in the interior intS of S, and the other one too, except
for its two endpoints, which lie on∂S. A canonical (Seifert) surfaceis a Seifert surface
obtained by Seifert’s algorithm (see [Ro]). We may allow (for links) all these surfaces to
be disconnected, but they should have no closed (∂ = ∅) components.

The (Seifert) genusg, slice genusgs , canonical genus̃g and ribbon genusgr are
defined to be the minimal genera of Seifert, slice, canonical resp. ribbon surfaces ofL.
Similarly one can define the (Seifert), slice, canonical resp. ribbonEuler characteristic
χ , χs , χ̃ , andχr to be the maximal Euler characteristic of such surfaces ofL.
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In [Be, Theorem 3], Bennequin shows that for a braidβ on s(β) strands, with writhe
(exponent sum)w(β) and with closureβ̂ = K, we have an estimate for the Euler charac-
teristicχ(K) of K:

1 − χ(K) ≥ w(β) − s(β) + 1.

This is easily observed to extend by means of the algorithm of Yamada [Y] or Vogel [Vo]
to an inequality for arbitrary link diagramsD of K:

1 − χ(K) ≥ w(D) − s(D) + 1 =: b(D), (5)

with w(D) being the writhe ofD, ands(D) the number of its Seifert circles. We call the
r.h.s. of (5) theBennequin numberof D. (It clearly depends a lot on the diagram for a
given link.)

Rudolph [Ru3] later improved this inequality, by replacingχ(K) by χs(K):

1 − χs(K) ≥ b(D). (6)

Recently, he obtained a further improvement, this time by increasing the r.h.s. [Ru2]:

1 − χs(K) ≥ w(D) − s(D) + 1 + 2s−(D) =: rb(D), (7)

with s−(D) being the number of (≥ 2-valent) Seifert circles ofD, to which only negative
non-nugatory crossings are adjacent. We call the new quantity on the right theRudolph–
Bennequin numberof D. Again rb(D) heavily depends on the diagram, even more than
b(D). (For example, unlikeb(D), rb(D) is no longer invariant under flypes and muta-
tions.) Thus again one is interested in choosing for a given linkK the diagramD so that
rb(D) is as large as possible.

3. Counterexamples to the Jones polynomial-ribbon genus conjectures

3.1. Preparations

While the improvement (7), as compared to (6), may not seem significant at first sight, it
has the advantage of eliminating the minimall-degree in the skein polynomial min degl P

as an obstruction to increasing the estimate by proper choice of the diagramD, since by
[Mo1] we always haveb(D) ≤ min degl P(K).

A practical example where this turned out helpful was given in [St4], and is recalled
below, as it will be used. (The notation for knots we apply is the one of Rolfsen’s tables
[Ro, appendix] for≤ 10 crossings, and of the knot table program KnotScape [HT] for 11
to 16 crossings. By !K we will denote the obverse, or mirror image, ofK.)

Example 1. The knot 136374 has min degl P = 0 and Alexander polynomial∆ = 1. It
has many diagramsD with b(D) = 0, but it cannot have any such diagram withb(D)

> 0, because of Morton’s inequality. However, it does have diagramsD with rb(D) > 0,
thus showing it not to be slice.
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136374

Fig. 1. A non-slice knot with unit Alexander polynomial.

In order to construct our counterexamples, we need a few more simple lemmas.

Lemma 1. If K is quasipositive, thenmin degl P(K) ≥ 1 − χs(K).

Proof. If D is a diagram of a quasipositive braid representation ofK, then 1− χs(K) =

b(D), andb(D) ≤ min degl P(K) by Morton’s inequality. ut

In the followingK1#K2 denotes the connected sum ofK1 andK2, and #nK denotes the
connected sum ofn copies ofK.

Lemma 2. If K1,2 have diagramsD1,2 which are not negative, thenK1#K2 has a dia-
gramD with rb(D) = rb(D1) + rb(D2).

Proof. We apply the connected sum ofD1,2 so that the Seifert circles ofD1,2 affected by
the operation have at least one positive crossing adjacent to them. ut

Lemma 3. If K is strongly quasipositive, thenχ(K) = χs(K).

Proof. For the Seifert surfaceS associated to a strongly quasipositive braid representation
diagramD of K, we have

1 − χ(K) ≤ 1 − χ(S) = b(D) ≤ rb(D) ≤ 1 − χs(K) ≤ 1 − χ(K),

implying equality everywhere. ut

3.2. Degree inequality conjecture

Fiedler’s first conjecture was whether

min degVL ≤
b − s + 1

2

if L has ab-band representation ons strands, and Kawamura’s (weaker) question was
whether it is true at least if this band representation is positive.
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!15162508

Fig. 2

Example 2. Consider the knot !15162508 (see Figure 2). Using the method described
in [St5, appendix], it was found that it is ribbon (and hence slice), and one calculates
min degV = 1. It turns out to have the quasipositive 5-braid representation

(σ−1
1 σ−1

2 σ3σ4σ
−1
3 σ2σ1) (σ−1

2 σ1σ2) (σ2σ
−1
3 σ4σ3σ

−1
2 ) σ3.

(The knot can be identified from this representation by the tool knotfind included in [HT].
Note that this representation also directly shows sliceness.) Thus it is a slice example
answering negatively Kawamura’s question, and hence also a counterexample to Fiedler’s
first conjecture.

Another special type of example is

Example 3. Consider the knotK in Figure 3, which is the closure of the 4-braid

σ 2
1 (σ1σ2σ

−1
1 )σ2σ1σ3(σ1σ2σ

−1
1 )σ2(σ2σ3σ

−1
2 )(σ1σ2σ

−1
1 )(σ2σ3σ

−1
2 ). (8)

This braid is quasipositive, in fact, strongly quasipositive. The diagram ofK in Fig-
ure 3 was obtained from that representation. One easily sees thatg = gs = 4. But
min degV = 5. Thusgs < min degV . In fact, this knot has unknotting number 4. (Switch
the encircled crossings in the diagram of Figure 3.) Thus even the weaker inequality, in
which Kawamura was interested, min degV ≤ u, is not always true.

Fig. 3. The knotK in Example 3.
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Remark 1. !15162508is surely not strongly quasipositive, asg > 0 = gs . Thus the above
exampleK is the most special in the hierarchy (1).

The only case of some interest, remaining not covered by the above examples, is that
of a slice knot withu < min degV . Very likely such examples exist, too, although I have
not found any.

Remark 2. If one is interested in ageneralknot K with min degV > u, then there is
a much simpler and well-known example, !10132. It hasu = 1, but min degV = 2.
However, !10132 is not quasipositive. As it is not ribbon, or slice (its determinant 5 is not
a square), it has 4-genus 1, and a quasipositive representation ofn strands would have
n + 1 bands. Then the untwisted 2-cable link(!10132)2 would have a representation on
2n strands of writhe 2n + 2. Thus by [Mo1], min degl P((!10132)2) ≥ 3, but from the
calculation of [MoS] we know min degl P((!10132)2) = 1.

Remark 3. In a preprint [Ta], T. Tanaka has independently claimed counterexamples to
Fiedler’s first conjecture. On the opposite end, M. Ishikawa [I] proved Fiedler’s inequality
for some links obtained by A’Campo’s method [A].

3.3. Extremal property conjecture

Fiedler also conjectured (his Conjecture 2) that if a linkL has ab-bands-strand band
representation with

min degVL =
b − s + 1

2
, (9)

then it is quasi-positive. (Fiedler’s formulation is slightly different, but easily implies the
one given here.) We will now construct a counterexample also to this conjecture, albeit
some more effort is necessary, and we must use the example found previously in a related
context in [St4]. Our counterexample likely has crossing number 58.

Proposition 1. The knotK ′
= 136374# #3(!15162508) is not quasipositive, yet it has a

band representation with equality in(9).

Proof. We first discuss the prime factors separately.

1. Consider 136374. By switching one of the crossings in the clasp in the lower right part
of the diagram in Figure 1, one obtains 41. Thus by two crossing changes #2136374
turns into the slice knot 41#41. Hence 1− χs(#2136374) ≤ 4. On the other hand, as
136374 has a diagramD with rb(D) = 2, Lemma 2 shows that 1− χs(#2136374) = 4.
By the above,

min degl P(#2136374) = 0 =
1 − χs(#2136374)

2
− 2.
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Also min degV = −1 by calculation. As max degm P(136374) = 4 and it has crossing
number< 15, by [St1] 136374has a diagram of canonical genus 2, and thus by applying
Yamada’s algorithm [Y] to it, we obtain an (embedded) band representation with

b − s + 1

2
= 2 = min degV + 3.

2. For !15162508, we have a quasipositive band representation as 5-braid with 4 bands,
and it is slice. Thus

1 − χs = 0 =
min degl P

2
and

b − s + 1

2
= 0 = min degV − 1.

In summary we have the following situation for proper diagramsD andb-bands-braid
representations:

136374 !15162508

min degl P

2
−

rb(D)

2
−1 0

min degV −
b − s + 1

2
−3 1

Since both quantities are additive under connected sum for proper diagrams and band
representations (by Lemma 1 resp. in the obvious way), we obtain forK ′ a band repre-
sentation with

b − s + 1

2
= min degV (K ′),

but also a diagramD of K ′#K ′ with

min degl P(K ′#K ′) < rb(D) ≤ 1 − χs(K
′#K ′)

(in fact rb(D) = 1 − χs(K
′#K ′)), so thatK ′#K ′ is not quasipositive by Lemma 1. Then

K ′ cannot be quasipositive either. ut

One can also obtain a counterexample to an “embedded band” version of Fiedler’s con-
jecture, namely that a knotK with anembeddedband representation achieving equality
in (9) isstronglyquasipositive.

Proposition 2. The knotK ′
= #3K # 61, with K being the knot in Example3, is not

strongly quasipositive, yet it has an embedded band representation satisfying equality
in (9).

Proof. As 61 has canonical genus 1, it has an embedded band representation with

b − s + 1

2
= 1 = min degV + 3.
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Now considerK. It has a strongly quasipositive band representation withb = 11 bands
on s = 4 strands, so that

1 − χs =
b − s + 1

2
= 4.

However, min degV = 5. ThusK ′ has an embedded band representation satisfying (9).
As genus is additive under connected sum, we haveg(K ′) = 13. However, asgs is
subadditive under connected sum, and 61 is slice, we havegs(K

′) ≤ 12, so thatg > gs ,
and soK ′ is not strongly quasipositive by Lemma 3. ut

There is an exponentiated version of Fiedler’s conjecture, namely asking about (non-
strong) quasipositivity if one assumes (9) for an embedded band representation. We con-
clude this section by showing how to construct counterexamples also for this sharpest
case. The problem reduces to replacing !15162508by a strongly quasipositive knot with
min degV > g. Then the same argument as in the proof of Proposition 1 goes through
with embedded band representations.

Example 4. Consider the (apparently) 17-crossing knot of Figure 4. It has a band repre-
sentation with 7 bands on 4 strands,

((σ2σ3σ
−1
2 )(σ1σ2σ

−1
1 ))3σ1.

(The diagram in Figure 4 was obtained again using KnotScape.) Thus its genus isg = 2.
Also min degl P = 4, but min degV = 3.

Fig. 4

Remark 4. It is clear from Example 4 that in fact we could have used it also as counterex-
ample to Fiedler’s first conjecture. However, unlike for the knotK in Example 3, I cannot
showu = g (= 2) here. On the other hand,K cannot be used in Example 4, because
it has min degl P = 10. (K was found as a counterexample to Morton’s conjecture, as
reported in [St3].) This way, any of the previous knots has its independent significance.

4. The coefficients of the Jones polynomial

Convention. It is convenient to assume in what follows that all diagrams we consider
are non-split. In particular, since non-split positive diagrams represent non-split links, we
assume all positive links to be non-split.
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Definition 1. A separatingSeifert circle is a Seifert circle with non-empty interior and ex-
terior. (That is, both interior and exterior contain crossings, or equivalently, other Seifert
circles.) A diagram with no separating Seifert circles is calledspecial.

Any diagram decomposes asMurasugi sumalong its separating Seifert circles into special
diagrams (see [Cr1, §1]). For any diagram, any two of the properties: positive, alternating
and special imply the third. We call these diagramsspecial alternatingto conform to the
classical terminology of Murasugi [Mu3].

4.1. Positive braids

It is known (e.g. from [Fi]) that the minimal coefficient of the Jones polynomial of a
positive braid link is±1. We will show here a statement on the next three coefficients.

Theorem 1. LetL be a non-split braid positive link ofn(L) components. Then

(−1)n(L)−1t (χ(L)−1)/2VL(t) = 1 + pt2
+ kt3

+ (higher order terms),

with p = p(L) being the number of prime factors ofL and

−p ≤ k ≤
3

2
(1 − χ(L) − p), (10)

whereχ(L) is the Euler characteristic ofL.

Note that it is a rather unusual situation to be able to read the number of prime factors
off a polynomial. This is, for example, not possible for alternating links as shown by
the well-known pair 89 and 41#41—the first knot is prime and the other composite, yet
they have the same Jones polynomial. Two more interesting examples of this type are as
follows:

Example 5. With some effort one also finds such pairs of positive (or special) alternating
knots: 12420 (Figure 5) and !31#913 or 144132 and !52#!99.

Example 6. Even more complicated, but still existent, are such examples of fibered pos-
itive knots. The simplest group I found is a triple consisting of 1439977, !31#1433805and
!31#1437899(see Figure 5).

12420 1433805 1437899 1439977

Fig. 5
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Poof of Theorem 1.If β is a positive braid diagram ofL, then by the result of [Cr2]
the number of prime factors of the link̂β is equal to the number of prime factors of the
diagramβ̂. By [BoW] one can always chooseβ so that it contains aσ 2

i . Apply the skein
relation at one of the crossings. Then

V+ = t2V− + (t3/2
− t1/2)V0,

with L− and L0 both braid positive. Letp∗ = p(L∗). By induction on the crossing
number of the braid we have

t2V− = (−1)n(L)−1t (1−χ(L))/2
· ([0] 1 0 p− . . .)

(t3/2
− t1/2)V0 = (−1)n(L)−1t (1−χ(L))/2

· ([1] −1 p0 k0 − p0 . . .)

V+ = (−1)n(L)−1t (1−χ(L))/2
· ([1] 0 p0 k0 − p0 + p− . . .)

(11)

As p+ = p0 and 0 ≤ p− − p+ = p− − p0 ≤ 2, the claim follows by induction,
once it is checked directly for connected sums of trefoils and Hopf links, except for the
right inequality in (10), which follows only with the constant 3/2 replaced by 2. (Note
that k andp are both additive under connected sum.) To provek ≤

3
2(1 − χ − p), we

need to show that after a smoothing withp− = p+ + 2 we can choose another one with
p− ≤ p+ + 1.

Write

β =

l∏
k=1

σ
mk

i wk

with all wk containing noσi but some ofσi±1. Then one of theki , sayk1, is equal to 2,
k2 ≥ 2 andl = 2. Then after smoothing out one of the crossings in the clasp, we have
k1 = 1, and then applying the skein relation at the other clasp, we havep− − p0 ≤ 1, as
desired. ut

From the proof it is clear that the second inequality in (10) is not sharp, and with some
work it may be improvable. Candidates for the highest ratiok/(1 − χ − p) are braids of
the form(σ 2

1 σ 2
2 · · · σ 2

l )2 for which this ratio converges upward to 1 asl → ∞.
In contrast, the first inequality is clearly sharp, namely for connected sums of(2, .)-

torus links.

Question 1. Are connected sums of(2, .)-torus links the only links withp + k = 0?

4.2. Fibered positive links

We shall now prove a result on almost positive diagrams which shows a weaker version
of Theorem 1 for fibered positive links. We need a definition.
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Definition 2. The Seifert graphS̄D of a diagramD is a graph obtained by putting a
vertex for each Seifert circle ofD and connecting two vertices by an edge if a crossing
joins the two corresponding Seifert circles. (If two Seifert circles are connected by several
crossings,S̄D has multiple edges.) Thereduced Seifert graphSD of D is obtained by
removing edges of̄SD such that (a)SD has no multiple edge and (b) two vertices are
connected by an edge in̄SD iff they are so inSD.

Definition 3. For a link diagramD, letχ(D) = s(D)− c(D), wheres(D) is the number
of Seifert circles, andc(D) the number ofcrossingsof D. χ(D) is thecanonical Euler
characteristicof D.

Theorem 2. LetD be an almost positive diagram of a linkL with n(L) components, with
negative crossingp. If there is another crossing inD joining the same two Seifert circles
asp, thenmin degVL ≥ (1− χ(D))/2. Otherwise,min degVL = (1− χ(D))/2− 1 and
min cfVL = (−1)n(L)−1.

Recall that the Kauffman bracket [D] (see [Ka]) of a link diagramD is a Laurent poly-
nomial in a variableA, obtained by summing the terms

A#A(S)−#B(S)(−A2
− A−2)|S|−1, (12)

over all statesS, where a state is a choice of splittings of typeA or B for any single
crossing (see Figure 6), #A(S) and #B(S) denote the number of typeA (resp. typeB)
splittings, and|S| the number of (disjoint) circles obtained after all splittings in a state.

AA

B

B

AA

B

B

Fig. 6. TheA- andB-corners of a crossing, and both of its splittings. The cornerA (resp.B) is the
one passed by the overcrossing strand when rotated counterclockwise (resp. clockwise) towards the
undercrossing strand. A typeA (resp.B) splitting is obtained by connecting theA (resp.B) corners
of the crossing.

The Jones polynomial of a linkL is related to the Kauffman bracket of some diagram
D of it by

VL(t) = (−t−3/4)−w(D) [D]|A=t−1/4, (13)

w(D) being the writhe ofD.

Proof of Theorem 2.The maximal possible degree ofA in

[D] =

∑
S state

A#A(S)−#B(S)(−A2
− A−2)|S|−1 (14)

is that of theA-state (the state with all crossingsA-split), because under any splitting
switchA → B, the power ofA in the first factor in (12) goes down by 2, and the maximal



490 A. Stoimenow

power ofA in the second factor in (12) increases at most by 2. IfD is almost positive with
negative crossingp, then the maximal possible power ofA in (14) isAc(D)+2(s(D)−2), as
theA-stateSA hass(D) − 1 loops. They are the Seifert circles not adjacent top, and a
loop consisting of the two Seifert circles, call thema andb, adjacent top.

Now we must consider which states contribute toAc(D)+2(s(D)−2) in (14). These are
exactly the states with the property that whenever the state is obtained from theA-state
by successively switchingA → B splittings,| · | increases under any such switch.

Let 〈S : k〉 ∈ {A, B} be the split ofk in S, and letsk(S) be the state obtained by
switching splittingA → B at crossingk in S, assuming〈S : k〉 = A. Then if |sk(SA)| <

|SA|, any stateS with 〈S : k〉 = B is irrelevant for the highest term in (14). Clearly,
this happens wheneverk is a crossing connecting one or two Seifert circles not adjacent
to p. Thus the only terms contributing toAc(D)+2(s(D)−2) in (14) are those for which
〈S : k〉 = B implies thatk has the same two adjacent Seifert circlesa andb asp has.

Let p1, . . . , pk = p be these crossings. Since any splitting switchA → B in sp(SA)

reduces| · |, the only stateS with 〈S : p〉 = B relevant for the highest term in (14)
is sp(SA), whose contribution to the coefficient of this highest term is(−1)|sp(SA)|−1

=

(−1)s(D)−1.
It is also easy to see that if〈S : p〉 = A, any of the 2k−1 remaining statesS to

consider contribute toAc(D)+2(s(D)−2), the coefficient being(−1)s(D)+#B(S), as |S| =

s(D) − 1 + #B(S). The sum over all suchS of these coefficients is(−1)s(D) times the
alternating sum of binomial coefficients. Thus this sum vanishes fork − 1 > 0, and
cancels fork − 1 = 0 the coefficient(−1)s(D)−1 of sp(SA). The rest follows from (13)
with w(D) = c(D) − 2, and the remark that 1− χ(D) andn(L) − 1 have the same
parity. ut

Corollary 1. LetL be a fibered positive link ofn(L) components. Then[VL(t)](3−χ(L))/2
= 0, that is,

(−1)n(L)−1t (χ(L)−1)/2VL(t) = 1 + kt2
+ (higher order terms),

with k being some integer.

Proof. This is proved just as Theorem 1 by induction on the crossing number of a positive
diagramD. Apply the skein relation at any (non-nugatory) crossingp of D. Since the
reduced Seifert graph ofD is a tree, there is another crossing between the same two
Seifert circles. LetD0 beD with p smoothed out, andL0 be the linkD0 represents. Then
L0 is still fibered, becauseD0 is positive and connected, and its reduced Seifert graph
is still a tree. Similarly letD− be D with p switched, and letD− represent a linkL−.
Then we can apply the above theorem toL−. So min degV− = (1 − χ)/2 − 1, and the
coefficients oft (1−χ)/2+1 in t2V− and(t3/2

− t1/2)V0 cancel as in (11). ut

4.3. Positive and almost positive links

Corollary 1 is a special case of the following result, describing the second coefficient of
the Jones polynomial for an arbitrary positive link.
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Theorem 3. LetL be a positive link with positive diagramD. Then

(−1)n(L)−1[VL](3−χ(L))/2

= s(D) − 1 − #{(a, b) Seifert circles: there is a crossing joininga andb}.

In other words, ifSD is the reduced Seifert graph, then(−1)n(L)[VL](3−χ(L))/2 = b1(SD),
b1 being the first Betti number.

Corollary 2. For a positive diagramD, b1(SD) is an invariant of the link represented
byD. ut

Note that for the non-reduced Seifert graphS̄D of D, b1(S̄D) = 1− χ(D) = 1− χ(L) is
also a link invariant.

Corollary 3. For a positive linkL of n(L) components,(−1)n(L)[VL](3−χ(L))/2 ≥ 0, and
this coefficient is0 iff L is fibered. ut

Of course, this fiberedness condition is not very useful when a positive diagram ofL is
given, since to decide then about fiberedness is trivial. However, applied in the opposite
direction, it can prove thatL is not positive. This happens sometimes in a quite non-trivial
way, as shown by the following example.

Example 7. The knot 161059787in Figure 7 satisfies all conditions on positivity known
about its∇, V , P andF polynomials. It seems useful to list all properties that hold, even if
they involve invariants we did not consider here. See the given references for an accurate
account. (However, keep in mind that the conventions there differ from the ones we use;
for F we conjugate in thea variable.)

• 2 min degV = min degl P = max degm P = max deg∇ = min dega F = 4 [Cr1, Fi,
Yo, Zu],

• [P ]m4(
√

−l) and∇(z) are positive (that is, all coefficients are non-negative) [Cr1],

• P̃i(l) :=
√

−1
i
[P ]mi (

√
−l) take only positive values atl ∈ (0, 1) for i = 0, 2, 4

[CM].
• [V ]t2 = 1 [Fi, Zu].
• [F ]a4(l) = [P ]m4(l) [Yo].

161059787

Fig. 7
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• [F ]zkal ≥ 0 for all (k, l) with l − k maximal among the(k, l) for which [F ]zkal 6= 0
(that is, “critical line” polynomials are positive) [Th2].

• 161059787 does have diagrams (with canonical Seifert surface) of genus 2, so that
g̃ = g = max deg∆ = 2 [Cr1]. Here∆ is normalized so that∆(t) = ∆(1/t) and
∆(1) = 1.

• The signatureσ = 4 [CG, St2], so that by Murasugi’s inequality [Mu2],gs = g = 2
[Ru1, St6].

However, now [V ]t3 = 0, so that if 161059787is positive, it must be fibered. But [∆(t)]t2

= 2 contradicts this property.

Proof of Theorem 3.This is proved just as Theorem 2 using the bracket. The term
s(D) − 1 comes from theA-state, while for every pair of Seifert circles joined by (at
least) one crossing, a−1 comes from an alternating sum of binomial coefficients coming
from states in which aB-splitting is applied at some (non-empty) set of crossings linking
a andb. ut

Corollary 4. Let L be an almost positive link with an almost positive diagramD such
that there is no positive crossingq joining the same two Seifert circles as the negative
crossingp. Then

min degVL =
1 − χ(D)

2
and min cfVL = (−1)n(L)−1.

Proof. Apply the skein relation at the negative crossingp and use Theorem 3 forD+ and
D0 (they have the same reduced Seifert graph). ut

The following theorem is the key step needed to extend Fiedler’s result to almost positive
links.

Theorem 4. Let p be a crossing in a reduced special alternating diagramD such that
there is no crossingq joining the same two Seifert circles asp does. LetDp beD with p

smoothed out. Then∆Dp (0) < ∆D(0), where∆ is the Alexander polynomial normalized
so thatmin deg∆ = 0 andmin cf∆ = ∆(0) > 0.

The proof will use the machinery of even valence graphs [MS]. We recall the basic notions
from that paper.

Definition 4. Thejoin (or block sum) ∗ of two graphs is defined by

∗ =

This operation depends on the choice of a vertex in each graph. We call this vertex the
join vertex.

A cut vertexis a vertex which disconnects the graph when removed together with all
its incident edges. (A join vertex is always a cut vertex.) Analogously a2-cut of G is a
pair of edges ofG whose deletion disconnectsG.
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Definition 5. A cell C is the boundary of a connected component of the complement of
a graphG in the plane. It consists of a set of edges. Ifp is among these edges, then we
say thatC containsp or p boundsC. ByG \ C we mean the graph obtained fromG by
deleting all edges inC.

A cycleC in a graphG is a set{p1, . . . , pn} of edges such that the pairs(p1, pn) and
(pi, pi+1) for 1 ≤ i < n share a common vertex, and all these vertices are different. The
plane complement of a cycle in a planar graph has two components. The bounded one is
called theinterior int(C) of C, and the unbounded one theexterior ext(C). (A cell is a
cycle with one of interior or exterior being empty, that is, containing no edges.)

Before we make the next definition, first note that the Seifert graphS̄D of any diagramD is
always planar(ly embeddable). NamelyS̄D is the join of the Seifert graphs corresponding
to the special diagrams in the Murasugi sum decomposition ofD along its separating
Seifert circles, the join vertex corresponding to the separating Seifert circle. The join
of planar graphs is planar, and ifD is a special diagram, then̄SD has a natural planar
embedding (shrink the Seifert circles into vertices and turn crossings into edges).

Definition 6. Assume for a special diagramD that S̄D is planarly embedded in the nat-
ural way. Its dual is called theeven valence graphGD of D (as the name says, all its
vertices have even valence). Alternatively,GD is the checkerboard graph with vertices
corresponding to the non-Seifert circle regions ofD.

A canonical orientationis an orientation of the edges ofGD so that all edges bounding
a cell are oriented the same way, clockwise or counterclockwise, as seen from inside the
cell. (The canonical orientation is unique up to reversal of orientation of all edges in a
connected component of the graph.)

Proof of Theorem 4.Consider the planar even valence graphGD associated toD. Then
GDp = (GD)p, whereGp is G with edgep contracted. BothG andGp are connected
by assumption. We shall assume from now on that a canonical orientation is chosen in
G = GD, and hence also onGp.

By the matrix-tree theorem (see Theorem 2 of [MS]),∆D(0) = min cf∆ is the num-
ber of index-0 spanning rooted trees ofG, i.e. trees in which each edge, oriented as in
G, points towards the root of the tree. We will also call such treesarborescences. Impor-
tantly, the number of arborescences does not depend on the choice of root vertex. We will
exploit this property several times in the following.

Let v0 be the source andv1 the target ofp in G. In Gp, v0 andv1 are identified to a
vertex we callv. By the proof of Proposition 1, part (3), of [MS], we have

#{index-0 sp. rooted trees with rootv in Gp}

= #{index-0 sp. rooted trees with rootv1 in G containingp}.

Thus the statement of the theorem is equivalent to saying thatG has an index-0 spanning
rooted tree with rootv1 not containingp. The assumption of the theorem in terms of even
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valence graphs means that each edge ofG bounds a cell not containingp, or equivalently,
p is in no 2-cut ofG. In particular, bothv0 andv1 have valence at least 4 inG.

It is easy to see that any planar even valence graphG can be built up from the empty
one by adding directed cycles. Moreover, ifG is connected, then we can achieve that all
intermediate graphs are connected (more exactly, all their connected components except
one are trivial, i.e. isolated vertices of valence 0). Also, one can start the building-up with
any particular cycle inG.

Let E be a cell (cycle with empty interior) inG containingp. We claim that then
Ĝ = G \ E is still connected. This requires a little argument. We will show that if a
disconnected grapĥG is connected by adding a cellE, then each edge inE forms a 2-cut
with another edge inE. To see this, first reduce the problem toĜ having two components
Ĝ1 andĜ2. If G has further componentŝG3, . . . , Ĝn, one can connect them tôG2 by
adding cells, and a 2-cut of edges inE would still remain one if we undo this connecting.
It is also easy to see that one can assume there are no valence-2 vertices ofE in G

(that is, each vertex ofE is attached to one of̂G1 or Ĝ2 in G). Then we show that
there are at most two edges ofE connectingĜ1 andĜ2. SinceE is oriented, one can
easily distinguish between interior or exterior ofE depending on the (left or right) side
in orientation direction. If≥ 4 edges connect̂G1 andĜ2, one must attach vertices ofĜ1
andĜ2 to E from different sides, andE will not be a cell inG.

Let E′ be some other cycle passing throughv1 such thatp 6∈ E′. (Such a cycle exists
because valG(v1) > 2.)

Then build upG by adding cyclesEn such that we start withE1 = E′ and finish with
Ez = E, and all intermediate graphsGn are connected. We construct successively in each
Gn an index-0 spanning rooted treeTn with rootv1 such that in the final stage inGz = G

the treeTz = T does not containp.
In G1 = E′, fix the root to bev1 and letT1 consist of all edges inE′ except the one

outgoing fromv1.

p
v1

Now, given an index-0 spanning rooted treeTn of Gn, we construct an index-0 spanning
rooted treeTn+1 of Gn+1 = Gn ∪ En+1 as follows. Letw1, . . . , wk be the vertices of the
cycle En+1 in cyclic order, so thatwi andwi+1 are connected by a (directed) edgepi .
Then there is a non-empty setS ⊂ {1, . . . , k} such thatws ∈ Gn for all s ∈ S, andws is
a trivial connected component (isolated vertex) inGn otherwise. Then add the following
vertices toTn to obtainTn+1: for eachi, j ∈ S such that(i, j) ∩ S = ∅ add{ pm : m ∈

(i + 1, j − 1)}. Here(i, j) is the interval of numbers between (but not including)i andj ,
in the cyclic order ofZk.

Here is an example of a cycleEn+1, with the vertices inGn encircled, and the edges
in Tn+1 \ Tn thickened.
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ThenTn+1 is an index-0 spanning rooted tree with rootv1 in Gn+1.
It remains to see whyp 6∈ Tz = T . For this note thatE = Ez 3 p is added last, and

valG(v0), valG(v1) ≥ 4, so thatv0, v1 ∈ Gz−1. ut

Corollary 5. If D is an almost positive diagram with negative crossingp such that there
is no (positive) crossingq joining the same two Seifert circles asp, thenmin deg∆D(t) =

1 − χ(D), where∆ is normalized so that∆(t) = ∆(1/t) and∆(1) = 1. In particular,
the canonical Seifert surface associated toD is of minimal genus.

Proof. Apply the skein relation for∆ at the negative crossing to obtain the result for
special diagrams. Then use the multiplicativity of [∆(D)](1−χ(D))/2 under Murasugi sum
of diagrams [Mu2] to obtain the general case. ut

This corollary improves the result of Hirasawa [Hi, Theorem 2.1] stating that this Seifert
surface is incompressible.

Now we have all the preparations together to obtain the extension of Fiedler’s result.

Theorem 5. If L is an almost positive link, then

min degVL =
1

2
(1 − χ(L)) and min cfVL = (−1)n(L)−1.

Proof. Let D be an almost positive diagram ofD with negative crossingp and canonical
Seifert surfaceS. One can easily reduce the proof to the situation thatD is connected. We
then distinguish two cases.

(a) There is a (positive) crossingq joining the same two Seifert circles asp. By Theo-
rem 2 we must show that

1 − χ(L)

2
=

1 − χ(D)

2
− 1.

Clearly,(1−χ(L))/2 ≤ (1−χ(D))/2, and by Bennequin’s inequality(1−χ(L))/2 ≥

(1 − χ(D))/2 − 1. Thus assume that(1 − χ(L))/2 = (1 − χ(D))/2, i.e. S is a
minimal genus surface. By [Ga2], this is true for the Murasugi summand ofS, which
is the canonical Seifert surface associated to an almost positive (or almost alternating)
special diagram. However, by assumption this surface is clearly not of minimal genus,
a contradiction.

(b) There is no such crossingq. Then we must show by Corollary 4 that(1− χ(L))/2 =

(1−χ(D))/2, i.e.S is a minimal genus surface. This follows again from [Ga1], using
Corollary 5. ut
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4.4. Skein polynomial and Morton’s inequalities

The results on the Jones polynomial and their proofs allow also some applications to the
skein polynomial [H]. First, we can identify two more coefficients of the polynomial of
some positive links.

Corollary 6. If L is a fibered positive link ofn(L) components, then

[PL]l1−χ(L)m−1−χ(L) = (−1)n(L)(1 − χ(L)),

and ifL is prime and braid positive, then

[PL]l1−χ(L)m−3−χ(L) = (−1)n(L)−1 χ(L)
χ(L) + 1

2
.

Proof. Murasugi and Przytycki showed in [MP] that [PD]m1−χ(D) is multiplicative under
Murasugi sum. (That

max degm PD ≤ 1 − χ(D) (15)

was shown by Morton [Mo1].) Since any positive diagram of a fibered positive link de-
composes as Murasugi sum of connected sums of(2, . )-torus links, we have, for any
fibered positive linkL,

[PL]m1−χ(L) = l1−χ(L)
· (−1)n(L)−1.

Now apply Corollary 1 and the conversion (3). ut

Remark 5. A formula for the first of the coefficients in the corollary can be written for
an arbitrary positive link using Theorem 3 instead of corollary 1.

The proof of Theorem 5 can also be applied forP .

Theorem 6. If L is an almost positive link, then

max degm P(L) = 1 − χ(L). (16)

Proof. Consider the two cases in the proof of Theorem 5.
If q shares its Seifert circles with another (positive) crossing inD, then one of the spe-

cial Murasugi sum componentsD′ of D can be reduced to a diagramD′′ with χ(D′′) >

χ(D). Thus by (15),

max degm P(D′) = max degm P(D′′) ≤ 1 − χ(D′′) < 1 − χ(D′),

so that [PD′ ]
m1−χ(D′) = 0. Then by [MP] the same holds forD. Since we know that

1 − χ(L) = −1 − χ(D) (17)

from the proof of Theorem 5, the inequality

max degm P(L) ≤ 1 − χ(L) (18)
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follows. Now use the fact that, as a consequence of [LM, Proposition 21], for an arbitrary
link L, min degl P ≤ max degm P . From Morton’s inequalities [Mo1] we then have, for
an almost positive diagramD of L,

−1 − χ(D) = w(D) − s(D) + 1 ≤ min degl P(D) ≤ max degm P(L). (19)

Now (19) and (17) show that the inequality (18) is an equality.
If q does not share its Seifert circles with another crossing inD, then combining

[Mo1] and the argument in the proof of Theorem 5, we have

1 − χ(D) = 2 max deg∆(D) ≤ max degm P(D) ≤ 1 − χ(D) = 1 − χ(L),

so we have the equality in (16). ut

Further we have

Corollary 7. If L is an almost positive link, thenmin degl P(L) ≤ 1 − χ(L).

Proof. Use again the above mentioned consequence of [LM, Proposition 21]. ut

This is another special case of Morton’s conjectured inequality [Mo2] (disproved now in
[St3] for arbitrary links). There is, though, much experimental evidence that we have in
fact equality in Morton’s inequality.

Question 2. Is it true that for any almost positive linkL, min degl P(L) = 1 − χ(L)?

Note that in one case in the proof of (16), we did obtain this equality, namely when
the almost positive diagramD is not of minimal genus. The latter property is understood
to mean that the canonical Seifert surface does not realize the (Seifert) genus ofL, i.e.
χ(D) > χ̃(L). Question 2 is thus related to the question: Does any almost positive link
L have an almost positive diagramD which is not of minimal genus?

As we later found, the answer to this question is negative, and a counterexample is the
knot !121930 (which nevertheless satisfies min degl P = 1 − χ ). It is displayed in Figure
8 of [St6] (and occurs also later in this paper asL4 in the proof of Corollary 8). Besides
its obvious two almost positive diagrams (considered also in the proof below), there are
no other (reduced) ones. The proof of this fact will be presented elsewhere, as it requires,
apart from some computation, several tools (developed in [St6, St2, St1]) that go beyond
the scope of the present paper.

The opposite situation to the last question is not less interesting, in particular because
positive diagrams are always genus-minimizing.

Question 3. Does any almost positive linkL have an almost positive diagramD of min-
imal genus?

A positive answer to this question will show that Morton’s inequality forχ̃(L),

max degm P(L) ≤ 1 − χ̃(L) (20)
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(which is a direct consequence of (15)) is sharp. It would not be a surprise, as knots with
strict inequality are hard to find. So far two methods apply: unity root values ofV [St1]
and Gabai’s foliation algorithm [Ga3] to show that in fact max degm P(L) < 1 − χ(L)

[St3]. The latter option seems unlikely to work for almost positive links, and the former
requires considerable extension of the calculations. Out of the≈ 4500 non-alternating
prime knotsK of ≤ 16 crossings with max degm P(K) ≤ 4, in [St1] we obtained 28 such
knots with 4= max degm P(K) < 2g̃(K) using values of the Jones andQ polynomial at
roots of unity (and one further undecided case). An easy check shows that none of these
28 knots is almost positive.

5. Almost positive diagrams with canonical fiber Seifert surfaces

The even valence graphs can be used to give a description of almost positive diagrams
whose canonical Seifert surfaces are fiber surfaces. The restriction to canonical surfaces
is suggestive, since in general establishing the fiber property of a link or a surface may
be difficult, even though both algebraic and geometric methods are known. Our result
is closely related to the result for almost alternating diagrams due to Goda–Hirasawa–
Yamamoto [GHY]. Our main motivation here was in fact to use the present (and quite
different) tools to extend and simplify the proof of their criterion. We succeed almost
completely, with the exception that we cannot recover combinatorially the fact (see their
Proposition 5.1) that instead of general Murasugi sum decomposability of the fiber into
Hopf bands in part (i) of the theorem below we have in fact stronger plumbing decom-
posability. On the other hand, we show in part (iii) that the fiberedness condition for the
Alexander polynomial is exact. Due to the copious ways to calculate the Alexander poly-
nomial, this makes the fiberedness property even easier to detect than by the classification
result (iv) for such diagrams. (Our version of this result is also more explicit than in the
form given in [GHY].) In the next section we will give examples showing (together with
the examples in [GHY]) that one cannot extend the result much further.

In the following∆ will be normalized so that∆(t) = ∆(t−1) and min cf∆ > 0.

Theorem 7. Let D be a connected almost positive link diagram with canonical Seifert
surfaceS. Then the following conditions are equivalent:

(i) S decomposes under iterated Murasugi sum (not necessarily plumbing) completely
into Hopf bands (of one full twist).

(ii) S is a fiber surface.
(iii) 2 max deg∆(D) = 1 − χ(D) andmin cf∆(D) = 1.
(iv) DecomposeD along its separatingSeifert circles (Seifert circles with non-empty

interior and exterior) as Murasugi sum of special diagrams, and those special dia-
grams into prime factors. Then all these prime factors are special alternating dia-
grams of(2, n)-torus links (with parallel orientations), except for one, which after
reductions of the type

−→ (21)

becomes an almost positive special diagram of the following forms:
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(a) a special diagram whose (even valence) checkerboard graphG can be obtained
as follows: take a chain of circles of positive edges

. . . (22)

and attach to it from the outside a cell (cycle with empty exterior) with one
negative edge which joins interior points of the two outermost loops in(22) (the
negative edge corresponds to the crossing to be switched); see e.g. Figure 8;

−

Fig. 8. A checkerboard graph and its diagram illustrating case (iv) of Theorem 7.

or (non-exclusively)
(b) a diagram of a(2, . . . , 2)-pretzel link (at least two2’s), oriented to be special,

with one crossing changed.

Proof. In the following pictures, we assume graphs to be canonically oriented, but do not
draw edge orientation if it is not necessary. The edge of the (only) crossingp of negative
checkerboard sign will be distinguished by being drawn as a thickened or dashed line.

(iv)⇒(i). The reverse of the move in (21) preserves the property of the canonical
Seifert surface to be a fiber, as it corresponds to plumbing of a Hopf band. That the
canonical Seifert surfaces of the diagrams in (iv) are fibers is easy to see. (The diagram
D′ obtained fromD by removing the trivial clasp is a connected sum of Hopf links, its
surface is clearly a fiber, which is unique, andχ(D′) = χ(D).) For (iv) we remark that
each of the graphs described turns into

−

under repeating the operation

−→

(contracting a double edge), with the dashed line having two properties: first, it is an arc
passing through edges whose total sign sum is 0 (in our case the negative edgep and one
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other, positive, edge), and second, it has a single vertex and either no complete edge in its
interior or none in its exterior. This corresponds to the diagram move

γ

−→ (23)

The dashed lineγ can pass through the interior of Seifert circles and crossings only in
such a way that the total writhe of these crossings is 0, and must have a single non-Seifert
circle region, and either no complete Seifert circle in its interior or none in its exterior.

Then this is a Hopf plumbing, the Hopf band being obtained by thickeningγ into a
strip, and taking the union with the two half-twisted strips and one Seifert circle on the
left of (23). (The first condition onγ is needed to ensure the correct twisting, while the
second one is needed to have the Hopf band separated by a sphere from the rest of the
surface after deplumbing.)

(i)⇒(ii)⇒(iii) are well known, so it remains to show the real result (iii)⇒(iv). As the
minimal coefficient of the Alexander polynomial, when its degree is equal to(1 − χ)/2,
is multiplicative under Murasugi sum [Mu2], we need to consider only the almost alter-
nating special Murasugi summand. For this we consider the canonically oriented even va-
lence graphG = GD of D and recall the proof of Theorem 4. The condition 2 min deg∆

= 1 − χ implies that each edge ofG bounds a cell not containingp, the edge inG of
negative checkerboard sign. In particular, bothv0 andv1 have valence≥ 4. Let E1 and
E2 be the cells containingp. ThenE1∩E2 = {p}, sincep is in no 2-cut ofG, andG\E1
andG \ E2 are connected, by the argument in the proof of Theorem 4.

Now consider the condition min cf∆(D) = 1. It means that there is only one index-0
spanning rooted tree with rootv1 not containingp. If G \ E1 has two different index-0
spanning rooted trees with rootv1, then by the construction in the proof of Theorem 4, we
could extend them to index-0 spanning rooted trees ofG with root v1 not containingp,
which would clearly still be different. ThusG \ E1 has only one index-0 spanning rooted
tree (with rootv1 or any other fixed vertex). Then, by part (5) of Theorem 3 of [MS],
G \ E1 is a join of chains (topologically, a bouquet of circles).

(24)

Assume without loss of generality thatG is embedded so that the exterior ext(E1) of E1
is the unbounded component. Since addingE1 must remove all cut vertices (our diagram
is prime by assumption),E1 must touch interior points of all circlesLi with only one cut
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vertex. (Here “interior” is meant to be different from the cut vertex.) We call theseLi leaf
circles; in (24) they are drawn dashed.

Also, since the exterior ofE1 is the unbounded component, cut vertices coming from
attaching circles inside other ones:

cannot be removed by addingE1, so assume there are no such inner circles. Thus we have
a picture like

p
ext(E1)

int(E2)

From now on, let us remove valence-2 vertices (we call this operationunbisection)
and consider only the topological type of the tree

−→ (25)

This move on graphs corresponds to the reversed move (21). (Note that valG(v0,1) ≥ 4
by assumption, so that both edges on the left of (25) are positively signed.)

The way between two leaf circlesL1 andL2 is made up of those circles bounding
disks whose interior is passed by a path from an interior point of the disk bounded by
L1 to an interior point of the disk bounded byL2. We require that this path passes only
through interior points of disks bounded by loops and cut vertices, each such vertex being
passed at most once.

L1

L2

Now use the fact thatG\E2 must also be a join of loops (or bouquet of circles). We claim
that either

(a) p touches interior points of two different leaf loopsL1, L2 and all other vertices of
E1 touch only interior points or cut vertices belonging to circleson the waybetween
L1 andL2 (as on the left of Figure 8), or
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(b) p touches two points on the same loopL (interior points or the cut vertex), andE1
touches points only of the same loop.

Assume neither (a) nor (b) holds. We derive a contradiction showing thatG \ E2 has at
least 2 arborescences. Observe that by unbisections (25) andseparations

e
−→

v′ v

e
(26)

one can simplifyG to obtain

v0 v1

E2

E1
p

(27)

(still with E1 being the boundary of the infinite region), in such a way thatv0,1 are not in-
volved in any of these moves. Then removingE2 and applying unbisections, one obtains
a graphG0 with two vertices and an edge of multiplicity 4, which has two arborescences.
It suffices now to show thatbisections(reverses of unbisections) anddeseparations(re-
verses of separations (26)) do not reduce the number of arborescences. For this we specify
how to map injectively arborescences of the original graph with rootv1 to arborescences
of the resulting graph.

For a bisection creating a vertexv 6= v0,1, add the outgoing edge ofv to the arbores-
cence, and do the same with the incoming one, if the original (bisected) edge was in the
(original) arborescence. The same argument, but without the restrictionv 6= v0,1, finds
two arborescences (with rootv1 or any other vertex) of (27), starting from those ofG0.

For a deseparation at least one of the two verticesv, v′ on the right of (26) has va-
lence 2. Letv be such a vertex. The outgoing edgee of v is in any arborescence, since
v 6= v0,1. Removee from the arborescence, and keep the status of the other edges, while
joining v andv′.

ThusG is of type (a) or (b). In case (a) the assumption there are no cut vertices inG

implies thatG \ E1 is as in (22), andp joins interior points on the two outermost circles.
Note that the union ofL1,2 and all loops on the way between them forms a bouquet of
type (22). Thus we arrive at case (iv, a) in Theorem 7.
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In case (b),G \ E1 must be a single loop, and we have a picture like this:

p

This is case (iv, b) in Theorem 7. ut

What we have done allows solving an open problem in our previous work [St2] on almost
positive knots and proving

Corollary 8. There exist almost positive knots of any genus≥ 2.

It was shown in [St1] that there are no almost positive knots of genus 1.

Proof. Consider the(3, 3, . . . , 3, −1)-pretzel knots and linksLn. (These are 2-component
links if the numbern of 3’s is odd; in this case we orient them so that the twists counted
by the 3’s are reverse.) As these diagrams ofLn come from the construction in part (iv) of
Theorem 7,Ln are fibered (or see alternatively Theorem 6.7 of [Ga4]). Their diagrams
reduce by one crossing toDn = (−2 − 1, 3, . . . , 3) (one 3 less), which are almost
positive and of crossing number 3(1 − χ(Dn)) = 3(1 − χ(Ln)) = 3n. If Ln were
positive, by [Cr1, Corollary 5.1] they would have crossing numberc(Ln) ≤ 2(1 − χ).

To show that this is not the case, consider the crossing number inequality of [Ka,
Mu1, Th1], c(Ln) ≥ spanV (Ln). We know that min degV (Ln) = (1 − χ)/2. On the
other hand, forn = 1 − χ > 2, max degV (Ln) is easy to determine, as the diagram
Dn is B-semiadequate, and thus only the contribution of theB-stateSB (specified by
〈SB : k〉 = B for any crossingk) is relevant in (14). By a simple count of the loops one
arrives at max degV (Ln) =

7
2(1 − χ) − 2, and thus

c(Ln) ≥ spanV (Ln) = max degV (Ln) − min degV (Ln) = 3(1− χ) − 2 > 2(1− χ).

ThusLn is almost positive forn ≥ 3. (Forn = 1 andn = 2 one obtains the Hopf link
and trefoil, resp.) ut

6. Some examples and problems

6.1. Showing almost positivity

The problem to show that a certain link is almost positive, but not positive, turned out to
be very hard. All previously known positivity criteria are either easily provable to extend
to almost positive links, or at least no examples are known where they do not. Theorem 5
is an addition to that picture.
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In [St2] it was shown, in the case of knots, that any almost positive knot has only
finitely many reduced almost positive diagrams. As the proof is constructive, one can,
in theory, decide (for knots) about almost positivity, in the sense that for any knot one
can write down a finite set of almost positive diagrams, among which one would have
to check whether the knot occurs. However, this method is not generally very efficient,
except for a few knots of small genus.

Cromwell’s estimatec ≤ 2(1 − χ) for fibered homogeneous links remains the only
way known so far to circumvent these problems, at least in certain cases. Using Theo-
rem 7, we can now construct plenty of examples of almost positive fibered link diagrams,
which we can show to represent almost positive links by proving that Cromwell’s inequal-
ity is violated.

However, this inequality will still not be violated in many cases, and thus one may
ask whether it can be improved. Cromwell’s estimate is trivially sharp for alternating
(prime) links (consider the rational links 222. . . 2) and composite positive links (consider
the connected sums of Hopf links). However, even for prime positive links the inequality
cannot be improved much.

161177344 161243226

Fig. 9. The two fibered positive knots of genus 4 and crossing number 16. (The diagrams here
are chosen to be positive and reveal a plumbing structure of the fiber surfaces. 161243226also has
almost positive 16-crossing diagrams, and 161177344even 2-almost positive ones.)

Example 8. The (2, 2, . . . , 2, −2, −2)-pretzel link, oriented so that the clasps counted
by 2 are reverse, and those counted by−2 are parallel, hasc = 2(1 − χ) − 2. The
diagram is of minimal crossing number as follows by considering linking numbers, and
decomposes under Murasugi sum into connected sums of Hopf bands, thus the link is
fibered. (The link is also prime by [KL].)

Example 9. Even just considering knots, there exist examples of genus 4 and crossing
number 16, 161177344and 161243226. (For genus 3 the maximal crossing number example
is the knot 11550 of [St3] without a minimal positive diagram.) Apparently these examples
can be generalized to higher genera (although the proof of minimality of the crossing
number is not straightforward).

Thus Cromwell’s estimate seems rather sharp even in our case.
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A different problem in this context is the position of the class of almost positive links
with respect to the hierarchy (1).

Question 4. Is any almost positive link strongly quasipositive, or at least quasipositive?

Some 2-almost positive links, like the figure-8-knot, are not quasipositive. On the
other hand, all almost positive examples examined so far are strongly quasipositive.

6.2. Detecting genus and fiberedness with the Alexander polynomial

From our results in the previous two sections, we have the following

Corollary 9. If a link L has a connected almost positive (or almost alternating) diagram
(with canonical Seifert surface) of minimal genus, then

(a) 2 max deg∆L = 1 − χ(L), and
(b) L is fibered if and only ifmin cf∆L = ±1. ut

Unfortunately, we cannot decide about fiberedness if the almost positive diagram is not of
minimal genus. Many almost positive knots seem to have almost positive minimal genus
diagrams, but whether all have is unclear. Coming back to the inequalityg(K) ≤ g̃(K)

in Question 3, it is known that almost alternating knots may fail to realize it sharply. One
of the two∆ = 1 knots of 11 crossings has genus two [Ga3], and is almost alternating
by the verification in [Ad1, Ad2], while the calculation in [LM, Example 11.1] gives
max degm P = 6, so that by (20),̃g = 3. (A genus three canonical surface is not too
hard to find.) This knot thus does not have any diagram whatsoever of minimal genus. Let
us mention in contrast that among the 28 knots we found with strict Morton inequality
4 = max degm P(K) < 2g̃(K), none could be identified as almost alternating (although
there are not enough tools to exclude it). However, there are several≤ 2-almost alternating
knots, for example 15130745(see Figure 9 of [St1]).

For almost positivity the problem to find knots with̃g > g seems much harder than
for almost alternating.

Question 5. What is the minimalk with a k-almost positive knot having no diagram of
minimal genus?

So far it seems likely that such knots withk = 4 occur, but even whetherk ≤ 3 is
unclear. In contrast, there is a 2-almost positive knot, 161337674, with strict inequality (20).

Note that both statements in Corollary 9 are true for many (other) links, in particular
for all knots in Rolfsen’s tables [Ro, appendix]. However, the following examples show
that the corollary does not extend much further.

Example 10. Consider the diagram in the middle of Figure 10. It is another diagram of
the previously encountered knot 136374 with unit Alexander polynomial. It is 2-almost
alternating, and its canonical Seifert surface is of minimal genus (two), as can be shown
by [Ga3]. Thus neither of the two criteria hold for 2-almost alternating diagrams.
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136374 121581

Fig. 10

Example 11. The diagram on the right of Figure 10 depicts the knot 121581with Alexan-
der polynomial∆ = ( 2 [−3] 2). It is a (special) 2-almost positive diagram whose canon-
ical Seifert surface is of minimal genus (again two). Thus criterion (a) in Corollary 9 is
not valid for 2-almost positive diagrams.

So far I have no example of a 2-almost positiveknotdiagram for criterion (b), but one
can easily obtain a link diagram.

Example 12. Consider the diagram of 136374 in Example 10. It has a single separating
Seifert circle, whose interior contains two crossings. By removing this interior (deplumb-
ing a Hopf band), one arrives at the link diagram on the left of Figure 10. Its canonical
Seifert surface is still of minimal genus by [Ga2], so that 1− χ = 3, but one calculates
that∆ = t1/2

− t−1/2.

In all the above examples we showed a surface not to be a fiber by proving that the
Alexander polynomial has too small a degree. There are also examples where the degree
is maximal, and thus all conditions in Corollary 9 taken together still do not suffice to
determine a fiber.

Example 13. The (−2, 4, 6)-pretzel link diagram, oriented to be special (all clasps re-
verse), has max deg∆ = 1 − χ = 2 and min cf∆ = 1. That its canonical surface is not a
fiber follows from [Ga4, Theorem 6.7] (Case 1). Using properly signed Hopf plumbings,
one can generate from it many more examples of 2-almost alternating and/or 2-almost
positive diagrams, in particular (diagrams of) several genus two knots. Two such knots
(for 2-almost positive diagrams) are the mirror images of 15120617and 15159580, displayed
in Figure 11. (These two knots have in fact been found first, by a check in the tables, and
the pretzel link was obtained from them by deplumbings.)

Remark 6. For genus one canonical surfaces of knots one needs 3-almost positive (and
3-almost alternating) diagrams to have such a situation, the simplest example being the
(−3, 5, 5)-pretzel knot [CT]. (It has the Alexander polynomial of the figure-8-knot.) For
4-almost positive (or 4-almost alternating) diagrams, even worse, one can use [Ga4, The-
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15120617 15159580

Fig. 11

orem 6.7] to construct diagrams differing by mutation, with the canonical surface of one
being a fiber, and of the other not.

Acknowledgements.I wish to thank M. Khovanov for helpful remarks and discussions, in particular
for suggesting Theorem 1 and, implicitly, Question 1. The idea to distinguish in the study of almost
positive diagrams between having another crossing joining the same pair of Seifert circles as the
negative one and having no such crossing appears previously in Hirasawa’s paper [Hi], and was
observed even before that in unpublished work of K. Taniyama.
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