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Abstract. We give a canonical construction of an “isotropic average” of givenC1-close isotropic
submanifolds of a symplectic manifold. For this purpose we use an improvement (obtained in col-
laboration with H. Karcher) of Weinstein’s submanifold averaging theorem and apply “Moser’s
trick”. We also present an application to Hamiltonian group actions.
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1. Introduction

In 1999 Alan Weinstein [We] presented a procedure to average a family{Ng} of subman-
ifolds of a Riemannian manifoldM: if the submanifolds are close to each other in aC1

sense, one can producecanonically1 an “average”N which is close to each member of
the family {Ng}. The main property of this averaging procedure is that it is equivariant
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1 The construction is canonical because it does not involve any arbitrary choice but uses only the
Riemannian metric onM.
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with respect to isometries ofM, and therefore if the family{Ng} is obtained by applying
the isometric action of a compact groupG to some submanifoldN0 of M, the resulting
average will be invariant under theG-action. This generalizes results about fixed points
of group actions [We].

In the first part of this paper we will exhibit a result by Hermann Karcher and the
author which improves Weinstein’s theorem.

In the main body of the paper we specialize Weinstein’s averaging to the setting of
symplectic geometry: given a family{Ng} of isotropicsubmanifolds of a symplectic man-
ifold M, we obtain anisotropic averageL. We achieve this in two steps: first we intro-
duce a compatible Riemannian metric onM and apply Weinstein’s averaging to obtain
a submanifoldN . This submanifold will be “nearly isotropic” because it isC1-close to
isotropic ones, and using the family{Ng} we will deformN to an isotropic submanifold
L.2 Our construction depends only on the symplectic structure ofM and on the choice
of compatible metric. Therefore applying our construction to the case of compact group
actions by isometric symplectomorphisms we can obtain isotropic submanifolds which
are invariant under the action.

As a simple application we show that the image of an almost invariant isotropic sub-
manifold under a compact Hamiltonian action is “small”.

Another application is the following: given a symplectic action of a compact groupG

on two symplectic manifoldsM1 andM2 together with an almost equivariant symplec-
tomorphismφ : M1 → M2, apply the averaging procedure to graph(φ) ⊂ M1 × M2.
If the resultingG-invariant submanifoldL is a graph, then it will be the graph of aG-
equivariant symplectomorphism. This means that we would be able to deform almost
equivariant symplectomorphisms to equivariant ones. To ensure thatL is again a graph
one needs to improve Weinstein’s averaging procedure;3 this is the subject of work in
progress.

We would like to extend our averaging procedure to coisotropic submanifolds too:
indeed, if one could average any two coisotropic submanifoldsN0 and N1 which are
close to each other, then by “shifting weights” in the parameter spaceG = {0, 1} one
would produce a continuous path of coisotropic submanifolds connectingN0 to N1. This
would show that the space of coisotropic submanifolds is locally path connected.

In the remainder of the introduction we will recall the averaging procedure in the
Riemannian setting by Weinstein (see [We]), we will state our results, and we will outline
our construction of averaging isotropic submanifolds.

1.1. Averaging of Riemannian submanifolds

The starting point for our isotropic averaging construction is the statement of Theorem
2.3 in [We]. We first recall some definitions from [We] in order to state the theorem.

2 It would be interesting to find a way to deform any given “nearly isotropic” submanifold to an
honest isotropic one in a canonical fashion.

3 We need to improve Weinstein’s theorem in order to ensure that graph(φ) andL beC1-close;
see Remark 1 in Section 8.
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If M is a Riemannian manifold andN a submanifold,(M, N) is called agentle pair
if (i) the normal injectivity radius ofN is at least 1; (ii) the sectional curvatures ofM in
the tubular neighborhood of radius 1 aboutN are bounded in absolute value by 1; (iii) the
injectivity radius at each point of the above neighborhood is at least 1.

The distance between two subspacesF, F ′ of the same dimension of a Euclidean
vector spaceE, denoted byd(F, F ′), is equal to theC0-distance between the unit spheres
of F andF ′ considered as Riemannian submanifolds of the unit sphere ofE. This distance
is symmetric and satisfiesd(F, F ′) = d(F⊥, F ′⊥). It is always smaller than or equal to
π/2, and it is equal toπ/2 iff F andF ′⊥ are not transversal.

One can define aC1-distance between two submanifoldsN, N ′ of a Riemannian man-
ifold if N ′ lies in the tubular neighborhood ofN and is the image under the normal expo-
nential map ofN of a section ofνN (soN andN ′ are necessarily diffeomorphic). This is
done by assigning two numbers to eachx′

∈ N ′: the length of the geodesic segment from
x′ to the nearest pointx in N and the distance betweenTx′N ′ and the parallel translate of
TxN along the above geodesic segment. TheC1-distance is defined as the supremum of
those numbers asx′ ranges overN ′ and is denoted byd1(N, N ′).

Note that this distance is not symmetric, but if(M, N) and(M, N ′) are both gentle
pairs withd1(N, N ′) < 1/4, thend1(N

′, N) < 250d1(N, N ′) (see Remark 3.18 in [We]).
The improvement of Theorem 2.3 in [We] by Karcher and the author is our Theorem 4

and reads:4

Theorem (Weinstein). LetM be a Riemannian manifold and{Ng} a family of submani-
folds ofM parametrized in a measurable way by elements of a probability spaceG, such
that all the pairs(M, Ng) are gentle. Ifd1(Ng, Nh) < ε < 1/20000for all g andh in G,
there is a well definedcenter of masssubmanifoldN with d1(Ng, N) < 2500ε for all g

in G. The center of mass construction is equivariant with respect to isometries ofM and
measure preserving automorphisms ofG.

Remark. For anyg ∈ G the center of massN is the image under the exponential map of
a section ofνNg andd0(Ng, N) < 100ε.

From this one gets immediately a statement about invariant submanifolds under com-
pact group actions (cf. Theorem 2.2 of [We]).

1.2. Averaging of isotropic submanifolds

Recall that for any symplectic manifold(M, ω) we can choose a compatible Riemannian
metric g, i.e. a metric such that the endomorphismI of T M determined byω(·, I ·) =

g(·, ·) satisfiesI2
= − IdT M . The tuple(M, g, ω, I ) is called analmost-K̈ahler manifold.

To prove our Main Theorem we need to assume a bound on theC0-norm of∇ω (here∇

is the Levi-Civita connection given byg), which measures how far our almost-Kähler

4 We omit the compactness assumption on theNg ’s stated there since it is superfluous.
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manifold is from being K̈ahler.5 We state the theorem choosing the bound to be 1 (but see
Remark (i) below).

Theorem 1 (Main Theorem). Let (Mm, g, ω, I ) be an almost-K̈ahler manifold satis-
fying |∇ω| < 1 and {Nn

g } a family of isotropic submanifolds ofM parametrized in a
measurable way by elements of a probability spaceG, such that all the pairs(M, Ng)

are gentle. Ifd1(Ng, Nh) < ε < 1/70000for all g andh in G, there is a well defined
isotropic center of masssubmanifoldLn with d0(Ng, L) < 1000ε for all g in G. This
construction is equivariant with respect to isometric symplectomorphisms ofM and mea-
sure preserving automorphisms ofG.

Remark.
(i) The theorem still holds if we assume higher bounds on|∇ω|, but in this case the

bound 1/70000 forε would have to be chosen smaller. See the remark in Section 7.4.
(ii) Notice that we are not longer able to give estimates on theC1-distance of the isotropic

center of mass from theNg ’s. Such an estimate could possibly be given provided we
have more information about the extrinsic geometry of Weinstein’s center of mass
submanifold; see Remark 1 in Section 8. Instead we can only give estimates on the
C0-distancesd0(Ng, L) = sup{d(x, Ng) : x ∈ L}.

An easy consequence of our Main Theorem is a statement about group actions. Recall
that, given any action of a compact Lie groupG on a symplectic manifold(M, ω) by
symplectomorphisms, by averaging over the compact group one can always find some
invariant metricg̃. Using ω and g̃ one can canonically construct a metricg which is
compatible withω (see [Ca]), and sinceg is constructed canonically out of objects that
are G-invariant, it will be G-invariant too. Therefore the groupG acts respecting the
structure of the almost-K̈ahler manifold(M, g, ω). In general it does not seem possible
to give any bound on|∇ω|, where∇ is the Levi-Civita connection corresponding tog.

Theorem 2. Let (M, g, ω, I ) be an almost-K̈ahler manifold satisfying|∇ω| < 1 and let
G be a compact Lie group acting onM by isometric symplectomorphisms. LetN0 be
an isotropic submanifold ofM such that(M, N0) is a gentle pair andd1(N0, gN0) <

ε < 1/70000for all g ∈ G. Then there is aG-invariant isotropic submanifoldL with
d0(N0, L) < 1000ε.

The invariant isotropic submanifoldL as above is constructed by endowingG with the
bi-invariant probability measure and applying Theorem 1 to the family{gN0}g∈G. The
resulting isotropic averageL is G-invariant because of the equivariance properties of the
averaging procedure.

1.3. Outline of the proof of the Main Theorem

This is the main subsection of this paper. We will try to convince the reader that the
construction we use to prove Theorem 1 works if only one choosesε small enough. Let
us begin by requiringε < 1/20000.

5 Recall that an almost-K̈ahler manifold is K̈ahler if the almost complex structureI is integrable,
or equivalently if∇I = 0 or∇ω = 0.
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Part I. We start by considering the average of the submanifoldsNg as in Theorem 2.3 of
[We], which we will denoteN . We will use the notation expN to indicate the restriction
of the exponential map toT M|N , and similarly for any of theNg ’s. For anyg in G,
the averageN lies in a tubular neighborhood ofNg and is the image under expNg

of a
sectionσ of νNg (see [We]). Therefore for any pointp of Ng there is a canonical path
γq(t) = expp(t · σ(p)) from p to the unique pointq of N lying in the normal slice ofNg

throughp. Here, writing(νNg)1 for the open unit disk bundle inνNg, we use the term
“normal slice” for the submanifold expNg

(νpNg)1. We define the following map:

ϕg : expNg
(νNg)1 → M, expp(v) 7→ expq(γq \\ v).

Herep, q, andγq are as above,v ∈ (νpNg)1, andγq \\ denotes parallel translation along
γq . Soϕg takes the normal slice expp(νpNg)1 to expq(Vertgq)1, where Vertgq ⊂ TqM is
the parallel translation alongγq of νpNg ⊂ TpM.

We haved(Vertgq , νqN) < d1(Ng, N) < 2500ε < π/2, so Vertgq and TqN are
transversal. Thereforeϕg is a local diffeomorphism at all points ofNg, and it is clearly
injective there. Using the geometry ofNg, N andM, in Proposition 6.1 we will show that
ϕg is a diffeomorphism onto if restricted to the tubular neighborhood expNg

(νNg)0.05
of Ng.

We restrict our map to this neighborhood and we also restrict the target space so as to
obtain a diffeomorphism, which we will still denote byϕg.

Ng

N

ϕg

Part II. Now we introduce the symplectic form

ωg := (ϕ−1
g )∗ω

on expN (Vertg)0.05. Notice thatN is isotropic with respect toωg by construction, hence
also with respect to the 2-form

∫
g
ωg which is defined on

⋂
g∈G expN (Vertg)0.05. We

would like to apply Moser’s trick6 (see [Ca, Chapter III]) toω and
∫
g
ωg. To do so we

6 Recall that Moser’s Theorem states the following: if�t (t ∈ [0, 1]) is a smooth family of
symplectic forms lying in the same cohomology class in a compact manifold then there is a family
of diffeomorphismsρt with ρ0 = Id satisfyingρ∗

t �t = �0.
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first restrict our forms to a smaller tubular neighborhood tubε of N , which we define in
Section 7.1. To apply Moser’s trick we have to check:

1. On tubε the convex linear combinationωt = ω + t (
∫
g
ωg − ω) is a symplectic form

for eacht ∈ [0, 1].

Indeed, we will show that on tubε the differential ofϕ−1
g is “close” to the parallel

translation \\ along certain “canonical” geodesics that will be specified at the beginning
of Section 3. This and the bound on|∇ω| imply that for anyq ∈ tubε and nonzero
X, Y ∈ TqM,

(ωg)q(X, Y ) = ω
ϕ−1

g (q)
((ϕ−1

g )∗(X), (ϕ−1
g )∗(Y )) ≈ ω

ϕ−1
g (q)

( \\ X, \\ Y ) ≈ ωq(X, Y ),

i.e. ωg andω are very close to each other. Soωt (X, IX) ≈ ω(X, IX) = |X|
2 > 0.

Therefore eachωt is nondegenerate, and clearly it is also closed.

2. On tubε the formsω and
∫
g
ωg belong to the same cohomology class.

Fix g ∈ G. The inclusioni : tubε ↪→ expNg
(νNg)1 is homotopic toϕ−1

g : tubε
→

expNg
(νNg)1. A homotopy is given by thinking ofN as a section ofνNg and “sliding

along the fibers” to the zero section. Therefore these two maps induce the same map in
cohomology, and pulling backω we have

[ω|tubε ] = i∗[ω] = (ϕ−1
g )∗[ω] = [ωg].

Integrating overG finishes the argument.

Now we can apply Moser’s trick: ifα is a 1-form on tubε such thatdα is equal to
d
dt

ωt =
∫
g
ωg −ω, then the flowρt of the time-dependent vector fieldvt := −ω̃−1

t (α) has

the propertyρ∗
t ωt = ω (and in particularρ∗

1(
∫
g
ωg) = ω) where it is defined. Therefore if

L := ρ−1
1 (N) is a well defined submanifold of tubε , then it will be isotropic with respect

to ω sinceN is isotropic with respect to
∫
g
ωg.

We will construct canonically a primitiveα as above in Section 7.2. Using the fact that
the distance between theNg ’s andN is small, we will show thatα has small maximum
norm. So, ifε is small enough, the time-1 flow of the time-dependent vector field{−v1−t }

will not takeN out of tubε andL will be well defined.
Since our construction is canonical after fixing the almost-Kähler structure(g, ω, I )

of M and the probability spaceG, the construction ofL is equivariant with respect to
isometric symplectomorphisms ofM and measure preserving automorphisms ofG.

1.4. Structure of the paper and acknowledgements

This paper is organized as follows: In Section 2 we present the improvement of Theo-
rem 2.3 of [We] obtained by Karcher and the author. In Section 3 we will start the proof
of the Main Theorem by studying the mapϕg. In Section 4 we will state a proposition
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about geodesic triangles, and in Section 5 we will apply it in our setup. This will al-
low us to show in Section 6 that eachϕg is injective on expNg

(νNg)0.05. The proofs of
some estimates of Sections 4 and 5 are rather involved, and we present them in the three
appendices. This will conclude the proof of the first part of the theorem.

In Section 7 we will make use for the first time of the symplectic structure ofM.
We will show that theωt ’s are symplectic forms and that the 1-formα, and therefore the
Moser vector fieldvt , are small in the maximum norm. Comparison with the results of
Section 6 will end the proof of the Main Theorem.

Section 8 will be devoted to remarks about the Main Theorem, and in Section 9 we
will present a simple application to Hamiltonian group actions.

At this point I would like to thank everyone who helped me and supported me in the
preparation of this paper. In particular I would like to thank Alan Weinstein for helpful
discussions during the preparation of this paper, the referee for his careful review of the
manuscript, his interest and for suggesting improvements, Yael Karshon for proposing
the application in Section 9 and River Chiang for simplifying the arguments used there.
Further I thank Hermann Karcher for sharing the ideas involved in Section 2 and for the
collaboration.

2. Improved error estimates for the shape operators of parallel tubes with
application to Weinstein’s submanifold averaging

In this section we will present the improvement of Theorem 2.3 of [We] obtained by
Hermann Karcher and the author. In the first subsection we will improve Proposition 3.11
of [We]. Then using this result we will follow Weinstein’s proof and present the statement
of the improved theorem.

2.1. Estimates for the shape operators of parallel tubes

In Proposition 3.11 of [We] one has the setup we are going to describe now.M is a
Riemannian manifold,N is a submanifold ofM such that(M, N) form a gentle pair
(so the second fundamental formB of N satisfies|B| ≤ 3/2, see [We, Cor. 3.2]). In
the tubular neighborhood of radius 1 aboutN let ρN be the distance function fromN ,
andPN =

1
2ρ2

N . We are interested in estimating the Hessian ofPN , i.e. the symmetric
endomorphism of each tangent space of the tubular neighborhood given byHN (v) =

∇v gradPN . Differentiating the relation gradPN = ρN · gradρN we see that

HN (v) = 〈UN , v〉UN + ρN · SN (pr(v))

whereUN = gradρN is the radial unit vector (pointing away fromN ), pr denotes orthog-
onal projection ontoU⊥

N , andSN is the second fundamental form of the tube given by a
level setτ(t) of ρN in the direction of the normal vectorUN .7

7 SoSNv = pr(∇vUN ) for all vectorsv tangent toτ(t), where∇ is the Levi-Civita connection
onM.
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Proposition 3.11 of [We] states that, at a pointp of distancet ≤ 1/4 fromN , the fol-
lowing estimate holds for the decompositions into vertical and horizontal parts8 of TpM:[

0.64 · I 0
0 −3t · I

]
< HN <

[
1.32 · I 0

0 3t · I

]
,

where for two symmetric matricesP andQ the inequalityP < Q means thatQ − P is
positive definite.

The above proposition is proved using the Riccati equation. An immediate conse-
quence is Corollary 3.13 in [We], which states that, ifv is a horizontal vector andw a
vertical vector atp, then|〈HN (v), w〉| ≤ 3

√
t |v||w|. This square root is responsible for

the presence of upper bounds proportional to
√

ε rather thanε in Theorems 2.2 and 2.3
of [We].

We will improve the estimate of Corollary 3.13 of [We], determiningSN by means of
Jacobi field estimates rather than by the Riccati equation. More precisely, we will make
use of this simple observation:

Lemma 2.1. LetN be a submanifold of the Riemannian manifoldM, and fixt ≤ normal
injectivity radius ofN . Let p lie in the tubeτ(t) := ρ−1

N (t), and letSN : Tpτ(t) → Tpτ(t)

be the second fundamental form in the direction ofUN . For anyv ∈ Tpτ(t) consider the
Jacobi fieldJ̃ (r) arising from the variationr 7→ expc(s) rUN (c(s)), wherec(s) is any
curve inτ(t) tangent tov. Then

SNv = J̃ ′(0).

Proof. Denoting byf (s, r) the above variation and by∇ the Levi-Civita connection on
M we have

J̃ ′(0) =
∇

dr

∣∣∣∣
0

d

ds

∣∣∣∣
0
f (s, r) =

∇

ds

∣∣∣∣
0

d

dr

∣∣∣∣
0
f (s, r) =

∇

ds

∣∣∣∣
0
UN (c(s))

= ∇vUN = pr(∇vUN ) = SNv. ut

Using the above lemma we will be able to prove this improvement of Proposition 3.11 of
[We], for which we do not require(M, N) to be a gentle pair but only a bound on|B| and
the curvature assumption|K| ≤ 1:

Theorem 3. LetN be a submanifold of the Riemannian manifoldM with second funda-
mental formB, and fixt ≤ normal injectivity radius ofN . Letγ be a unit-speed geodesic
emanating normally fromN . Assume|K| ≤ 1 in the radiust tubular neighborhood ofN .
Letτ(t) be thet-tube aboutN , and letSN (t) denote the second fundamental form ofτ(t)

in direction γ̇ (t) at γ (t). Then with respect to the splitting into vertical and horizontal
spaces ofTγ (t)τ(t), as long ast ≤ min{1/2, 1/2|B|}, we have

t · SN (t) ≤

[
I 0
0 tB

]
+

(
16t2 16t2

16t2 (22+ 2|B|
2)t2

)
.

8 See our Section 3 or Section 2.1 in [We] for the definition of vertical and horizontal bundle
atp.
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Remark. We adopt the following unconventional notation: IfM, M̃ are matrices andc a
real number,M ≤ M̃ + c means thatM − M̃ has operator norm≤ c. Generalizing to the
case where we consider also vertical-horizontal decompositions of matrices,[

A B

C D

]
≤

[
Ã B̃

C̃ D̃

]
+

(
a b

c d

)
means that the above convention holds for each endomorphism between horizontal/ver-
tical spaces, i.e.A − Ã has operator norm≤ a and so on.

Proof of Theorem 3.Choose an orthonormal basis{E1, . . . , En−1} of γ̇ (0)⊥ ⊂ Tγ (0)M

such thatE1, . . . , Ek lie in the normal space toN andEk+1, . . . , En−1 lie in the tan-
gent space toN . (Here dim(M) = n.) Now we define Jacobi fieldsJi alongγ with the
following initial conditions:{

Ji(0) = 0, J ′

i (0) = Ei if i ≤ k (vertical Jacobi fields),

Ji(0) = Ei, J ′

i (0) = Bγ̇ (0)Ei if i ≥ k + 1 (horizontal Jacobi fields).

Notice that, among allN -Jacobi fields (see Section 3 for their definition) satisfyingJi(0)

= Ei , our Ji are those having smallest derivative at time zero. Also notice that allJi

and their derivatives are perpendicular toγ̇ (0), therefore, as long as theJi(t) are linearly
independent, they form a basis ofγ̇ (t)⊥ = Tγ (t)τ(t). Also, theJi ’s areN -Jacobi fields,
i.e. Jacobi fields for whichJi(0) is tangent toN andJ ′

i (0)−Bγ̇ (0)Ji(0) is normal toN , or
equivalently Jacobi fields that arise from variations of geodesics emanating normally from
N (see [Wa, p. 342]). Moreover theJi ’s are a basis of the space ofN -Jacobi fields along
γ which are orthogonal tȯγ , and this space coincides with the space ofN -Jacobi fields
arising from a variation of unit-speed9 geodesics normal toN . The velocity vectors of
such variations at timet coincide withUN . Therefore applying Lemma 2.1 withv = Ji(t)

we conclude thatSN (t)Ji(t) = J ′

i (t) for all i.
Now consider the maps

J (t) : Rn−1
→ Tγ (t)τ(t), ei 7→ Ji(t),

and

J ′(t) : Rn−1
→ Tγ (t)τ(t), ei 7→ J ′

i (t),

where{ei} is the standard basis ofRn−1. As long as theJi(t)’s are linearly independent,
we clearly have

SN (t) = J ′(t) · J (t)−1.

Propagating theEi ’s along γ by parallel translation we obtain an orthonormal basis
{Ei(t)} of Tγ (t)τ(t). Furthermore,{E1(t), . . . , Ek(t)} together withγ̇ (t) span the ver-
tical space atγ (t) and{Ek+1(t), . . . , En−1(t)} span the horizontal space there. We will

9 Indeed, connecting the points of an integral curve inτ(t) of someJi(t) to N by unit-speed
shortest geodesics we obtain such a variation, and the Jacobi field arising from this variation must
beJi since it is anN -Jacobi field orthogonal tȯγ which coincides withJi(t) at timet .
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represent the mapsJ (t), J ′(t) andSN (t) by matrices with respect to the bases{ei} for
Rn−1 and{Ei(t)} for Tγ (t)τ(t).

Now we use Jacobi field estimates as in [BK, 6.3.8iii] to determine the operator norm
of J (t), or rather of the endomorphismsJ (t)V V , J (t)HV , J (t)V H andJ (t)HH thatJ (t)

induces on horizontal and vertical subspaces.10 This will allow us to obtain corresponding
estimates forJ−1(t) andJ ′(t), and therefore forSN (t).

For all i let us define the vector fieldsAi(t) = \\ (Ji(0) + t · J ′

i (0)), where \\ denotes
parallel translation alongγ . The mapRn−1

→ Tγ (t)τ(t), ei 7→ Ai(t), in matrix form
reads

A(t) =

[
tI 0
0 I + tB

]
.

For i ≤ k we haveJi(0) = 0 and{J ′

i (0)} is an orthonormal set. If(c1, . . . , ck, 0, . . . , 0)

is a unit vector inRn−1, we have|(
∑

ciJi)
′(0)| = 1, so applying [BK, 6.3.8iii] we obtain

|
∑

ci(Ji(t) − Ai(t))| ≤ sinh(t) − t .
Similarly, for i ≥ k + 1, the set{Ji(0)} is an orthonormal set andJ ′

i (0) = B(Ji(0)).
Again, if (0, . . . , 0, ck+1, . . . , cn−1) is a unit vector inRn−1, since |(

∑
ciJi)

′(0)| =

|B(
∑

ciJi(0))| ≤ |B|, we have|
∑

ci(Ji(t) − Ai(t))| ≤ cosh(t) − 1 + |B|(sinh(t) − t).
Therefore we have

J (t)−A(t) =: F1(t) ≤

(
sinh(t) − t cosh(t) − 1 + |B|(sinh(t) − t)

sinh(t) − t cosh(t) − 1 + |B|(sinh(t) − t)

)
≤

(
1
5t3 3

4t2

1
5t3 3

4t2

)
.

Now we want to estimatetJ−1(t). Notice that, suppressing thet-dependence in the
notation, we haveJ = A · [I + A−1F1], so that

tJ−1
= [I + A−1F1]−1

· tA−1.

ClearlyA is invertible and

tA−1
=

[
I 0
0 t · (I + tB)−1

]
≤

(
1 0
0 2t

)
since we assumet ≤ 1/2|B|. We have

A−1F1 ≤

(
1
5t2 3

4t

2
5t3 3

2t2

)
.

Clearly11 its norm is less than
√

23
4t

√
1 + 4t2 ≤

3
2t < 1 sincet ≤

1
2. ThereforeI +

A−1F1 is invertible and [I + A−1F1]−1
=
∑

∞

j=0[−A−1F1]j . Using the above estimate

10 To be more precise:J (t)HV : Rk
× {0} → Hor(t) is given by restrictingJ (t) and then

composing with the orthogonal projection onto the horizontal space atγ (t).
11 If

[
A B
C D

]
≤

(
a b
c d

)
then the full operator norm of the matrix is bounded by√

max
{∣∣ a

c

∣∣, ∣∣ bd ∣∣}+ ab + cd ≤
√

2 max
{∣∣ a

c

∣∣, ∣∣ bd ∣∣}.
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for A−1F1 we have

[A−1F1]2 ≤

(
1
2t4 3

2t3

t5 3t4

)
.

Using the coarse estimateA−1F1 ≤
3
2t and t ≤

1
2 we have

∑
∞

j=3[−A−1F1]j ≤ 14t3.

Putting together these estimates we obtain

[I + A−1F1]−1
= I + F2 where F2 ≤

(15
2 t2 5t

15t3 19
2 t2

)
.

To estimateJ ′(t) we first estimate|J ′′(t) − A′′(t)| and then integrate. For alli we
have

|J ′′

i (t) − A′′

i (t)| = |J ′′

i (t)| ≤ |Ji(t)|

by the Jacobi equation using the bound on curvature, and an analogous estimate holds for
linear combinations

∑
ciJi(t).

If (c1, . . . , ck, 0, . . . , 0) is a unit vector inRn−1 we have|
∑

ciJi(t)| ≤ sinh(t) by
Rauch’s theorem.

Similarly, if (0, . . . , 0, ck+1, . . . , cn−1) is a unit vector inRn−1 we have|
∑

ciJi(0)|

= 1 and|
∑

ciJ
′

i (0)| ≤ |B|, so by Berger’s extension of Rauch’s theorem (see Lemma
2.7.9 in [Kl]) we have|

∑
ciJi(t)| ≤ cosh(t) + |B| sinh(t).

In both cases integration yields∣∣∣∑ ci(J
′

i (t) − A′

i(t))

∣∣∣ ≤

∫ t

0

∑ ci(J
′′

i (τ ) − A′′

i (t))

dτ

≤

{
cosh(t) − 1 ≤

3
4t2 if i ≤ k,

sinh(t) + |B|(cosh(t) − 1) ≤
3
2t if i ≥ k + 1.

So altogether we obtain

J ′(t) − A′(t) =: F3(t) where F3(t) ≤

(
3
4t2 3

2t

3
4t2 3

2t

)
.

Now finally we can estimate

tSN (t) = tJ ′J−1
= (A′

+ F3) · (I + F2) · tA−1

≤

{[
I 0
0 B

]
+

(
3
4t2 3

2t

3
4t2 3

2t

)
+

(
15
2 t2 5t

15|B|t3 19
2 |B|t2

)
+

(
30t4 18t3

30t4 18t3

)}
· tA−1

≤

[
I 0
0 tB

]
+

(
0 0
0 2|B|

2t2

)
+

(
3
4t2 3t2

3
4t2 3t2

)
+

(
15
2 t2 10t2

15|B|t3 19|B|t3

)

+

(
30t4 36t4

30t4 36t4

)
.
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Here we used

tA−1
≤

[
I 0
0 tI

]
+

(
0 0
0 2|B|t2

)
≤

(
1 0
0 2t

)
in the last inequality. In view of our bounds ont and the fact thatSN (t) is a symmetric
operator this gives the claimed estimate. ut

Returning to the case when(M, N) is a gentle pair, so that|B| ≤ 3/2, we obtain our
improvement of Corollary 3.13 in [We]. Now we can achieve an upper bound proportional
to t2, versus the bound proportional to

√
t in Corollary 3.13 of [We].

Corollary 2.1. Let M be a Riemannian manifold, andN a submanifold so that(M, N)

form a gentle pair. Ifv is a horizontal vector andw a vertical vector at some point of
distancet ≤ 1/3 fromN , then|〈HN (v), w〉| ≤ 16t2

|v||w|.

2.2. Improvement of Weinstein’s averaging theorem

Now we use Corollary 2.1 to replace some estimates in [We] that were originally derived
using Corollary 3.13 there. We will improve only estimates contained in Lemmata 4.7
and 4.8 of [We], where the author considers the covariant derivative of a certain vector
field V on M in directions which are almost vertical or almost horizontal12 with respect
to a fixed submanifoldNe. (The zero set ofV is the averageN of the family{Ng}.) As in
[We] all estimates will hold forε < 1/20000, and we sett = 100ε.

We will replace the constant 89/200 in Lemma 4.7 of [We] by 4/5 as follows:

Lemma 2.2. For any almost vertical vectorv at any point ofN ,

〈DvV, v〉 ≥
4

5
|v|

2.

Proof. By Theorem 3 (applied to the gentle pair(M, Ng)) for the operator norm ofHg

we have 1− 16t2
≤ |Hg|, so that one obtainsHg(P0gv, P0gv) > 19/20 in the proof of

Lemma 4.7 in [We]. Similarly, Theorem 3 together with footnote 11 implies that|Hg| <

1.01. Using these estimates in the proof of Lemma 4.7 in [We] gives the claim. ut

Similarly, we will replace the term 60
√

ε in Lemma 4.8 of [We] by 1950ε.

Lemma 2.3. For any almost horizontal vectorv at any point ofN ,

|DV(v)| ≥ 1950ε|v|.

Proof. By Corollary 2.1 we can replace 3
√

t by 16t2 in the proof of Lemma 4.8 in [We]
and we can use 1.01 instead of 1.32 as an upper bound for|Hg|. Furthermore, we replace
the constant 1000 coming from Lemma 4.3 in [We] by 525.13 This gives the improved
estimateHg(v, P0̄w) ≤ 850ε|v| · |w| and simple arithmetic concludes the proof. ut

12 See our Section 3 or Section 3.2 in [We] for the definitions of almost horizontal and almost
vertical bundle.
13 Lemma 4.3 of [We] quotes incorrectly Proposition A.8 from its own appendix.
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From these two lemmas it follows that the operator from(aVerte)⊥ to aVerte whose graph
is TxN has norm at most54 ·1950ε. Following to the end the proof of Theorem 2.3 in [We]
allows us to replace the bound 136

√
ε by a bound linear inε, so we obtain the following

improved statement:

Theorem 4. Let M be a Riemannian manifold and{Ng} a family of submanifolds ofM
parametrized in a measurable way by elements of a probability spaceG, such that all the
pairs (M, Ng) are gentle. Ifd1(Ng, Nh) < ε < 1/20000for all g andh in G, there is a
well definedcenter of masssubmanifoldN with d1(Ng, N) < 2500ε for all g in G. The
center of mass construction is equivariant with respect to isometries ofM and measure
preserving automorphisms ofG.

3. Estimates on the mapϕg

In Sections 3–7 we will prove the Main Theorem. The reader is referred to Section 1.3
for an outline of the proof and some of the notation introduced there. We will present Part
I of the proof in Sections 3–6 and Part II in Section 7.

Fix g ∈ G and letp be a point in the tubular neighborhood ofNg andX ∈ TpM.
The aim of this section is to estimate the difference betweenϕg∗X and \\ X. This will be
achieved in Proposition 3.4.

Here we denote by\\ X the following parallel translation ofX, whereπNg is the pro-
jection ontoNg along the normal slices. First we parallel translateX along the shortest
geodesic fromp to πNg (p), then along the shortest geodesic fromπNg (p) ∈ Ng to its im-
age underϕg, and finally along the shortest geodesic toϕg(p). We view “\\ ” as a canonical
way to associateX ∈ TpM to a vector inTϕg(p)M.

Before we begin proving our estimates, following Section 2.1 of [We] we introduce
two subbundles ofT M|expNg

(νNg)1 and their orthogonal complements.

Thevertical bundleVertg has fiber atp given by the parallel translation ofνπNg (p)Ng

along the shortest geodesic fromπNg (p) to p.
Thealmost vertical bundleaVertg has fiber atp given by the tangent space atp of the

normal slice toNg throughπNg (p).
Thehorizontal bundleHorg and thealmost horizontal bundleaHorg are given by their

orthogonal complements.

Remark. Notice that aVertg is the kernel of(πNg )∗, and that according to Proposition 3.7

in [We] we haved(Vertgp, aVertgp) < 1
4d(p, Ng)

2 for anyp in expNg
(νNg)1, and similarly

for Horg and aHorg.
Since 1

4d(p, Ng)
2 < π/2, Vertg and aHorg are always transversal (and clearly the

same holds for Horg and aVertg). As seen in Section 1.3, Vertg andT N are transversal
alongN , and aVertg andT N are also transversal sinceN corresponds to a section ofνNg

and aVertg = Ker(πNg )∗.
Now we are ready to give our estimates on the mapϕg. Recall from the introduction

that for any pointq of the tubular neighborhood ofNg we denote byγq the geodesic from
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πNg (q) ∈ Ng to q. Until the end of this section all geodesics will be parametrized by arc
length.

In Sections 3 to 6 all estimates will hold forε < 1/20000.

3.1. Case 1:p is a point ofNg

Proposition 3.1. If p ∈ Ng andX ∈ TpNg is a unit vector, then

|ϕg∗(X) − \\ X| ≤ 3200ε.

Remark. Notice that ifX is a vector normal toNg by definition ofϕg and \\ we have
ϕg∗(X) = \\ X. Therefore in this subsection we will assume thatX is tangent toNg.

Also, we will denote byA the second fundamental form14 of Ng, i.e.Aξv :=−(∇vξ)T

for tangent vectorsv of Ng and normal vector fieldsξ , where(·)T denotes projecting to
the component tangent toNg and∇ is the Levi-Civita connection onM. Since(M, Ng)

is a gentle pair, the norm ofA is bounded by 3/2, as shown in [We, Cor. 3.2].
Now let p ∈ Ng, X ∈ TpNg a unit vector, andq := ϕg(p). We will denote byE the

distanced(p, ϕg(p)) < 100ε (see end of Section 4 in [We]). We will show that atq,

\\ X ≈ J (E) ≈ H ≈ ϕg∗(X)

where the Jacobi fieldJ and the horizontal vectorH will be specified below.

Lemma 3.1. Let J be the Jacobi field along the geodesicγq such thatJ (0) = X and
J ′(0) = −Aγ̇q (0)X. Then

|J (E) − \\ X| ≤
3

2
(eE

− 1).

Proof. This is an immediate consequence of [BK, 6.3.8iii]15 which will be used later
again and which under the curvature assumption|K| ≤ 1 states the following: ifJ is any
Jacobi field along a unit-speed geodesic, then we have

|J (t) −
0
t \\ (J (0) + t · J ′(0))| ≤ |J (0)|(cosh(t) − 1) + |J ′(0)|(sinh(t) − t),

where0
t \\ denotes parallel translation to the starting point of the geodesic. Using|Aγ̇q (0)X|

≤ 3/2 by [We, Cor. 3.2] the above estimates gives|J (E) − \\ X| ≤ (cosh(E) − 1)

+
3
2 sinh(E). Alternatively, this lemma can be proven using the methods of [We,

Prop. 3.7]. ut

Before proceeding we need a lemma about projections:

14 In Section 2 we adopted the sign convention of [We] which differs from this.
15 [BK, 6.3.8] assumes thatJ (0) andJ ′(0) are linearly dependent. However statement iii holds
without this assumption, as one can always decomposeJ asJ = J1 + J2, whereJ1 andJ2 are
Jacobi fields such thatJ1(0) = J (0), J ′

1(0) = 0 andJ1(0) = 0, J ′
1(0) = J ′(0) respectively.

Furthermore we make use of|J |
′(0) ≤ |J ′(0)|.
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Lemma 3.2. If Y ∈ TqM is a vertical unit vector, writeY = Yav + Yh for the splitting
into its almost vertical and horizontal components. Then

|Yh| ≤ tan(E2/4) and |Yav| ≤
1

cos(E2/4)
.

Proof. By [We, Prop. 3.7] we haved(Vertgq , aVertgq) ≤ E2/4 < π/2, so the subspace
aVertgq of TqM is the graph of a linear mapφ : Vertgq → Horgq . SoYav = Y + φ(Y ) and
Yh = −φ(Y ). Since the angle enclosed byY andYav is at mostd(Vertgq , aVertgq) ≤ E2/4,
one obtains|Y | ≥ cos(E2/4)|Yav|, which gives the second estimate of the lemma. From
this, using|Yh|

2
= |Yav|

2
− |Y |

2 we obtain the first estimate. ut

Lemma 3.3. If H is the unique horizontal vector atq such that(πNg )∗(H) = X, then

|J (E) − H | ≤
3

2
(eE

− 1)
1

cos(E2/4)
.

Proof. Let J be the Jacobi field of Lemma 3.1. WriteJ (E) = W + Y for the splitting
into horizontal and vertical components. Then, using the notation of Lemma 3.2, we have
J (E)h = W +Yh andJ (E)av = Yav. Notice that the Jacobi fieldJ arises from a variation
of geodesics orthogonal toNg (see the Remark in Section 3.2), so(πNg )∗J (E) = X =

(πNg )∗H . Using aVertg = ker(πNg )∗ it follows thatH = J (E)h. So

|J (E) − H | = |Yav| ≤ |Y |
1

cos(E2/4)
≤

3

2
(eE

− 1)
1

cos(E2/4)

where we used Lemma 3.2 and|Y | ≤ |J (E) − \\ X| together with Lemma 3.1. ut

Now we will compareH to ϕg∗(X) and finish our proof.

Proof of Proposition 3.1.We have

| \\ X − ϕg∗(X)| ≤ | \\ X − J (E)| + |J (E) − H | + |H − ϕg∗(X)|.

The first and second terms are bounded by the estimates of Lemmata 3.1 and 3.3. For the
third term we proceed analogously to Lemma 3.3: sinceϕg∗(X) andH are both mapped
to X via πNg , one has(ϕg∗(X))av = ϕg∗(X) − H . As earlier, ifϕg∗(X) = W̃ + Ỹ is the

splitting into horizontal and vertical components, we have(ϕg∗(X))av = Ỹav. Therefore

|ϕg∗(X) − H | = |Ỹav| ≤ |Ỹ |
1

cos(E2/4)
≤ |ϕg∗(X)|

sin(2500ε)

cos(E2/4)
.

Here we also used Lemma 3.2 and the fact that the angle enclosed byϕg∗(X) and its
orthogonal projection onto Horq

g is at mostd(Horgq , TqN) ≤ 2500ε by Theorem 4. Alto-
gether we have

| \\ X − ϕg∗(X)| ≤
3

2
(eE

− 1)

[
1 +

1

cos(E2/4)

]
+ |ϕg∗(X)|

sin(2500ε)

cos(E2/4)
.

Using this inequality we can bound|ϕg∗(X)| from above in terms ofE andε. Substituting
into the right hand side of the above inequality we obtain a function ofε (recall that
E = 100ε) which is increasing and bounded above by 3200ε. ut
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3.2. Case 2:p is a point of∂ expNg
(νNg)L andX ∈ TpM is almost vertical

In this subsection we requireL < 1, as in the definition of gentle pair.

Remark. Jacobi fieldsJ̄ alongγp (the geodesic fromπNg (p) to p) with J̄ (0) tangent to
Ng andAγ̇p(0)J̄ (0) + J̄ ′(0) normal toNg are calledNg-Jacobi fields. They clearly form
a vector space of dimension equal to dim(M) and they are exactly the Jacobi fields that
arise from variations ofγp by geodesics that start onNg and are normal toNg there.

Since(M, Ng) is a gentle pair, there are no focal points ofπNg (p) alongγp, so the
map

{Ng-Jacobi fields alongγp} → TpM, J̄ 7→ J̄ (L),

is an isomorphism. TheNg-Jacobi fields that map to aVertg
p are exactly those withJ (0)=0

andJ ′(0) ∈ νπNg (p)Ng. Indeed, such a vector field is the variational vector field of the
variation

fs(t) = expπNg (p) t [γ̇p(0) + sJ ′(0)],

soJ (L) will be tangent to the normal slice ofNg atπNg (p). From dimension considera-
tions it follows that theNg-Jacobi fields that satisfyJ (0) ∈ TπNg (p)Ng andAγ̇p(0)J (0) +

J ′(0) = 0—which are calledstrongNg-Jacobi fields—map to a subspace ofTpM which
is a complement of aVertg

p. As pointed out in [Wa, p. 354], these two subspaces are in
general not orthogonal.

Proposition 3.2. If p ∈ ∂ expNg
(νNg)L andX ∈ TpM is an almost vertical unit vector,

then

|ϕg∗(X) − \\ X| ≤ 2
sinh(L) − L

sin(L)
.

We begin by proving

Lemma 3.4. LetJ be a Jacobi field alongγp such thatJ (0) = 0 andJ ′(0) ∈ νπNg (p)Ng,
normalized so that|J (L)| = 1. Then

|J (L) − L · γp\\ J ′(0)| ≤
sinh(L) − L

sin(L)
.

Proof. Again [BK, 6.3.8iii] shows that|J (L)−L \\ J ′(0)| ≤ |J ′(0)|(sinh(L)−L). Using
the upper curvature boundK ≤ 1 and Rauch’s theorem we obtain|J ′(0)| ≤ 1/sin(L) and
we are done. ut

We saw in the remark above thatX is equal toJ (L) for a Jacobi fieldJ as in Lemma 3.4,
and thatJ comes from a variationfs(t) = expπNg (p) t [γ̇p(0)+ sJ ′(0)]. Soϕg∗(X) comes
from the variation

ϕg(fs(t)) = expϕg(πNg (p)) t [ \\ γ̇p(0) + s \\ J ′(0)]

along the geodesicϕg(γp(t)). More precisely, if we denote bỹJ (t) the Jacobi field that
arises from the above variation, we will haveϕg∗(X) = J̃ (L). Notice thatJ̃ (0) = 0 and
J̃ ′(0) = \\ J ′(0).
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Lemma 3.5.

|J̃ (L) − L · ϕg◦γp\\ J̃ ′(0)| ≤
sinh(L) − L

sin(L)
.

Proof. Exactly as for Lemma 3.4 sincẽJ (0) = 0 and|J̃ ′(0)| = |J ′(0)|. ut

Proof of Proposition 3.2.We haveX ≈ LJ ′(0) = LJ̃ ′(0) ≈ ϕg∗(X). Here we identify
tangent spaces toM parallel translating alongγp, along the geodesicγϕg(πNg (p)) from
πNg (p) to its ϕg-image and alongϕg ◦ γp respectively. Notice that these three geodesics
are exactly those used in the definition of “\\ ”.

The estimates for the two relations “≈” are in Lemmata 3.4 and 3.5 respectively (recall
X = J (L) andϕg∗(X) = J̃ (L)), and the equality holds becauseJ̃ ′(0) = \\ J ′(0). ut

3.3. Case 3:p is a point of∂ expNg
(νNg)L andX = J (L) for some strongNg-Jacobi

fieldJ alongγp

From now on we have to assumeL < 0.08.

Proposition 3.3. If p ∈ ∂ expNg
(νNg)L andX is a unit vector equal toJ (L) for some

strongNg-Jacobi fieldJ alongγp, then

|ϕg∗(X) − \\ X| ≤
18

5
L + 3700ε.

We proceed analogously to Case 2.

Lemma 3.6. For a vector fieldJ as in the above proposition we have

|J (L) − γp\\ J (0)| ≤

3
2(eL

− 1)

1 −
3
2(eL − 1)

≤
9

5
L.

Furthermore we have|J (0)| ≤
1

1−
3
2 (eL−1)

.

Proof. By Lemma 3.1 we have|J (L) − γp\\ J (0)| ≤
3
2(eL

− 1)|J (0)|, from which we
obtain the estimate for|J (0)| and then the first estimate of the lemma. ut

J comes from a variationfs(t) = expσ(s) tv(s) for some curveσ in Ng with σ̇ (0) =

J (0) and some normal vector fieldv alongσ . We denote byJ̃ the Jacobi field along the
geodesicϕg(γp(t)) arising from the variation

f̃s(t) = ϕg(fs(t)) = expσ̃ (s)(t \\ v(s)),

whereσ̃ = ϕg ◦ σ is the lift of σ to N . Then we haveJ̃ (L) = ϕg∗(X). Notice that here
\\ v(s) is just the parallel translation ofv(s) alongγσ̃ (s) =: γs .

Lemma 3.7.

|J̃ (L) − ϕg◦γp\\ J̃ (0)| ≤
9

5
L.
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Proof. Using [BK, 6.3.8iii] as in Lemma 3.1 we obtain

|J̃ (L) − ϕg◦γp\\ J̃ (0)| ≤ |J̃ ′(0)| sinh(L) + |J̃ (0)|(cosh(L) − 1), (∗)

so that we just have to estimate the norms ofJ̃ (0) andJ̃ ′(0).
SinceJ̃ (0) = ϕg∗J (0), Proposition 3.1 gives|J̃ (0)− γ0\\ J (0)| ≤ 3200ε|J (0)|. Using

the bound for|J (0)| given in Lemma 3.6 we obtain

|J̃ (0)| ≤
1 + 3200ε

1 −
3
2(eL − 1)

.

To estimateJ̃ ′(0) notice that in the expression forfs(t) we can choosev(s) =

σs \\ [γ̇0(0) + sJ ′(0)], whereσs \\ denotes parallel translation fromσ(0) to σ(s) alongσ .
So

\\ v(s) = γs \\ σs \\ [γ̇0(0) + sJ ′(0)],

and

J̃ ′(0) =
∇

ds

∣∣∣∣
0
( \\ v(s)) =

∇

ds

∣∣∣∣
0

γs \\ σs \\ γ̇0(0) + γ0\\ J ′(0)

where we used the Leibniz rule for covariant derivatives to obtain the second equality.
To estimate the first term note that the difference between the identity and the holon-

omy around a loop in a Riemannian manifold is bounded in the operator norm by the area
of a surface spanned by the loop times a bound for the curvature (see [BK, 6.2.1]). There-
fore we writeγs \\ σs \\ γ̇0(0) asσ̃s

\\ γ0\\ γ̇0(0) + ε(s) whereε(s) is a vector field along̃σ(s)

with norm bounded by the area of the polygon spanned byσ(0), σ (s), σ̃ (s) and σ̃ (0).
Assuming thatσ has constant speed|J (0)| we can estimated(σ (0), σ (s)) ≤ s|J (0)|,
and using Proposition 3.1 to estimate| ˙̃σ(s)| = |ϕg∗σ̇ (s)| we obtaind(σ̃ (0), σ̃ (s)) ≤

s(1 + 3200ε)|J (0)|. Usingd(σ̃ (s), σ (s)) ≤ 100ε and Lemma 3.6 we can bound the area
of the polygon safely by

100εs(2 + 3200ε)

1 −
3
2(eL − 1)

.

So we obtain ∣∣∣∣ ∇

ds

∣∣∣∣
0

γs \\ σs \\ γ̇0(0)

∣∣∣∣ =

∣∣∣∣ ∇

ds

∣∣∣∣
0
ε(s)

∣∣∣∣ ≤
100ε(2 + 3200ε)

1 −
3
2(eL − 1)

.

To boundγ0\\ J ′(0) notice that|J ′(0)| ≤
3
2|J (0)| using the fact thatJ is a strong Jacobi

field and [We, Cor. 3.2], so

|J ′(0)| ≤
3

2

1

1 −
3
2(eL − 1)

.

Substituting our estimates for|J̃ (0)| and |J̃ ′(0)| in (∗) we obtain a function which, for
ε < 1/20000 andL < 0.08, is bounded above by95L. ut

The vectorsJ̃ (0) and \\ J (0) generally are not equal, so we need one more estimate that
has no counterpart in Case 2:
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Lemma 3.8.

|J̃ (0) − \\ J (0)| ≤
3200ε

1 −
3
2(eL − 1)

≤ 3700ε.

Proof. SinceJ̃ (0) = ϕg∗J (0), Proposition 3.1 gives

|J̃ (0) − \\ J (0)| ≤ 3200ε|J (0)| ≤
3200ε

1 −
3
2(eL − 1)

.

Since 1
1−

3
2 (eL−1)

< 1.15 whenL < 0.08 we are done. ut

Proof of Proposition 3.3.We haveX ≈ J (0) ≈ J̃ (0) ≈ ϕg∗(X) where we identify
tangent spaces by parallel translation alongγp, γ0 andϕg ◦ γp respectively. Combining
the last three lemmas and recallingX = J (L), ϕg∗(X) = J̃ (L) we finish the proof. ut

3.4. The general case

This proposition summarizes the three cases considered up to now:

Proposition 3.4. Assumeε < 1/20000and L < 0.08. Let p ∈ ∂ expNg
(νNg)L and

X ∈ TpM a unit vector. Then

|ϕg∗(X) − \\ X| ≤ 4L + 4100ε.

We will write the unit vectorX asJ (L) + K(L) whereJ andK, up to normalization,
are Jacobi fields as in the next lemma. We will need to estimate the norms ofJ (L) and
K(L), so we begin by estimating the angle they enclose:

Lemma 3.9. Let J be anNg-Jacobi field alongγp with J (0) = 0, J ′(0) normal toNg

(as in Case2) andK a strongNg-Jacobi field (as in Case3), normalized so thatJ (L)

andK(L) are unit vectors. Then

|〈J (L), K(L)〉| ≤

3
2(eL

− 1)

1 −
3
2(eL − 1)

+
1

1 −
3
2(eL − 1)

·
sinh(L) − L

sin(L)
≤

9

5
L.

Proof. Identifying tangent spaces alongγp by parallel translation, we have

|〈J (L), K(L)〉| = |〈J (L), K(L)〉 − 〈LJ ′(0), K(0)〉|

≤ |〈J (L), K(L) − K(0)〉| + |〈J (L) − LJ ′(0), K(0)〉|

≤ |K(L) − K(0)| + |K(0)| · |J (L) − LJ ′(0)|,

which can be estimated using Lemmata 3.6 and 3.4. ut

Lemma 3.10. Let X ∈ TpM be a unit vector such thatX = J (L) + K(L) whereJ, K

are Jacobi fields as in Lemma3.9 (up to normalization). Then

|J (L)|, |K(L)| ≤
1√

1 −
9
5L

≤ 1.1.
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Proof. Let c := 〈J (L)/|J (L)|, K(L)/|K(L)|〉, so |c| ≤
9
5L. There is an orthonormal

basis {e1, e2} of span{J (L), K(L)} such that J (L) = |J (L)|e1 and K(L) =

|K(L)|(ce1+
√

1 − c2e2). An elementary computation shows that 1= |J (L)+K(L)|2 ≥

(1 − |c|)(|J (L)|2 + |K(L)|2), from which the lemma easily follows. ut

Proof of Proposition 3.4.The remark at the beginning of Case 2 implies that we can
(uniquely) writeX = J (L) + K(L) for Ng-Jacobi fieldsJ andK as in Lemma 3.10. So,
by Lemma 3.10, Proposition 3.2 and Proposition 3.3,

|ϕg∗(X) − \\ X| ≤ |ϕg∗J (L) − \\ J (L)| + |ϕg∗K(L) − \\ K(L)|

≤1.1

(
2

sinh(L) − L

sin(L)
+

18

5
L + 3700ε

)
≤ 4L + 4100ε. ut

4. Proposition 4.1 about geodesic triangles inM

Fix g in G and letϕg be the map from a tubular neighborhood ofNg to one ofN defined
in the introduction. Our aim in the next three sections is to show that expNg

(νNg)0.05 is a
tubular neighborhood ofNg on whichϕg is injective.

We will begin by giving a lower bound on the length of edges of certain geodesic
triangles inM.

In this section we takeM to be simply any Riemannian manifold with the following
two properties:

(i) the sectional curvature lies between−1 and 1,
(ii) the injectivity radius at any point is at least 1.

In our later applications we will work in the neighborhood of a submanifold that forms a
gentle pair withM, so these two conditions will be automatically satisfied.

Now choose pointsA, B,C in M and assumed(C, A) < 0.15 andd(C, B) < 0.5.
Connecting the three points by the unique shortest geodesics defined on the interval [0, 1],
we obtain a geodesic triangleABC.

We will denote by the symbolĊB the initial velocity vector of the geodesic fromC
to B, and similarly for the other edges of the triangle.

Proposition 4.1. Let M be a Riemannian manifold andABC a geodesic triangle as
above. LetPC andPA be subspaces ofTCM andTAM respectively of equal dimensions
such thatĊB ∈ PC andȦB ∈ PA. Assume that

](PA, ȦC) ≥ π/2 − δ

and
θ := d(PA, CA\\ PC) ≤ Cd(A, C)

for some constantsδ, C. AssumeC ≤ 2. Then

d(C, B) ≥
10

11

1

C + 1
cos(δ).
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Remark 1. HereCA\\ PC denotes parallel translation ofPC along the geodesic fromC
to A. Theanglebetween the subspacePA and the vectorȦC is given as follows: for every
nonzerov ∈ PA we consider the nonoriented angle](v, ȦC) ∈ [0, π ]. Then we have

](PA, ȦC) := min{](v, ȦC) : v ∈ PA nonzero} ∈ [0, π/2].

Notice that](PA, ȦC) ≥ π/2 − δ iff for all nonzerov ∈ PA we have](v, ȦC) ∈

[π/2 − δ, π/2 + δ].

Remark 2. This proposition generalizes the following simple statement about triangles
in the plane: if two edgesCB andAB form an angle bounded by the length of the base
edgeAC times a constantC, and if we assume thatCB andAB are nearly perpendicular
to AC, then the lengths|CB| and|AB| will be bounded below by a constant depending
onC (but not on|AC|).

In the general case of Proposition 4.1, however, we make assumptions on
d(PA, CA\\ PC) from which we are not able to obtain easily bounds on the angle
](ĊB, ȦB) at B (such a bound together with the law of sines would immediately im-
ply the statement of the proposition).

Proof of Proposition 4.1.Using the chart expA we can liftB andC to the pointsB̃ andC̃

of TAM. We obtain a triangle 0̃BC̃, which differs in one edge from the lift of the triangle
ABC. Denoting byQ the endpoint of the vector̃B − C̃ translated to the origin, consider
the triangle 0̃BQ. Let P be the closest point toQ in PA.

Claim 1.
|B̃ − P | ≤ tan(δ)|Q − P |.

Using](PA, ȦC) ≥ π/2− δ andȦC = C̃ − 0 we see that the angle between any vector
in PA and C̃ − 0 lies in the interval [π/2 − δ, π/2 + δ]. SinceC̃ − 0 andQ − B̃ are
parallel, the angle between any vector ofPA andQ − B̃ lies in [π/2− δ, π/2+ δ]. Since
P − B̃ ∈ PA we have

](P − B̃, Q − B̃) ∈ [π/2 − δ, π/2 + δ].

The triangleB̃PQ has a right angle atP , so](P −Q, B̃ −Q) ≤ δ, and Claim 1 follows.

Claim 2.
|Q − P | ≤ sin[(1 + C) · d(C, A)] · |Q − 0|.

In Corollary A.1 of Appendix A we will estimate the angle betweenB̃ − C̃ = Q − 0 ∈

TAM andCA\\ ĊB ∈ TAM, i.e. the parallel translation inM of ĊB along the geodesic
from C to A. Our estimate will be

]( CA\\ ĊB, Q − 0) ≤
1

2
d(A, C).

Now let P ′ be the closest point toCA\\ ĊB in PA. As P ′
− 0 ∈ PA andĊB ∈ PC ,

using the definition of distance between subspaces we get

]( CA\\ ĊB, P ′
− 0) ≤ d(PA, CA\\ PC) = θ ≤ Cd(C, A).

Finally, we will show (see Corollary A.2) that

](P − 0, P ′
− 0) ≤

1

2
d(C, A).
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Combining the last three estimates we get](P −0, Q−0) ≤ (1+C)d(C, A), which
is less thanπ/2. Claim 2 follows since 0PQ is a right triangle atP .

P

P’

PA

0

CA || CB ‘

Q

C~

B~

Claim 3.

d(C, B) ≥
10

11

1

C + 1
cos(δ).

The triangleB̃PQ is a right triangle atP , so using Claims 1 and 2 we have

|Q − B̃|
2

= |B̃ − P |
2
+ |Q − P |

2
≤ (1 + tan2δ) · |Q − P |

2

≤ (1 + tan2δ) · (1 + C)2
· d(C, A)2

· |Q − 0|
2.

The vectorQ − B̃ is just 0− C̃, the length of which isd(A, C), and the vectorQ − 0 is
B̃ − C̃. So

d(A, C) ≤
√

1 + tan2δ (1 + C) · d(C, A)|B̃ − C̃|,

and
1

(1 + C)
√

1 + tan2δ
≤ |B̃ − C̃|.

Using standard estimates (see Corollary A.3) we obtain|B̃ − C̃| ≤
11
10d(C, B), and since

1/
√

1 + tan2δ = |cos(δ)| the proposition follows. ut

5. Application of Proposition 4.1 toVertg

Fix g in G. Let C and A be points on Weinstein’s averageN with d(C, A) < 0.15
joined by a minimizing geodesicγ in M. Suppose that expC(v) = expA(w) =: B for
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vertical vectorsv ∈ VertgC andw ∈ VertgA of lengths less than 0.5. In this section we will
apply Proposition 4.1 to the geodesic triangle given by the above three points ofM and
PA = VertgA, PC = VertgC . We will do so in Proposition 5.5.

To this end, first we will estimate the constantsδ andC of Proposition 4.1 in this
specific case. As always our estimates will hold forε < 1/20000.

Roughly speaking, the constantδ—which measures how much the angle between
ĊA = γ̇ (0) and VertgC deviates fromπ/2—will be determined by using the fact thatN

is C1-close toNg, so that the shortest geodesicγ betweenC andA is “nearly tangent” to
the distribution Horg.

Bounding the constantC—which measures how the angle between Vertg
A and VertgC

depends ond(A, C)—will be easier, by noticing that both spaces are parallel translations
of normal spaces toNg, which is a submanifold with bounded second fundamental form.

Since
](γ̇ (0), VertgC) = π/2 − ](γ̇ (0), HorgC),

to determineδ we just have to estimate the angle

α := ](γ̇ (0), HorgC).

We already introduced the geodesicγ (t) from C to A, which we assume to be paramet-
rized by arc length. We now consider the curveπ(t) := πNg ◦ γ (t) in Ng. We can lift the
curveπ to a curveϕg ◦ π in N connectingC andA; we will call c(t) the parametrization
by arc length of this lift.

∇
⊥ will denote the connection induced onνNg by the Levi-Civita connection∇ of

M, and⊥

πb\\ applied to someξ ∈ νπ(t)Ng will denote its∇
⊥-parallel transport fromπ(t)

to π(0) alongπ . (The superscript “b” stands for “backwards” and is a reminder that we
are parallel translating to the initial point of the curveπ .)

Further we will need

r := 100ε + L(γ )/2 ≥ sup
t

{d(γ (t), Ng)} and f (r) := cos(r) −
3

2
sin(r).

Notice thatr < 0.08 due to our restrictions onε andd(C, A).

 g
    

  C
 gVert     

Vert    A

Ac(t)

(t)γ

C

N

N

g
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Using the fact thatc is a curve inN andN is C1-close toNg, in Appendix B we will
show that the sectioñc := exp−1

Ng
(c(t)) of νNg alongπ is “approximately parallel”. This

will allow us to bound from above the “distance” between its endpoints as follows:

Proposition 5.1.

|exp−1
Ng

(C) −
⊥

πb\\ exp−1
Ng

(A)| ≤ L(γ )
3150ε

f (r)
.

Using the fact thatγ is a geodesic and our bound on the extrinsic curvature ofNg, in Ap-
pendix C we will show that the sectioñγ := exp−1

Ng
(γ (t)) of νNg alongπ approximately

“grows at a constant rate”. Since its covariant derivative at zero depends onα, we will be
able to estimate the “distance” between its endpoints (which are also the endpoints ofc̃)
in terms ofα. We will obtain:

Proposition 5.2.

|exp−1
Ng

(C) −
⊥

πb\\ exp−1
Ng

(A)|

≥ L(γ )

[
99

100
sin

(
α −

ε

4

)
− 500ε − 3r −

8

3
L(γ )

(
r +

r + 3/2

f (r)

)]
.

Comparison of Propositions 5.1 and 5.2 gives

3150ε

f (r)
≥

99

100
sin

(
α −

ε

4

)
− 500ε − 3r −

8

3
L(γ )

(
r +

r + 3/2

f (r)

)
.

Recall thatr = 100ε + L(γ )/2. If L(γ ) andε are small enough one can solve the above
inequality forα. With our restrictionε < 1/20000 this can be done wheneverL(γ ) < 0.1.
One obtains

δ(ε, L(γ )) :=
ε

4
+ arcsin

{
100

99

[
3150ε

f (r)
+ 500ε + 3r +

8

3
L(γ )

(
r +

r + 3/2

f (r)

)]}
> α.

We can now state the main results of this section. First we determine the constantδ of
Proposition 4.1 in our setting.

Proposition 5.3. LetC, A be points inN andγ the shortest geodesic inM fromC to A.
Assumeε < 1/20000andL(γ ) < 0.1. Thenδ(ε, L(γ )) is well defined and

](HorgC, γ̇ (0)) = α < δ(ε, L(γ )).

Therefore
](VertgC, γ̇ (0)) ≥ π/2 − δ(ε, L(γ ))

and for symmetry reasons

](VertgA, −γ̇ (L(γ ))) ≥ π/2 − δ(ε, L(γ )).

To determine the constantC we only need Lemma C.3:
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Proposition 5.4. LetC, A andγ be as above and assumeL(γ ) < 0.1. Then

d(VertgC, γ b\\ VertgA) ≤ 2L(γ ).

Proof. By Lemma C.3 we have

d(VertgC, γ b\\ VertgA) ≤ arcsin

[
L(γ )

(
r +

r + 3/2

f (r)

)]
,

wherer = 100ε + L(γ )/2. For the above values ofε andL(γ ) this last expression is
bounded above by 2L(γ ). ut

Now making use of the estimates in the last two propositions we can apply Proposition
4.1.

Proposition 5.5. Fix g ∈ G. Let C, A be points inN such thatd(A, C) < 0.1 and
suppose thatexpC(v) = expA(w) =: B for vertical vectorsv ∈ VertgC, w ∈ VertgA. Then

|v|, |w| ≥
3

10
cos(δ(ε, d(A,C))).

Proof. If |v| ≥ 0.5 then the estimate for|v| clearly holds, as the right hand side is≤ 3/10.
So we assume|v| = d(B, C) < 0.5.

Sinced(B, Ng) < 0.5 + 100ε < 1 and(M, Ng) is a gentle pair, the triangleABC

lies in an open subset ofM with the properties

(i) the sectional curvature lies between−1 and 1,
(ii) the injectivity radius at each point is at least 1.

Therefore we are in the situation of Proposition 4.1. SettingPC = VertgC andPA = VertgA
in the statement of Proposition 4.1, Propositions 5.3 and 5.4 allow us to choose

δ = δ (ε, d(A,C)) and C = 2.

Therefore, since10
11 ·

1
2+1 > 3

10, we obtain

|v| ≥
3

10
cos(δ(ε, d(A,C))).

The statement for|w| follows exactly in the same way. ut

6. Estimates on tubular neighborhoods ofNg on which ϕg is injective

In this section we will finally apply the results of Sections 4 and 5, which were summa-
rized in Proposition 5.5, to show that expNg

(νNg)0.05 is a tubular neighborhood ofN on
which ϕg is injective. We will also bound from below the size of

⋂
g∈G expN (Vertg)0.05

(where the 2-form
∫
g
ωg is defined).
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Proposition 6.1. If ε < 1/20000the map

ϕg : expNg
(νNg)0.05 → expN (Vertg)0.05

is a diffeomorphism.

Proof. From the definition ofϕg it is clear that it is enough to show the injectivity of

expN : (Vertg)0.05 → expN (Vertg)0.05.

Let A, C ∈ N andv ∈ VertgC, w ∈ VertgA be vectors of length< 0.05. We argue by
contradiction and suppose that expC(v) = expA(w). Clearly d(A, C) < 0.1. We can
apply Proposition 5.5, which implies|v|, |w| ≥

3
10 cos(δ(ε, d(A,C))). Since the function

δ(ε, L) increases withL we have

|v|, |w| ≥
3

10
cos(δ(ε, 0.1)).

For ε < 1/20000 the above function is larger than 0.05, so we have a contradiction.
Hence expC(v) 6= expA(w) and the above map is injective. ut

For eachL ≤ 0.05 we want to estimate the radius of a tubular neighborhood ofN con-
tained in

⋂
g∈G expN (Vertg)L. This will be used in Section 7 to determine where

∫
g
ωg

is nondegenerate, so that one can apply Moser’s trick there. As a by-product, the propo-
sition below will also give us an estimate of the size of the neighborhood in which

∫
g
ωg

is defined.

Proposition 6.2. For L ≤ 0.05andε < 1/20000, using the notation

Rε
L := sin(L) cos(δ(ε, 2L) + 2L2)

we have

expN (νN)Rε
L

⊂

⋂
g∈G

expN (Vertg)L.

Remark. The functionRε
0.05 decreases withε and assumes the value 0.039. . . at ε = 0

and the value 0.027. . . whenε = 1/20000.

To prove the proposition we will again consider geodesic triangles:

Lemma 6.1. LetABC be a geodesic triangle lying inexpNg
(νNg)1 such thatd(A, B) ≤

d(C, B) =: L < 0.05. Letγ denote the angle atC, and supposeγ ∈ [π/2− δ̃, π/2+ δ̃].
Then

d(A, B) ≥ sin(L) cos(δ̃ + 2L2).
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Proof. Denote byα, β the angles atA andB respectively, and denote further byα′, β ′, γ ′

the angles of the Aleksandrov triangle inS2 corresponding toABC (i.e. the triangle in
S2 having the same side lengths asABC). By [Kl, Remark 2.7.5] we have

sin(d(A, B)) = sin(d(C, B))
sin(γ ′)

sin(α′)
≥ sin(d(C, B)) sin(γ ′).

By Toponogov’s theorem (see [Kl]),γ ′
≥ γ . The sum of the angles of the triangle inS2

deviates from 180◦ by the area of the triangle, which is bounded above byL2 (see [BK,
6.7.1]). The same holds for the corresponding triangle in standard hyperbolic spaceH 2.
Hence, using [BK, 6.4.3], we obtainγ ′

− γ ≤ 2L2. So

γ ′
∈ [π/2 − δ̃, π/2 + δ̃ + 2L2].

Altogether this gives

d(A, B) ≥ sin(d(A, B)) ≥ sin(d(C, B)) sin(γ ′) ≥ sin(L) sin(π/2 + δ̃ + 2L2). ut

Now we want to apply Lemma 6.1 to our case of interest:

Lemma 6.2. LetC ∈ N andB = expC(w) for somew ∈ VertgC of lengthL < 0.05, and
assume as usualε < 1/20000. Then

d(B, N) ≥ sin(L) cos(δ(ε, 2L) + 2L2) = Rε
L.

Here the functionδ is as in Section5.

Proof. Let A be the closest point inN to B. Clearlyd(A, B) ≤ d(C, B) = L, so the
shortest geodesicγ from C to A has lengthL(γ ) ≤ 2L. By Proposition 5.3 we have

](γ̇ (0), VertgC) ≥ π/2 − δ (ε, L(γ )) ≥ π/2 − δ(ε, 2L).

So, sincew ∈ VertgC ,

](γ̇ (0), w) ∈ [π/2 − δ(ε, 2L), π/2 + δ(ε, 2L)].

If we use the fact that, for anyg ∈ G, the triangleABC lies in expNg
(νNg)1, the lemma

follows from Lemma 6.1 with̃δ = δ(ε, 2L). ut

Proof of Proposition 6.2.For anyg ∈ G and positive numberL < 0.05, by Lemma 6.2
each pointB ∈ ∂ expN (Vertg)L has distance at least

sin(L) cos(δ(ε, 2L) + 2L2) = Rε
L

from N . Therefore tub(Rε
L) lies in expN (Vertg)L, and since this holds for allg we are

done. ut



104 Marco Zambon

7. Conclusion of the proof of the Main Theorem

In Sections 3–6, making use of the Riemannian structure ofM, we showed that the 2-
form

∫
g
ωg is well defined in the neighborhood

⋂
g∈G expN (Vertg)0.05 of N (recall that

ωg := (ϕg
−1)∗ω was defined in the introduction). In this section we will focus on the

symplectic structure ofM and conclude the proof of the Main Theorem, as outlined in
Part II of Section 1.3.

First we will show that
∫
g
ωg is a symplectic form on a suitably defined neighborhood

tubε of N . Then it will easily follow that the convex linear combinationωt := ω +

t (
∫
g
ωg − ω) is a symplectic form for allt ∈ [0, 1].

As we saw in the introduction, [ω] = [
∫
g
ωg] ∈ H 2(tubε, R), so we can apply Moser’s

trick. The main step consists of constructing canonically a primitiveα of small maximum
norm for the 2-formd

dt
ωt . Comparing the size of the resulting Moser vector field with the

size of tubε we will determine anε for which the existence of an isotropic average of the
Ng ’s is ensured.

In this section we requireL < 0.05. Notice that the estimates of Section 3 hold for
suchL. We start by requiringε < 1/20000 and introduce the abbreviation

Dε
L := 4L + 4100ε

for the upper bound obtained in Proposition 3.4 on expN (Vertg)L.

7.1. Symplectic forms intubε

In Section 3 we estimated the difference betweenϕg∗X and \\ X. This lemma does the
same forϕ−1

g .

Lemma 7.1. Letq ∈ ∂ expN (Vertg)L andX ∈ TqM a unit vector. Then

|(ϕ−1
g )∗X − \\ X| ≤

Dε
L

1 − Dε
L

.

Furthermore,
1

1 + Dε
L

≤ |(ϕ−1
g )∗X| ≤

1

1 − Dε
L

.

Proof. Let p := ϕ−1
g (q). By Proposition 3.4, for any vectorZ ∈ TpM we have

|ϕg∗(Z)|

1 + Dε
L

≤ |Z| ≤
|ϕg∗(Z)|

1 − Dε
L

.

The second statement of the lemma follows by settingZ = (ϕ−1
g )∗X.

Choosing insteadZ = (ϕ−1
g )∗X − \\ X ∈ TpM and applying once more Proposition

3.4 gives

|(ϕ−1
g )∗X − \\ X| ≤

|X − ϕg∗ \\ X|

1 − Dε
L

≤
Dε

L

1 − Dε
L

. ut
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Since(ϕ−1
g )∗X is close to \\ X and since our assumption on∇ω allows us to control

to what extentω is invariant under parallel translation we are able to show thatω and
ωg = (ϕ−1

g )∗ω are close to each other:

Lemma 7.2. LetX, Y be unit tangent vectors atq ∈ expN (Vertg)L. Then

|(ωg − ω)(X, Y )| ≤
Dε

L

1 − Dε
L

(
Dε

L

1 − Dε
L

+ 2

)
+ 2L + 100ε.

Proof. Settingp := ϕ−1
g (q) we have

(ωg − ω)q(X, Y ) = ωp((ϕ−1
g )∗X, (ϕ−1

g )∗Y ) − ωq(X, Y )

= ωp( \\ X − [(ϕ−1
g )∗X − \\ X], \\ Y − [(ϕ−1

g )∗Y − \\ Y ]) − ωq(X, Y )

= ωp((ϕ−1
g )∗X − \\ X, (ϕ−1

g )∗Y − \\ Y )

+ ωp( \\ X, (ϕ−1
g )∗Y − \\ Y ) + ωp((ϕ−1

g )∗X − \\ X, \\ Y )

+ ωp( \\ X, \\ Y ) − ωq(X, Y ).

Now since “\\ ” is the parallel translation along a curve of length< 2L + 100ε (see
Section 3) and|∇ω| < 1 we haveωp( \\ X, \\ Y ) − ωq(X, Y ) < 2L + 100ε and using
Lemma 7.1 we are done. ut

Since the symplectic formω is compatible with the metric and theωg ’s are close toω we
obtain the nondegeneracy ofωt for L andε small enough.

Corollary 7.1. Let X be a unit tangent vector atq ∈
⋂

g∈G expN (Vertg)L. Then for all
t ∈ [0, 1],

ωt (X, IX) ≥ 1 −

[
Dε

L

1 − Dε
L

(
Dε

L

1 − Dε
L

+ 2

)
+ 2L + 100ε

]
.

Proof. By definition

ωt (X, IX) = ω(X, IX) + t ·

∫
g

(ωg − ω)(X, IX).

The first term is equal to 1 becauseω is almost-K̈ahler, the norm of the second one is
estimated using Lemma 7.2. ut

Remark. The right hand side of Corollary 7.1 is surely positive ifDε
L ≤ 0.1. We set16

Lε :=
0.1 − 4100ε

4

and requireε < 1/70000. We obtain immediately:

16 This choice ofLε will allow us to obtain good numerical estimates in Section 7.4.
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Proposition 7.1. On

tubε := expN (νN)Rε
Lε

⊂

⋂
g∈G

expN (Vertg)Lε

the convex linear combinationωt := ω + t (
∫
g
ωg − ω) is a symplectic form for all

t ∈ [0, 1].

Remark. Recall that the functionRε
L was defined in Proposition 6.2. See Section 7.4 for

the graph ofRε
Lε a function ofε.

7.2. The construction of the primitive ofd
dt

ωt

We want to construct canonically a primitiveα of

d

dt
ωt =

∫
g

ωg − ω

on
⋂

g∈G expN (Vertg)0.05. We first recall the following fact, which is a slight modification
of [Ca, Chapter III].

Let N be a submanifold of a Riemannian manifoldM, and letE → N be a sub-
bundle ofT M|N → N such thatE ⊕ T N = T M|N . Furthermore letŨ be a fiber-wise
convex neighborhood of the zero section ofE → N such that exp :Ũ → U ⊂ M is a
diffeomorphism. Denote byπ : U → N the projection along the slices given by expo-
nentiating the fibers ofE, and byi : N ↪→ M the inclusion. Then there is an operator
Q : �•(U) → �•−1(U) such that

Id − (i ◦ π)∗ = dQ + Qd : �•(U) → �•(U).

A concrete example is given by consideringρt : U → U, expq(v) 7→ expq(tv), and

wt |ρt (p) := d
ds

|s=tρs(p). Then

Qf :=
∫ 1

0
Qtf dt, Qtf := ρ∗

t (iwt f ),

gives an operator with the above property.
Note that for a 2-formω evaluated atX ∈ TpM we have

|(Qtω)pX| = |ωp(wt |ρt (p), ρt∗(X))| ≤ |ω̃p|op · d(p, π(p)) · |ρt∗(X)| (F)

where|ω̃p|op is the operator norm of̃ωp : TpM → T ∗
p M and the inner product onT ∗

p M

is induced by the one onTpM.
For eachg in G we want to construct a canonical primitiveα of ωg − ω on

expN (Vertg)0.05. We do that in two steps:

Step I. We apply the above procedure to the vector bundle Vertg
→ N to obtain an

operatorQg
N such that

Id − (π
g
N )∗ ◦ (iN )∗ = dQ

g
N + Q

g
Nd
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for all differential forms on expN (Vertg)0.05. SinceN is isotropic with respect toωg and
ωg − ω is closed we have

ωg − ω = dQ
g
N (ωg − ω) + (π

g
N )∗(iN )∗(−ω).

Step II. Now we apply the procedure to the vector bundleνNg → Ng to get an operator
QNg on differential forms on expNg

(νNg)100ε . SinceNg is isotropic with respect toω we
have

ω = dQNgω,

so we have found a primitive ofω on expNg
(νNg)100ε . SinceN ⊂ expNg

(νNg)100ε the
1-formβg := i∗N (QNgω) onN is a well defined primitive ofi∗Nω.

Summing up these two steps we see that

αg := Q
g
N (ωg − ω) − (π

g
N )∗βg

is a primitive ofωg − ω on expN (Vertg)0.05. So clearlyα :=
∫
g
αg is a primitive of

d
dt

ωt =
∫
g
ωg − ω on

⋂
g∈G expN (Vertg)0.05.

7.3. Estimates on the primitive ofd
dt

ωt

In this section we will estimate theC0-norm of the 1-formα constructed in Section 7.2.

Step II. We will first estimate the norm ofβg := i∗N (QNgω) using (F) and then the
norm of(πg

N )∗βg.

Lemma 7.3. If p ∈ expNg
(νNg)100ε , andX ∈ TpM is a unit vector, then for anyt ∈

[0, 1],
|(ρNg )t∗X| ≤ 5/4.

Proof. Let L := d(p, Ng) < 100ε < 1/700 and writeX = J (L) + K(L), whereJ

andK areNg-Jacobi fields along the unit-speed geodesicγp from p′ := πNg (p) to p

such thatJ (0) vanishes,J ′(0) is normal toNg, andK is a strongNg-Jacobi field (see the
remark in Section 3.2).

J (t) is the variational vector field of a variationfs(t) = expp′(tv(s)) where thev(s)’s
are unit normal vectors atp′. Therefore

(ρNg )t∗J (L) =
d

ds

∣∣∣∣
0
[(ρNg )t ◦ expp′(Lv(s))] =

d

ds

∣∣∣∣
0
[expp′(tLv(s))] = J (tL).

Using Lemma 3.4 we have on the one hand|LJ ′(0)| ≤ (1 + σ(L))|J (L)| and on the
other hand|J (tL)|(1 − σ(tL)) ≤ tL|J ′(0)| whereσ(x) := (sinh(x) − x)/ sin(x). So

|J (tL)| ≤ t
1 + σ(L)

1 − σ(tL)
|J (L)| ≤

21

20
t |J (L)|.
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Similarly we have(ρNg )t∗K(L) = K(tL). Using Lemma 3.6 we deduce that|K(0)| ≤

(1 +
9
5L)|K(L)| and|K(tL)| ≤ |K(0)|/(1 −

9
5tL), therefore

|K(tL)| ≤
1 +

9
5L

1 −
9
5tL

|K(L)| ≤
21

20
|K(L)|.

Altogether we have

|(ρNg )t∗X|
2

= |J (tL) + K(tL)|2

≤ |J (tL)|2 + |K(tL)|2 + 2 ·
9

5
tL|J (tL)||K(tL)|

≤

(
21

20

)2[
|J (L)|2 + |K(L)|2 +

18

5
L|J (L)||K(L)|

]
≤

(
21

20

)2[
|J (L) + K(L)|2 +

36

5
L|J (L)||K(L)|

]
≤

(
21

20

)2[
1 +

36

5
· 1.12L

]
≤

5

4

where in the first and third inequalities we used Lemma 3.9, and in the fourth in addition
Lemma 3.10. ut

Corollary 7.2. The1-formβg onN satisfies

|βg
| < 125ε.

Proof. At any pointp ∈ N ⊂ expNg
(νNg)100ε , using(F), the fact that|ω̃|op = 1 and

Lemma 7.3, we have|(QNgω)p| < 125ε. Clearly

|(QNgω)p| ≥ |i∗N (QNgω)p| = |β
g
p |. ut

Now we would like to estimate(πg
N )∗X for a unit tangent vectorX. Sinceπg

N = (ρ
g
N )0 we

prove a stronger statement that will be used again later. Recall that we assumeL ≤ 0.05.

Lemma 7.4. If q ∈ expN (Vertg)L andX ∈ TqM is a unit vector then for anyt ∈ [0, 1]
we have

|(ρ
g
N )t∗X| ≤ 1.5

1 + Dε
L

1 − Dε
L

.

Proof. Using Lemma 7.1 we have

|(ρ
g
N )t∗X| ≤ (1 + Dε

L)|(ϕ−1
g )∗(ρ

g
N )t∗X|.

Clearly(ρ
g
N )t ◦ ϕg = ϕg ◦ (ρNg )t , since—up to exponentiating—ϕg mapsνNg to Vertg,

and(ρNg )t and(ρ
g
N )t are just rescaling of the respective fibers by a factor oft .
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If we reproduce the proof of Lemma 7.3 requiringp to lie in expNg
(νNg)L we ob-

tain17
|(ρNg )t∗Y | < 1.5 for unit vectorsY at p. Using this and Lemma 7.1 respectively

we have

|(ρNg )t∗(ϕ
−1
g )∗X| ≤ 1.5|(ϕ−1

g )∗X| and |(ϕ−1
g )∗X| ≤

1

1 − Dε
L

.

Altogether this proves the lemma. ut

Corollary 7.3. OnexpN (Vertg)L we have

|(π
g
N )∗βg

| ≤ 200ε
1 + Dε

L

1 − Dε
L

.

Proof. This is clear from the equality|((πg
N )∗βg)X| = |βg((π

g
N )∗X)|, Corollary 7.2 and

Lemma 7.4. ut

Step I. Now we estimate|Qg
N (ωg − ω)|. This is easily achieved using Lemmata 7.2 and

7.4 to estimate the quantities involved in(F):

Corollary 7.4. For q ∈ ∂ expN (Vertg)L we have

|Q
g
N (ωg − ω)q | ≤ 1.5

1 + Dε
L

1 − Dε
L

· L ·

[
Dε

L

1 − Dε
L

(
Dε

L

1 − Dε
L

+ 2

)
+ 2L + 100ε

]
.

Remark. By Proposition 5.2,d(q, N) ≥ Rε
L. Furthermore, whenε < 1/70000 and

L < 0.05, one can show thatRε
L ≥

2
3L. SoL ≤

3
2d(q, N).

Now finally using Corollaries 7.3 and 7.4 we can estimate the norm ofα :=
∫
g
αg:

Proposition 7.2. AssumingL < 0.05at q ∈
⋂

g expN (Vertg)L we have

|αq | ≤ 1.5
1 + Dε

L

1 − Dε
L

·
3

2
d(q, N) ·

[
Dε

L

1 − Dε
L

(
Dε

L

1 − Dε
L

+ 2

)
+ 2L + 100ε

]
+ 200ε

1 + Dε
L

1 − Dε
L

.

7.4. The end of the proof of the Main Theorem

Proposition 7.1 showed that the Moser vector fieldvt := −ω̃−1
t α is well defined on

tubε
⊂
⋂

g∈G expN (Vertg)Lε . Recalling thatDε
Lε = 0.1, Corollary 7.1 immediately im-

plies

Corollary 7.5. At q ∈ tubε
⊂
⋂

g expN (Vertg)Lε we have

|(ω̃t )
−1
q |op ≤

1

1 −

[
Dε

Lε

1−Dε
Lε

(
Dε

Lε

1−Dε
Lε

+ 2
)

+ 2Lε + 100ε
] ≤ 1.53.

17 SinceL < 0.05 now we have to replace the constant 21/20 in that proof by the constant 6/5.
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From Corollary 7.5 and Proposition 7.2 we obtain:

Proposition 7.3. For all t ∈ [0, 1] andq ∈ tubε ,

|(vt )q | ≤ |(ω̃t )
−1
q |op · |αq | ≤ 1.45d(q, N) + 374ε.

Let γ (t) be an integral curve of the time-dependent vector fieldvt on tubε such thatp :=
γ (0) ∈ N . Whered( · , p) is differentiable, its gradient has unit length. Sod

dt
d(γ (t), p) ≤

|γ̇ (t)|.
By Proposition 7.3 we have|γ̇ (t)| ≤ 1.45d(γ (t), p) + 374ε. So altogether

d

dt
d(γ (t), p) ≤ 1.45d(γ (t), p) + 374ε.

The solution of the ODĖs(t) = As(t) + B satisfyings(0) = 0 is B
A

(eAt
− 1). Hence, if

the integral curveγ is well defined at time 1, we have

d(γ (1), N) ≤ d(γ (1), p) ≤
374ε

1.45
(e1.45

− 1) ≤ 842ε.

Let us denote byρ1 the time-1 flow of the time-dependent vector fieldvt , so thatρ−1
1

is the time-1 flow of−v1−t . Since by definition tubε := expN (νN)Rε
Lε

the submanifold

L := ρ−1
1 (N) will surely be well defined if

842ε < Rε
Lε .

This is always the case sinceε < 1/70000.

5·10-6 0.00001 0.000015 0.00002

0.005

0.01

0.015

0.02

Graphs of 842ε (increasing) andRε
Lε (decreasing).

The estimate ford0(Ng, L) is obtained by usingd0(N, L) < 842ε andd0(Ng, N) <

100ε. The proof of the Main Theorem is now complete.

Remark. In the Main Theorem we assumed that|∇ω| < 1. Let us now consider the case
that|∇ω| ≥ 1. Then the statement of the Main Theorem still holds verbatim if one makes
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the bound onε smaller, as follows. The bound on|∇ω| enters our proof directly only in
Lemma 7.2; if|∇ω| ≥ 1, the inequality of that lemma should read

|(ωg − ω)(X, Y )| ≤
Dε

L

1 − Dε
L

(
Dε

L

1 − Dε
L

+ 2

)
+ |∇ω|(2L + 100ε)

instead. Similarly, the quantity 2L + 100ε appearing in Corollary 7.1, Corollary 7.4 and
Proposition 7.2 should be multiplied by|∇ω|. Now assume that

ε <
1

|∇ω|

1

70000

and replaceLε everywhere by

L̃ε :=
0.1/|∇ω| − 4100ε

4
.

Then the bounds on|(ω̃t )
−1
q |op and|(vt )q | given in Corollary 7.5 and Proposition 7.3 still

hold, and our isotropic averageL will be well defined if 842ε < Rε

L̃ε
. This is satisfied for

ε small enough, sinceRε

L̃ε
is a continuous function andR0

L̃0 is positive.

8. Remarks on the Main Theorem

Remark 1 (Is the isotropic averageL C1-close to theNg ’s?). The main shortcoming of
our Main Theorem is surely the lack of an estimate on theC1-distanced1(Ng, L).

To boundd1(Ng, L) it is enough to estimate the distance between the tangent spaces
TpL andTρ1(p)N . Indeed, this would allow us to estimate the distance betweenTpL and
TπNg (p)Ng, using which—whenε is small enough—one can conclude thatπNg : L → Ng

is a diffeomorphism and give the desired bound on theC1-distance.
Using local coordinates and standard theorems about ODEs it is possible to estimate

the distance betweenTpL andTρ1(p)N provided one has a bound on the covariant deriva-
tive of the Moser vector field, for which one would have to estimate∇(ω̃t )

−1. To do that
one should be able to bound expressions like∇Y ((ϕ−1

g )∗X) for parallel vector fieldsX
along some curve.

This does not seem to be possible without more information on the extrinsic geometry
of N . We recall that it is not known whether the averageN forms a gentle pair withM
(see Remark 6.1 in [We]). We are currently trying to improve Weinstein’s theorem so that
one obtains a gentle average.

Remark 2 (The case of isotropicN ). Unfortunately, if the Weinstein averageN hap-
pens to be already isotropic with respect toω, our construction will generally provide an
isotropic averageL different fromN . Indeed, while Step I of Section 7.2 always gives a
1-form vanishing at points ofN , Step II does not, even ifN is isotropic forω.

The procedure outlined in Remark 3, on the other hand, would produceN as the
isotropic average, but in that case the upper bound forε would depend on the geometry
of N .
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Remark 3 (Averaging of symplectic and coisotropic submanifolds). The averaging of
C1-close gentle symplectic submanifolds of an almost-Kähler manifold is a much sim-
pler task than for isotropic submanifolds. The reason is thatC1-small perturbations of
symplectic manifolds are symplectic again and one can simply apply Weinstein’s averag-
ing procedure ([We, Thm. 2.3]).

Unfortunately our construction does not allow averaging coisotropic submanifolds.
In our proof we were able to canonically construct a primitive of

∫
g
ωg − ω using the

fact that theNg ’s are isotropic with respect toω. If they are not, it is still possible to
construct canonically a primitive, following Step I of our construction and making use of
the primitived∗(4−1i∗N (ωg −ω)) of i∗N (ωg −ω) (but the upper bound on its norm would
depend on the geometry ofN ).

Nevertheless, our construction fails in the coisotropic case, since the fact thatN is
coisotropic for allωg ’s does not imply that it is for their average

∫
g
ωg.

9. An application to Hamiltonian actions

As a simple application of our Main Theorem we apply Theorem 2 to almost invariant
isotropic submanifolds of a HamiltonianG-space and deduce some information about
their images under the moment map.

We start by recalling some basic definitions (see [Ca]): consider an action of a Lie
groupG on a symplectic manifold(M, ω) by symplectomorphisms. Amoment mapfor
the action is a mapJ : M → g∗ such that for allv ∈ g we haveω(vM , ·) = d〈J, v〉

and which is equivariant with respect to theG-action onM and the coadjoint action ofG
on g. HerevM is the vector field onM given byv via the infinitesimal action. An action
admitting a moment map is called theHamiltonian action.

This simple lemma is a counterpart to [Ch, Prop. 1.3].

Lemma 9.1. Let the compact connected Lie groupG act on the symplectic manifold
(M, ω) with moment mapJ . LetL be a connected isotropic submanifold of(M, ω) which
is invariant under the group action. ThenL ⊂ J−1(µ) whereµ is a fixed point of the
coadjoint action.

Proof. Let X ∈ TxL. For eachv ∈ g we have

dx〈J, v〉X = ω(vM(x), X) = 0,

since bothvM(x) and X are tangent to the isotropic submanifoldL. Therefore every
component of the moment map is constant alongL, soL ⊂ J−1(µ) for someµ ∈ g∗.

Now letx0 ∈ L and letG ·x0 ⊂ L be the orbit throughx0. Then from the equivariance
of J it follows that for allg we haveµ = J (g · x0) = g · J (x0) = g · µ, soµ is a fixed
point of the coadjoint action. ut

Now we apply the lemma above to the case whereL is almost invariant.
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Corollary 9.1. Let the compact Lie groupG act on the symplectic manifold(M, ω) with
moment mapJ : M → g∗. SupposeM is endowed with aG-invariant compatible Rie-
mannian metric so that the Levi-Civita connection satisfies|∇ω| < 1. If a connected
isotropic submanifoldL ⊂ M satisfies:

(i) (M, L) is a gentle pair,
(ii) d1(L, g · L) < ε < 1/70000for all g ∈ G,

thenJ (L) lies in the ball of radius1000ε ·C about a fixed pointµ of the coadjoint action.
Hereg∗ is endowed with any inner product andC := max{|vM | : v ∈ g has unit length}.

Proof. By Theorem 2 there exists an isotropic submanifoldL′ invariant under theG-
action with d0(L, L′) < 1000ε. By Lemma 9.1,L lies in some fiberJ−1(µ) of the
moment map, whereµ is a fixed point of the coadjoint action. We will show that|J (p) −

µ| < 1000ε · C for all p ∈ L.
Let p′ a closest point top in L′. The shortest geodesicγ from p to p′, which we

choose to be defined on the interval [0, 1], has length< 1000ε. Therefore for any unit-
lengthv ∈ g (with respect to the inner product induced ong by its dual) we have

〈J (p) − µ, v〉 =

∫ 1

0
〈dJ (γ (t))γ̇ (t), v〉 dt =

∫ 1

0
d〈J, v〉γ̇ (t) dt

=

∫ 1

0
ω(vM , γ̇ (t)) dt.

Since for allt we have|ω(vM , γ̇ (t))| ≤ |vM | · |γ̇ (t)| ≤ 1000ε · C we are done. ut

A. The estimates of Proposition 4.1

Here we will prove the estimates used in the proof of Proposition 4.1. See Section 4 for
the notation.

We first state a general fact about the exponential map:

Lemma A.1. If γ is a geodesic parametrized by arc length andW ∈ Tγ (0)M, then for
t < 0.7,

|γ \\ (dt γ̇ (0) expγ (0))W − W | ≤
sinh(t) − t

t
|W | ≤

t2

5
|W |

and (
1 −

t2

5

)
|W | ≤ |exp∗ W | ≤

(
1 +

t2

5

)
|W |.

Proof. The unique Jacobi field alongγ such thatJ (0) = 0 andJ ′(0) = W is given by
J (t) = (dt γ̇ (0) expγ (0))(tW) (see [Jo, Cor. 4.2.2]). The bound(sinh(t) − t)/t follows
from [BK, 6.3.8iii]. This expression is bounded above byt2/5 whent < 0.7. The second
estimate follows trivially from the first one. We prefer to use these estimates rather than
more standard ones (see [BK, 6.4.1]) in order to keep the form of later estimates more
concise. ut



114 Marco Zambon

Corollary A.1.

](Q − 0, CA\\ ĊB) <
1

2
d(C, A).

Proof. By [BK, 6.6.1] (choosingv = C̃ − 0 andw = CA\\ ĊB) we get

d(expA((C̃ − 0) +CA \\ ĊB), expC ĊB = B)

≤
1

3
d(A, C) · d(C, B) · sinh(d(A, C) + d(C, B)) · sin(](C̃ − 0, CA\\ ĊB))

≤
1

3
d(A, C)d(C,B)

usingd(A, C) < 0.15 andd(C, B) < 0.5.
In order to estimate distances inTAM (instead of inM) we denote the shortest

geodesic from expA((C̃ − 0) + CA\\ ĊB) to B by τ , and byτ̃ its image under exp−1
A .

By Lemma A.1,

9

10
| ˙̃τ(s)| ≤

(
1 −

d(τ(s), A)2

5

)
| ˙̃τ(s)| ≤ |τ̇ (s)|

(usingd(τ(s), A) < 0.7 in the first inequality), so

d(expA((C̃ − 0) + CA\\ ĊB), B) ≥
9

10
|(C̃ − 0) + CA\\ ĊB − (B̃ − 0)|

=
9

10
|CA\\ ĊB − (B̃ − C̃)|.

Altogether, sinceB̃ − C̃ = Q − 0, we obtain|CA\\ ĊB − (Q − 0)| ≤
2
5d(A, C)d(C,B),

and usingsinx
x

≥
7
8 for x ∈ [0, 0.8], we obtain

](CA\\ ĊB, Q − 0) ≤
8

7
sin(](CA\\ ĊB, Q − 0)) ≤

1

2
d(C, A). ut

Corollary A.2.

](P − 0, P ′
− 0) ≤

1

2
d(C, A).

Proof. We first want to bound|P ′
− P | from above and|P ′

− 0| from below. SinceP ′

andP are the closest points inPA to CA\\ ĊB andQ respectively,

|P − P ′
| ≤ |(Q − 0) − CA\\ ĊB| ≤

2

5
d(A, C)d(C,B),

by the last estimate of the proof of Corollary A.1.
On the other hand, we have

|P ′
− 0| = |ĊB| · cos(](CA\\ ĊB, PA)) ≥ |ĊB| · cos(θ)

≥ |ĊB|

√
1 − θ2 ≥ |ĊB|

√
1 − C2d(C, A)2.
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Therefore we have

sin(](P ′
− 0, P − 0)) ≤

|P ′
− P |

|P ′ − 0|
≤

2

5

1√
1 − C2d(C, A)2

d(C, A).

So, using the restrictionsC ≤ 2 andd(C, A) < 0.15, and usingsinx
x

≥
7
8 for x ∈ [0, 0.8],

we obtain

](P ′
− 0, P ′

− P) ≤
8

7
sin(](P ′

− 0, P ′
− P)) ≤

1

2
d(C, A). ut

We conclude this appendix by deriving the estimate needed in Claim 3 of Proposition 4.1.

Corollary A.3.

|B̃ − C̃| <
11

10
d(C, B).

Proof. This follows by choosing a shortest geodesic betweenC andB and using Lemma
A.1, exactly as we did in the proof of Corollary A.1. ut

B. An upper bound for α using the curvec

Here we will prove Proposition 5.1, namely the estimate

|exp−1
Ng

(C) −
⊥

πb\\ exp−1
Ng

(A)| ≤ L(γ )
3150ε

f (r)
.

To do so we will use the fact thatN is C1-close toNg (see Lemma B.3).
In addition to the notation introduced in Section 5 to state the proposition, we will use

the following. We will denote byπc(t) the curveπNg ◦ c(t), soπc is just a reparametriza-
tion of π . We will use exp as a short-hand notation for the normal exponential map
expNg

: (νNg)1 → expNg
(νNg)1. Thereforec̃(t) := exp−1(c(t)) will be a section of

νNg alongπc. The image under exp∗ of the Ehresmann connection corresponding to∇
⊥

will be the subbundle LCg of T M|expNg
(νNg)1. To simplify notation we will denote by

prγ̇ (t) Horg the projection ofγ̇ (t) ∈ Tγ (t)M onto Vertgγ (t) along Horgγ (t). We will also

use pṙγ (t) aHorg and pṙγ (t) LCg to denote projections onto aVertg

γ (t) along aHorgγ (t) and

LCg

γ (t) respectively.

Our strategy will be to bound above|∇
⊥

dt
c̃(t)| = |exp−1

∗ (prċ(t) LCg)| (see Lemma B.3)
using

T N ≈ Horg ≈ aHorg ≈ LCg.

Integration alongπc will give the desired estimate.
The estimates to make preciseT N ≈ Horg and Horg ≈ aHorg were derived in [We].

In the next two lemmata we will do the same for aHorg
≈ LCg.



116 Marco Zambon

Lemma B.1. If L < 0.08andp is a point in∂ expNg
(νNg)L, then

d(aHorgp, LCg
p) ≤ arcsin

(
9

5
L

)
.

Proof. It is enough to show that, ifY ∈ LCg
p is a unit vector, then

|prY aHorg| ≤
9

5
L.

Let β(s) be a curve tangent to the distribution LCg such thatβ(0) = p andβ̇(0) = Y .
Then exp−1(β(s)) = Lξ(s) for a unit-length parallel sectionξ of νNg along the curve
γ (s) := πNg (β(s)). If we denote byK the Ng-Jacobi field arising from the variation
fs(t) = exp(tξ(s)), then clearlyK(L) = Y andK(0) = γ̇ (0).

We claim thatξ is a strong Jacobi field (see the remark in Section 3.2): we have
∂
∂t

|0fs(t) = ξ(s), so

K ′(0) =
∇

dt

∣∣∣∣
0

∂

∂s

∣∣∣∣
0
fs(t) =

∇

ds

∣∣∣∣
0
ξ(s) =

∇
⊥

ds

∣∣∣∣
0
ξ(s) − Aξ(0)γ̇ (0) = −Aξ(0)K(0).

The claim follows sinceξ(0) = γ̇p(0), whereγp denotes the unique geodesic paramet-
rized by arc length connectingπNg (p) to p.

Now let us denote byJ theNg-Jacobi field alongγp vanishing at 0 such thatJ (L) =

prY aHorg ∈ aVertgp. By Lemma 3.9, using the fact thatY is a unit vector, we have

|prY aHorg|2 = 〈prY aHorg, Y 〉 = |〈J (L), K(L)〉| ≤
9

5
L · |prY aHorg|

and we are done. ut

Lemma B.2. Let L < 0.08. For any pointp in ∂ expNg
(νNg)L the projectionsTpM →

aVertgp alongaHorgp andLCg
p differ at most by2L in the operator norm.

Proof. Let φ : aHorgp → aVertgp be the linear map whose graph is LCg
p. Let X ∈ TpM

be a unit vector and writeX = Xah + Xav for the decomposition ofX into almost hori-
zontal and almost vertical vectors. ThenX = (Xah + φ(Xah)) + (Xav − φ(Xah)) is the
decomposition with respect to the subspaces LCg

p and aVertgp. The difference of the two
projections onto aVertg

p mapsX to φ(Xah). Now

|φ(Xah)| ≤ |φ|op ≤ tan(d(aHorgp, LCg
p)) ≤

9
5L√

1 − (9
5L)2

< 2L,

where we used [We, Cor. A.5] in the second inequality and Lemma B.1 in the third
one. ut

Now we are ready to bound the covariant derivative ofc̃(t):
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Lemma B.3. For all t , ∣∣∣∣∇⊥

dt
c̃(t)

∣∣∣∣ ≤ 2702ε.

Proof. Let

∇̂⊥

dt
c̃(t)

denote ∇
⊥

dt
c̃(t) ∈ νπc(t)Ng but considered as an element ofTc̃(t)(νπc(t)Ng). First no-

tice that, by definition,∇̂
⊥

dt
c̃(t) is the image oḟ̃c(t) under the projectionTc̃(t)(νNg) →

Tc̃(t)(νπc(t)Ng) along the Ehresmann connection onνNg corresponding to∇⊥. Therefore,
since exp∗ maps the Ehresmann connection to LCg and tangent spaces to the fibers ofνNg

to aVertg, we have

exp∗

(
∇̂⊥

dt
c̃(t)

)
= prċ(t) LCg.

Notice that here exp∗ denotesdc̃(t) expNg
.

The fact thatN is C1-close toNg (see Theorem 4) implies](ċ(t), Horgc(t)) ≤ 2500ε

sinceċ(t) ∈ Tc(t)N . By [We, Prop. 3.7],d(Horgc(t), aHorgc(t)) ≤ ε/4 sinced(c(t), Ng) ≤

100ε. Therefore](ċ(t), aHorgc(t)) ≤ 2501ε and|prċ(t) aHorg | ≤ sin(2501ε) ≤ 2501ε.
On the other hand, by Lemma B.2,|prċ(t) aHorg − prċ(t) LCg

| ≤ 200ε. The triangle
inequality therefore gives|prċ(t) LCg

| ≤ sin(2701ε). Therefore, using Lemma A.1 and
ε < 1/20000,

|exp−1
∗ (prċ(t) LCg)| ≤

1

1 − ε/5
|prċ(t) LCg

| ≤ 2702ε. ut

Lemma B.3 allows us to bound|exp−1(C) −
⊥

πb\\ exp−1(A)| in terms ofL(c). However,
we want a bound in terms ofL(γ ), so now we will compare the lengths of the two curves.

Recall thatf (x) = cos(x) −
3
2 sin(x) and r := 100ε + L(γ )/2. Notice also that

r < 0.08 due to our restrictions onε andd(C, A).

Lemma B.4.

L(c) ≤
1 + 3200ε

f (r)
L(γ ).

Proof. Sinceϕg∗(τNg∗
ċ(t)) = ċ(t), by Proposition 3.1 we have|ċ(t) − \\ (πNg )∗ċ(t)| ≤

3200ε|(πNg )∗ċ(t)|, so

|ċ(t)| ≤ (1 + 3200ε)|(πNg )∗ċ(t)|.

SinceL(πNg ◦ c) = L(π), it follows thatL(c) ≤ (1+ 3200ε)L(π). By [We, Lemma 3.3]
we havef (r)L(π) ≤ L(γ ) and we are done. ut
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Proof of Proposition 5.1.We have

|exp−1(C) −
⊥

πb\\ exp−1(A)| =

∣∣∣∣ ∫ L(c)

0

d

dt

⊥

πb
c
\\ c̃(t) dt

∣∣∣∣ =

∣∣∣∣∫ L(c)

0

⊥

πb
c
\\
∇

⊥

dt
c̃(t) dt

∣∣∣∣
≤ 2702εL(c) ≤ 2702ε

1 + 3200ε

f (r)
L(γ )

where we used Lemmata B.3 and B.4 in the last two inequalities. The proposition follows
by using the boundε < 1/20000. ut

C. A lower bound for α using the curveγ

Here we will prove Proposition 5.2, i.e. the estimate

|exp−1
Ng

(C) −
⊥

πb\\ exp−1
Ng

(A)|

≥ L(γ )

[
99

100
sin

(
α −

ε

4

)
− 500ε − 3r −

8

3
L(γ )

(
r +

r + 3/2

f (r)

)]
.

We will use the fact thatNg has bounded second fundamental form (see the first statement
of Lemma C.3) and thatγ is a geodesic (see the second statement of the same lemma).

We will use the notation introduced in Section 5 and at the beginning of Appendix B.
Recall thatγ̃ (t) := exp−1

Ng
(γ (t)) is a section ofνNg alongπ .

First we will set a lower bound on the initial derivative ofγ̃ .

Lemma C.1. We have∣∣∣∣∇⊥

dt
γ̃ (0)

∣∣∣∣ ≥
99

100

[
sin

(
α −

ε

4

)
− 200ε

]
.

Proof. Analogously to the proof of Lemma B.3 we have exp∗(
∇̂⊥

dt
γ̃ (0)) = prγ̇ (0) LCg,

where ∇̂⊥

dt
γ̃ (0) is an element ofTγ̃ (0)νπ(0)Ng.

By [We, Prop. 3.7] we haved(HorgC, aHorgC) ≤ ε/4. So

](γ̇ (0), aHorgC) ≥ ](γ̇ (0), HorgC) − d(HorgC, aHorgC) ≥ α − ε/4.

Therefore|prγ̇ (0) aHorg | ≥ sin(α − ε/4).

On the other hand, by Lemma B.2,|prγ̇ (0) aHorg − prγ̇ (0) LCg
| ≤ 200ε. The inverse

triangle inequality gives

|prγ̇ (0) LCg
| ≥ sin(α − ε/4) − 200ε.

Applying exp−1
∗ , by Lemma A.1 we have

|exp−1
∗ (prγ̇ (0) LCg)| ≥

1

1 + ε/5
|prγ̇ (0) LCg

|,

and since 1
1+ε/5 ≥

99
100 we are done. ut
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Our next goal is to show that̃γ (t) “grows at a nearly constant rate”. This will be
achieved in Corollary C.3. Together with Lemma C.1 and integration alongπ this will
give the estimate of Proposition 5.2.

The next two lemmas will be used to prove Corollary C.1, where we will show that
∇

⊥

dt
γ̃ (0) and exp−1

∗ ◦ γ b\\ ◦ exp∗(
∇̂⊥

dt
γ̃ (t)), i.e. the parallel translate of∇

⊥

dt
γ̃ (t) “alongγ ”,

are close for allt . Here ∇̂⊥

dt
γ̃ (t) denotes the vector∇

⊥

dt
γ̃ (t) regarded as an element of

Tγ̃ (t)(νπ(t)Ng). To this end we show that

prγ̇ (0) LCg
≈ prγ̇ (0) Horg ≈ prγ̇ (t) Horg ≈ prγ̇ (t) LCg,

where we identify tangent spaces by parallel translation alongγ . The crucial step is the
second “≈”, where we use the fact thatγ is a geodesic. Applying exp−1

∗ will easily imply

Corollary C.1 since exp−1
∗ (prγ̇ (t) LCg) =

∇̂⊥

dt
γ̃ (t).

Lemma C.2. For anyL < 1 and any pointp ∈ expNg
(νNg)L the orthogonal projections

TpM → aHorgp andTpM → Horgp differ at most byL2/5 in the operator norm.

Proof. This follows immediately from [We, Prop. 3.7]. ut

Lemma C.3. For all t ,

d(VertgC, γ b\\ Vertgγ (t)) ≤ arcsin

[
t

(
r +

r + 3/2

f (r)

)]
.

Furthermore,

|prγ̇ (0) Horg − γ b\\ prγ̇ (t) Horg| ≤ t

(
r +

r + 3/2

f (r)

)
.

Proof. We first want to estimated(VertgC, γ b\\ Vertgγ (t)). Let v ∈ νCNg be a normal unit
vector.

First of all, for the∇ and∇
⊥ parallel translations alongπ from C to π(t) we have

|π\\ v −
⊥
π \\ v| ≤

3

2
L(π |[0,t ]) ≤

3

2

t

f (r)
.

The first inequality follows from a simple computation involving the second fundamental
form of Ng, which is bounded in norm by 3/2 (see [We, Cor. 3.2]). The second inequality
is due tof (r)L(π |[0,t ]) ≤ L(γ |[0,t ]), which follows from [We, Lemma 3.3].

Secondly, denoting byτt the unit-speed geodesic fromπ(t) to γ (t), we have

|τ0\\ v − γ b\\ ◦ τt \\ ◦ π\\ v| ≤ rt

(
1 +

1

f (r)

)
.

Indeed, the above expression just measures the holonomy as one goes once around the
polygonal loop given by the geodesicsτb

0 , π, τt andγ b. Using the bounds on curvature,
we know that this is bounded by the area of a surface spanned by the polygon (see [BK,
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6.2.1]). The estimate given above surely holds sinceL(τt ), L(τ0) ≤ r, L(γ |[0,t ]) = t and,
as we just saw,L(π |[0,t ]) ≤ t/f (r).

Together this gives

|τ0\\ v − γ b\\ ◦ τt \\ ◦
⊥
π \\ v| ≤ |τ0\\ v − γ b\\ ◦ τt \\ ◦ π\\ v| + |γ b\\ ◦ τt \\ ◦ [π\\ v −

⊥
π \\ v]|

≤ t

(
r +

r + 3/2

f (r)

)
.

So we obtain a bound on the distance fromτ0\\ v ∈ VertgC to a unit vector inγ b\\ Vertgγ (t).
This yields the first statement of the lemma. The second follows from [We, Prop. A.4],
sinceγ b\\ prγ̇ (t) Horg = prγ̇ (0)(γ b\\ Horgγ (t)) becauseγ is a geodesic. ut

Corollary C.1. For all t ,∣∣∣∣exp−1
∗ ◦ γ b\\ ◦ exp∗

(
∇̂⊥

dt
γ̃ (t)

)
−

∇
⊥

dt
γ̃ (0)

∣∣∣∣ ≤
51

50

[
2.1(100ε + r) + t

(
r +

r + 3/2

f (r)

)]
.

Proof. From Lemmata C.2 and B.2 we have, for allt ,

|prγ̇ (t) Horg − prγ̇ (t) LCg
| ≤ |prγ̇ (t) Horg − prγ̇ (t) aHorg| + |prγ̇ (t) aHorg − prγ̇ (t) LCg

|

≤ r2/5 + 2r ≤ 2.1r.

For t = 0, sinced(C, Ng) < 100ε, we have the better estimate

|prγ̇ (0) Horg − prγ̇ (0) LCg
| ≤ 210ε.

Combining this with the second statement of Lemma C.3 gives

|prγ̇ (0) LCg
− γ b\\ prγ̇ (t) LCg

| ≤ 2.1(100ε + r) + t

(
r +

r + 3/2

f (r)

)
.

Recall that pṙγ (t) LCg
= exp∗(

∇̂⊥

dt
γ̃ (t)), as in the proof of Lemma B.3. Also, for any

vectorX ∈ TCM we have|exp−1
∗ X| ≤ |X|/(1 − ε/5) by Lemma A.1. So applying

(exp−1)∗ to prγ̇ (0) LCg
− γ b\\ prγ̇ (t) LCg we get∣∣∣∣∇⊥

dt
γ̃ (0) − exp−1

∗ ◦ γ b\\ ◦ exp∗

(
∇̂⊥

dt
γ̃ (t)

)∣∣∣∣
≤

[
2.1(100ε + r) + t

(
r +

r + 3/2

f (r)

)]
1

1 − ε/5
. ut

Now let ξ be a unit vector inνπ(t)Ng. Denote byξ̂ the same vector thought of as an ele-
ment ofTγ̃ (t)(νπ(t)Ng). In the next two lemmas we want to show that⊥

πb\\ ξ and exp−1
∗ ◦ γ b\\

◦ exp∗ ξ̂ ∈ TCM are close to each other, i.e. that under the identification by exp the∇
⊥-

parallel translation alongπ and the∇-parallel translation alongγ do not differ too much.
Here we also make use of the fact thatN has bounded second fundamental form (see
Lemma C.5). In Corollary C.2 we will apply this to the vector∇

⊥

dt
γ̃ (t).



Submanifold averaging 121

Lemma C.4. Denoting byτt the unit-speed geodesic fromπ(t) to γ (t), we have

|τb
0
\\ ◦ γ b\\ ◦ τt \\ ξ − exp−1

∗ ◦ γ b\\ ◦ exp∗ ξ̂ | <
r2

2
.

Proof. First let us notice that applying Lemma A.1 three times we get

|τb
0
\\ [γ b \\ exp∗ ξ̂ ] − exp−1

∗ [γ b\\ exp∗ ξ̂ ]| ≤
r2

5
|exp−1

∗ [γ b\\ exp∗ ξ̂ ]|

≤
r2

5

1

1 − r2/5
|γ b\\ exp∗ ξ̂ | ≤

r2

5

1 + r2/5

1 − r2/5
.

Therefore, by applying Lemma A.1 toξ , the left hand side of the statement of this lemma
is bounded above by

|τb
0
\\ ◦ γ b\\ [τt \\ ξ ] − τb

0
\\ ◦ γ b\\ [exp∗ ξ̂ ]| + |τb

0
\\ ◦ [γ b \\ exp∗ ξ̂ ] − exp−1

∗ [γ b\\ exp∗ ξ̂ ]|

≤
r2

5
+

r2

5

1 + r2/5

1 − r2/5
≤ r2 2

5(1 − r2/5)
. ut

Lemma C.5.

|exp−1
∗ ◦ γ b\\ ◦ exp∗ ξ̂ −

⊥

πb\\ ξ | ≤
r2

2
+ t

(
r +

r + 3/2

f (r)

)
.

Proof. The left hand side is bounded above by

|exp−1
∗ ◦ γ b\\ ◦ exp∗ ξ̂ − τb

0
\\ ◦ γ b\\ ◦ τt \\ ξ | + |τb

0
\\ ◦ γ b\\ ◦ τt \\ ξ − πb\\ ξ | + |πb\\ ξ −

⊥

πb\\ ξ |

≤
r2

2
+ rt

(
1 +

1

f (r)

)
+

3

2

t

f (r)
.

The first term is estimated by Lemma C.4. The second one is just the holonomy as one
goes around the loop given byτt , γ

b, τb
0 andπ , which was bounded above in the proof of

Lemma C.3. The third and last term is estimated in the proof of Lemma C.3 as well.ut

Corollary C.2. The sectioñγ satisfies∣∣∣∣exp−1
∗ ◦ γ b\\ ◦ exp∗

(
∇̂⊥

dt
γ̃ (t)

)
−

⊥

πb\\
∇

⊥

dt
γ̃ (t)

∣∣∣∣ ≤
2

3
r2

+
4

3
t

(
r +

r + 3/2

f (r)

)
.

Proof. We apply Lemma C.5 to∇̂
⊥

dt
γ̃ (t), where now we have to take into consideration

the length of∇̂
⊥

dt
γ̃ (t) in our estimate. We have∣∣∣∣ ∇̂⊥

dt
γ̃ (t)

∣∣∣∣ = |exp−1
∗ (prγ̇ (t) LCg)| ≤

1

1 − r2/5
|prγ̇ (t) LCg

|
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by Lemma A.1, and

|prγ̇ (t) LCg
| ≤ |prγ̇ (t) LCg

− prγ̇ (t) aHorg| + |prγ̇ (t) aHorg| ≤ 2r + 1

by Lemma B.2. Since2r+1
1−r2/5

≤
4
3 for r ≤ 0.08 we are done. ut

Now Corollaries C.1 and C.2 immediately imply thatγ̃ (t) “grows at a nearly constant
rate”:

Corollary C.3. The sectioñγ satisfies∣∣∣∣∇⊥

dt
γ̃ (0) −

⊥

πb\\
∇

⊥

dt
γ̃ (t)

∣∣∣∣ ≤ 3(100ε + r) +
8

3
t

(
r +

r + 3/2

f (r)

)
.

Proof of Proposition 5.2.The estimate of Proposition 5.2 follows from

|exp−1(C) −
⊥

πb\\ exp−1(A)| =

∣∣∣∣∫ L(γ )

0

⊥

πb\\
∇

⊥

dt
γ̃ (t) dt

∣∣∣∣
≥

∣∣∣∣∫ L(γ )

0

∇
⊥

dt
γ̃ (0)dt

∣∣∣∣− ∣∣∣∣∫ L(γ )

0

(
∇

⊥

dt
γ̃ (0) −

⊥

πb\\
∇

⊥

dt
γ̃ (t)

)
dt

∣∣∣∣
≥ L(γ ) ·

∣∣∣∣∇⊥

dt
γ̃ (0)

∣∣∣∣− ∫ L(γ )

0

∣∣∣∣∇⊥

dt
γ̃ (0) −

⊥

πb\\
∇

⊥

dt
γ̃ (t)

∣∣∣∣ dt

by using Lemma C.1 and Corollary C.3. ut

References

[BK] Buser, P., Karcher, H.: Gromov’s almost flat manifolds. Astérisque 81 (1981)
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