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Abstract. Itis known that the minimal degree of the Jones polynomial of a positive knot is equal to
its genus, and the minimal coefficient is 1, with a similar relation for links. We extend this result to
almost positive links and partly identify the next three coefficients for special types of positive links.
We also give counterexamples to the Jones polynomial-ribbon genus conjectures for a quasipositive
knot. Then we show that the Alexander polynomial completely detects the minimal genus and fiber
property of canonical Seifert surfaces associated to almost positive (and almost alternating) link
diagrams.

Keywords. Positive link, quasipositive link, almost positive link, almost alternating link, Alexan-
der polynomial, Jones polynomial, fiber surface, ribbon genus

1. Introduction

A link is called quasipositivef it is the closure of a braid which is the product of conju-
gates of the Artin generatoss [Ru2]. (We call such conjugates and their inverses positive
resp. negativéands) It is calledstrongly quasipositivéef these conjugates are positive
embedded bands the band representation 6f [Ru2]. It is callpdsitiveif it has a di-
agram with all crossings positive (in the skein sense), lanaid positive(or a positive
braid link) if it has a braid representation which is a positive word in the Artin generators.
It is calledfiberedif its complement ins2 is a surface bundle over the circle.

We have

{quasipositive links O {strongly quasipositive links> {positive linkg
D {fibered positive links > {braid positive link$. (1)

The only non-obvious inclusions are the second and fourth one. The fourth inclusion
is a well-known fact (it follows e.g. from_[Gal]), and the second inclusion follows, as
observed by Rudolph [RU1] and Nakamuré [N], by applying the algorithm of Yamada
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[Y] or Vogel [MO] to a positive diagram. Links in some of the above classes have been
studied, besides their intrinsic knot-theoretical interest, with different motivations and in
a variety of contexts, including singularity theory! [A, BoW,Mi], algebraic curves [Ru2,
Ru3], dynamical system$ [BW] and (in some vague and yet-to-be understood way) in
4-dimensional QFTS [Kr].

A different class related to positive links is the almost positive links, those with almost
positive diagrams, which are, however, not positive. (A diagraanimost positivef it has
exactly one negative crossing.)

Let g be the genus of a knog, the slice genus, angl the ribbon genus. (The defini-
tions are recalled below.) For links similarly wrijg x, andx, for the (Seifert), ribbon
and slice Euler characteristic resp. As any Seifert surface is a ribbon surface, and any
ribbon surface is (deformable into) a slice surface, one has the inequalities, > g,
andX = Xr = Xs-

For knots we also have > g,, with u being theunknotting numbejLi]. By the work
of Kronheimer—Mrowka [KM1| KM2] and Rudolpl [RU2], it is now known that the slice
genus is estimated below by the slice Bennequin inequality (a versibnlof [Be, Theorem 3]
with g replaced byg), implying that for a strongly quasipositive kngt= g, so that
u>g =g, = g, Forpositive braid knots < g was known by[[BoW]. Thus = g in
this case.

Let V be the Jones polynomigll [J]. Fiedlér [Fi] proved that min#leg= g for a
positive braid knot, and that min&f = 1. For positive braid linksL of n = n(L)
components, mind¥ = (—1)"~and 2minded’ = 1— x. This follows more generally
for positive links L by virtue of the fact that positive diagrams are semiadequate (see
[LT]). Fiedler further conjectured (his Conjecture 1) that for arbitrary knots and links
which have a band representationsostrands withb bands,

. b— 1
mindegV < 2212

He made a second conjecture (Conjecture 2), whose truth would imply that equality in
the above inequality is achieved only for quasipositive lihks

In the paper of Kawamura [K], the theorems of Fiedler and Kronheimer—Mrowka—
Rudolph have been found to imply that for a positive braid knot, minideg u, with a
similar(ly obvious) relation for links. Then Kawamura quoted a special case of Fiedler’s
first conjecture, asking whether it is true (at least) for quasipositive links, and observing
that the slice Bennequin inequality would then imply the relation minideg « for a
guasipositive knot. (That min dég = « does not extend to quasipositive knots is easy to
observe.)

In this paper, we will investigate several properties of polynomials of the above link
classes. We will start in[$3 by giving counterexamples to both Fiedler conjectures of
several special types, in particular the case of the first conjecture addressed by Kawamura.
Then, in §4, we will partly identify up to three of the coefficients of the Jones polynomial
of a positive link following the minimal one, including a handy criterion (Theofém 1)
to single out positive braid links, even among fibered positive links. We will also extend
Fiedler’s result to almost positive links in Theorfn 5. Some consequences are derived for
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the skein polynomial[H], in particular a description of up to two more coefficients of its

values on positive links (Corollafy 6). For almost positive links, we obtain a proof of the
inequality conjectured by Morton [M62] (for which in the general case counterexamples
are now known[St3]).

In some of the proofs we will use the even valence graph version of the Alexander
polynomial studied in([MS] with K. Murasugi. Applying this method, we can also show
that the Alexander polynomial completely determines the minimal genus (Corpllary 5)
and fiber property (Theorefm 7) of canonical Seifert surfaces associated to almost positive
(and almost alternating) link diagrams. Thus we extend work of Hiradawa [Hi] and, with
a significantly shorter proof, Goda—Hirasawa—Yamanioto [GHY]. At the end we will give
a few examples showing that many of the possible extensions of these theorems are not
true, and mention some problems.

2. Preliminaries

Link polynomials. Theskein polynomiaP is a Laurent polynomial in two variablésand
m of oriented knots and links and can be defined by being 1 on the unknot and the (skein)

relation
() +12(X) = = P() ) @

For a diagramD of a link L, we will use all of the notation® (D) = Pp = Pp(l,m) =
P(L) etc. for its skein polynomial, with the self-suggestive meaning of indices and argu-
ments.

The Jones polynomiaV and (one-variableplexander polynomialA are obtained
from P by the substitutions

V(t) = P(—it,i(t~Y?% — t1/2)), (3)
A(t) = PG, i(tY% — 172y, (4)

hence these polynomials also satisfy corresponding skein relations. The=Signeans
that the Alexander polynomial is defined only up to unit&[n, r~1]; we will choose the
normalization depending on the context.

In the following we denote the coefficient of in V(¢) by [V (¢)],.. In the case of
a 2-variable polynomial, we index the bracket by the whole monomial, and not just the
power of the variables. Theainimal or maximal degreenin degV or maxded/ is the
minimal resp. maximal exponent ofwith non-zero coefficient ir/. An explicit (one-
variable) polynomial may be denoted by the conventiori_of [LM] by its coefficient list,
with bracketing its absolute term to indicate its minimal degree(e-8[1]2) = —3/t+
1+ 2¢. Theminimalor leading coefficienmin cf V of V is [V]mindegv -

For an account on these link polynomials we refer to the papers([LM, J]. (Note: our
convention forP differs from [LM] by interchange of and/~1, that is, ourP (I, m) is
Lickorish and Millett's P(I 1, m).)
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Link diagrams. A crossingp in a link diagramD is calledreducible(or nugatory if D

can be represented in the form

D is called reducible if it has a reducible crossing, otherwise it is cadiddced
A link diagram D is compositéf there is a closed curve intersecting (transversely)
the curve ofD in two points, such that both the interior and exteriopafontain crossings

of D, that is,D has the form )

OtherwiseD is prime A link is prime if in any composite diagram replacing oneAf
and B by a trivial (0O-crossing) arc gives an unknot diagram.

The diagram isplit if there is a closed curve not intersecting it, but which contains
parts of the diagram in both its interior and exterior:

OtherwiseD is connectedr non-split A link is split if it has a split diagram, and other-
wise non-split.

We call a diagranD k-almost positiveéf D has exactlk negative crossings. A link
L is k-almost positive if it has &-almost positive diagram, but riealmost positive one
for any!/ < k. We call a diagram or linkpositiveif it is 0-almost positive (see_[Cr1,
0,[Yq,[ZJ]), andalmost positivef it is 1-almost positive[[St2]. Similarly one definés
almost negativeand in particulamlmost negativeandnegativelinks and diagrams to be
the mirror images of theik-almost positive (or almost positive or positive) counterparts,
and(k-)almost alternatingliagrams and links$ [Ad1, Ad2]. Thealencyof a Seifert circle
s is the number of crossings attached t&Ve call such crossings alsaljacentto s.

Link surfaces.A Seifertresp.slice surface ofL. ¢ §° = 3B* c B*is a smoothly em-
bedded compact orientable surfate S3 resp.S ¢ B*with 35 = L. A ribbon surface

is a smoothly immersed compact orientable surffice $2 with S = L, embedded
except at a finite number of double transverse (ribbon) singularities, whose preimages
are two arcs, one lying entirely in the interior f1of S, and the other one too, except

for its two endpoints, which lie 0AS. A canonical (Seifert) surfacis a Seifert surface
obtained by Seifert’s algorithm (see [Ro]). We may allow (for links) all these surfaces to
be disconnected, but they should have no closed ¢f) components.

The (Seifert) genug, slice genusg, canonical genug andribbon genusg, are
defined to be the minimal genera of Seifert, slice, canonical resp. ribbon surfates of
Similarly one can define the (Seifert), slice, canonical resp. rilibaler characteristic
X, Xs» X, andy, to be the maximal Euler characteristic of such surfaces. of
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In [Be, Theorem 3], Bennequin shows that for a braidn s(8) strands, with writhe
(exponent sump(8) and with closuregg = K, we have an estimate for the Euler charac-
teristic x (K) of K:

1-x(K) = wp) —sB) +1

This is easily observed to extend by means of the algorithm of Yameéda [Y] or Vogel [Vo]
to an inequality for arbitrary link diagramB of K :

1— x(K) = w(D) — s(D) +1=: b(D), (5)

with w(D) being the writhe ofD, ands (D) the number of its Seifert circles. We call the
r.h.s. of [$) theBennequin numbeof D. (It clearly depends a lot on the diagram for a
given link.)

Rudolph [Ru3] later improved this inequality, by replacingk) by x,(K):

1— xs(K) = b(D). (6)
Recently, he obtained a further improvement, this time by increasing thelr.h.$. [Ru2]:
1— x(K) = w(D) — s(D) +1 +25_(D) =: rb(D), (7)

with s_ (D) being the number of{ 2-valent) Seifert circles ab, to which only negative
non-nugatory crossings are adjacent. We call the new quantity on the rigRtittaph—
Bennequin numbesf D. Againrb(D) heavily depends on the diagram, even more than
b(D). (For example, unlikeé(D), rb(D) is no longer invariant under flypes and muta-
tions.) Thus again one is interested in choosing for a givenAirtke diagramD so that
rb(D) is as large as possible.

3. Counterexamples to the Jones polynomial-ribbon genus conjectures
3.1. Preparations

While the improvemen({ {7), as compared[tp (6), may not seem significant at first sight, it
has the advantage of eliminating the minirialegree in the skein polynomial min de®

as an obstruction to increasing the estimate by proper choice of the didyraimce by
[Mo1] we always haveé»(D) < mindeg P(K).

A practical example where this turned out helpful was givem inl[St4], and is recalled
below, as it will be used. (The notation for knots we apply is the one of Rolfsen’s tables
[Ra, appendix] for< 10 crossings, and of the knot table program KnotScapé [HT] for 11
to 16 crossings. ByK we will denote the obverse, or mirror image, Kf)

Example 1. The knot 13374 has mindegP = 0 and Alexander polynomiatt = 1. It
has many diagram® with 5(D) = 0, but it cannot have any such diagram witfD)
> 0, because of Morton’s inequality. However, it does have diagiaméth r5(D) > 0,
thus showing it not to be slice.
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136374
Fig. 1. A non-slice knot with unit Alexander polynomial.

In order to construct our counterexamples, we need a few more simple lemmas.
Lemma 1. If K is quasipositive, themindeg P(K) > 1 — x,(K).

Proof. If D is a diagram of a quasipositive braid representatiok pthen 1— x,(K) =
b(D), andb(D) < mindeg P(K) by Morton’s inequality. O

In the following K1#K> denotes the connected sumkf and K2, and # K denotes the
connected sum of copies ofK.

Lemma 2. If K12 have diagramsD4 2 which are not negative, theki1#K» has a dia-
gram D with rb(D) = rb(D1) + rb(D2).

Proof. We apply the connected sum DBf » so that the Seifert circles dd, » affected by
the operation have at least one positive crossing adjacent to them. O

Lemma 3. If K is strongly quasipositive, thep(K) = x;(K).

Proof. For the Seifert surfacg associated to a strongly quasipositive braid representation
diagramD of K, we have

1-x(K)=1=x(S)=b(D) = rb(D) = 1—x(K) =1-x(K),

implying equality everywhere. O

3.2. Degree inequality conjecture

Fiedler’s first conjecture was whether

b—s+1
2

if L has ab-band representation onstrands, and Kawamura’'s (weaker) question was
whether it is true at least if this band representation is positive.

mindegV, <
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115162508
Fig. 2

Example 2. Consider the knot !1f52508 (See Figurg [2). Using the method described
in [St5, appendix], it was found that it is ribbon (and hence slice), and one calculates
mindegV = 1. It turns out to have the quasipositive 5-braid representation

-1 _-1 -1 -1 -1 -1
(01 "0, "030405 “0201) (0, ~0102) (0205 04030, ) 03.

(The knot can be identified from this representation by the tool knotfind included’in [HT].
Note that this representation also directly shows sliceness.) Thus it is a slice example
answering negatively Kawamura’s question, and hence also a counterexample to Fiedler's
first conjecture.

Another special type of example is
Example 3. Consider the knoK in Figure3, which is the closure of the 4-braid
o2 (010201 Ho20103(01020, 0202030, 1) (01020 1) (020305 ). (8)

This braid is quasipositive, in fact, strongly quasipositive. The diagrark of Fig-

ure[3 was obtained from that representation. One easily seeg tkhatg, = 4. But
mindegV = 5. Thusg, < mindegV'. In fact, this knot has unknotting number 4. (Switch
the encircled crossings in the diagram of Figure 3.) Thus even the weaker inequality, in
which Kawamura was interested, min dég< u, is not always true.

Fig. 3. The knotK in ExampleEB.
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Remark 1. 115162508is surely not strongly quasipositive, gs> 0 = g;. Thus the above
examplek is the most special in the hierarcly (1).

The only case of some interest, remaining not covered by the above examples, is that
of a slice knot withu < mindegV. Very likely such examples exist, too, although | have
not found any.

Remark 2. If one is interested in generalknot K with mindegV > u, then there is

a much simpler and well-known example, 138 It hasu = 1, but mindeg/ = 2.
However, 11Q3z is not quasipositive. As it is not ribbon, or slice (its determinant 5 is not
a square), it has 4-genus 1, and a quasipositive representatiostends would have

n + 1 bands. Then the untwisted 2-cable liik0132)> would have a representation on
2n strands of writhe 2 + 2. Thus by [Mo1], min degP ((!10132)2) > 3, but from the
calculation of [MoS] we know min degP ((!110132)2) = 1.

Remark 3. In a preprint[Ta], T. Tanaka has independently claimed counterexamples to
Fiedler's first conjecture. On the opposite end, M. Ishikawa [I] proved Fiedler’s inequality
for some links obtained by ACampo’s methad [A].

3.3. Extremal property conjecture

Fiedler also conjectured (his Conjecture 2) that if a linlhas ab-bands-strand band
representation with

b—s+1
_— 9
. ©)

then it is quasi-positive. (Fiedler's formulation is slightly different, but easily implies the
one given here.) We will now construct a counterexample also to this conjecture, albeit
some more effort is necessary, and we must use the example found previously in a related
context in [St4]. Our counterexample likely has crossing number 58.

mindegV; =

Proposition 1. The knotK’ = 13s374## (115162509 is not quasipositive, yet it has a
band representation with equality {@).

Proof. We first discuss the prime factors separately.

1. Consider 1gs74 By switching one of the crossings in the clasp in the lower right part
of the diagram in FigurE] 1, one obtains. &hus by two crossing change$1#s374
turns into the slice knot#4,. Hence 1— x,(#*13s374) < 4. On the other hand, as
136374 has a diagranD with rb(D) = 2, Lemmzﬂz shows that% x,(#13374) = 4.

By the above,

1— xs(# 136370

2.
2

mindeg P (#1337 = 0 =
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Also mindegV = —1 by calculation. As max degP (13s374) = 4 and it has crossing
number< 15, by [St1] 13374has a diagram of canonical genus 2, and thus by applying
Yamada'’s algorithm [¥¥] to it, we obtain an (embedded) band representation with

b—s+1

> = 2=mindegV + 3.

2. For 11542508 We have a quasipositive band representation as 5-braid with 4 bands,
and itis slice. Thus
__ mindeg P b—s+1

and ———— =0=mindegV — 1.

1—x =0
Xs 2 2

In summary we have the following situation for proper diagratnand b-bands-braid
representations:

135374 | 15162508

mindeg P 3 rb(D)

-1 0
2 2
b— 1
mindegV — % -3 1

Since both quantities are additive under connected sum for proper diagrams and band
representations (by Lemr@ 1 resp. in the obvious way), we obtaik far band repre-
sentation with
b—s+1
2

but also a diagran® of K'#K’ with

= mindegV (K",

mindeg P(K'#K') < rb(D) < 1— x,(K'#K')

(infactrb(D) = 1 — x,(K'#K’)), so thatk'#K ' is not quasipositive by Lemnja 1. Then
K’ cannot be quasipositive either. |

One can also obtain a counterexample to an “embedded band” version of Fiedler’'s con-
jecture, namely that a kn& with anembeddedband representation achieving equality
in (9 is stronglyquasipositive.

Proposition 2. The knotK’ = #3K #6;, with K being the knot in Examp is not
strongly quasipositive, yet it has an embedded band representation satisfying equality

in (9.
Proof. As 6; has canonical genus 1, it has an embedded band representation with

b—s+1

2 =1=mindegV + 3.
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Now considerk . It has a strongly quasipositive band representation ith 11 bands

ons = 4 strands, so that
b—s+1
1— x, = — = 4.
However, mindey = 5. Thusk’ has an embedded band representation satisfy|ng (9).
As genus is additive under connected sum, we ha@&’) = 13. However, ag; is
subadditive under connected sum, andstslice, we have, (K’) < 12, so thatg > g;,

and soK' is not strongly quasipositive by Lemrﬁ]a 3. O

There is an exponentiated version of Fiedler's conjecture, namely asking about (non-
strong) quasipositivity if one assumg$ (9) for an embedded band representation. We con-
clude this section by showing how to construct counterexamples also for this sharpest
case. The problem reduces to replacing: 5508 by a strongly quasipositive knot with
mindegV > g. Then the same argument as in the proof of Propodiion 1 goes through
with embedded band representations.

Example 4. Consider the (apparently) 17-crossing knot of Figyre 4. It has a band repre-
sentation with 7 bands on 4 strands,

((020305 1)(010201_ 301

(The diagram in Figurg]4 was obtained again using KnotScape.) Thus its ggnsas
Also mindeg P = 4, but minded/ = 3.

D
KQ\

Fig. 4

Remark 4. Itis clear from Examplg}4 that in fact we could have used it also as counterex-
ample to Fiedler’s first conjecture. However, unlike for the kkidh Exampld B, | cannot
showu = g (= 2) here. On the other han&’ cannot be used in Examglé 4, because
it has mindegP = 10. (K was found as a counterexample to Morton’s conjecture, as
reported in[[StB].) This way, any of the previous knots has its independent significance.

4. The coefficients of the Jones polynomial

Convention. It is convenient to assume in what follows that all diagrams we consider
are non-split. In particular, since non-split positive diagrams represent non-split links, we
assume all positive links to be non-split.
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Definition 1. Aseparatingeifert circle is a Seifert circle with non-empty interior and ex-
terior. (That is, both interior and exterior contain crossings, or equivalently, other Seifert
circles.) A diagram with no separating Seifert circles is calégpecial

Any diagram decomposes Bhirasugi surmalong its separating Seifert circles into special
diagrams (see [Cr1, 81]). For any diagram, any two of the properties: positive, alternating
and special imply the third. We call these diagraspscial alternatingo conform to the
classical terminology of Murasudi [MU3].

4.1. Positive braids

It is known (e.g. from[[Fi]) that the minimal coefficient of the Jones polynomial of a
positive braid link ist1. We will show here a statement on the next three coefficients.

Theorem 1. Let L be a non-split braid positive link af(L) components. Then
(=1 D=1 D=D2y; (1) = 1 4 pr? + kr® + (higher order termy

with p = p(L) being the number of prime factors bfand

3
—p=k=z1-xL) - p), (10)
wherey (L) is the Euler characteristic of.

Note that it is a rather unusual situation to be able to read the number of prime factors
off a polynomial. This is, for example, not possible for alternating links as shown by
the well-known pair 8 and 4#4,—the first knot is prime and the other composite, yet
they have the same Jones polynomial. Two more interesting examples of this type are as
follows:

Example 5. With some effort one also finds such pairs of positive (or special) alternating
knots: 1220 (Figure[%) and !3#913 or 144132 and !5#!9.

Example 6. Even more complicated, but still existent, are such examples of fibered pos-
itive knots. The simplest group | found is a triple consisting ofgb4;, !31#1433g05and
131#1%7599 (see Figuré}s).

\L\D
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Poof of TheorerE]lJf B is a positive braid diagram df, then by the result of [Ci2]
the number of prime factors of the lirkis equal to the number of prime factors of the
diagramg. By [BoW] one can always choosgso that it contains alz Apply the skein
relation at one of the crossings. Then

Vi =12V_ + (3% — Y2,

with L_ and Lq both braid positive. Letpp, = p(L,). By induction on the crossing
number of the braid we have

2V = (—)"D-1A=xL)/2, ] 1 0 P )
(132 — Y2y vy = (—1)"D-1A=xLN/2. ([1] -1 po ko — po o) (11)
vy — (_l)n(L)—lt(l_X(L))/z . ([l] 0 Po ko — po+p— .. .)

Aspy = ppand 0< p_ — py = p_ — po < 2, the claim follows by induction,
once it is checked directly for connected sums of trefoils and Hopf links, except for the
right inequality in [(I), which follows only with the constan,tzareplaced by 2. (Note
thatk and p are both additive under connected sum.) To prbve 2(1 X — p), we
need to show that after a smoothing with = p. + 2 we can choose another one with
p—-=p++1

Write

I
B=]]o"w
k=1

with all wy containing nos; but some of;+1. Then one of th&;, sayks, is equal to 2,

ko > 2 andl = 2. Then after smoothing out one of the crossings in the clasp, we have
k1 = 1, and then applying the skein relation at the other clasp, we have pg < 1, as
desired. O

From the proof it is clear that the second inequality{in| (10) is not sharp, and with some
work it may be improvable. Candidates for the highest ratid — x — p) are braids of
the form(oZ03 - - - 5)? for which this ratio converges upward to 1las> oc.
In contrast, the first inequality is clearly sharp, namely for connected sur®s of
torus links.

Question 1. Are connected sums @2, .)-torus links the only links withp + k£ = 0?

4.2. Fibered positive links

We shall now prove a result on almost positive diagrams which shows a weaker version
of Theoren] 1L for fibered positive links. We need a definition.
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Definition 2. The Seifert graphSp of a diagramD is a graph obtained by putting a
vertex for each Seifert circle dp and connecting two vertices by an edge if a crossing
joins the two corresponding Seifert circles. (If two Seifert circles are connected by several
crossings,Sp has multiple edges.) Theduced Seifert grapip of D is obtained by
removing edges afp such that (a)Sp has no multiple edge and (b) two vertices are
connected by an edge #y, iff they are so inSp.

Definition 3. For a link diagramD, let x (D) = s(D) — ¢(D), wheres (D) is the number
of Seifert circles and ¢(D) the number otrossingsof D. x (D) is thecanonical Euler
characteristiof D.

Theorem 2. Let D be an almost positive diagram of a lidkwith n(L) components, with
negative crossing. If there is another crossing i joining the same two Seifert circles
asp, thenmindegV, > (1— x(D))/2. OtherwisemindegV;, = (1— x(D))/2— 1and
mincfV, = (=1)"H-1,

Recall that the Kauffman brackebD] (see [Ka]) of a link diagranD is a Laurent poly-
nomial in a variabled, obtained by summing the terms

AFAG)—HB(S) (_ A2 _ A=2)ISI-1 (12)

over all statesS, where a state is a choice of splittings of typeor B for any single
crossing (see Figufg 6)4S) and #3(S) denote the number of typé (resp. typeB)
splittings, and S| the number of (disjoint) circles obtained after all splittings in a state.

S5 T DIC

Fig. 6. The A- andB-corners of a crossing, and both of its splittings. The corhéresp.B) is the

one passed by the overcrossing strand when rotated counterclockwise (resp. clockwise) towards the
undercrossing strand. A type(resp.B) splitting is obtained by connecting te(resp.B) corners

of the crossing.

The Jones polynomial of a link is related to the Kauffman bracket of some diagram
D of it by
Vi) = (=177 PV[D]] 4 _-1sa, (13)

w(D) being the writhe oD.

Proof of Theorerfi]2The maximal possible degree 4fin
[D] = Z AFAS)HB(S) (L A2 _ p=2)IS1-1 (14)
S state

is that of theA-state (the state with all crossingssplit), because under any splitting
switchA — B, the power ofA in the first factor in[(IR) goes down by 2, and the maximal
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power ofA in the second factor ifi (12) increases at most by 2. i§ almost positive with
negative crossing, then the maximal possible power &fin (14) is A¢(?)+26(D)=2) a5
the A-stateS, hass(D) — 1 loops. They are the Seifert circles not adjacenptand a
loop consisting of the two Seifert circles, call thenandb, adjacent t.

Now we must consider which states contributet¢® +2¢(2)=2 in (14). These are
exactly the states with the property that whenever the state is obtained frofnstate
by successively switching — B splittings,| - | increases under any such switch.

Let (S : k) € {A, B} be the split ofk in S, and lets;(S) be the state obtained by
switching splittingA — B at crossing: in S, assumingS : k) = A. Then if|sx(S4)| <
ISal, any stateS with (S : k) = B is irrelevant for the highest term in ([14). Clearly,
this happens wheneveéris a crossing connecting one or two Seifert circles not adjacent
to p. Thus the only terms contributing t@¢(?)+2¢(?)=2) in (14) are those for which
(S : k) = B implies thatt has the same two adjacent Seifert cirelendb asp has.

Let p1, ..., px = p be these crossings. Since any splitting switch> B in s,(S4)
reduces| - |, the only stateS with (S : p) = B relevant for the highest term i ({14)
is 5,(SA), i/vhose contribution to the coefficient of this highest terng-4)/s»Sa)1-1 —
(=151,

It is also easy to see that {§ : p) = A, any of the 2~ remaining states to
consider contribute ta1¢(?)+26(D)=2) " the coefficient being—1)*(P+#8(S)  as|§| =
s(D) — 1+ #B(S). The sum over all sucli of these coefficients i6—1)*(?) times the
alternating sum of binomial coefficients. Thus this sum vanisheg ferl > 0, and
cancels fork — 1 = 0 the coefficient—1)*~1 of 5,(S4). The rest follows from3)
with w(D) = ¢(D) — 2, and the remark that £ x (D) andn(L) — 1 have the same
parity. O

Corollary 1. LetL be afibered positive link af(L) components. TheVy ()] 3—y (1)),2
=0, that s,

(=1)"D=L,&xD=D/2y, (1) = 1 + k? + (higher order termy,
with k being some integer.

Proof. This is proved just as Theorgr 1 by induction on the crossing number of a positive
diagramD. Apply the skein relation at any (non-nugatory) crossingf D. Since the
reduced Seifert graph ab is a tree, there is another crossing between the same two
Seifert circles. Lethg be D with p smoothed out, andlg be the linkDg represents. Then

Lo is still fibered, becaus® is positive and connected, and its reduced Seifert graph
is still a tree. Similarly letD_ be D with p switched, and leD_ represent a link__.

Then we can apply the above theoremlto. So minded/—- = (1 — x)/2 — 1, and the
coefficients of 1=%)/2+1in 12v_ and(:3/2 — 1%/2)V;, cancel as in (1]1). o

4.3. Positive and almost positive links

Corollary[] is a special case of the following result, describing the second coefficient of
the Jones polynomial for an arbitrary positive link.
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Theorem 3. Let L be a positive link with positive diagram. Then

D" OV ]Gy w2
=s(D) — 1 - #{(a, b) Seifert circles there is a crossing joining andb}.

In other words, ifSp, is the reduced Seifert graph, theal)"© [V, ]a—y(L))/2 = b1(Sp),
b1 being the first Betti number.

Corollary 2. For a positive diagramD, b1(Sp) is an invariant of the link represented
by D. O

Note that for the non-reduced Seifert gragof D, b1(Sp) = 1— x(D) =1— x(L) is
also a link invariant.

Corollary 3. For a positive linkZ of n(L) components,—1)"®)[V,]3—y(1))2 > 0, and
this coefficient i9 iff L is fibered. O

Of course, this fiberedness condition is not very useful when a positive diagranisof
given, since to decide then about fiberedness is trivial. However, applied in the opposite
direction, it can prove that is not positive. This happens sometimes in a quite non-trivial
way, as shown by the following example.

Example 7. The knot 1Gos9787in Figure[T satisfies all conditions on positivity known
aboutitsv, V, P andF polynomials. It seems useful to list all properties that hold, even if
they involve invariants we did not consider here. See the given references for an accurate
account. (However, keep in mind that the conventions there differ from the ones we use;
for F we conjugate in the variable.)

e 2mindegV = mindeg P = maxdeg, P = maxdegv = mindeg, F = 4 [Crl,[F,
Yo, [Zu],
[P),s(v—1) andV(z) are positive (that is, all coefficients are non-negative) [Cr1],

P = \/—1'[P]ml- (+v/—1) take only positive values dte (0,1) fori = 0,2,4

[CM].
[V],2 = 1 [Fi,[zZu].
X
Lﬂ¥ B (
N
NP

161059787

Fig. 7

ws>
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o [Flu = Oforall (k, 1) with [ — k maximal among thek, /) for which [F]«, # O
(that is, “critical line” polynomials are positive) [Th2].

e 161059787 does have diagrams (with canonical Seifert surface) of genus 2, so that
g = g = maxdegA = 2 [Crl]. HereA is normalized so that\(r) = A(1/t) and
Al = 1.

e The signaturer = 4 [CG,[St2], so that by Murasugi’s inequality [MuZ, = ¢ = 2
[Rul,[St6].

However, now V1,3 = 0, so that if 1Gos9757iS positive, it must be fibered. Bup\[(7)],2
= 2 contradicts this property.

Proof of Theorenj|3This is proved just as Theoref} 2 using the bracket. The term
s(D) — 1 comes from theA-state, while for every pair of Seifert circles joined by (at
least) one crossing,-al comes from an alternating sum of binomial coefficients coming
from states in which &-splitting is applied at some (non-empty) set of crossings linking
a andb. O

Corollary 4. Let L be an almost positive link with an almost positive diagrénsuch
that there is no positive crossingjoining the same two Seifert circles as the negative
crossingp. Then

1—x(D
Lo x® and mincfv, = (-1)"O1,

mindegV, =
Proof. Apply the skein relation at the negative crossingnd use Theorefr 3 fap, and
Dg (they have the same reduced Seifert graph). O

The following theorem is the key step needed to extend Fiedler’s result to almost positive
links.

Theorem 4. Let p be a crossing in a reduced special alternating diagr&nsuch that
there is no crossing joining the same two Seifert circles pasdoes. LetD,, be D with p
smoothed out. Thenp,(0) < Ap(0), whereA is the Alexander polynomial normalized
so thatmindegA = 0andmincfA = A(0) > 0.

The proof will use the machinery of even valence graphs [MS]. We recall the basic notions
from that paper.

Definition 4. Thejoin (or block sun) x of two graphs is defined by

O = OO

This operation depends on the choice of a vertex in each graph. We call this vertex the
join vertex

A cut vertexis a vertex which disconnects the graph when removed together with all
its incident edges. (A join vertex is always a cut vertex.) Analogougkeat of G is a
pair of edges oz whose deletion disconneats
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Definition 5. A cell C is the boundary of a connected component of the complement of
a graphG in the plane. It consists of a set of edgesp s among these edges, then we
say thatC containsp or p boundsC. By G \ C we mean the graph obtained frothby
deleting all edges ir.

AcycleC inagraphG is aset{p1, ..., p,} of edges such that the paitp1, p,,) and
(pi, pi+1) for 1 <i < n share a common vertex, and all these vertices are different. The
plane complement of a cycle in a planar graph has two components. The bounded one is
called theinterior int(C) of C, and the unbounded one tleaterior extC). (A cell is a
cycle with one of interior or exterior being empty, that is, containing no edges.)

Before we make the next definition, first note that the Seifert gsapbf any diagranmD is
always planar(ly embeddable). Namély is the join of the Seifert graphs corresponding

to the special diagrams in the Murasugi sum decompositioP @llong its separating
Seifert circles, the join vertex corresponding to the separating Seifert circle. The join
of planar graphs is planar, and i is a special diagram, thefy, has a natural planar
embedding (shrink the Seifert circles into vertices and turn crossings into edges).

Definition 6. Assume for a special diagrai that Sp is planarly embedded in the nat-
ural way. Its dual is called theven valence grapti p of D (as the name says, all its
vertices have even valence). Alternativély, is the checkerboard graph with vertices
corresponding to the non-Seifert circle regions/f

A canonical orientatiois an orientation of the edges 6fp so that all edges bounding
a cell are oriented the same way, clockwise or counterclockwise, as seen from inside the
cell. (The canonical orientation is unique up to reversal of orientation of all edges in a
connected component of the graph.)

Proof of Theorerp]4 Consider the planar even valence grapp associated t@. Then
Gp, = (Gp)p, whereG, is G with edgep contracted. BothG andG,, are connected
by assumption. We shall assume from now on that a canonical orientation is chosen in
G = Gp, and hence also of .

By the matrix-tree theorem (see Theorem 2 of [M3{); (0) = mincf A is the num-
ber of index-0 spanning rooted trees@f i.e. trees in which each edge, oriented as in
G, points towards the root of the tree. We will also call such teebsrescencedmpor-
tantly, the number of arborescences does not depend on the choice of root vertex. We will
exploit this property several times in the following.

Let vg be the source andy the target ofp in G. In G, vg andv; are identified to a
vertex we callv. By the proof of Proposition 1, part (3), of [MS], we have

#{index-0 sp. rooted trees with rootn G}
= #{index-0 sp. rooted trees with roof in G containingp}.

Thus the statement of the theorem is equivalent to sayingiirets an index-0 spanning
rooted tree with root1 not containingp. The assumption of the theorem in terms of even
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valence graphs means that each edgé bbunds a cell not containing, or equivalently,
p isin no 2-cut ofG. In particular, bothyg andv; have valence at least 4 @.

It is easy to see that any planar even valence g@ghan be built up from the empty
one by adding directed cycles. Moreovergifis connected, then we can achieve that all
intermediate graphs are connected (more exactly, all their connected components except
one are trivial, i.e. isolated vertices of valence 0). Also, one can start the building-up with
any particular cycle irG.

Let E be a cell (cycle with empty interior) iF containingp. We claim that then
G = G \ E is still connected. This requires a little argument. We will show that if a
disconnected grapd is connected by adding a cell, then each edge if forms a 2-cut
with another edge i. To see this, first reduce the problemdaving two components
G1 andGa. If G has further componenﬁg, ..., G,, one can connect them - by
adding cells, and a 2-cut of edgesAnwould st|II remain one if we undo this connecting.

It is also easy to see that one can assume there are no valence-2 verticen 6f
(that is, each vertex oFf is attached to one ofi1 or G in G). Then we show that
there are at most two edges Efconnectingél and G». SinceE is oriented, one can
easily distinguish between interior or exterior Bfdepending on the (left or right) side
in orientation direction. If> 4 edges conne(rfl andGz, one must attach vertices Gfl
andG», to E from different sides, an& will not be a cell inG.

Let £’ be some other cycle passing throughsuch thatp ¢ E’. (Such a cycle exists
because val(vy) > 2.)

Then build upG by adding cycle<,, such that we start witlt1 = E’ and finish with
E, = E, and all intermediate graplis, are connected. We construct successively in each
G, an index-0 spanning rooted tr&g with root v1 such that in the final stage &, = G
the treeT, = T does not contaimp.

In G1 = E’, fix the root to bev; and letT; consist of all edges ik’ except the one
outgoing fromus.

V1
p

Now, given an index-0 spanning rooted tfEeof G,,, we construct an index-0 spanning
rooted treel}, .1 of G,,11 = G, U E, 11 as follows. Letws, ..., w be the vertices of the
cycle E, 11 in cyclic order, so thatv; andw; 1 are connected by a (directed) edge
Then there is a non-empty sk&tc {1, ..., k} such thatw; € G, forall s € S, andw; is
a trivial connected component (isolated vertexiGin otherwise. Then add the following
vertices toT,, to obtainT7,1: for eachi, j € S such thati, j)NS =@ add{p,, : m €
(i+1, j—1)}. Here(, j) is the interval of numbers between (but not includihghd j,
in the cyclic order ofZ.

Here is an example of a cyclg, 1, with the vertices irG, encircled, and the edges
in 7,41 \ T, thickened.
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ThenT,41 is an index-0 spanning rooted tree with re@tin G, 1.
It remains to see why ¢ T, = T. For this note thak = E; > p is added last, and
valg (vo), valg (v1) > 4, so thatvg, v1 € G;_1. ]

Corollary 5. If D is an almost positive diagram with negative crossinguch that there
is no (positive) crossing joining the same two Seifert circles asthenmin degA p (1) =
1— x(D), whereA is normalized so thatr\(tr) = A(1/t) and A(1) = 1. In particular,
the canonical Seifert surface associatedxas of minimal genus.

Proof. Apply the skein relation forA at the negative crossing to obtain the result for
special diagrams. Then use the multiplicativity af([D)]1— x(p))/2 under Murasugi sum
of diagrams[[Mu?] to obtain the general case. O

This corollary improves the result of Hirasawa [Hi, Theorem 2.1] stating that this Seifert
surface is incompressible.
Now we have all the preparations together to obtain the extension of Fiedler’s result.

Theorem 5. If L is an almost positive link, then
1
mindegV, = 5= x@) and mincfv, = (-1)"P1,

Proof. Let D be an almost positive diagram of with negative crossing and canonical
Seifert surfaceS. One can easily reduce the proof to the situation thé connected. We
then distinguish two cases.

(&) There is a (positive) crossinrgjoining the same two Seifert circles as By Theo-
rem2 we must show that

1-x@) _1—xD)
2 - 2

Clearly,(1—x (L))/2 < (1—x(D))/2, and by Bennequin’'s inequalitg— x (L)) /2 >
(1 — x(D))/2 — 1. Thus assume thafil — x(L))/2 = (1 — x(D))/2,i.e.Sis a
minimal genus surface. By [Ga2], this is true for the Murasugi summasdwhich
is the canonical Seifert surface associated to an almost positive (or almost alternating)
special diagram. However, by assumption this surface is clearly not of minimal genus,
a contradiction.

(b) There is no such crossig Then we must show by Corollafy 4 thdt— x (L))/2 =
(1-x(D))/2,i.e.S is a minimal genus surface. This follows again from [Ga1l], using
Corollary[§. O

1
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4.4. Skein polynomial and Morton’s inequalities

The results on the Jones polynomial and their proofs allow also some applications to the
skein polynomiall[H]. First, we can identify two more coefficients of the polynomial of
some positive links.

Corollary 6. If L is a fibered positive link of (L) components, then
[PLprwp-t-rr = (=1)"P (L = x (L)),
and if L is prime and braid positive, then

x(L)+1
—

Proof. Murasugi and Przytycki showed in [MP] thakp],,1-xm») is multiplicative under
Murasugi sum. (That

[PLlprwpy-3xwr = (=D)L x(L)

maxdeg, Pp <1— x(D) (15)

was shown by Mortori [Md1].) Since any positive diagram of a fibered positive link de-
composes as Murasugi sum of connected sum@af)-torus links, we have, for any
fibered positive linkL,

[PL]ml—X(L) = lliX(L) . (_1)n(L)*l'
Now apply Corollary [l and the conversign (3). .

Remark 5. A formula for the first of the coefficients in the corollary can be written for
an arbitrary positive link using Theorgm 3 instead of corollgry 1.

The proof of Theorer|5 can also be applied for
Theorem 6. If L is an almost positive link, then
maxdeg, P(L) =1— x(L). (16)

Proof. Consider the two cases in the proof of Theofgm 5.
If ¢ shares its Seifert circles with another (positive) crossing,ithen one of the spe-
cial Murasugi sum componenf¥' of D can be reduced to a diagrab{’ with x (D”) >

x (D). Thus by [(15),
max deg, P(D') = maxdeg, P(D") <1— x(D") <1— x(D'),
so that Pp/],,1-xw) = 0. Then by[[MP] the same holds f@r. Since we know that
1-x(L)=-1-x(D) 17
from the proof of Theoren|5, the inequality
maxdeg, P(L) <1— x(L) (18)
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follows. Now use the fact that, as a consequence of [LM, Proposition 21], for an arbitrary
link L, mindeg P < maxdeg, P. From Morton’s inequalities [Md1] we then have, for
an almost positive diagram of L,

—1— x(D) =w(D) —s(D)+1 < mindeg P(D) < maxdeg, P(L). (29)

Now (I9) and|(IJr) show that the inequalify [18) is an equality.
If ¢ does not share its Seifert circles with another crossin@ jrthen combining
[Mo1] and the argument in the proof of Theorfin 5, we have

1— x(D) =2maxdegA(D) < maxdeg, P(D) < 1— x(D) =1- x(L),
so we have the equality iff (]L6). O
Further we have
Corollary 7. If L is an almost positive link, themindeg P(L) <1 — x(L).
Proof. Use again the above mentioned consequence of [LM, Proposition 21]. O

This is another special case of Morton’s conjectured inequality [Mo2] (disproved now in
[St3] for arbitrary links). There is, though, much experimental evidence that we have in
fact equality in Morton’s inequality.

Question 2. Is it true that for any almost positive link, mindeg P(L) = 1 — x(L)?

Note that in one case in the proof §f [16), we did obtain this equality, namely when
the almost positive diagram® is not of minimal genus. The latter property is understood
to mean that the canonical Seifert surface does not realize the (Seifert) gehyseof
x(D) > x(L). Questior] P is thus related to the question: Does any almost positive link
L have an almost positive diagrawhich is not of minimal genus?

As we later found, the answer to this question is negative, and a counterexample is the
knot 1121939 (which nevertheless satisfies min gég= 1 — x). It is displayed in Figure
8 of [St€] (and occurs also later in this paperZasin the proof of Corollary B). Besides
its obvious two almost positive diagrams (considered also in the proof below), there are
no other (reduced) ones. The proof of this fact will be presented elsewhere, as it requires,
apart from some computation, several tools (developed in[[St6], St2, St1]) that go beyond
the scope of the present paper.

The opposite situation to the last question is not less interesting, in particular because
positive diagrams are always genus-minimizing.

Question 3. Does any almost positive link have an almost positive diagrabhof min-
imal genus?

A positive answer to this question will show that Morton’s inequality L),

maxdeg, P(L) < 1— x(L) (20)
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(which is a direct consequence pf[15)) is sharp. It would not be a surprise, as knots with
strict inequality are hard to find. So far two methods apply: unity root valués [S§t1]

and Gabai’s foliation algorithm [Ga3] to show that in fact maxgéyL) < 1 — x(L)

[St3]. The latter option seems unlikely to work for almost positive links, and the former
requires considerable extension of the calculations. Out o/&th500 non-alternating
prime knotsK of < 16 crossings with max degP (K) < 4, in [St1] we obtained 28 such
knots with 4= max deg, P(K) < 2g(K) using values of the Jones agdpolynomial at

roots of unity (and one further undecided case). An easy check shows that none of these
28 knots is almost positive.

5. Almost positive diagrams with canonical fiber Seifert surfaces

The even valence graphs can be used to give a description of almost positive diagrams
whose canonical Seifert surfaces are fiber surfaces. The restriction to canonical surfaces
is suggestive, since in general establishing the fiber property of a link or a surface may
be difficult, even though both algebraic and geometric methods are known. Our result
is closely related to the result for almost alternating diagrams due to Goda—Hirasawa—
Yamamoto [[GHY]. Our main motivation here was in fact to use the present (and quite
different) tools to extend and simplify the proof of their criterion. We succeed almost
completely, with the exception that we cannot recover combinatorially the fact (see their
Proposition 5.1) that instead of general Murasugi sum decomposability of the fiber into
Hopf bands in part (i) of the theorem below we have in fact stronger plumbing decom-
posability. On the other hand, we show in part (iii) that the fiberedness condition for the
Alexander polynomial is exact. Due to the copious ways to calculate the Alexander poly-
nomial, this makes the fiberedness property even easier to detect than by the classification
result (iv) for such diagrams. (Our version of this result is also more explicit than in the
form given in [GHY].) In the next section we will give examples showing (together with
the examples ir_ [GHIY]) that one cannot extend the result much further.

In the following A will be normalized so that\(r) = A(t~1) and mincfA > 0.

Theorem 7. Let D be a connected almost positive link diagram with canonical Seifert
surfaceS. Then the following conditions are equivalent:

(i) S decomposes under iterated Murasugi sum (not necessarily plumbing) completely
into Hopf bands (of one full twist).

(i) Sis afiber surface.

(i) 2maxdegA(D) =1 — x(D) andmincfA(D) = 1.

(iv) DecomposeD along its separatingSeifert circles (Seifert circles with non-empty
interior and exterior) as Murasugi sum of special diagrams, and those special dia-
grams into prime factors. Then all these prime factors are special alternating dia-
grams of(2, n)-torus links (with parallel orientations), except for one, which after

reductions of the type
XX = X @

becomes an almost positive special diagram of the following forms:
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(a) a special diagram whose (even valence) checkerboard gapan be obtained
as follows: take a chain of circles of positive edges

OOC - DO 2

and attach to it from the outside a cell (cycle with empty exterior) with one
negative edge which joins interior points of the two outermost loo|&3h(the
negative edge corresponds to the crossing to be switched); see e.g.[Higure 8;

Fig. 8. A checkerboard graph and its diagram illustrating case (iv) of TheE}em 7.

or (non-exclusively)
(b) a diagram of a(2, ..., 2)-pretzel link (at least tw@’s), oriented to be special,
with one crossing changed.

Proof. In the following pictures, we assume graphs to be canonically oriented, but do not
draw edge orientation if it is not necessary. The edge of the (only) cropsifigiegative
checkerboard sign will be distinguished by being drawn as a thickened or dashed line.
(iv)=(i). The reverse of the move ifi (1) preserves the property of the canonical
Seifert surface to be a fiber, as it corresponds to plumbing of a Hopf band. That the
canonical Seifert surfaces of the diagrams in (iv) are fibers is easy to see. (The diagram
D’ obtained fromD by removing the trivial clasp is a connected sum of Hopf links, its
surface is clearly a fiber, which is unique, apdD’) = x(D).) For (iv) we remark that
each of the graphs described turns into

under repeating the operation

(contracting a double edge), with the dashed line having two properties: first, it is an arc
passing through edges whose total sign sum is O (in our case the negative @ugene
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other, positive, edge), and second, it has a single vertex and either no complete edge in its
interior or none in its exterior. This corresponds to the diagram move

< ~ - 2C

The dashed lingz can pass through the interior of Seifert circles and crossings only in
such a way that the total writhe of these crossings is 0, and must have a single non-Seifert
circle region, and either no complete Seifert circle in its interior or none in its exterior.

Then this is a Hopf plumbing, the Hopf band being obtained by thickepiigo a
strip, and taking the union with the two half-twisted strips and one Seifert circle on the
left of (23). (The first condition ory is needed to ensure the correct twisting, while the
second one is needed to have the Hopf band separated by a sphere from the rest of the
surface after deplumbing.)

(i)=(ii) = (iii) are well known, so it remains to show the real result &ifiv). As the
minimal coefficient of the Alexander polynomial, when its degree is equél to x)/2,
is multiplicative under Murasugi surh [Mu2], we need to consider only the almost alter-
nating special Murasugi summand. For this we consider the canonically oriented even va-
lence graptG = G p of D and recall the proof of Theorejm 4. The condition 2 min deg
= 1 — x implies that each edge @ bounds a cell not containing, the edge inG of
negative checkerboard sign. In particular, bogrand v, have valence- 4. Let E1 and
E> be the cells containing. ThenE1N E> = {p}, sincep is in no 2-cut ofG, andG \ E1
andG \ E; are connected, by the argument in the proof of Thedrem 4.

Now consider the condition min ef(D) = 1. It means that there is only one index-0
spanning rooted tree with roof not containingp. If G \ E1 has two different index-0
spanning rooted trees with root, then by the construction in the proof of Theorigim 4, we
could extend them to index-0 spanning rooted tree§ o¥ith root v1 not containingp,
which would clearly still be different. ThuS \ E1 has only one index-0 spanning rooted
tree (with rootv, or any other fixed vertex). Then, by part (5) of Theorem 3_of [MS],

G \ E1is ajoin of chains (topologically, a bouquet of circles).

-
()
\/

(24)

Assume without loss of generality th&tis embedded so that the exterior @) of E1
is the unbounded component. Since addingnust remove all cut vertices (our diagram
is prime by assumption)}; must touch interior points of all circlels; with only one cut
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vertex. (Here “interior” is meant to be different from the cut vertex.) We call tiigdeaf
circles; in [24) they are drawn dashed.

Also, since the exterior af; is the unbounded component, cut vertices coming from
attaching circles inside other ones:

cannot be removed by addir, so assume there are no such inner circles. Thus we have
a picture like

ext(E1)

From now on, let us remove valence-2 vertices (we call this operatibisection
and consider only the topological type of the tree

— — - (25)

This move on graphs corresponds to the reversed nioye (21). (Note thabyal > 4
by assumption, so that both edges on the leff of (25) are positively signed.)

The way between two leaf circled1 and L, is made up of those circles bounding
disks whose interior is passed by a path from an interior point of the disk bounded by
L1 to an interior point of the disk bounded lay,. We require that this path passes only
through interior points of disks bounded by loops and cut vertices, each such vertex being
passed at most once.

Now use the fact that \ E2 must also be a join of loops (or bouquet of circles). We claim
that either

(a) p touches interior points of two different leaf loojig, L» and all other vertices of
E1 touch only interior points or cut vertices belonging to cirabesthe waybetween
L1 andL; (as on the left of Figur]8), or
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(b) p touches two points on the same lopginterior points or the cut vertex), anghy
touches points only of the same loop.

Assume neither () ndr (b) holds. We derive a contradiction showingihak> has at
least 2 arborescences. Observe that by unbisecfiohs (25epadations

vov

one can simplifyG to obtain

Ex
p

(still with E1 being the boundary of the infinite region), in such a way thatare not in-

volved in any of these moves. Then removiligand applying unbisections, one obtains

a graphGo with two vertices and an edge of multiplicity 4, which has two arborescences.

It suffices now to show thdiisections(reverses of unbisections) adéseparationgre-

verses of separatiors (26)) do not reduce the number of arborescences. For this we specify
how to map injectively arborescences of the original graph with vpdd arborescences

of the resulting graph.

For a bisection creating a vertex# vg 1, add the outgoing edge ofto the arbores-
cence, and do the same with the incoming one, if the original (bisected) edge was in the
(original) arborescence. The same argument, but without the restrictjervg 1, finds
two arborescences (with root or any other vertex) of (27), starting from those.

For a deseparation at least one of the two verticag on the right of ) has va-
lence 2. Letv be such a vertex. The outgoing edgef v is in any arborescence, since
v # vg,1. Removee from the arborescence, and keep the status of the other edges, while
joining v andv’.

ThusG is of type{(a) of (). In cade (a) the assumption there are no cut vertices in
implies thatG \ Eq is as in[(2R), ang joins interior points on the two outermost circles.
Note that the union oL > and all loops on the way between them forms a bouquet of
type [22). Thus we arrive at case (iv, a) in Theofgm 7.
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In cas¢ (B)G \ E1 must be a single loop, and we have a picture like this:

This is case (iv, b) in Theorep 7. O

What we have done allows solving an open problem in our previous work [St2] on almost
positive knots and proving

Corollary 8. There exist almost positive knots of any gerua
It was shown in[[St1] that there are no almost positive knots of genus 1.

Proof. Considerthé3, 3, ..., 3, —1)-pretzel knots and links,,. (These are 2-component
links if the numbem of 3's is odd,; in this case we orient them so that the twists counted
by the 3's are reverse.) As these diagrams,ptome from the construction in part (iv) of
Theoren{J L, are fibered (or see alternatively Theorem 6.7/ of [Ga4]). Their diagrams
reduce by one crossing tb,, = (-2 — 1,3,...,3) (one 3 less), which are almost
positive and of crossing numben3— x(D,)) = 3(1 — x(L,)) = 3n. If L, were
positive, by [Crl, Corollary 5.1] they would have crossing numidr,) < 2(1 — ).

To show that this is not the case, consider the crossing number inequality lof [Ka,
Mull,Th1], c¢(L,) > spanV(L,). We know that mindegy (L,) = (1 — x)/2. On the
other hand, fom = 1 — x > 2, maxded/(L,) is easy to determine, as the diagram
D, is B-semiadequate, and thus only the contribution of Bastate Sy (specified by
(Sp : k) = B for any crossing) is relevant in[(I§). By a simple count of the loops one
arrives at maxde§f (L,) = (1 — x) — 2, and thus

¢(L,) > spanV(L,) = maxdegV(L,) —mindegV(L,) =3(1—x)—2 > 2(1— x).

ThusL, is almost positive forn > 3. (Forn = 1 andn = 2 one obtains the Hopf link
and trefoil, resp.) O

6. Some examples and problems

6.1. Showing almost positivity

The problem to show that a certain link is almost positive, but not positive, turned out to
be very hard. All previously known positivity criteria are either easily provable to extend

to almost positive links, or at least no examples are known where they do not. Tgorem 5
is an addition to that picture.
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In [St2] it was shown, in the case of knots, that any almost positive knot has only
finitely many reduced almost positive diagrams. As the proof is constructive, one can,
in theory, decide (for knots) about almost positivity, in the sense that for any knot one
can write down a finite set of almost positive diagrams, among which one would have
to check whether the knot occurs. However, this method is not generally very efficient,
except for a few knots of small genus.

Cromwell’s estimate: < 2(1 — y) for fibered homogeneous links remains the only
way known so far to circumvent these problems, at least in certain cases. Using Theo-
rem[q, we can now construct plenty of examples of almost positive fibered link diagrams,
which we can show to represent almost positive links by proving that Cromwell’s inequal-
ity is violated.

However, this inequality will still not be violated in many cases, and thus one may
ask whether it can be improved. Cromwell’s estimate is trivially sharp for alternating
(prime) links (consider the rational links 222 2) and composite positive links (consider
the connected sums of Hopf links). However, even for prime positive links the inequality
cannot be improved much.

SN
S, Q&

161177344 161243226

Fig. 9. The two fibered positive knots of genus 4 and crossing number 16. (The diagrams here
are chosen to be positive and reveal a plumbing structure of the fiber surfagggsobgalso has
almost positive 16-crossing diagrams, and t§344€ven 2-almost positive ones.)

Example 8. The (2,2, ..., 2, —2, —2)-pretzel link, oriented so that the clasps counted

by 2 are reverse, and those counted-b¥ are parallel, has = 2(1 — x) — 2. The
diagram is of minimal crossing number as follows by considering linking numbers, and
decomposes under Murasugi sum into connected sums of Hopf bands, thus the link is
fibered. (The link is also prime by [KL].)

Example 9. Even just considering knots, there exist examples of genus 4 and crossing
number 16, 16;77344and 16243226 (For genus 3 the maximal crossing number example
is the knot 1350 of [St3] without a minimal positive diagram.) Apparently these examples
can be generalized to higher genera (although the proof of minimality of the crossing
number is not straightforward).

Thus Cromwell’'s estimate seems rather sharp even in our case.
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A different problem in this context is the position of the class of almost positive links
with respect to the hierarchy](1).

Question 4. Is any almost positive link strongly quasipositive, or at least quasipositive?

Some 2-almost positive links, like the figure-8-knot, are not quasipositive. On the
other hand, all almost positive examples examined so far are strongly quasipositive.

6.2. Detecting genus and fiberedness with the Alexander polynomial

From our results in the previous two sections, we have the following

Corollary 9. Ifalink L has a connected almost positive (or almost alternating) diagram
(with canonical Seifert surface) of minimal genus, then

(d) 2maxdegt\; =1 — x (L), and
(b) L isfibered if and only imincfA; = +1. O

Unfortunately, we cannot decide about fiberedness if the almost positive diagram is not of
minimal genus. Many almost positive knots seem to have almost positive minimal genus
diagrams, but whether all have is unclear. Coming back to the inequality < g(K)
in Questior B, it is known that almost alternating knots may fail to realize it sharply. One
of the twoA = 1 knots of 11 crossings has genus two [Ga3], and is almost alternating
by the verification in[[AdL[_AdR], while the calculation in [LM, Example 11.1] gives
maxdeg, P = 6, so that by[(20)g = 3. (A genus three canonical surface is not too
hard to find.) This knot thus does not have any diagram whatsoever of minimal genus. Let
us mention in contrast that among the 28 knots we found with strict Morton inequality
4 = maxdeg, P(K) < 2g(K), none could be identified as almost alternating (although
there are not enough tools to exclude it). However, there are sev@-almost alternating
knots, for example 1f30745(see Figure 9 of [S{1]).

For almost positivity the problem to find knots wigh> g seems much harder than
for almost alternating.

Question 5. What is the minimak with a k-almost positive knot having no diagram of
minimal genus?

So far it seems likely that such knots with= 4 occur, but even whethér < 3 is
unclear. In contrast, there is a 2-almost positive knotzd674 with strict inequality[(Z2D).

Note that both statements in Coroll@dy 9 are true for many (other) links, in particular
for all knots in Rolfsen’s tables [Ro, appendix]. However, the following examples show
that the corollary does not extend much further.

Example 10. Consider the diagram in the middle of Fig{irg 10. It is another diagram of
the previously encountered knotgh34 with unit Alexander polynomial. It is 2-almost
alternating, and its canonical Seifert surface is of minimal genus (two), as can be shown
by [Ga3]. Thus neither of the two criteria hold for 2-almost alternating diagrams.
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~ ) KR o
O 0 &

135374 12581
Fig. 10

Example 11. The diagram on the right of Figure]10 depicts the knaisg2with Alexan-

der polynomiala = (2 [—3] 2). Itis a (special) 2-almost positive diagram whose canon-
ical Seifert surface is of minimal genus (again two). Thus critgrion (a) in Cordllary 9 is
not valid for 2-almost positive diagrams.

So far | have no example of a 2-almost positivetdiagram for criteriof (B), but one
can easily obtain a link diagram.

Example 12. Consider the diagram of §374in Example ID. It has a single separating
Seifert circle, whose interior contains two crossings. By removing this interior (deplumb-
ing a Hopf band), one arrives at the link diagram on the left of Figufe 10. Its canonical
Seifert surface is still of minimal genus by [Gaz2], so that ) = 3, but one calculates
thatA = /2 — 1~1/2,

In all the above examples we showed a surface not to be a fiber by proving that the
Alexander polynomial has too small a degree. There are also examples where the degree
is maximal, and thus all conditions in Corolldry 9 taken together still do not suffice to
determine a fiber.

Example 13. The (-2, 4, 6)-pretzel link diagram, oriented to be special (all clasps re-
verse), has maxdety= 1 — y = 2 and mincfA = 1. That its canonical surface is not a
fiber follows from [Ga4, Theorem 6.7] (Case 1). Using properly signed Hopf plumbings,
one can generate from it many more examples of 2-almost alternating and/or 2-almost
positive diagrams, in particular (diagrams of) several genus two knots. Two such knots
(for 2-almost positive diagrams) are the mirror images abdé& 7and 1559550 displayed

in Figure[T1. (These two knots have in fact been found first, by a check in the tables, and
the pretzel link was obtained from them by deplumbings.)

Remark 6. For genus one canonical surfaces of knots one needs 3-almost positive (and
3-almost alternating) diagrams to have such a situation, the simplest example being the
(=3, 5, 5)-pretzel knot[[CT]. (It has the Alexander polynomial of the figure-8-knot.) For

4-almost positive (or 4-almost alternating) diagrams, even worse, one can use [Ga4, The-
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3 €

15120617 15159580
Fig. 11

orem 6.7] to construct diagrams differing by mutation, with the canonical surface of one
being a fiber, and of the other not.

Acknowledgementd.wish to thank M. Khovanov for helpful remarks and discussions, in particular
for suggesting Theoreft} 1 and, implicitly, Ques{i¢n 1. The idea to distinguish in the study of almost
positive diagrams between having another crossing joining the same pair of Seifert circles as the
negative one and having no such crossing appears previously in Hirasawa's[paper [Hi], and was
observed even before that in unpublished work of K. Taniyama.
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