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Abstract. Given a strongly stationary Markov chain (discrete or continuous) and a finite set of
stopping rules, we show a noncombinatorial method to compute the law of stopping. Several ex-
amples are presented. The problem of embedding a graph into a larger but minimal graph under
some constraints is studied. Given a connected graph, we show a noncombinatorial manner to com-
pute the law of a first given path among a set of stopping paths. We prove the existence of a minimal
Markov chain without oversized information.
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1. Introduction

Let Xn be a stationary Markov chain (process) on a finite setE with transition matrixP
(intensityQ). The Markov process stops when one of the given stopping rules applies.
We assume the rules take a very general form that will be described in the following.
The problem of finding the stopping law may be solved by embedding the Markov chain
into another Markov chain on a larger state set (the tree made by both the states and the
stopping rules). The desired law is then obtained from the transition matrix of the new
Markov chain.

Unfortunately, this new Markov chain may be so big that numerical computations
can be not practicable. The problem here is to find a way of compressing the oversized
information. In this paper, we present a new method permitting to obtain a projection of
the Markov chain into a “minimal” Markov chain which preserves probabilities.

The problem of finding general closed forms for different kinds of waiting problems
is widely studied. As an example, Ebneshahrashoob and Sobel [6] derived distributional
results for the random variables in the case of Bernoulli trials. Several extensions have
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appeared recently to Markov-dependent trials via combinatorial or Markov chain embed-
ding (see, e.g. Aki and Hirano [2]; Antzoulakos and Philippou [3]; Koutras and Alexan-
drou [7]) and in general closed forms by Stefanov [10].

Stefanov and Pakes [11] explicitly derive the joint distributions of various quantities
associated with the time of reaching an arbitrary pattern of zeros and ones in a sequence of
Bernoulli (or dependent) trials. The methodology is based on first embedding the problem
into a more general framework for an appropriate finite-state Markov chain with one
absorbing state and then treating that chain using tools of exponential families.

The motivation of our work comes from many situations.

(i) In finance the filter rule for trading is a special case of the Markov chain stopping
rule suggested by the authors (see [8]).

(ii) “When enough is enough”! For example, an insured has an accident only occasion-
ally. How many accidents in a specified number of years should be used as a stopping
time for the insured (in other words, when should the insurance contract be discon-
tinued)?

(iii) State dependent Markov chains.Namely, the transition probabilities are given in
terms of the history. For simplicity consider the decision to stop if we get two identi-
cal throws (11, 22, 33, . . . , nn) (for example, whenn = 2, an insured has two kinds
of accidents in a row, one each year, and his contract is discontinued, or an insured
has no accidents two years in a row and therefore he is “promoted” to a better class
of insured). If the probability of a switch fromhm to mk is denoted byphm,mk then
the Markov transition matrix has the form:

11 12 . . . 1n 21 22 . . . 2n . . . n1 n2 . . . nn

11 p11,11 p11,12 . . . p11,1n 0 . . . 0 . . . 0 0 . . . 0
12 0 0 . . . 0 p12,21 p12,22 . . . p12,2n . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1n 0 0 . . . 0 0 0 . . . 0 . . . p1n,n1 p1n,n2 . . . p1n,nn
21 p21,11 p21,12 . . . p21,1n 0 0 . . . 0 . . . 0 0 . . . 0
22 0 0 . . . 0 p22,21 p22,22 . . . p22,2n . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
2n 0 0 . . . 0 0 0 . . . 0 . . . p2n,n1 p2n,n2 . . . p2n,nn
...

...
...

...
...

...
...

...
...

...
...

...
...

...
n1 pn1,11pn1,12 . . . pn1,1n 0 0 . . . 0 . . . 0 0 . . . 0
n2 0 0 . . . 0 pn2,21pn2,21 . . . pn2,2n . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
nn 0 0 . . . 0 0 0 . . . 0 . . . pnn,n1 pnn,n2 . . . pnn,nn

(1)

which can be analyzed for the stopping time by the usual methods. Obviously, in
many situations (e.g., ifphm,mk = pm,k ∀h 6= m), this matrix has a special structure
and can be reduced. This is the applied part of the paper: When a big matrix can be
shrinked then the paper provides a mechanism for handling the stopping time issue.
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(iv) Medical sciences: given that the length of a menstrual cycle has a known distribution,
what is the probability that the length of a woman’s menstrual cycle is the same three
consecutive times?

(v) Small-world networks. Given one of the networks as in Figure 1, is it possible to
reduce it and to preserve the law of reaching a given absorbing state?

Fig. 1.Networks that may be shrinked.

There are of course many other such examples (e.g., records: Arnold, Balakrishnan, and
Nagaraja [4] and optimization: Cairoli and Dalang [5]).

In the next section, we present some examples in which our method is used, giv-
ing elegant solutions to some cumbersome combinatorial problems. It happens that this
framework is very well adapted to the language of graphs.

In Section 3, using some tools from Pattern-Matching Algorithms, we discuss the
problem of embedding a graph into a larger but minimal graph when some constraints are
imposed.

Section 4 is devoted to finding a necessary and sufficient condition for a projection to
be compatible. Moreover, we can prove the existence of a minimal Markov chain with-
out oversized information. Finally, in the last section, we show that our results can be
translated very easily into the language of Category Theory, leading to a neat and concise
formalism.

2. A combinatorial problem

Let X = {Xn, n ∈ N} be a Markov chain on a finite state spaceE = {e1, . . . , en}:

e1 . . . en

e1 p1,1 . . . p1,n

...
...

. . .
...

en pn,1 . . . pn,n

 =: P

The process is stopped when it reaches one of some given statesF := (eni
)ki=1 ⊆ E. We

can permute the order of the states so thatF = {e1, . . . , ek} andE \ F = {ek+1, . . . , en}.
To compute the law of stopping, we may consider a new Markov chainX′

= {X′
n, n ∈ N}

onF ∪ (E \ F):
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F . . . F E \ F . . . E \ F

e1 . . . ek ek+1 . . . en

F e1 1 . . . 0 0 . . . 0
...

...
...

. . .
...

...
. . .

...
F ek 0 . . . 1 0 . . . 0

E \ F ek+1 pk+1,1 . . . pk+1,k pk+1,k+1 . . . pk+1,n
...

...
...

. . .
...

...
. . .

...
E \ F en pn,1 . . . pn,k pn,k+1 . . . pn,n


=: P ′

Thus, the probability of reachingF by timen is reduced to the computation of then-th
power ofP ′:

P
( n⋃

i=1

{Xi ∈ F }

)
= P({X′

n ∈ F }) =

p0︷ ︸︸ ︷
[p0

1, . . . , p
n
0](P ′)n



1
...
1
0
...
0



}
k terms}
n − k terms

. (2)

Obviously, there may be some oversized information in (2). In fact, there exists a trivial
reduction (see Corollary 28) which preserves the above calculation for anyn ∈ N and
initial distributionp0:

P
( n⋃

i=1

{Xi ∈ F }

)
=

[ k∑
i=1

p0
i , p

k+1
i , . . . , pn

0

] 
1 0 . . . 0∑k

i=1 pk+1,i pk+1,k+1 . . . pk+1,n
...

...
. . .

...∑k
i=1 pn,i pn,k+1 . . . pn,n


n 

1
0
...
0

 .

Example 1. The processX′ for the problem of state dependent Markov chains given in
(1) is accordingly defined by the transition matrix

11 12 . . . 1n 21 22 . . . 2n . . . n1 n2 . . . nn

11 1 0 . . . 0 0 . . . 0 . . . 0 0 . . . 0
12 0 0 . . . 0 p12,21 p12,22 . . . p12,2n . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1n 0 0 . . . 0 0 0 . . . 0 . . . p1n,n1 p1n,n2 . . . p1n,nn
21 p21,11 p21,12 . . . p21,1n 0 0 . . . 0 . . . 0 0 . . . 0
22 0 0 . . . 0 0 1 . . . 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
2n 0 0 . . . 0 0 0 . . . 0 . . . p2n,n1 p2n,n2 . . . p2n,nn
...

...
...

...
...

...
...

...
...

...
...

...
...

...
n1 pn1,11pn1,12 . . . pn1,1n 0 0 . . . 0 . . . 0 0 . . . 0
n2 0 0 . . . 0 pn2,21pn2,21 . . . pn2,2n . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
nn 0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 1

(3)



Stopping Markov processes and first path on graphs 53

11

1

22 2 n nn

. . .

. . .

1 2 . . . n

11 22 . . . nn

Fig. 2. Two representations of the Markov network given in Example 1. The final statesii are
generated by the stopping ruleS = inf{i : Xi−1 = Xi}.

When phm,mk = pm,k ∀h 6= m, X is a Markov chain. Moreover, the solution is the
cumulative distribution of the stopping time

S = inf{i ∈ N : Xi−1 = Xi}

and therefore the previous matrix may be reduced to

11 22 . . . nn 1 2 . . . n

11 1 0 . . . 0 0 0 . . . 0
22 0 1 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

nn 0 0 . . . 1 0 0 . . . 0
1 p1,11 0 . . . 0 0 p1,2 . . . p1,n
2 0 p2,22 . . . 0 p2,1 0 . . . p2,n
...

...
...

...
...

...
...

...
...

n 0 0 . . . pn,nn pn,1 p1,2 . . . 0

T 1 2 . . . n

T 1 0 0 . . . 0
1 p1,11 0 p1,2 . . . p1,n
2 p2,22 p2,1 0 . . . p2,n
...

...
...

...
...

...
n pn,nn pn,1 p1,2 . . . 0

The processX′ given by (3) is therefore the extension of the processX on the graph of
Figure 2. The couple(X, S) “builds” a new processX′ on a tree (see Theorem 17). The
processX′ is “tree-adapted” (specified in Definition 16).

The Markov chainX′ may have a lot of oversized information, as the following ex-
ample shows.

Example 2. What is the probability that the length of a woman’s menstrual cycle is the
same three consecutive times? If the length of a menstrual cycle is uniformly distributed
between 25 and 35 days (and the lengths of menstrual cycles are independent), then the
process may be seen as a Markov chain onE = {25, . . . , 35}, where

P =

1/10 . . . 1/10
...

. . .
...

1/10 . . . 1/10


and the problem is related to the stopping time defined by

S = inf{i ∈ N : Xi−2 = Xi−1 = Xi}.
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The processX′ has 21 states (see Corollary 28) and its transition matrix is defined in (4).

T 25.25 26.26 . . . 35.35 25 26 . . . 35

T 1 0 0 . . . 0 0 0 . . . 0
25.25 1/10 0 0 . . . 0 0 1/10 . . . 1/10
26.26 1/10 0 0 . . . 0 1/10 0 . . . 1/10

...
...

...
...

...
...

...
...

...
...

35.35 1/10 0 0 . . . 0 1/10 1/10 . . . 0
25 0 1/10 0 . . . 0 0 1/10 . . . 1/10
26 0 0 1/10 . . . 0 1/10 0 . . . 1/10
...

...
...

...
...

...
...

...
...

...
35 0 0 0 . . . 1/10 1/10 1/10 . . . 0

(4)

The previous example can be simplified by considering the processZn with the fol-
lowing three states:

Ê =

1 if Xn−1 6= Xn and∃N ≤ n : XN−2 = XN−1 = XN ,

2 if Xn−2 6= Xn−1 = Xn and∃N ≤ n : XN−2 = XN−1 = XN ,

3 = T if ∃N ≤ n : XN−2 = XN−1 = XN ,

with initial distributionp̂1 = [1, 0, 0] and matrix

1 2 3= T

1 p 1 − p 0
2 p 0 1− p

3 = T 0 0 1

 =: P̂

wherep = 9/10. In general, for solving this problem it is sufficient to note that

P̂ = ADA−1,

where

A =

1 p+

√
−3p2+4p

2p

p−

√
−3p2+4p

2p

1 1 1

1 0 0

 ,

D =


1 0 0

0 p+

√
−3p2+4p

2 0

0 0 p−

√
−3p2+4p

2

 ,

A−1
=


0 0 1

p −
p−

√
−3p2+4p

2 −
p+

√
−3p2+4p

2

−p
p+

√
−3p2+4p

2
p−

√
−3p2+4p

2

 1√
−3p2 + 4p

.
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Fig. 3.Cumulative probability, probability density and hazard function for Example 2.

Hence

FS(n) = 1 −

(
p+

√
−3p2+4p

2

)n+1

p
√

−3p2 + 4p
+

(
p−

√
−3p2+4p

2

)n+1

p
√

−3p2 + 4p
(5)

and the corresponding hazard rate is

HS(n) = P(S = n | S ≥ n) =
FS(n) − FS(n − 1)

1 − FS(n − 1)

= 1 −

(
p+

√
−3p2+4p

2

)n+1
−

(
p−

√
−3p2+4p

2

)n+1

(
p+

√
−3p2+4p

2

)n

−

(
p−

√
−3p2+4p

2

)n
. (6)

Equations (5) and (6) may be applied withp = 9/10, leading to (see Figure 3)

FS(n) = 1 −
100

9
√

117

((
9 +

√
117

20

)n+1

−

(
9 −

√
117

20

)n+1)
and

HS(n) = 1 −
1

20

(9 +
√

117)n+1
− (9 −

√
117)n+1

(9 +
√

117)n − (9 −
√

117)n
.

What are we doing? In fact, we made a projection from a big Markov chain onE′ :=
{25, 26, . . . , 35, 25.25, 26.26, . . . , 35.35, T } (with the matrix given by (4)) to a smaller
Markov chain onÊ = {1, 2, 3} which preserves probability, as stated in Theorem 34.
This projection is minimal (see Remark 32) and is unique, as stated in Theorem 39.
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This result ensures that there exists a minimum Markov chain to which a large class of
stopping problems may be reduced. Numerical efficient algorithms for such reduction and
for ε-approximations of the problem in suitable spaces would be a real “chaos reduction”
algorithm.

3. A graph generalization

Let X be a Markov chain on a setE. We denote byE the free semigroup with generators
the elements ofE, i.e.

E := {e = (e1, . . . , en) : el ∈ E, n ∈ N}.

We denote byε the unity (empty element) ofE . A “word” e will also be briefly denoted
by e = (e1, . . . , en) =

∏n
i=1 ei .

In another context (Pattern-Matching Algorithms, here PMA, see [1]), the setE is
called thealphabet, ε theempty string, and if we denote byL the language given by the
strings inE thenE is theKleene closureof L: E = {E}

∗. HenceE is a regular language.
Thestopping rulewe consider here is a finite subsetA of E : the Markov process ends

when an element ofA occurs for the first time (in PMA, the problem is to find the first
time we obtain{E}

∗A). Note that a stopping rule cannot be a substring of another stop-
ping rule (otherwise, the latter can never occur: the process is stopped when its substring
occurs). Thus, we will require that the elements inA are not comparable with respect to
the relationC of “being a substring of”.

The problem is solved by embeddingE in a directed tree with rootε, first generation

{E} and tree leavesA. We denote this set by
−−−→
A ∪ E.

In this context, a tree is a particular subset ofE . Its nodes are identified by the fact that
if a string belongs to the tree nodes, any of its substrings will also belong to it. The relation
“being a prefix of” will be denoted by@. The nodes in a tree are hence partially ordered
by @. The edges of the tree will be defined by means of the partial order@ (successors,
see (7)).

The first problem we study here is: givenA, what is the size (number of nodes) of
−−−→
A ∪ E? Equivalently, we are asking how many states the resolving Markov problem has.

3.1. Size of a tree

Two partial order relations are naturally defined onE : for all e1, e2 ∈ E ,

e1 @ e2 if ∃e3 ∈ E : e1e3 = e2,

e1 C e2 if ∃e3 ∈ E : e3e1 @ e2.

Lemma 3. The following conditions are equivalent:

• e1 ande2 are comparable (e1 @ e2 or e2 @ e1);
• ∃e3 ∈ E : e1 @ e3 ande2 @ e3.
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Proof. ⇒: Supposee1 @ e2. Thene1 @ e2 ande2 @ e2 (takee3 = e2).
⇐: Let e3 = (e31, . . . , e3n). Sinceei @ e3 (i = 1, 2), we haveei = (e31, . . . , e3ni

)

with ni ≤ n, i = 1, 2. If n1 ≤ n2, thene1 @ e2. Otherwise,e2 @ e1. ut

In PMA, e1 @ e2 iff e1 is a prefix ofe2, while e1 C e2 iff e1 is a substring ofe2. These
relations extend to subsets ofE . For anyA1,A2 ⊆ E , we say

A1 @ A2 if ∀a1 ∈ A1, ∃a2 ∈ A2 : a1 @ a2,
A1 C A2 if ∀a1 ∈ A1, ∃a2 ∈ A2 : a1 C a2.

Clearly, ⊆ implies @ which itself impliesC. Given e = (e1, . . . , en) ∈ E , we define
|e| = n. GivenA = {a1, . . . , an}, we defineµ(A) = n (counting measure),|A| =∑n

i=1 |ai | andA = {A ⊆ E : |A| < ∞}. ThenA is a ring with respect to the usual
binary operations∪ and4 (symmetric difference). Moreover,µ is an additive measure
on the ringA.

Remark 4. @ is a partial order onE but not onA.

Definition 5. A subsetA ∈ A is called admissible with respect to@ (resp.C) if for
any a1, a2 ∈ A, a1 @ a2 (resp.a1 C a2) implies {a1, a2} * A (i.e. the elements of
an admissible setA are not comparable). We denote byA@ (resp.AC) the collection of
admissible sets with respect to@ (resp.C).

The operator| · | : A → N is clearly monotone with respect to⊆. When its domain is
restricted toA@, | · | : A@ → N is also monotone with respect to@, as the following
lemma shows.

Lemma 6. LetA,A′
∈ A withA @ A′ andA ∈ A@. Then|A| ≤ |A′

|.

Proof. SinceA @ A′, there isφ : A → A′ such thata @ φ(a) for all a ∈ A. The
assertion will follow from the fact thatφ is injective. In order to prove this fact, leta1, a2
∈ A be such thatφ(a1) = φ(a2) =: a′. By Lemma 3,a1 @ a′ anda2 @ a′ imply that
a1 anda2 are comparable. SinceA ∈ A@, it follows thata1 = a2. ut

Proposition 7. For anyA ∈ A, there exists a unique setA@ ∈ A@ such thatA @ A@
andA@ ⊆ A (in particular, |A@| ≤ |A|). Moreover, ifA @ A′

∈ A, thenA@ @ A′

@ A′
@ (in particular, |A@| ≤ |A′

@| ≤ |A′
|).

Proof. Define
A@ := {a ∈ A : a 6@ a′, ∀a′

∈ A, a′
6= a}.

By definition,A@ ∈ A@ andA@ ⊆ A. SinceA ∈ A, it follows that|A| < ∞ and hence
A = {a1, . . . , an}. We will show thata1 @ A@. We have two possibilities:

Case A:a1 6@ ai, ∀i = 2, . . . , n. In this casea1 ∈ A@, and hencea1 @ A@.

Case B:∃m > 1: a1 @ am. In this casea1 @ A1, where

A1
= {am, a2, . . . , am−1, am+1, . . . , an}.

Note thatA1
@ = A@ and hence we may act again in the same way withA1 instead ofA

(this process ends in at mostn steps, sinceµ(A1) = n − 1 and{e}@ = {e}, ∀e ∈ E). ut
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Lemma 8. LetA 6= {ε}.A ∈ A@ iff (a) {ε} 6∈ A and (b)A @ A′ implies|A| ≤ |A′
|.

Proof. ⇐: Suppose{a1, a2} ⊆ A anda1 @ a2. TakeA′
= A \ {a1}. ThenA @ A′ and

|A| = |A′
| + |a1| > |A′

|, sincea1 6= ε.
⇒: (a) Since∀e ∈ E, ε @ e, it follows thatA ∈ A@,A 6= {ε} impliesε 6∈ A.
(b) TakeA @ A′ and letA′

@ be as in Proposition 7. By the same proposition,|A′
@| ≤

|A′
|. By Lemma 6,|A| ≤ |A′

@|. ut

Now, we define a rooted tree as the collection of words contained in its tree leaves. For
example, ifE = {1, 2}, then{ε, (1), (2), (1, 1), (1, 1, 2)} is a tree with tree leaves(1, 1, 2)

and(2), while {(2), (1, 1), (1, 1, 2)} is not a tree, since(1) andε are not contained in it.
Hence, for anyA ∈ A, let

−→
A := {e ∈ E : {e} @ A}. (7)

Definition 9. A ∈ A such thatA =
−→
A is called arooted tree with rootε. The set of all

trees will be denoted by
−→
A , i.e.:

−→
A := {A ∈ A : A =

−→
A }.

Proposition 10. (i) The set
−→
A is closed under intersections and finite unions:

−→
A1 ∪

−→
A2 =

−−−−−→
A1 ∪A2 and

−→
A1 ∩

−→
A2 =

−−−−−→
A1 ∩A2.

(ii) Any tree
−→
A is identified by the extreme valuesA@ (tree leaves) and vice versa: for

anyA ∈ A,
−−−→

(
−→
A )@ =

−→
A and

−−−→
(A@)@ = A@,

i.e., there exists a natural bijection between
−→
A andA@.

(iii) µ is the unique function on
−→
A identified by:

• µ(
−→
{a}) = |a| + 1 (i.e. the number of nodes of a tree with only one tree leaf is the

length of its tree leaf plus1, the root);
• for anyA1,A2 ∈ A,

µ(
−−−−−→
A1 ∪A2) = µ(

−→
A1) + µ(

−→
A2) − µ(

−−−−−→
A1 ∩A2).

Proof. The proof of this proposition is trivial, since an element ofA (and hence of
−→
A ) is

a finite collection of finite-length words. ut

Corollary 11. For anyA ∈ A, µ(
−→
A ) ≤ |A@| + 1.

Now, we want to find a formula for the number of nodes of
−→
A , i.e.,µ(

−→
A ). This formula

is quite simple, if we refer to a suitable functionMA (see Lemma 15).

3.2. Interior of a tree

The first step is to find the “interior”A◦ of the setA, which is the set of vertices in
−→
A

which have at least two children (see Figure 4).
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ǫ

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Fig. 4. On E = {0, 1}, the binary tree formed by the setA = {(1, 1, 0, 1), (1, 1, 0, 0),
(0, 0, 1), (0, 1, 0)} and its interiorA◦

= {(0), (1, 1, 0)}.

For this purpose, we define the function8A : E → N ∪ {0} by

8A(e) := #{a ∈ A@ : e @ a}.

Then8A maps each worde of E to the number of different tree leaves of
−→
A that de-

scend frome. It is clear that a vertexe ∈ A◦ will be characterized by 2≤ 8A(e) >

8A(e′), ∀e @ e′, e 6= e′. Moreover, we have the following

Lemma 12. For anye ∈ E \A@, 8A(e) =
∑

e∈E 8A(ee).

Proof. It is sufficient to note thatee @ a impliesee′
6@ a, for any distincte, e′

∈ E. ut

Define the function of the level sets of8A,

LevA : N ∪ {0} → E,

as the counter image of8A at valuen:

LevA(n) := {e ∈ E : 8A(e) ≥ n} = 8−1
A ([n, ∞)).

The setA◦ will be the set of extremal values of thenth-level sets (n ≥ 2), i.e.

A(n) := {LevA(n)}@, n > 0, A◦ :=
∞⋃

n=2

A(n).

The following lemma shows thatA(n), n > 0, is well defined wheneverA ∈ A.

Lemma 13. LetA ∈ A. Then

(i)
⋃

∞

n=0 LevA(n) = E ;
(ii) ∀n ≥ m, LevA(n) ⊆ LevA(m);

(iii) LevA(n) ∈ A iff n > 0;
(iv) ∀n ≥ m > 1, LevA(n) @ LevA(m);
(v) ∃n0 = n0(A) : ∀n > n0, LevA(n) = ∅.
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Proof. (i)–(ii): Obvious. (iii): Let A∗
= {e ∈ E : |e| > |A|}. ThenA∗

⊆ LevA(0) \

LevA(1), and hence∞ = |A∗
| ≤ |LevA(0)|. By (i)–(ii), we have LevA(n) ⊆ E \ A∗,

which implies |LevA(n)| ≤ |E \ A∗
| < ∞. (iv): This is a consequence of (ii)–(iii).

(v): Let n0 = #{A}. Thenn > n0 implies8−1
A (n) = ∅. ut

Now, given a setA ∈ A andn > 0, we define, for anye ∈ E ,

MA(e) := #{e ∈ E : ee @ A}

as the number of children in
−→
A of the pointe. In fact, it is obvious that

MA(e) = #{e ∈ E : ee @
−→
A } = #{e ∈ E : ee @ A@}

sinceM·(e) is nondecreasing with respect to@ and

−→
A @ A@ @ A @

−→
A .

The next lemma shows that the “interior”A◦ of the setA is the set of those vertices
of

−→
A which have at least two children.

Lemma 14. Let A ∈ A. ThenMA(e) > 0 ⇔ e ∈
−→
A \ A@. Moreover,a ∈ A◦

⇔

MA(a) ≥ 2.

Proof. Let e ∈ E \ (
−→
A \A@) = A@ ∪ (E \

−→
A ). If e ∈ A@, thenee 6@ A@, ∀e ∈ E, and

henceMA(e) = 0. If e 6∈
−→
A , thenee 6∈

−→
A , and henceMA(e) = 0. Thus,MA(e) > 0 ⇒

e ∈
−→
A \A@. Conversely, suppose thate ∈

−→
A \A@. Then∃a ∈ A@ : a 6= e, e @ a, and

hence∃e ∈ E : ee @ a. ThusMA(e) > 0.
Let a∈A◦. Then∃n0 ≥ 2: a∈ {LevA(n0)}@. Then8A(a)≥n0, while 8A(ae)<n0,

∀e ∈ E (otherwise

LevA(n0) 3 ae A a ∈ {LevA(n0)}@,

which is a contradiction). HenceMA(a) ≥ 2. Conversely,MA(a) ≥ 2 implies that

∃e1, e2 ∈ E : e1 6= e2, ae1 ∈
−→
A , ae2 ∈

−→
A . Sinceaei ∈

−→
A (i = 1, 2), we have

8A(aei) > 0. By Lemma 12,8A(a) ≥ 8A(ae1) + 8A(ae2) > 8A(ae), ∀e ∈ E,
and hencea ∈ {LevA(8A(a))}@ ⊆ A◦. ut

Proposition 15. For anyA ∈ A, we have

µ(
−→
A ) = 1 +

∑
a∈

−→
A

(1 − MA(a))|a|. (8)

Proof. Let m = #{A@}. We prove (8) by induction onm.
Form = 1, see Proposition 10(iii).
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ǫ

0 1 2

0 1 2 . . . 0 1

0 1 2 0 1 2 0 1 2 . . . . . . . . . 0 1 2 0 1 . . .

Fig. 5. Nodes with different numbers of children in a tree. Boxed:{a: MA(a) = 2}, circled:
{a: MA(a) = 3}

For the induction step, letA@ = {a1, . . . , am+1} and defineA1 = {a1, . . . , am},
A2 = {am+1}. If am+1 =

∏k
i=1 ei , we note that

−→
A2 =

{
ε, e1, e1e2, . . . ,

k∏
i=1

ei = am+1

}
.

Hence there exists 0≤ l < k such that

−−−−−→
A1 ∩A2 =

{
ε, e1, e1e2, . . . ,

l∏
i=1

ei =: a
}

(otherwiseam+1 @ A1). Note thatMA(a) = MA1(a) + 1, while MA(e) = MA1(e)

for any e ∈
−−−−−→
A1 ∩A2, e 6= a. Moreover, for anyl < p < k, MA(

∏p

i=l+1 ei) = 1 and

MA(
∏k

i=l+1 ei) = 0. By Proposition 10(iii),

µ(
−−−−−→
A1 ∪A2) = µ(

−→
A1) + µ(

−→
A2) − µ(

−−−−−→
A1 ∩A2)

= µ(
−→
A1) + (k + 1) − (l + 1)

=

(
1 +

∑
a∈

−→
A1

(1 − MA1(a))|a|

)
+ k − l (by induction hypothesis)

= 1 +

∑
a∈

−→
A

(1 − MA(a))|a|. ut

Definition 16. LetX = {Xn, n ∈ N} be a process on a finite set of statesE = {e1, . . . , em}

and adapted to the filtration{Fn = σ(Xi, i ≤ n), n ∈ N}. LetA ∈ AC be a set of ad-
missible stopping rules with respect toC. ThenX is said to be anA-dependent Markov
chain onE if

∀ej ∈ E, P(Xn+1 = ej |Fn) = P(Xn+1 = ej |Gn),

whereGn = σ({(Xn−m, Xn−m+1, . . . , Xn) ∈
−−−→
A ∪ E}, m ≤ n).

An A-dependent Markov chain is therefore a process such that the transition probability

may depend only on the longest last path on the tree
−−−→
A ∪ E. Obviously,a stationary

Markov chain is anA-dependent Markov chain, for anyA.
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Theorem 17. Let E be a finite set of states,A ∈ AC be a set of admissible stopping
rules with respect toC andX be anA-dependent Markov chain onE. ThenX can be
embedded in a Markov chainX′ on E′, whereE ↪→ E′ and the cardinality ofE′ is

µ(
−−−→
A ∪ E) − 1 =

∑
a∈

−−−→
A∪E

(1 − MA(a))|a| (see Corollary28 for a trivial reduction of
this number).

Proof. LetA = {a1, . . . , an} ∈ A be a set of stopping rules. Ifa1, a2 ∈ A anda1 C a2,
we can deletea2 as stated at the beginning of this section, and henceA must be a set of
admissible stopping rules with respect toC.

Now, let E′ :=
−−−→
A ∪ E. SinceX is anA-dependent Markov chain, it follows thatX

can be embedded in a Markov chainX′ onE′. SinceA ∈ AC impliesA ∈ A, the number
of states inE′ arises from Proposition 15, asε is not a possible state of the process.1

More precisely, for any stateei ∈ E′, we will find the states ofE′ reachable fromei

and their transition probability. We distinguish the following cases:

Case A:ei ∈ A. In this case we have reached the stopping state defined by the corre-
sponding rule. Then we will remain atei : qei ,ej = δei

(ej ).

Case B:ei 6∈ A. Let ei = (ei1, . . . , eim). The Markov processX has reached the state
eim (it will be consistent with what follows). Now, suppose thatX jumps from the state

eim to the stateej . We must find the corresponding statee ∈
−−−→
A ∪ E whereX′ jumps to.

The idea is thatX′ will jump to (ei, ej ) if (ei, ej ) belongs to
−−−→
A ∪ E. Otherwise, it will

jump to the “maximum” available site. For example, ifE = {1, 2, 3}, ei = (1, 2, 1) and

ej = 3 the process will jump to(1, 2, 1, 3) if (1, 2, 1, 3) ∈
−−−→
A ∪ E, otherwise it will try

to jump to(2, 1, 3). If (2, 1, 3) 6∈
−−−→
A ∪ E, then the process will reach the site(1, 3)—if

(1, 3) ∈
−−−→
A ∪ E—or at least(3).

Thus, forl = 1, . . . , m + 1, let

• eim+1 = ej ;
• flj := (eil , . . . , eim+1);

• r = min{l : flj ∈
−−−→
A ∪ E};

and lete := frj be the state reachable fromei “via ej ”. We setqei ,e = pei ,ej .

We have
∑

eqei ,e = 1 for anyei ∈
−−−→
A ∪ E, since

∑
j pei ,ej = 1 for anyi. Moreover,

qei ,e ≥ 0 and hence the proof is complete once we have proved that the new processX′ is
a Markov chain onE′. This is a trivial consequence of the fact thatX is anA-dependent
Markov chain onE (and so the process we have defined is a Markov process onE′). ut

Remark 18. Note that the PMA framework suggests a trivial extension to some “pos-
sibly infinite” rules. The rulea1{a2}

∗a3 may be modelled as follows:

start︷︸︸︷
E

a1︷ ︸︸ ︷
a1

1 → · · · → a1
n1

a2︷ ︸︸ ︷
a2

1 → · · · → a2
n2

a3︷ ︸︸ ︷
a3

1 → · · · → a3
n3

// // //

��

OO

oo

1 Note thatA can be considered as a unique target absorbing stateT (see Corollary 28).
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Even if the stopping rule is not finite (it contains the stopping rules of the form

{a1, a2, . . . , a2︸ ︷︷ ︸
n times

, a3},

for all n), it defines an embedding inE′
= E ∪ {a1, a2, a3}.

4. A reduced graph Markov problem

Now, let X be a stationary Markov chain on an at most countable setE and letT ⊆ E

be the “target” absorbing states. We wish to compute the probability of reachingT by
time n, given the initial distributionµ on E. If (�,F,P) is the underlying probability
space, we are accordingly interested in

PX
E,µ,T (n) := P

( n⋃
i=0

{ω ∈ � : Xi(ω) ∈ T }

)
,

under the assumption thatP({X0
= i}) = µ(i).

The problem is the following: is there a “minimum” setF such that the problem may
be projected to a problem on a Markov chain onF , for any initial distributionµ onE?

Note that, by the Total Probability Theorem, the previous problem is equivalent to the
following:

Problem 19 Let X be a stationary Markov chain on an at most countable setE and let
T ⊆ E be the “target” absorbing states.

• Is there a surjective functionπ : E → F such thatπ(X) is a Markov chain onF and

PX
E,δe,T

(n) = Pπ(X)
π(E),δπ(e),π(T )(n), ∀e ∈ E, ∀n ∈ N ∪ {0} ? (9)

• Is there a minimum setF satisfying this relation?

Remark 20. In this problem, we are interested in the time of first entering the target
setT . Thus, without loss of generality, we may (and will—see Remark 23) assume thatT

is an absorbing set:

P({Xn+1 ∈ T } | {Xn ∈ T }) = 1.

First, let us see the equivalent problem in the network framework.

Definition 21. A complete directed graphis a pair (E, E × E), whereE is a nonempty
at most countable set. Acomplete networkis a triple (E, E ×E, P ) where(E, E ×E) is
a complete directed graph andP : E × E → R+ ∪ {0}. A Markov networkis a complete
network(E, E × E, P ) such that

∑
ei∈E P(e, ei) = 1 for anye ∈ E.
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Obviously, to any stationary Markov chainX on a space setE may be associated a
Markov network onE since thepi,j -matrix associated with the process is linked to the
nonnegative functionP by the relationP(ei, ej ) = pi,j , and vice versa. Note that no
probability space is required for Markov networks: the only important tool is the transi-
tion matrixP .

First, we extendP to P in the classical way:

P : E × P(E) → R+ ∪ {0}

whereP(E) is the set of subsets ofE andP(e, A) =
∑

ei∈A P(e, ei). Obviously, for
eache ∈ E, P(e, ·) is a probability on(E, P(E)) that gives the conditional probability of
reaching· given that we are in the statee: P(e, A) = P({Xn+1 ∈ A} | {Xn = e}).

Definition 22. Let (E, E × E, P ) be a Markov network. Atarget setT is a subset ofE
such thatP(t, T ) = 1 for all t ∈ T .

Remark 23. Any subset ofE may be chosen as a target setT by changing the Markov
network. In fact, if

P̃ (e1, e2) =

{
P(e1, e2) if e1 6∈ T ,

δe1(e2) if e1 ∈ T ,

then(E, E × E, P̃ ) is a Markov network. Moreover, (9) trivially holds (see Remark 20).
In the framework of stochastic processes,P̃ is the conditional probability of the stopped
chain, where the stopping time is

τT =

{
inf{n ∈ N : Xn ∈ T } if inf {n ∈ N : Xn ∈ T } 6= ∅;

+∞ otherwise.

The choice ofT to be a target set will simplify the notation (see the definition ofUn in
(10) compared with Lemma 25).

Remark 24. Any target setT of E identifies two extended sequences(Un, Tn)n∈N∪{0,∞}

of subsets ofE:

U0 = T0 := T ,

Un := supp(P(·, Un−1)) = {e ∈ E : ∃e∗
∈ Un−1 : P(e, e∗) > 0}, (10)

Tn := Un \ Un−1, (11)

T∞ := E \

∞⋃
n=0

Un = E \

∞⋃
n=0

Tn. (12)

The last equality may not be obvious and it will be proven below (see Lemma 25), as
a consequence of monotonicity ofUn’s. Note thatUn is the set of states that can reach
T with positive probability in fewer thann + 1 jumps (there exists a path of positive
probability of length at mostn). Moreover,Tn is the set of states that can reachT with
positive probability inn jumps and not less (the shortest path of positive probability has
lengthn). Thus, a statet ∈ Tn may jump only toTn−1 or toE\Un−1. Finally,T∞ is the set
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of states that cannot reachT ; it is an absorbing set. The following Lemma 25 summarizes
these statements. To compare with [12],Tn may be seen as the “parking places at distance
n from our destinations” (in [12], the parking places at distancen are the sites that can
reach the destinationT in n jumps and not less). This concept arises in a very natural way.

Lemma 25. Let (E, E × E, P ) be a Markov network andT be a target set. For any
n ∈ N, Un ⊆ Un+1. Moreover, we have

P(t, Tn) = 0 ⇐ t ∈

⋃
i≥2

Tn+i ∪ T∞, (13)

P(t, Tn) > 0 ⇐ t ∈ Tn+1, (14)

P(t, T∞) = 1 ⇔ t ∈ T∞. (15)

Proof. We prove the assertion by induction onn. Forn=0, sinceP(t, U0)=P(t, T0)=1
for any t ∈ U0 = T0, we haveU0 ⊆ supp(P(·, U0)) = U1. For the induction step,
sinceUn−1 ⊆ Un (and henceP(·, Un−1) ≤ P(·, Un)), we have supp(P(·, Un−1)) ⊆

supp(P(·, Un)).
(13): Tn ⊆ Un implies P(t, Tn) = 0 if t ∈ E \ Un+1, by definition ofUn+1. The

statement is a consequence of the previous result:Tn+1+k = Un+1+k \Un+k ⊆ E \Un+1,
∀k ≥ 1.

(14): By (13),P(t, Un−1) = 0. Moreover,Tn+1 ⊆ Un+1 implies t ∈ Un+1. By defini-
tion of Un+1, P(t, Un) > 0. ThenP(t, Tn) = P(t, Un \ Un−1) > 0.

(15) ⇒: By contradiction, suppose that∃t ∈ Un : P((t, T∞)) = 1. SinceUn−1 ⊆

E \ T∞, it follows thatP(t, Un−1) = 0, which is a contradiction.
⇐: By contradiction, assume that∃t ∈ T∞, t∗ ∈ E\T∞ : P(t, t∗) > 0. ButE\T∞ =⋃

n≥0 Un, so∃n ≥ 0: t∗ ∈ Un. By definition,t ∈ Un+1, which is a contradiction. ut

Remark 26. If Tn = ∅, thenUn = Un−1 and henceUn+i = Un for any i ≥ 0. Thus,
sinceE 6= ∅, we haveT ∪ T∞ 6= ∅. In fact, if T = ∅, thenUn = ∅, ∀n ≥ 0, and hence
T∞ = E. Moreover,T ∪T∞ can always be mapped to at most two states, as the following
lemma shows.

Lemma 27. Let (E, E × E, P ) be a Markov network,T be a target set,T∞ as in (12),
andt andt∞ be extra points. Define

F :=

 {t∞} if T = ∅,

(E \ T ) ∪ {t} if T 6= ∅ andT∞ = ∅,

(E \ (T ∪ T∞)) ∪ {t, t∞} if T 6= ∅ andT∞ 6= ∅.

Then there exists a functionπ such that(9) holds.

Proof. We will give the proof for the caseT 6= ∅ andT∞ 6= ∅, since the first case is
trivial (PX

E,δe,∅
(n) = 0 for anyn ∈ N ande ∈ E) and the second case is a special case of

the third one.
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Let π : E → F be the “trivial” projection:

π(e) =

 e if e ∈ E \ (T ∪ T∞),

t∞ if e ∈ T∞,

t if e ∈ T .

(16)

Note that, by Remark 26,π is well defined also for the first two cases.
OnF × F , we consider the functionPπ : F × F → R+ ∪ {0},

Pπ (f1, f2) :=

{
P(f1, π

−1(f2)) if f1 6∈ {t, t∞},

δf1(f2) if f1 ∈ {t, t∞}.
(17)

Note thatPπ is well defined, sinceπ : E \ (T ∪ T∞) → E \ (T ∪ T∞) is the identity
function. Thus,(F, F × F, Pπ ) is a Markov network and we need to prove thatπ(X) has
transition matrixPπ to prove the assertion. We must therefore check that, for anyn ∈ N
and any(f0, . . . , fn) ∈ F n+1,

P({π(X0) = f0, π(X1) = f1, . . . , π(Xn−1) = fn−1, π(Xn) = fn})

= P({π(X0) = f0})

n∏
i=1

Pπ (fi−1, fi). (18)

We prove it by induction onn. We will use (without citing them) the obvious facts that
a ∈ T ⇔ π(a) = t anda ∈ T∞ ⇔ π(a) = t∞ (consequences of the fact thatT =

π−1(π(T ))).
Forn=0, the statement is obvious. For the induction step, the case ofP({π(X0)=f0,

π(X1) = f1, . . . , π(Xn−1) = fn−1}) = 0 is trivial, hence we deal withP({π(X0) = f0,

π(X1) = f1, . . . , π(Xn−1) = fn−1}) > 0. We may have three cases.

Case A:fn−1 6∈ {t, t∞}. Sinceπ(e) = e when e ∈ E \ (T ∪ T∞), it follows that
π(Xn−1) = fn−1 ⇔ Xn−1 = fn−1, and hence

P({π(X0) = f0, π(X1) = f1, . . . , π(Xn−1) = fn−1, π(Xn) = fn})

= P({π(X0) = f0, . . . , Xn−1 = fn−1, π(Xn) = fn})

= P({π(Xn) = fn} | {X0 ∈ π−1(f0), . . . , Xn−1 = fn−1})︸ ︷︷ ︸
a

· P({X0 ∈ π−1(f0), . . . , Xn−1 = fn−1})︸ ︷︷ ︸
b

.

SinceX is Markov, we have

a = P({π(Xn) = fn} | {X0 ∈ π−1(f0), . . . , Xn−1 = fn−1})

= P({Xn ∈ π−1(fn)} | {Xn−1 = fn−1}) = P(fn−1, π
−1(fn)).
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Moreover, by the induction hypothesis,

b = P({π(X0) = f0, π(X1) = f1, . . . , Xn−1 = fn−1})

= P({π(X0) = f0})

n−1∏
i=1

Pπ (fi−1, fi).

Hence

P({π(X0) = f0, π(X1) = f1, . . . , π(Xn−1) = fn−1, π(Xn) = fn})

= P(fn−1, π
−1(fn))P(π(X0) = f0)

n−1∏
i=1

Pπ (fi−1, fi)

= P({π(X0) = f0})

n∏
i=1

Pπ (fi−1, fi).

Case B:fn−1 = t . We haveXn−1 ∈ T . By Definition 22,{Xn−1 ∈ T } ⊆ {Xn ∈ T } a.s.

Now assume thatfn = t . Since{Xn−1 ∈ T } ⊆ {Xn ∈ T },

P({π(X0) = f0, π(X1) = f1, . . . , π(Xn−1) = fn−1, π(Xn) = fn})

= P({π(X0) = f0, π(X1) = f1, . . . , Xn−1 ∈ T , Xn ∈ T })

= P({π(X0) = f0, π(X1) = f1, . . . , Xn−1 ∈ T })

= P({π(X0) = f0})

n−1∏
i=1

Pπ (fi−1, fi),

where the last equality is a consequence of the induction hypothesis. By (17),Pπ (t, t) = 1,
and hence (18) holds.

Next, assume thatfn 6= t . Since{Xn−1 ∈ T } ⊆ {Xn ∈ T },

P({π(X0) = f0, π(X1) = f1, . . . , π(Xn−1) = fn−1, π(Xn) = fn}) = 0.

By (17),Pπ (t, f ) = 0, ∀f 6= t , and hence (18) trivially holds.

Case C:fn−1 = t∞. By (15), {Xn−1 ∈ T∞} ⊆ {Xn ∈ T∞} a.s. The proof is the same as
above, after replacingt andT with t∞ andT∞, respectively.

Thus(π(E), π(E) × π(E), Pπ ) is a Markov network associated to the Markov chain
π(X) onπ(E). The equality (9) is now obvious, since

n⋃
i=0

{ω ∈ � : Xi(ω) ∈ T } =

n⋃
i=0

{ω ∈ � : π(Xi)(ω) ∈ π(T )}

and hence

PX
E,δe,T

(n) =


1 if e ∈ T

0 if e ∈ T∞

PX
E,π(δe),T

(n) if e 6∈ T ∪ T∞

 = Pπ(X)
E,π(δe),π(T )(n). ut



68 Giacomo Aletti, Ely Merzbach

Corollary 28. With the same hypotheses as in Theorem17, if we are only interested in
the probability of reaching the target setA, then the cardinality ofE′ may be reduced at

least toµ(
−−−→
A ∪ E) − µ(A).

The proof of Lemma 27 suggests the following definition, which will be a characterization
of π as given in (9) for the network framework.

Definition 29. Let (E, E × E, P ) be a Markov network,T be a target set andF be a
nonempty set. A functionπ = πT : E → F is called aprojectionif the following two
properties hold:

• π is surjective:F = π(E);
• T = π−1(π(T )).

A projectionπ : E → F is said to becompatible with respect toP if there exists
Pπ : F × F → R+ ∪ {0} such that the following diagram commutes:

E × P(E)

E × F R+ ∪ {0}

F × F

''OOOOOOOOOOO

P
?�

OO

//

P

��

π

77oooooo Pπ

(19)

Remarks 30. • A projectionπT divides the target setT from the rest of the states. This
is the second characteristic in the projection’s definition, and will ensure (9).

• Note thatF may be embedded inP(E) via π−1. For simplicity, we have denoted this
embedding byF ↪→ P(E) and we have consideredP to be defined also onE × F :
P(e, f ) := P(e, π−1(f )).

• A compatible projectionπ is a projection such thatP is well defined on the quotient
setF : for everyf ∈ F , if π(e1) = π(e2), thenP(e1, π

−1(f )) = P(e2, π
−1(f )) (this

will ensure thatπ(X) is a Markov chain ifX is a Markov chain onE with transition
matrixP ).

• The functionπ : E → π(E) defined in (16) is a compatible projection (also called the
trivial projection), wherePπ that makes the diagram commute is just that of the proof
of Lemma 27.

• A compatible projection divides the setsTn, which pass to the quotient, as the following
proposition states.

Proposition 31. Let(E, E×E, P ) be a Markov network,T a target set andπT : E → F

a compatible projection. Then, for anyn ∈ N ∪ {0}, Un = π−1(π(Un)), and hence
Tn = π−1(π(Tn)). Moreover,π(Un) = (π(U0))n, and henceπ(Tn) = (π(T ))n.



Stopping Markov processes and first path on graphs 69

Proof. We prove the first part by induction onn. Forn = 0, by definition of projection,
U0 = T = π−1(π(T )) = π−1(π(U0)). For the induction step, by contradiction, suppose
that there existse ∈ E \ Un+1 such thatπ(e) ∈ π(Un+1). Hence, there existse∗

∈ Un+1
such thatπ(e) = π(e∗) =: f . But then we have

0 = P(e, Un) = P(e, π−1(π(Un))) =

∑
g∈π(Un)

P(e, π−1(g))

=

∑
g∈π(Un)

Pπ (π(e), g) =

∑
g∈π(Un)

Pπ (f, g) =

∑
g∈π(Un)

Pπ (π(e∗), g)

=

∑
g∈π(Un)

P(e∗, π−1(g)) = P(e∗, π−1(π(Un))) = P(e∗, Un) > 0.

The fact thatTn = π−1(π(Tn)) is now trivial. We prove the second part also by induction
on n. For n = 0, by definition ofU0 := T , (π(U0))0 = π(U0). For the induction step,
by (10),

(π(U0))n+1 = {f ∈ F : ∃f ∗
∈ (π(U0))n : Pπ (f, f ∗) > 0}

= {f ∈ F : ∃f ∗
∈ π(Un) : Pπ (f, f ∗) > 0}

= {f ∈ F : ∃e ∈ π−1(f ), ∃e∗
∈ π−1(π(Un)) : P(e, e∗) > 0}

= π({e ∈ E : ∃e∗
∈ Un : P(e, e∗) > 0}) = π(Un+1). ut

Remark 32 (Back to the examples). By Proposition 31, Example 2 in Section 2 cannot
be projected on Markov processes with fewer states, since each state corresponds to a
differentTn.

The following theorem relates the projections on Markov chains and networks.

Theorem 33. LetX be a Markov chain onE and letπ : E → F be a surjective function.
Thenπ(X) is a Markov chain onF iff (19)holds.

Proof. ⇒: Let Y = π(X). SinceY is a Markov process onF , there exists a “usual”
transition matrixQ. By contradiction, suppose there existe1, e2 ∈ E andf ∈ F such
thatπ(e1) = π(e2) = f ∗ andP(e1, π

−1(f )) 6= P(e2, π
−1(f )).

This contradicts the fact thatY is a Markov process: take the two initial distributions
δei

, i = 1, 2 (i.e.X0 = ei a.s.,i = 1, 2). For both starting points, we haveY0 = f ∗ a.s.
SinceY is a Markov chain,P({Y0 = f ∗, Y1 = f } | {Y0 = f ∗

}) = Qf ∗,f , which does not
depend oni = 1, 2.

⇐: First, we have to prove thatPπ (f1, f2) ≥ 0, ∀f1, f2 ∈ F . This is a conse-
quence of the fact thatPπ (f1, f2) = P(e1, π

−1(f2)), wheree1 ∈ π−1(f1) (the exis-
tence of such ane1 is a consequence of the fact thatπ is surjective). Second, we prove
that

∑
f ∈F Pπ (f1, f ) = 1, ∀f1 ∈ F : sinceπ−1(fi) ∩ π−1(fj ) = ∅, ∀fi 6= fj and

E =
⋃

f ∈F π−1(f ), we have∑
f ∈F

Pπ (f1, f )
e1∈π−1(f1)

=

∑
f ∈F

P(e1, π
−1(f )) = P(e1, T ) = 1.
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We must check that, for anyn ∈ N and any(f0, . . . , fn) ∈ F n+1,

P({π(X0) = f0, . . . , π(Xn) = fn}) = P({π(X0) = f0})

n∏
i=1

Pπ (fi−1, fi).

We prove this by induction onn. Forn = 0, it is obvious. For the induction step,

P({π(X0) = f0, . . . , π(Xn) = fn})

= P({X0 ∈ π−1(f0), . . . , Xn ∈ π−1(fn)})

= P
( ⋃

(x0,...,xn)∈

π−1(f0)×···×π−1(fn)

{X0 = x0, . . . , Xn = xn}

)

=

∑
(x0,...,xn)∈

π−1(f0)×···×π−1(fn)

P({X0 = x0, . . . , Xn = xn})

=

∑
(x0,...,xn−1)∈

π−1(f0)×···×π−1(fn−1)

∑
xn∈π−1(fn)

P({X0 = x0, . . . , Xn = xn}). (20)

SinceX is Markov, it follows that

∑
xn∈π−1(fn)

P({X0 = x0, . . . , Xn = xn}) =

∑
xn∈π−1(fn)

P({X0 = x0})

n∏
i=1

P(xi−1, xi)

= P({X0 = x0})

n−1∏
i=1

P(xi−1, xi) ·

∑
xn∈π−1(fn)

P(xn−1, xn)

= P({X0 = x0})

n−1∏
i=1

P(xi−1, xi) · P(xn−1, π
−1(fn))

= P({X0 = x0})

n−1∏
i=1

P(xi−1, xi) · Pπ (fn−1, fn), (21)

the last equation being true by (19) sincexn−1 ∈ π−1(fn−1). Now, if we substitute (21)
in (20), we obtain the assertion by the induction hypothesis:

P({π(X0) = f0, . . . , π(Xn) = fn})

= Pπ (fn−1, fn)
∑

(x0,...,xn−1)∈

π−1(f0)×···×π−1(fn−1)

P({X0 = x0})

n−1∏
i=1

P(xi−1, xi)

= Pπ (fn−1, fn) · P({π(X0) = f0, . . . , π(Xn−1) = fn−1})

= P({X0 = x0})

n∏
i=1

Pπ (fi−1, fi). ut
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Theorem 34. Let (E, E × E, P ) be a Markov network andT be a target set. Thenπ =

πT : E → F is a compatible projection iff(9) holds.

Proof. We will make use of the following trivial fact:

(a ∈ T ⇔ π(a) ∈ π(T )) ⇔ (T = π−1(π(T ))). (22)

⇐: We must prove thatT = π−1(π(T )). Since

δT (e) = PX
E,δe,T

(0) = 1 ⇔ e ∈ T ,

δπ(T )(π(e)) = PY
F,δπ(e),π(T )(0) = 1 ⇔ π(e) ∈ π(T ),

it follows that (9) implies thate ∈ T ⇔ π(e) ∈ π(T ). By (22), we have the assertion.
⇒: We prove (9) by induction onn. Forn = 0, by (22),

PX
E,δe,T

(0) = δT (e)
(22)
= δπ(T )(π(e)) = PY

F,δπ(e),π(T )(0).

For the induction step, by Theorem 33,X andY = π(X) are both Markov chains, and
hence

PX
E,δe,T

(n + 1) =

∑
e∗∈E

P(e, e∗)PX
E,δe∗ ,T (n) =

∑
f ∈F

∑
ef ∈π−1(f )

P(e, ef )PX
E,δe∗ ,T (n)

=

∑
f ∈F

PY
F,f,π(T )(n)

∑
ef ∈π−1(f )

P(e, ef ) (by induction)

=

∑
f ∈F

PY
F,f,π(T )(n) P(e, π−1(f ))

=

∑
f ∈F

Pπ (π(e), f )PY
F,f,π(T )(n) (by (16))

= PY
F,π(δe),π(T )(n + 1). ut

Lemma 35. Let π1 = πT
1 : E → F1 be a compatible projection with respect toP and

π2 : F1 → F be a function. ThenπT := π1 ◦ π2 : E → F is a compatible projection

with respect toP iff π2 = π
πT

1 (T )

2 is a compatible projection with respect toPπT
1

.

Proof. ⇒: Sinceπ is surjective,π2 is trivially surjective. Moreover,T = π−1(π(T ))

meansT = π−1
1 (π−1

2 (π2(π1(T )))), which impliesπ1(T ) = π−1
2 (π2(π1(T ))). Note that

the following diagram commutes:

F1 × P(F1)

F1 × F R+ ∪ {0}

F × F

''OOOOOOOOOOOO

Pπ1?�

OO

//
Pπ1

��

π2

77oooooo Pπ

⇐: This is just a consequence of the compatible projection’s definition. ut
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Remark 36. We may say that two compatible projectionsπ1 = πT
1 : E → F1 and

π2 : E → F2 are equivalent if there exists a compatible bijectionπ : F1 → F2. Then
there exists a natural partial order4 on the set of compatible projections: we say that
π : E → F 4 π ′ : E → F ′ iff there exists a compatible projectionπ∗ : F ′

→ F such
thatπ = π∗

◦ π ′.

Note that a minimal setF for Problem 19 must be minimum in the set of compatible pro-
jections. The following part will ensure that for any Markov network onE and any target
setT , there exists “the” minimal setF on which the Markov network can be projected.

We denote bỹE the set of all equivalence relations onE. We introduce a partial order
� on Ẽ. Let R, S ∈ Ẽ. We say thatR � S if e1 R e2 impliese1 S e2 (if you think E as the
set of all men andR is “belonging to the same state” whileS is “belonging to the same
continent”, thenR � S). The relation� is just set-theoretic inclusion between equivalence
relations, since any relation is a subset ofE × E.

Lemma 37. Let K ⊆ Ẽ be fixed. Then there existsSK ∈ Ẽ such thatR � SK for all
R ∈ K and if S′

∈ Ẽ is such thatR � S′ for all R ∈ K, thenSK � S′ (SK is calledthe
least majorantof K).

Proof. First, note that the trivial relationT = E ×E (defined bye1 T e2 for all (e1, e2) ∈

E × E) is a majorant ofK. Set

SK =

⋂
{S ∈ Ẽ : S ⊇ R for all R ∈ K}.

ThenSK is trivially an equivalence such thatR � SK , ∀R ∈ K, and ifS′
∈ Ẽ is such that

R � S′, ∀R ∈ K, thenSK � S′. ut

For any setE′
⊆ E, letRE′ be the equivalence relation inE corresponding to the partition

of E into E′ andE \ E′.

Lemma 38. Let (E, E × E, P ) be a Markov network,T be a target set, and letK =

{πα = πT
α : E → Fα, α ∈ A} be a family of compatible projections with respect to

the sameP . Then there exists a familyJK = {π ′
α = π ′

α
πα(T ) : Fα → F, α ∈ A} of

compatible projections with respect to the inducedPπα such thatπ = π ′
α ◦ πα does not

depend onα.

Proof. First, note that any projectionπ induces trivially an equivalence relationRπ on
E × E given bye1 Rπ e2 ⇔ π(e1) = π(e2). We setK = {Rπα , α ∈ A} and denote by
SK the least majorant ofK defined in Lemma 37. LetF := E/SK andπ be the canonical
projection ofE ontoE/SK . We want to prove thatπ is a compatible projection.

First, let us prove thatT = π−1(π(T )). SinceT = π−1
α (πα(T )), ∀α, it is sufficient to

note thatRπα � RT , ∀α (RT is the partition ofE into T andE \ T ), and henceSK � RT .

Second,(19) also holds. Lete ∈ E be fixed. We want to characterize the setπ−1(π(e)).
Let α ∈ An be a vector ofAn

= A × · · · × A︸ ︷︷ ︸
n times

. We define:

Ee
α,n = {f ∈ E : ∃(e = e0, e1, . . . , en = f ) ∈ En : ei−1 Rπαi

ei, i = 1, . . . , n},
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Ee
n =

⋃
α∈An

Ee
α,n, Ee

=

⋃
n∈N

Ee
n.

Now, we are going to prove thatSK � REe andEe
= π−1(π(e)).

For SK � REe , we will prove that, for anyα, Rπα � REe . By contradiction, suppose
there existe1 ∈ Ee, e2 ∈ E \ E2 andα ∈ A such thate1 Rπα e2. Sincee1 ∈ Ee we have
e1 ∈ Ee

n for somen, sayn0, and therefore there isα ∈ An0 such thate1 ∈ Ee
α,n0

. Take
α′

= (α, α) ∈ An0+1. Thene2 ∈ Ee
α′,n0+1, which is a contradiction.

For Ee
= π−1(π(e)), sinceRπα � SK , we haveEe

⊆ π−1(π(e)) (SK is transitive),
andEe

⊇ π−1(π(e)) is just a consequence ofSK � REe .

For anye ∈ E andf ∈ F , let pe,f = P(e, π−1(f )). We have to prove thatpe,f =

pe′,f if π(e) = π(e′) or, equivalently, ife SK e′. Under this hypothesis, sinceEe
=

π−1(π(e)), there existsα ∈ An such thate′
∈ Ee

α,n, i.e.

∃(e = e0, e1, . . . , en = e′) ∈ En : ei−1 Rπαi
ei, i = 1, . . . n.

Note thatπ−1(f ) ⊆ π−1
α (P(Fα)) for all α, sinceRπα � SK (and hence we have

π−1(f ) = π−1
α (πα(π−1(f ))), ∀α). Therefore, for anyi = 1, . . . , n,

pei−1,f = Pπαi
(παi

(ei−1), παi
(π−1(f ))) = Pπαi

(παi
(ei), παi

(π−1(f ))) = pei ,f ,

which leads to the statement of the lemma: the existence ofJK = {π ′
α, α ∈ A} is ensured

by Lemma 35. ut

Theorem 39. Let(E, E×E, P ) be a Markov network andT be a target set. There exists
a minimal setF as discussed in Problem19. If F ′ is another minimal set, there exists a
bijection8 : F → F ′ which is a compatible projection.

Proof. Let K = {πα = πT
α : E → Fα, α ∈ A} be the set of all compatible projections

with respect toP . Then there exists a compatible projectionπ = πT : E → F such that
π 4 πα, ∀α, by Lemma 38. HenceF is a minimal set.

Now, suppose thatF ′ is another minimal set (there existsπ ′ : E → F ′ which satisfies
the hypothesis in Problem 19). Note thatπ ′

∈ K and henceπ 4 π ′. Conversely, sinceπ ′

is minimal,π ′ 4 π by Lemma 35, and the result follows by Remark 36. ut

5. Translation into category theory

What we have obtained in the previous section may be reread in terms of categories
(see [9]).

LetO be the objects given by the triples(E, T , P ), where:

• E is an at most countable set;
• T is a subset ofE;
• P : E × E → R+ with the following properties:

– ∀e ∈ E,
∑

P(e, ·) = 1;
– P −1(0, ∞) ∩ (T × E) ⊆ T × T .
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LetA be the morphisms given by the maps(E, T , P )
π
→(F, S, R), where:

• π is a surjective set function fromE to F ;
• S = π(T ), T = π−1(S);
• the following diagram commutes:

E × P(E)

E × F R+ ∪ {0}

F × F

**TTTTTTTTTTTTTTTT
P

?�

OO

(IdE ,π−1)

//

P ◦ (IdE ,π−1)

��

(π,IdF )

44jjjjjjjjj
R

where IdE : E → E is the identity map onE, P(E) is the power set ofE and
P(e, A) =

∑
ei∈A P((e, ei)).

Obviously we have the two functions

A
dom
⇒
cod
O

where, iff := (E, T , P )
π
→(F, S, R) ∈ A, then dom(f ) = (E, T , P ) and cod(f ) =

(F, S, R). The couple(O,A) is hence a graph. LetA ×O A be the set of composable
morphisms:

A×O A = {(g, f ) : g, f ∈ A and dom(g) = cod(f )}.

Note that the identity set function IdE defines a morphism

id(E,T ,P ) := (E, T , P )
IdE
→(E, T , P )

which is trivially inA, and hence we may define the functionO id
→A such that

dom(id(E,T ,P )) = (E, T , P ) = cod(id(E,T ,P )).

Moreover, Lemma 35 states that there exists a functionA ×O A
◦

→A where, iff :=

(E, T , P )
π1
→(F1, S1, R1) ∈ A andg := (F1, S1, R1)

π2
→(F, S, R) ∈ A, we have

f ◦ g := (E, T , P )
π2◦π1
−→ (F, S, R).

Sinceπ3 ◦ (π2 ◦ π1) = (π3 ◦ π2) ◦ π1, it is straightforward to prove thatA×O A
◦

→A is
associative. For anyf, g ∈ A with dom(g) = cod(f ) = (E, T , P ) we have

id(E,T ,P ) ◦f = f, g ◦ id(E,T ,P ) = g,

and hence(O,A) is a category. We call it BIGNET.
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Now, let PRENET= BIGNET/R, whereR = Ra,b is the relation between the mor-
phisms on BIGNET given by

(a
f
→ b) Ra,b (a

f ′

→ b) ⇔ ∃(b
g

→ b) : f = f ′
◦ g.

As a consequence of Lemma 38, it is straightforward to see that PRENET is a preorder.
Remark 36 states that PRENET may be reduced to the ordered universal category

NET, by identifying the objectsa, b where∃(a
f
→ b), (b

f ′

→ a). The order4 is given by

b 4 a ⇔ ∃(a
f
→ b). Theorem 39 states that NET has the least majorant property.
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