J. Eur. Math. Soc. §,4p-'5 © European Mathematical Society 2006

JEMS

Giacomo Aletti- Ely Merzbach
Stopping Markov processes and first path on graphs

Received November 21, 2004 and in revised form June 3, 2005

Abstract. Given a strongly stationary Markov chain (discrete or continuous) and a finite set of
stopping rules, we show a noncombinatorial method to compute the law of stopping. Several ex-
amples are presented. The problem of embedding a graph into a larger but minimal graph under
some constraints is studied. Given a connected graph, we show a noncombinatorial manner to com-
pute the law of a first given path among a set of stopping paths. We prove the existence of a minimal
Markov chain without oversized information.
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1. Introduction

Let X, be a stationary Markov chain (process) on a finite/setith transition matrixP
(intensity Q). The Markov process stops when one of the given stopping rules applies.
We assume the rules take a very general form that will be described in the following.
The problem of finding the stopping law may be solved by embedding the Markov chain
into another Markov chain on a larger state set (the tree made by both the states and the
stopping rules). The desired law is then obtained from the transition matrix of the new
Markov chain.

Unfortunately, this new Markov chain may be so big that numerical computations
can be not practicable. The problem here is to find a way of compressing the oversized
information. In this paper, we present a new method permitting to obtain a projection of
the Markov chain into a “minimal” Markov chain which preserves probabilities.

The problem of finding general closed forms for different kinds of waiting problems
is widely studied. As an example, Ebneshahrashoob and Sabel [6] derived distributional
results for the random variables in the case of Bernoulli trials. Several extensions have
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appeared recently to Markov-dependent trials via combinatorial or Markov chain embed-
ding (see, e.g. Aki and Hiranol[2]; Antzoulakos and Philippdu [3]; Koutras and Alexan-
drou [7]) and in general closed forms by Stefariov [10].

Stefanov and Pakes [11] explicitly derive the joint distributions of various quantities
associated with the time of reaching an arbitrary pattern of zeros and ones in a sequence of
Bernoulli (or dependent) trials. The methodology is based on first embedding the problem
into a more general framework for an appropriate finite-state Markov chain with one
absorbing state and then treating that chain using tools of exponential families.

The motivation of our work comes from many situations.

(i) In finance the filter rule for trading is a special case of the Markov chain stopping
rule suggested by the authors (S€e [8]).

(i) “When enough is enough”! For example, an insured has an accident only occasion-
ally. How many accidents in a specified number of years should be used as a stopping
time for the insured (in other words, when should the insurance contract be discon-
tinued)?

(i) State dependent Markov chairfdamely, the transition probabilities are given in
terms of the history. For simplicity consider the decision to stop if we get two identi-
cal throws (1122, 33, ..., nn) (for example, whem = 2, an insured has two kinds
of accidents in a row, one each year, and his contract is discontinued, or an insured
has no accidents two years in a row and therefore he is “promoted” to a better class
of insured). If the probability of a switch frorwn to mk is denoted bypy,, mx then
the Markov transition matrix has the form:

11 12 ... 1n 21 22 ... 2n ... nl n2 ... nn
11p1111 P1212---P111n O ... 0 ... 0 O ... 0
12| O 0 ... 0 pi2o1p1222-.-P122¢--- O o ... O
In| O o ... O 0 0 ... 0O ...pwualPwn2---Plunn
21ip2111p2112--- P21 O o ... 0 ... O o ... O
221 O 0 ... 0 po21p2222...-p2224--- 0 o ... O
1 1)
2n| O o ... O 0 0 ... O ...pmn1lP2nn2---P2nnn
nl|pp1,11Pn1,12---Pn1in O o ... 0 ... O o ... O
n2| O 0 ... 0 pup221Pu221---Pn220--- O o ... O
nn| O o ... O 0 0 ... O ...pwinlPunn2---Pnnnn

which can be analyzed for the stopping time by the usual methods. Obviously, in
many situations (e.9., Bum.mk = Pm.x Yh # m), this matrix has a special structure
and can be reduced. This is the applied part of the paper: When a big matrix can be
shrinked then the paper provides a mechanism for handling the stopping time issue.
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(iv) Medical sciences: given that the length of a menstrual cycle has a known distribution,
what is the probability that the length of a woman’s menstrual cycle is the same three
consecutive times?

(v) Small-world networksGiven one of the networks as in Figyre 1, is it possible to
reduce it and to preserve the law of reaching a given absorbing state?

Fig. 1. Networks that may be shrinked.

There are of course many other such examples (e.g., records: Arnold, Balakrishnan, and
Nagarajal[4] and optimization: Cairoli and Dalaing [5]).

In the next section, we present some examples in which our method is used, giv-
ing elegant solutions to some cumbersome combinatorial problems. It happens that this
framework is very well adapted to the language of graphs.

In Section 3, using some tools from Pattern-Matching Algorithms, we discuss the
problem of embedding a graph into a larger but minimal graph when some constraints are
imposed.

Section 4 is devoted to finding a necessary and sufficient condition for a projection to
be compatible. Moreover, we can prove the existence of a minimal Markov chain with-
out oversized information. Finally, in the last section, we show that our results can be
translated very easily into the language of Category Theory, leading to a neat and concise
formalism.

2. A combinatorial problem

Let X = {X,, n € N} be a Markov chain on a finite state spdte= {e1, ..., e,}:

The process is stopped when it reaches one of some given Et&e$eni)f.‘:1 C E.We
can permute the order of the states so that {e1, ..., ex} andE \ F = {exy1, ..., en}.
To compute the law of stopping, we may consider a new Markov ckiaia {X,, n € N}
onFU(E\F):
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F ... F E\F ...E\F
er ... e €k+1 ... €y
F e 1 ... O 0 ... 0O
Foalo i o o0 \_p
E\F €k+1|Pk+1.1 - - - Pk+1k Pk+1k+1 -+ Pk+1n
E\NF ey | pui -o Pak  Puksl --- Pun
Thus, the probability of reaching by timen is reduced to the computation of theth
power of P’ 1
p :
" / - 0 / i k terms
P(Utxi e 1) =Pax, e Fp =108 pgIPY" | (2)
i=1 .| ¥ n—kterms
0

Obviously, there may be some oversized informatior jn (2). In fact, there exists a trivial
reduction (see Corollarfy 28) which preserves the above calculation for anyN and
initial distribution po:

P(O{X,- e F}) -
i=1

1 0 .. 0\ I
k k
0 _k+1 i=1 Dk+1,i Pk+Llk+l --- DPk+1, 0
DT N e s ol I
i=1 . . . . .
k
Zi:l Pn,i Pnk+1 cee Pn.n 0

Example 1. The proces’ for the problem of state dependent Markov chains given in
(1) is accordingly defined by the transition matrix

11 12 ... 1n 21 22 ... 2n ... nl n2 ... nn
11 1 o ... O 0 ... 0 ... 0 O ... 0
12| O 0 ... 0 pi221p1222...-P1220--- O o ... O
In| O o ... O 0 0 0 ...pPLunlPan2---Plnnn
21ip2111p2112--- P22 O 0 0 0 o ... O
22/ 0 o ... O 0 1 0 0 o ... O

3

2n| O o ... O 0 0 ... O ...powniP2un2---P2nnn
nl|pp1,11Pn1,12---Pn1in O o ... 0 ... O o ... O
n2| 0O 0 ... 0 pup221Pn221---Pn220--- O o ... O
m| O 0 ... 0 0 O ..0 ..0 0 .1
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Fig. 2. Two representations of the Markov network given in ExanBIe 1. The final statee
generated by the stopping réfe= inf{i: X;_1 = X;}.

When ppmmk = pmix Yh # m, X is a Markov chain. Moreover, the solution is the
cumulative distribution of the stopping time

S=inf{i e N: X;_1 = X;}
and therefore the previous matrix may be reduced to

11 22 ... nn 1 2 ... n
0O 0...0

11 1 0 0
22l 0 1 0 0 0..0 r t.2..n
S o 1rl1 0 0..0
N : : oo lipia1 O p12... pin
nn| O 0 1 0O 0...0 2|p222 p21 O ...p2y,
1lip11a 0 0 0 P12---Pin . . . . . .
2| 0 p222... 0 p21 O ...p2y 1| e
o . L n|pnan Pnd P12 - O

n| 0 O ...pnan Pnap12..- 0
The processt’ given by [3) is therefore the extension of the procEssn the graph of

Figure[2. The coupléX, S) “builds” a new process(’ on a tree (see Theordm|17). The
processX’ is “tree-adapted” (specified in Definitipn|16).

The Markov chainX’ may have a lot of oversized information, as the following ex-
ample shows.

Example 2. What is the probability that the length of a woman’s menstrual cycle is the
same three consecutive times? If the length of a menstrual cycle is uniformly distributed
between 25 and 35 days (and the lengths of menstrual cycles are independent), then the
process may be seen as a Markov chairkoga {25, ..., 35}, where

1/10...1/10
P=[
1/10...1/10

and the problem is related to the stopping time defined by

S = inf{i eN: X;_o=X;_1=X;}.
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The processt’ has 21 states (see Coroll@ry| 28) and its transition matrix is defingfl in (4).

T 25252626...3535 25 26 ... 35

T 1 0 0 ..0 O O0..0
2525(1/10 0 O ... 0O O 1/10...1/10
2626[1/10 0 0 0 1/10 0 ...1/10

. . . . . . . . 4
3535(1/10 0 O ... O 1/104/10... O “)
25 | 0 110 0 ... 0 0 1/10...1/10
26 | 0 0 110... 0 1/10 0 ...1/10

3 | 0 0 0 .. 1/10410410... O

The previous example can be simplified by considering the pracgssth the fol-
lowing three states:

R 1 if Xp—1# X, andiN <n: Xy_2 = Xn_1= Xw,
E={2 if Xp—2# Xp_1= X, andiN <n: Xy_o = Xy_1= Xn,
3=T ifaN <n: Xy_2=Xy-_1= Xy,

with initial distribution p1 = [1, 0, 0] and matrix

3

1-p — P

2
1-p
0

0 1

o T |

1
2

3=T

wherep = 9/10. In general, for solving this problem it is sufficient to note that

P =ADA,
where
1 pHa/—=3p2+4p  p—a/—3p%+4p
2p 2p
A=11 1 1 .
1 0 0
1 0 0
_ p++/—3p%+4p
D = 0 f 0 )
0 0 p—~/—3p2+4p
2
0 0 1
At | p = —3p?+4p _ pta/—3p*+dp 1
- 2 2 /_ 2 4 :
p++/—3p%+4p p—+/—3p%+4p 3p°+4p
2 2
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Fig. 3. Cumulative probability, probability density and hazard function for ExanEble 2.

Hence

<p+\/—3p2+4p>”+1 (p— —3p2+4p>"+1
2 2

Fs(n)=1- + (5)

pv—=3p?+4p py—3p?+4p
and the corresponding hazard rate is
Fs(n) — Fs(n —1)
H = = =
s(n)=PS=nl|S=n) 1- Fsn—1)
P/ A\ (/B |
I G ) ] G ) M

<p+«/ —3p2+4p >n _ (p—«/ —3p2+4p )”
2 2

Equations[(p) and {6) may be applied wjth= 9/10, leading to (see Figufé 3)

Fon) — 1 100 <<9+«/117)"+1_ (9— «117)"“)
ST T g ATy 20 20
and
1 9+ /119"t — (9— V117" +1
Hs(n) =1— — .

20 9+ 117" — (9— V117"

What are we doing? In fact, we made a projection from a big Markov chaif oa:
{25,26, ..., 35,2525 26.26, ..., 3535, T} (with the matrix given by[(4)) to a smaller
Markov chain onE = {1, 2, 3} which preserves probability, as stated in Theo@n 34.
This projection is minimal (see Remdrk|32) and is unique, as stated in ThEofem 39.
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This result ensures that there exists a minimum Markov chain to which a large class of
stopping problems may be reduced. Numerical efficient algorithms for such reduction and
for e-approximations of the problem in suitable spaces would be a real “chaos reduction”
algorithm.

3. A graph generalization

Let X be a Markov chain on a sé. We denote by the free semigroup with generators
the elements of,, i.e.

E.={e=(e1,...,ey): ¢, € E, n e N}

We denote by the unity (empty element) &. A “word” e will also be briefly denoted
bye=(e1,...,en) =[] e

In another context (Pattern-Matching Algorithms, here PMA, 5ée [1]), thé get
called thealphabet e the empty stringand if we denote by. the language given by the
strings inE then€ is theKleene closur®f L: £ = {E}*. Hencef is a regular language.

Thestopping rulewe consider here is a finite subséof £: the Markov process ends
when an element ofl occurs for the first time (in PMA, the problem is to find the first
time we obtain{ E}*.A). Note that a stopping rule cannot be a substring of another stop-
ping rule (otherwise, the latter can never occur: the process is stopped when its substring
occurs). Thus, we will require that the elementsdirare not comparable with respect to
the relation< of “being a substring of”.

The problem is solved by embeddiigin a directed tree with roat, first generation

{E} and tree leavegl. We denote this sethy U E.

In this context, a tree is a particular subsefofts nodes are identified by the fact that
if a string belongs to the tree nodes, any of its substrings will also belong to it. The relation
“being a prefix of” will be denoted byr. The nodes in a tree are hence partially ordered
by C. The edges of the tree will be defined by means of the partial ardsuccessors,

see[7)).

The first problem we study here is: givety what is the size (number of nodes) of
B —
AU E? Equivalently, we are asking how many states the resolving Markov problem has.

3.1. Size of atree

Two partial order relations are naturally defined&rior all e1, e € £,

eeCe if Jezel eezs=ey,
e <e if des3ef: e e

Lemma 3. The following conditions are equivalent:

e e ande;, are comparabled; C & or & C €1);
e dJesef: e C egande; C es.
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Proof. =: Supposes; C €. Thene; C e andey C e (takees = &).
< letes = (e31,...,e3,). Sinceg T e3 (i = 1, 2), we haves; = (e31, ..., €34;)
withn; <n,i =1,2.If n1 < ny, thene, C e. Otherwiseg, C €. ]

In PMA, e C e iff e is a prefix ofey, while e; <1 & iff e; is a substring o&,. These
relations extend to subsets&®fFor anyA1, A C £, we say

A1 C Ay if Vap € Ag,3az € Ay: a1 C ay,
A1 < Ao if Vap € Ag,Jay € Ay: a1 < as.

Clearly, € implies C which itself implies<. Givene = (e1,...,¢,) € &, we define
el =n. Given A = {a1,...,a,}, we defineu(A) = n (counting measure),A| =
Yo' ilailandA = {A C &: |A| < oo}. ThenA is a ring with respect to the usual
binary operations) and A (symmetric difference). Moreovey, is an additive measure
on the ringA.

Remark 4. C is a partial order o& but not onA.

Definition 5. A subsetd € A is called admissible with respect to (resp.<) if for
anyaj,a € A, a1 C a (resp.a; < a) implies{ai, a2} ¢ A (i.e. the elements of
an admissible setl are not comparable). We denote By (resp.A o) the collection of
admissible sets with respectito(resp.<i).

The operatot - | : A — N is clearly monotone with respect to. When its domain is
restricted toA-, | - | : A- — N is also monotone with respect to, as the following
lemma shows.

Lemma6. Let A, A € AwithAC A and A € A-. Then|A| < |A|.

Proof. SinceA = A, there isp : A — A’ such thata = ¢(a) for all a € A. The
assertion will follow from the fact thap is injective. In order to prove this fact, lat, ap
€ A be such that(a;) = ¢(ap) =: . By Lemma@,al C a anday C & imply that
a; anday are comparable. Sincé € A, it follows thata; = ap. O

Proposition 7. For any A € A, there exists a unique sgt— € A such thatd C AL
and A- C A (in particular, | A-| < |A]). Moreover, ifA C A € A, thenA- C A’
C Ar (in particular, |A-| < [A-] < |A)).

Proof. Define
Ar ={ac A:ap d, va € 4, d +#aj.

By definition, A- € A- and A~ C A. SinceA € A, it follows that|.A| < oo and hence
A={a,...,a,}. We will show thata; C A-. We have two possibilities:

CaseAa; I a;,Vi =2,...,n. Inthis casen; € A, and hencey C Ar.
Case B3m > 1:a; C a,. Inthis casea; C AL, where

Al:{an15a27‘-'5an1717a~n1+15"-7an}'

Note thatA: = A and hence we may act again in the same way withinstead of4
(this process ends in at mossteps, sincg (AY) =n — 1 and{e}- = {e},Vee £). O
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Lemma 8. LetA # {e}. A € A iff (a){e} ¢ Aand(b) A C A" implies|A| < |A'|.

Proof. <: Supposdas, ay} € A anda; = ap. Take A’ = A\ {a1}. ThenA = A’ and
Al = |A'| + |a1| > |A|, sincea; # e.

=: (a) Sinceve € £, € C g, it follows that A € A, A # {€} impliese ¢ A.

(b) TakeA C A’ and letA- be asin Propositi(ﬂ 7. By the same propositioff;- | <
|A'|. By Lemmd 6,.A| < |AL|. o

Now, we define a rooted tree as the collection of words contained in its tree leaves. For
example, ifE = {1, 2}, then{e, (1), (2), (1, 1), (1, 1, 2)} is atree with tree leaved, 1, 2)
and(2), while {(2), (1, 1), (1, 1, 2)} is not a tree, sinc€l) ande are not contained in it.
Hence, for any4 € A, let N

A:={ee&:{eC Al @)
Definition 9. A € A such thatd = 74) is called arooted tree with root. The set of all
trees will be denoted bﬁ, i.e. K ={AeA: A= ,_4)}.

Proposition 10. (i) The setK is closed under intersections and finite unions:
MU =AUA, and A1 Ay = AN As.

(i) Any tree A is identified by the extreme valugs- (tree leaves) and vice versa: for
any A € A,

— — —_—

(.A)E =A and (AE)E = A[,
i.e., there exists a naturalEijection betwe&)ﬂandAE.

(iii) w is the unique function o identified by:

. ,u({_a)}) = |a] 4+ 1 (i.e. the number of nodes of a tree with only one tree leaf is the
length of its tree leaf plug, the root);
e foranyAi, As € A,

WAL U Ap) = w(AD) + u(Az) — (AL N Ap).

Proof. The proof of this proposition is trivial, since an elementiofand hence ofz_&)) is
a finite collection of finite-length words. O

Corollary 11. ForanyA € A, H(TK) <|Ac-|+ 1L
Now, we want to find a formula for the number of nodes,_cd))f i.e.,u(J_él)). This formula

is quite simple, if we refer to a suitable functiofis (see Lemma15).

3.2. Interior of a tree

The first step is to find the “interior’4° of the setA, which is the set of vertices iat
which have at least two children (see Figufe 4).
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0\ /1
0 1 0 1

01 010101010101 01

Fig. 4. On E = {0, 1}, the binary tree formed by the set = {(1,1,0,1),(1,1,0,0),
(0,0,1), (0,1, 0} and its interiorA° = {(0), (1, 1, 0)}.

For this purpose, we define the functidry : £ — N U {0} by
Db y(e):=#H#Haec A-: el a}.

Then ® 4 maps each wore of £ to the number of different tree Ieavesgf that de-
scend frome. It is clear that a vertee € A° will be characterized by < ® 4(e) >
®4(€), Ve €, e # €. Moreover, we have the following

Lemma 12. Foranyee £\ A, ®4(€) = ), Pa(ee).
Proof. Itis sufficient to note thate C aimpliesee’ IZ a, for any distincte,¢’ € E. 0O
Define the function of the level sets df4,
Levy :NU{0O} — €&,
as the counter image df 4 at valuen:
Leva(n) = {e€ & ®4(6) > n} = & ([n, 00)).

The setA4° will be the set of extremal values of thé-level sets£ > 2), i.e.

AW = {Leva(m}z, n>0, A :=[JA".
n=2

The following lemma shows that™, n > 0, is well defined wheneved € A.
Lemma 13. Let. A € A. Then

() Usolevam) = €
(i) Vn>m,Levy(n) C Levy(m);
(i) Levg(n) € Aiffn > 0;
(iv) Vn>m > 1,Levy(n) C Levy(m);
(v) Ing =no(A): Vn > ng, Levy(n) = 0.

59
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Proof. (i)—(i): Obvious. [iil): Let A* = {e € £: |e] > |A|}. ThenA* C Lev4(0) \
Lev4(1), and hencex = |A*| < |Lev4(0)|. By (i)—(i), we have Ley(n) € £\ A*,
which implies|Lev4(n)| < |€ \ A*| < oo. (iv): This is a consequence df](ii}{iii).
@): Letno = #{A}. Thenn > ng implies®*(n) = . O

Now, given a setd € A andn > 0, we define, forang € &,
My(e) :=#ec E: eeC A}
as the number of children iﬁ) of the pointe. In fact, it is obvious that
—
Mye)=#ecE.eeC A}=#ecE:eeC A}
sinceM.(e) is nondecreasing with respectioand
74> CA-C AC 7{

_')I'he next lemma shows that the “interiad® of the setA is the set of those vertices
of A which have at least two children.

Lemma 14. Let A € A. ThenM 4 (e) > 0 & e € 74) \ Ar. Moreovera € A° <
My(a) > 2.

Proof. Letee £\ (74) \AD) = A- U (€N 74)). If ee A, thenee 7 A-,Ve € E, and
henceM 4(e) =0.Ife ¢ 74) thenee ¢ ,_4) and hencé/ 4(e) = 0. Thus,M 4(e) > 0 =

ee Tél) \ Ar. Conversely, suppose that 74> \ A-. ThenJae A-:a#eeC a and
hencede € E: ee C a. ThusM 4(e) > 0.

Letae A°. Thendng>2: ac{Levy(no)}-. Thend 4(a) > ng, while ® 4(ae) < no,
Ve € E (otherwise

Lev4(no) > aec Ja€ {Leva(no)lr,

which is a contradiction). Henc&f 4(a) > 2. ConverselyM 4(a) > 2 implies that
Jde1,e2 € E:e1 # ep,8e1 € ,_4>,ae2 € ,_4) Sinceae; € ¢_4) i = 1,2), we have
D y(ae;) > 0. By Lemma IR ® 4(a) > P 4(ae1) + Pa(aer) > P 4(ae), Ve € E,
and hencea € {Lev4(d 4(a)}- C A°. O

Proposition 15. For any A € A, we have
—
p(A)y =1+ (1-Mua@)lal. ®)
ac A

Proof. Letm = #{A}. We prove[(B) by induction om:.
Form = 1, see Propositign 1[0(iii).
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Fig. 5. Nodes with different numbers of children in a tree. Boxéal: M 4(a) = 2}, circled:
{a: M y(a) =3}

For the induction step, lel- = {ai,...,a,+1} and defined; = {ay, ..., au},
Az = (@41} If @ny1 = [[F_; e, we note that

k
N
A = {e, e1,eeo, ..., Hei = aerl}-

i=1
Hence there exists 8 [ < k such that
1
_—
A1NAx = [e, e1, e1e2, ...,Hei = a}
i=1

(otherwisea,, ;1 T Ajz). Note thatM 4(a) = M 4,(a) + 1, while M 4(e) = M 4,(€)
for anye € A1 N Ay, e # a. Moreover, for any < p < k, MA(HlP:l-t,—l e;) = 1and
MA(]_[f?:Hl e;) = 0. By Propositioi),
(AL A2) = (A + () — (AN Ap)
= u(AD) + Gk + 1) — (+1)
= (1 —+ Z 1- MAl(a))|a|) + k —1 (byinduction hypothesis)

ae.Al
=1+ ) (1-My@)lal. O
ac A
Definition 16. LetX = {X,, n € N} be a process on afinite set of states= {es, ..., ey}

and adapted to the filtratiof;, = o(X;,i < n),n € N}. Let A € A4 be a set of ad-
missible stopping rules with respect<4o ThenX is said to be an4-dependent Markov
chain onkE if

Vej €E, P(Xn+l:ej | Fn) :P(Xn+1:€j [Gn),
—_—
whereG, = o ({(Xp—m, Xn-m+1, ..., Xn) € AU E},m < n).

An A-dependent Markov chain is therefore a process such that the transition probability

may depend only on the longest last path on the #ee £. Obviously,a stationary
Markov chain is an4-dependent Markov chain, for an.
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Theorem 17. Let E be a finite set of statesd € A4 be a set of admissible stopping
rules with respect tag and X be an.4-dependent Markov chain of. ThenX can be
embedded in a Markov chaik’ on E’, whereE — E’ and the cardinality ofE’ is
HAUE)—-1=>" (1 — My(a)lal (see Corollar@ for a trivial reduction of

aem
this number).

Proof. Let A = {a&3, ..., a,} € A be a set of stopping rules. #i, a, € A anda; < ap,
we can deletey as stated at the beginning of this section, and hehoeust be a set of
admissible stopping rules with respectto

Now, letE’ := m SinceX is an.4-dependent Markov chain, it follows that
can be embedded in a Markov cha&hon E’. SinceA € A 4 implies A € A, the number
of states inE’ arises from Propositi5, @ds not a possible state of the proc%s.

More precisely, for any state € E’, we will find the states of:” reachable frong
and their transition probability. We distinguish the following cases:
Case A:e € A. In this case we have reached the stopping state defined by the corre-
sponding rule. Then we will remain at: de.e = ¢, (€)).
Case B:ie; ¢ A. Letg = (e, ..., ¢;,). The Markov procesX has reached the state
ei,, (it will be consistent with what follows). Now, suppose tiajumps from the state
e;, to the statez;. We must find the corresponding state AU £ whereX’ jumps to.
The idea is thaX” will jump to (g, ¢;) if (&, ¢;) belongs tom. Otherwise, it will
jump to the “maximum” available site. For exampleFif= {1, 2,3}, e = (1,2, 1) and
e; = 3 the process will jump t@1,2,1,3) if (1,2,1,3) € m otherwise it will try
tojumpto(2,1,3).1f (2,1,3) ¢ m then the process will reach the sitk 3)—if
(1,3) € AU E—or at least(3).

Thus,forl =1,...,m+1, let
® €1 = €
° f} =€y v s Cipi)s
o r=min{l: f e AUEY:
and lete := fj’. be the state reachable fragn“via e;". We setge, e = Peiej

—> .

We have} . ge e = 1 foranye; € AU E, since}; pe.., = 1 for anyi. Moreover,
ge e > 0 and hence the proof is complete once we have proved that the new pkdégess
a Markov chain orE’. This is a trivial consequence of the fact thats an.4-dependent
Markov chain onE (and so the process we have defined is a Markov proce&s)on O

Remark 18. Note that the PMA framework suggests a trivial extension to some “pos-
sibly infinite” rules. The rulea; {ay}*az may be modelled as follows:
start a1 &2 a3
? a1—>»--—>a1 a2—>-~-—>a2 a3—><-<—>a3
1 nq T 1 np l 1 ng

1 Note thatA can be considered as a unique target absorbing Btétee Corollar@B).
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Even if the stopping rule is not finite (it contains the stopping rules of the form

{ag, ap, ..., ap, ag},
—_——

n times

for all n), it defines an embedding i’ = E U {a1, ap, az}.

4. Areduced graph Markov problem

Now, let X be a stationary Markov chain on an at most countableéEsahd letT C E
be the “target” absorbing states. We wish to compute the probability of rea&hing
time n, given the initial distributionx on E. If (2, F, P) is the underlying probability
space, we are accordingly interested in

n

Ph s =P(Jlo e 2: Xi@ eT)),
i=0

under the assumption th&({X° = i}) = w(i).

The problem is the following: is there a “minimum” sEtsuch that the problem may
be projected to a problem on a Markov chainfnfor any initial distributionu on E?

Note that, by the Total Probability Theorem, the previous problem is equivalent to the
following:

Problem 19 Let X be a stationary Markov chain on an at most countable/e&ind let
T C E be the “target” absorbing states.

e Is there a surjective function : E — F such thatr (X) is a Markov chain or¥ and

g

X
Pr s, () = P”éEf,aﬂ@,ﬂT)(”)’ Ve € E, Vn e NU{0} ? 9)
e s there a minimum sdf satisfying this relation?

Remark 20. In this problem, we are interested in the time of first entering the target
setT. Thus, without loss of generality, we may (and will—see Rerpatk 23) assumg that
is an absorbing set:

P{Xpt1€T}H{X, eTh =1
First, let us see the equivalent problem in the network framework.

Definition 21. A complete directed grapb a pair (E, E x E), whereE is a nonempty
at most countable set. @omplete networls a triple (E, E x E, P) where(E, E x E) is
a complete directed graph anel: E x E — R U {0}. AMarkov networkis a complete

network(E, E x E, P) such thatzeieE P(e,e;) =1foranye € E.
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Obviously, to any stationary Markov chaXi on a space seE may be associated a
Markov network onE since thep; ;-matrix associated with the process is linked to the
nonnegative functiorP by the relationP (¢;, ¢;) = p; ;, and vice versa. Note that no
probability space is required for Markov networks: the only important tool is the transi-
tion matrix P.

First, we extendP to IP in the classical way:

P: E xB(E) —> Ry U{0}

whereB(E) is the set of subsets df andP(e, A) = Ze[_eA P (e, ¢;). Obviously, for
eache € E, P(e, -) is a probability on(E, B (E)) that gives the conditional probability of
reaching given that we are in the stateP(e, A) = P({X,+1 € A} | {X, = €}).

Definition 22. Let (E, E x E, P) be a Markov network. Aarget sefl" is a subset of
such thatP(s, T) = 1forallt € T.

Remark 23. Any subset ofE may be chosen as a target $eby changing the Markov
network. In fact, if
Ple1,e2) ifer éT,

Ple1, e2) = {591(62) ifereT,

then(E, E x E, P) is a Markov network. Moreover,[9) trivially holds (see Re 20).
In the framework of stochastic processesis the conditional probability of the stopped
chain, where the stopping time is

_JinflneN: X, eT} ifinf{neN: X, eT}#0;
7T =1 400 otherwise

The choice ofT" to be a target set will simplify the notation (see the definitior/pfin
(10) compared with Lemnja 25).

Remark 24. Any target sef" of E identifies two extended sequencés, 7,),<Nuio, 00}
of subsets ok

Upg=Ty =T,
Up = SUppP(-, Up—1)) =fe € E: 3* € Uy—1: P(e,e*) >0},  (10)
T, = U, \ Uy_1, (12)
o0 o0
Too = E\|JUs=E\ | J T (12)
n=0 n=0

The last equality may not be obvious and it will be proven below (see L§mina 25), as
a consequence of monotonicity bf,’s. Note thatU,, is the set of states that can reach
T with positive probability in fewer tham + 1 jumps (there exists a path of positive
probability of length at most). Moreover,T,, is the set of states that can red€lwith
positive probability in: jumps and not less (the shortest path of positive probability has
lengthn). Thus, a state € 7,, may jump only tal},,_1 or to E\ U, _1. Finally, T is the set
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of states that cannot rea@h it is an absorbing set. The following Leming 25 summarizes
these statements. To compare with/[1Z2] may be seen as the “parking places at distance
n from our destinations” (in_[12], the parking places at distam@e the sites that can

reach the destinatidfi in n jumps and not less). This concept arises in a very natural way.

Lemma 25. Let (E, E x E, P) be a Markov network and’ be a target set. For any
n €N, U, € U,+1. Moreover, we have

P(t.T,) =0 « te| JTiUTw. (13)
i>2

P, T,) >0 < teTh, (14)

Pt,Too) =1 & t€Tx. (15)

Proof. We prove the assertion by induction anForn =0, sinceP(¢, Ug) =P(z, To) =1
foranyt € Ug = Tp, we havelUp C supaP(-, Ug)) = Ui. For the induction step,
sinceU,_1 € U, (and henceP(-, U,_1) < P(-, U,)), we have sup@(-, U,_1)) <
suppP(, Un)).

(13): 7, < U, impliesP(s, T,) = 0if r € E \ U,+1, by definition ofU,+1. The
statement is a consequence of the previous reBult x = Upt14k \ Unik € E\ Upa1,
Vk > 1.

(I4): By (13),P(s, U,_1) = 0. Moreover,T,, 41 C U,y1 impliest € U, 1. By defini-
tion of U, 11, P(z, U,) > 0. ThenP(z, T,) = Pz, U, \ U,—1) > 0.

(1I58) =: By contradiction, suppose that € U,: P((t, Tx)) = 1. SinceU,_1 <
E\ Tw, it follows thatP(z, U,—1) = 0, which is a contradiction.

«: By contradiction, assume thaét € Too, t* € E\Too: P(t,1*) > 0. BULE\ T, =
U, >0 Un, S03n > 0: t* € U,. By definition,r € U, 41, which is a contradiction. O

Remark 26. If T, = @, thenU,, = U,_1 and hencd/,,.; = U, for anyi > 0. Thus,
sinceE # ¢, we havel U Ty, # @. Infact, if T = @, thenU,, = @, Vn > 0, and hence

T~ = E. Moreover,T UT,, can always be mapped to at most two states, as the following
lemma shows.

Lemma 27. Let (E, E x E, P) be a Markov networkT" be a target setl as in(12),
andr andz., be extra points. Define

{too} if T =0,
F:={(E\T)U{t} if T £@PandTy = 9,
(E\(TUTx))U{t,too} if T # @ andTy # 0.

Then there exists a functionsuch tha{(9) holds.
Proof. We will give the proof for the cas& # ¢ andT« # @, since the first case is

trivial (pgae,@(n) = 0 for anyn € N ande € E) and the second case is a special case of
the third one.
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Letrw : E — F be the “trivial” projection:

oo if e € T, (16)

e ifee E\(TUTy),
w(e) =
t feeT.

Note that, by Remark 26 is well defined also for the first two cases.
On F x F, we consider the functioR, : F x F — R U {0},

P(fi, 7 Y(f2)) if f1 &, teo), 17)

Pr(f1, f2) :Z{Sfl(fZ) if fLeft o}

Note thatP, is well defined, sincer : E \ (T U Ty) — E \ (T U Ty) is the identity
function. Thus(F, F x F, P;) is a Markov network and we need to prove thak) has
transition matrixP; to prove the assertion. We must therefore check that, fonaayN
and any( fo, ..., fn) € F"t1,

P({r(Xo) = fo,n(X1) = f1,.... 71(Xp-1) = fau-1, 7(Xpn) = fu})

=P({n(Xo) = fo) [ [ P=(fic1. ). (18)
i=1

We prove it by induction om. We will use (without citing them) the obvious facts that
ae€T & n(a) =tanda € Ty, & 7(a) = tx (consequences of the fact that=
7Y (T))).

Forn =0, the statement is obvious. For the induction step, the caB¢{af( Xo) = fo,
7(X1) = f1,...,7(X,—1) = fu—1}) = Qs trivial, hence we deal wit®({ (Xg) = fo,
7(X1) = f1,..., 7(X,-1) = fn—1}) > 0. We may have three cases.

Case A:f,—1 € {t,tx0}. Sincem(e) = e whene € E \ (T U Ty), it follows that
7 (Xn-1) = fo-1 < Xu—1 = fy—1, and hence

P (Xo) = fo. 71(X1) = f1, ..o, 71(Xn_1) = fr1, 7(Xp) = fu})
= P({T[(Xo) = va e X1 = fn—l» (X, = fn})
= P({n(Xn) = fu} [ {Xo € 77 2(f0)s .., Xne1 = fu1))

“P({Xo e n fo), . Xn1 = fuo1)) .
b

SinceX is Markov, we have

a=P{rn(Xy) = fu) [ {Xo € 7 (fo)s .., Xu—1 = fu_1))
=P{Xn € 7 X {Xno1 = fuo1)) = P(fu_1, 7 2(f)).
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Moreover, by the induction hypothesis,
b=P{r(Xo) = fo,7(X1) = f1,..., Xn-1= fu—1})

n—1
= P({w(Xo) = fo)) [ | P (fi-1. fi).
i=1
Hence

P({r(Xo) = fo,n(X1) = f1,...,7(Xn-1) = fu—1, T1(Xn) = fu})
n—1

=P(fu-1. 7 HS)PE(X0) = fo) [ | Pe(fiz1. £1)
i=1
= P({w(Xo) = fo)) [ [ Px(fi-1, fi)-
i=1

Case B:f,—1 =t. We haveX,_1 € T. By Definition[22,{X,-1 € T} C {X, € T} a.s.
Now assume thaf, = ¢. Since{X,_1 € T} C {X,, € T},
Pr(Xo) = fo, (X1 = f1,.... 71(Xp-1) = fu-1, 7(Xn) = fu})
=P{r(Xo) = fo. (X)) = f1,...., Xpn-1€T, X, €T}
=P({r(Xo) = fo,n(X1) = f1,.... Xp-1€T})

n—1
= P({7(Xo) = fo) [ | Px(fi-1. /i),
i=1

where the last equality is a consequence of the induction hypothesjs.|BY{17):) = 1,
and hencd (38) holds.

Next, assume thaf, # ¢. Since{X,_1€ T} C {X, € T},
P({r(Xo) = fo, m(X1) = f1, ..., 7(Xn-1) = fu—1,7(Xn) = fu}) = 0.
By (I7), P: (¢, f) =0,V f # t, and hencd (18) trivially holds.

Case C:f,,—1 = too. By (I8),{X,—1 € Txo} € {X, € T} a.s. The proof is the same as
above, after replacingandT with 7o, and T, respectively.

Thus(n(E), 7 (E) x 7 (E), Py) is a Markov network associated to the Markov chain
7(X) onz(E). The equality[(P) is now obvious, since

U{w €Q Xi(w)eT}= U{a) € Q: 7(X;)(w) € n(T)}

i=0 i=0
and hence
1 ifeeT
PEs =10 ife € T = PE sty () O

PE oy ifedTUTy



68 Giacomo Aletti, Ely Merzbach

Corollary 28. With the same hypotheses as in Thediefnif we are only interested in
the probability of reaching the target sgt, then the cardinality o2’ may be reduced at

leasttou (AU E) — u(A).

The proof of Lemmf 37 suggests the following definition, which will be a characterization
of = as given in[(P) for the network framework.

Definition 29. Let (E, E x E, P) be a Markov network]" be a target set and” be a
nonempty set. A function = =7 : E — F is called aprojectionif the following two
properties hold:

e 7 iS surjective:F = n(E);
o T =n"Yx(T)).

A projectionr : E — F is said to becompatible with respect t@ if there exists
P; . F x F — R4 U {0} such that the following diagram commutes:

E x P(E)

]

ExF —>R+U{O} (19)

-
-
T -
~ Py
-

F x F

Remarks 30. ¢ A projectionz” divides the target s&t from the rest of the states. This
is the second characteristic in the projection’s definition, and will englire (9).

o Note thatF may be embedded #8(E) via = 1. For simplicity, we have denoted this
embedding byF — PB(E) and we have considerétlto be defined also off x F:
P(e, f) = P(e, 7 (/).

e A compatible projectionr is a projection such that is well defined on the quotient
setF: forevery f € F,if n(e1) = n(e2), thenP(e1, 1~ 1(f)) = P(ea, #~1(f)) (this
will ensure thatr (X) is a Markov chain ifX is a Markov chain ork with transition
matrix P).

e The functionr : E — 7 (E) defined in[(Ip) is a compatible projection (also called the
trivial projection), where P, that makes the diagram commute is just that of the proof
of Lemmd2Y.

e Acompatible projection divides the séffs, which pass to the quotient, as the following
proposition states.

Proposition 31. Let(E, Ex E, P) be aMarkov networkl atargetsetana” : E — F
a compatible projection. Then, for any € N U {0}, U, = =% (U,)), and hence
T, = n Y7 (T})). Moreoverz (Uy,) = (1 (Up)),, and hencer (T},) = ((T)),.
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Proof. We prove the first part by induction on Forn = 0, by definition of projection,
Uo=T = 7Y@ (T)) = =1 (Up)). For the induction step, by contradiction, suppose
that there exists € E \ U,1 such thatr(e) € 7 (U,+1). Hence, there exists® € U, 11
such thatr (e) = m(e*) =: f. But then we have

0="Pe,Uy) =Ple, 7 '(xUn) = Y Ple,n (2)

gen(Uy)
= Y Pum.g)= Y Pu(fie)= Y Pr(u(e").g)
gen(Uy) gen(Uy) gen(Uy)
= Y Pt a @) =P, 7w (Uy) =P(e*, Uy) > 0.

gen(Un)

The fact thatf,, = 7 ~1(x(7},)) is now trivial. We prove the second part also by induction
onn. Forn = 0, by definition ofUp := T, (w(Up))o = 7 (Up). For the induction step,

by (10),

@Uo)nrr=1{f € F:3f" € (wUo))n: P (f, f*) > 0}
={feF:3f  en(Uy: P(f. [*) >0}
={feF:3eecn i(f), e € x X7 (Uy)): Ple,e*) > 0}
=n({e€e E:3e* c U,: P(e,e*) > 0}) =w(Uys1). O

Remark 32 (Back to the examples)By Propositiorf 3L, Examplg 2 in Sectiph 2 cannot
be projected on Markov processes with fewer states, since each state corresponds to a
different7,,.

The following theorem relates the projections on Markov chains and networks.

Theorem 33. Let X be a Markov chain oif and letr : E — F be a surjective function.
Thenn (X) is a Markov chain or¥ iff (I9)holds.

Proof. =: Let Y = #(X). SinceY is a Markov process ot, there exists a “usual”
transition matrixQ. By contradiction, suppose there existe; € E and f € F such
thats (e1) = 7(e2) = f* andP(e1, 7 1(f)) # Ple2. 7 1(f)).

This contradicts the fact that is a Markov process: take the two initial distributions
80,1 =1,2(i.e.Xg = ¢ a.s.,i = 1,2). For both starting points, we havg = f* a.s.
SinceY is a Markov chainP({Yo = f*, Y1 = f}|[{Yo = f*}) = Qy+, r, which does not
dependon = 1, 2.

«: First, we have to prove thak,(f1, f2) > 0,V f1, fo € F. This is a conse-
quence of the fact thal, (f1, f) = P(e1, 7~ 1(f2)), wheree; € 7 1(f1) (the exis-
tence of such am; is a consequence of the fact thats surjective). Second, we prove
that Y cr Pr(f1, f) = 1,Vf1 € F:sincex *(fi) Nn~1(f;) = 0, Vf; # f; and
E =sep (), we have

S P NS e, w7 () = Pler, T) = 1

feF feF
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We must check that, for anye N and any( fo, ..., f,) € F**1,

We prove this by induction on. Forn = 0, it is obvious. For the induction step,
P{n(Xo) = fo.---, (X)) = fu})
=P(Xoer '(f0), .-, Xn €T (f)])

=p( U {X0=xo,...,Xn=xn})

(x05-+-» Xp)€
77 (fo)xxm 7L f)

= Z P Xo=x0,..., Xpn = xn})

(xO ----- Xn)€
77 fo)x - xm 7L f)
= > Y P{Xo=x0.....Xp=x}). (20)
(X0, Xn—1) € xper~1(f)

77 fo) x - xm 7L fum1)

SinceX is Markoyv, it follows that

Y. PXo=x0.....Xpo=xH= Y P{Xo=uxoD)[]Pxi-1,x)

xper—1(f) xnex~(fy) i=1

n—1
=P((Xo=xo) [ [ PGicr.x) - Y P(xa—1, %)
i=1 xneﬂil(fn)
n—1
=P({Xo=xo) [ [ PGxi—1. x;) - PCra—1. w1 (fa)

i=1
n—1

=P({Xo=xoD) [ [ PGi-1. %) - Pe(fu1. fo), (21)
i=1

the last equation being true Hy {19) since.1 € 77 fo—1). Now, if we substitute[(31)
in (20), we obtain the assertion by the induction hypothesis:

P(r(Xo) = fo, .-, 7(Xn) = fa})

n—1

= Pr(fa-1, f) > P({Xo = xo}) [ [ PCxi-1. %)

(x0>-~-,xn—1)€ =1
7 fo) - x L (frm1)

= Pr(fu=1, fu) - P({n(Xo) = fo, ..., 7 (Xy—1) = fu-1})
= P({Xo = xo)) [ [ Px(fi1. fi)- O
i=1



Stopping Markov processes and first path on graphs

Theorem 34. Let (E, E x E, P) be a Markov network an@ be a target set. Them =
7T . E — Fis acompatible projection if{@) holds.

Proof. We will make use of the following trivial fact:
(@aeT & n) en(T) & (T=n"x(T))). (22)
«<: We must prove thal' = 7 ~1(7(T")). Since
Sr(e)=Prs 710 =1 & eeT,
Sur) (@) =Prs 2@ =1 & () € (),
it follows that [9) implies that € T < 7 (e) € n(T). By (23), we have the assertion.
= We prove[(9) by induction on. Forn = 0, by [22),
P 510 = 570) Borry (@) = PLy. 2O

For the induction step, by Theordm|38,andY = 7(X) are both Markov chains, and
hence

Prs,rn+D =Y Ple.e)Pis, rm)=Y Y  Plee)Pgs, r(n)

ek feF epen=1(f)
= Z P;,f,n(T)(”) Z P(e,er) (byinduction)
feF eren=1(f)
= Z P;,f,n(T)(”) P(e, 7 1(f))
feF
=" Pr(a(e). ) Pf prerym)  (by (T8))
feF
= P}«in(a(,) @+ 1. O

Lemma 35. Letm; = ”1 E — F1 be a compatible projection with respect foand

: F1 — F be afunction. Them” := 7107 : E — F is a compatible projection

7 (T) .

Wlth respect taP iff m, = 7, is a compatible projection with respect R;,lr.

Proof. =: Sincer is surjective,r, is trivially surjective. Moreoverl = 7~1(n(T))
meansT = 7; (L (m2(1(T)))), which impliesm1(T) = 7, *(m2(71(T))). Note that
the following diagram commutes:

F1 x P(F1)

] o

F1XF—>R+U{O}

~
2 -
7 P
-

F x F

«: This is just a consequence of the compatible projection’s definition. O
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Remark 36. We may say that two compatible projections = an . E - Fy;and

2 . E — Fy are equivalent if there exists a compatible bijection F; — F,. Then
there exists a natural partial orderon the set of compatible projections: we say that
7. E— F <7 :E— F'iffthere exists a compatible projectiort : F' — F such
thatr =n* o',

Note that a minimal sef for Problen] IP must be minimum in the set of compatible pro-
jections. The following part will ensure that for any Markov networkand any target
setT, there exists “the” minimal set on which the Markov network can be projected.

We denote b)E the set of all equivalence relations énWe introduce a partial order
FonE. LetR, S € E.We say thatk F S if e1 R ez impliese; S ez (if you think E as the
set of all men anR is “belonging to the same state” whikeis “belonging to the same
continent”, themR = S). The relatior is just set-theoretic inclusion between equivalence
relations, since any relation is a subsefok E.

Lemma 37. LetK C E be fixed. Then there exis§& € E such thatk F Sk for all
R e Kandif§ € EissuchthatkR E ' forall R € K, thenSg £ §’ (Sk is calledthe
least majoranof K).

Proof. First, note that the trivial relatiofl = E x E (defined byeq T e for all (e1, e2) €
E x E)is a majorant oK. Set

Sk =()iSeE: S22 Rforall R € K}.

ThenSk is trivially an equivalence such th&tF Sk, VR € K, and ifS’ € E is such that
RES' VR € K,thenSk E §'. O

Forany sef’ C E, let Rg: be the equivalence relation Kicorresponding to the partition
of Einto E’ andE \ E’.

Lemma 38 Let (E, E x E, P) be a Markov network7 be a target set, and leé€ =
{ne = nl : E - F,,a € A} be a family of compatible projections with respect to
the sameP. Then there exists a familfx = {r, = n’”"(r) Fy — F,a € A} of
compatible projections with respect to the indudgg such thatr = ), o 7, does not
depend ornx.

Proof. First, note that any projectiom induces trivially an equivalence relatidty, on
E x E given bye1 Ry e2 < m(e1) = m(e2). We setk = {R,,,a € A} and denote by
Sk the least majorant o defined in Lemmp 37. Lef := E/Sk andx be the canonical
projection of E onto E/ Sk . We want to prove that is a compatible projection.

First, let us prove thal' = 7 ~1((T)). SinceT = 7, X(74(T)), Ve, itis sufficient to
note thatR,, F Rr, Vo (R is the partition ofE into 7 andE \ T), and henceg F Rr.

Second(T9) also holds. Let € E be fixed. We want to characterize theset (7 (e)).
Leta € A" be avectorofA” = A x --- x A. We define:

\—/—J

n times

Eg’nz{feE:EI(e:eo,el,...,e,,zf)eE”:ei_anaiei,izl,...,n},
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E = J Ey, E‘=|JE.

acA” neN

Now, we are going to prove tha E Rge andE¢ = 7~ 1(1(e)).

For Sk E Rge, we will prove that, for anyr, R;, F Rge. By contradiction, suppose
there exist; € E¢, s € E \ E? anda € A such that; Ry, e2. Sincee; € E€ we have
e1 € E¢ for somen, sayng, and therefore there is € A" such thak; € E¢ Take

o,ngt
o = (o, ) € A" Thenes € EY, o1 which is a contradiction.

For E¢ = 7~ Y(n(e)), sinceR,, F Sk, we haveE¢ C (7 (e)) (Sk is transitive),
andE¢ D 7~ 1((e)) is just a consequence 6k = Rge.

Foranye e Eandf € F,letp, y = P(e, 7-1(f)). We have to prove thap,, ¢
pe.r if m(e) = m(e') or, equivalently, ife Sk ¢’. Under this hypothesis, sincg® =
n~1(w(e)), there existgx € A" such that’ € E¢, ,, i.e.

n?

de=-eg,e1,...,en=¢) € E": ei—1 Rz, € i=1...n

Note thatzr ~1(f) < ;Y (P(Fy)) for all a, sinceR,, F Sk (and hence we have
1Y f) = n; (e (rL(f))), Yar). Therefore, forany =1, ..., n,

Pei 1. f = Pra, (Tay (€i-1), oy (1)) = Pry, (T (€0), Tey (T H)) = pey f»

which leads to the statement of the lemma: the existendg ef {r/, « € A} is ensured
by Lemmg 35. O

Theorem 39. Let(E, E x E, P) be a Markov network an@ be a target set. There exists
a minimal setF as discussed in Problefi§ If F’ is another minimal set, there exists a
bijection® : F — F’ which is a compatible projection.

Proof. LetK = {7, = nl : E — F,, a € A} be the set of all compatible projections
with respect taP. Then there exists a compatible projection= 77 : E — F such that
7 < 7y, Yo, by Lemmg 3B. Hencé is a minimal set.

Now, suppose that’ is another minimal set (there exists: E — F’ which satisfies
the hypothesis in Problen [19). Note thdte K and hencer < 7’. Conversely, since’
is minimal,7’ < = by Lemmd 3b, and the result follows by Remfrk 36. u]

5. Translation into category theory

What we have obtained in the previous section may be reread in terms of categories
(seell9)]).
Let O be the objects given by the triplég, T, P), where:
e E is an at most countable set;
e T is a subset of;
e P E x E — R, with the following properties:

—VYeeE,Y Ple,) =1,
- P Y0, 00)N(T'XxE)CT xT.
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Let.4 be the morphisms given by the mai@#s, T, P) L (F, S, R), where:

e 7 iS a surjective set function frora to F;
o S=n(T), T =xL);
o the following diagram commutes:

E x P(E)

(IdE,ﬂl)J\ X

E x F RJ’_U{O}

Po(lde. ™l _ ~
(n,IdF)J _ -7

-~ R
FxF
where Iz : E — E is the identity map orE, P(E) is the power set o and
P(e, A) = Ze,-EA P((e, e})).
Obviously we have the two functions
dom

A= 0

cod

where, if f := (E, T, P) >(F, S, R) € A, then donif) = (E, T, P) and codf) =
(F, S, R). The couple(O, A) is hence a graph. Letl x» A be the set of composable
morphisms:

Axo A={(g, : g, f € Aanddontg) = codf)}.
Note that the identity set function gddefines a morphism

. Id
idz.7.p) = (E, T, P)=5(E,T, P)

which is trivially in A, and hence we may define the funct'(Onig A such that
dom(idg 7,p)) = (E, T, P) = codidg T, p)).

Moreover, Lemm@S states that there exists a functlorp A > A where, if f =
(E, T, P) 3 (F1, S1, Ry) € Aandg = (F1, S1, R1) 3(F, S, R) € A, we have

Q0]

fog:=(E,T,P) —(F,S,R).

Sincernz o (w2 0o 1) = (73 0 ) o 71, itis straightforward to prove thad x» A S Ais
associative. For any, ¢ € A with dom(g) = cod(f) = (E, T, P) we have

idig,r.pyof = f,  goidwr.p) =28,
and henceO, A) is a category. We call it BIGNET.
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Now, let PRENET= BIGNET/R, whereR = R, is the relation between the mor-
phisms on BIGNET given by

@D Rip@lb) & 3050 f=fog.

As a consequence of Leming 38, it is straightforward to see that PRENET is a preorder.
Remarl{ 3p states that PRENET may be reduced to the ordered universal category

NET, by identifying the objects, b where3(a EA b), (b 5 a). The orderx is given by
b<a<s I EA b). Theore states that NET has the least majorant property.
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