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Abstract. We give a canonical construction of an “isotropic average” of giZérclose isotropic
submanifolds of a symplectic manifold. For this purpose we use an improvement (obtained in col-
laboration with H. Karcher) of Weinstein’s submanifold averaging theorem and apply “Moser’s
trick”. We also present an application to Hamiltonian group actions.
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1. Introduction

In 1999 Alan Weinstein [We] presented a procedure to average a famijlyof subman-
ifolds of a Riemannian manifold/: if the submanifolds are close to each other i@’a
sense, one can producanonicallﬂ an “average”N which is close to each member of
the family {N,}. The main property of this averaging procedure is that it is equivariant

M. Zambon: Department of Mathematics, UC Berkeley, CA 94720, USA;
e-mail: zambon@math.berkeley.edu

Mathematics Subject Classification (2008RC55, 53D12

1 The construction is canonical because it does not involve any arbitrary choice but uses only the
Riemannian metric oM.



78 Marco Zambon

with respect to isometries dff, and therefore if the familyN,} is obtained by applying
the isometric action of a compact grogpto some submanifold/y of M, the resulting
average will be invariant under th@-action. This generalizes results about fixed points
of group actions [We].

In the first part of this paper we will exhibit a result by Hermann Karcher and the
author which improves Weinstein’s theorem.

In the main body of the paper we specialize Weinstein’s averaging to the setting of
symplectic geometry: given a fami{y, } of isotropicsubmanifolds of a symplectic man-
ifold M, we obtain arisotropic averageL. We achieve this in two steps: first we intro-
duce a compatible Riemannian metric dhand apply Weinstein’s averaging to obtain
a submanifoldV. This submanifold will be “nearly isotropic” because itGs-close to
isotropic ones, and using the family,} we will deform N to an isotropic submanifold
LE] Our construction depends only on the symplectic structur® afnd on the choice
of compatible metric. Therefore applying our construction to the case of compact group
actions by isometric symplectomorphisms we can obtain isotropic submanifolds which
are invariant under the action.

As a simple application we show that the image of an almost invariant isotropic sub-
manifold under a compact Hamiltonian action is “small”.

Another application is the following: given a symplectic action of a compact gébup
on two symplectic manifoldd/; and M> together with an almost equivariant symplec-
tomorphism¢ : M1 — Mo, apply the averaging procedure to gréph Cc M1 x Mo.

If the resultingG-invariant submanifold. is a graph, then it will be the graph of@-
equivariant symplectomorphism. This means that we would be able to deform almost
equivariant symplectomorphisms to equivariant ones. To ensurd.tlgaagain a graph

one needs to improve Weinstein’s averaging proce@ums is the subject of work in
progress.

We would like to extend our averaging procedure to coisotropic submanifolds too:
indeed, if one could average any two coisotropic submanifdlgsand N1 which are
close to each other, then by “shifting weights” in the parameter sgace {0, 1} one
would produce a continuous path of coisotropic submanifolds conneltig N1. This
would show that the space of coisotropic submanifolds is locally path connected.

In the remainder of the introduction we will recall the averaging procedure in the
Riemannian setting by Weinstein (see [We]), we will state our results, and we will outline
our construction of averaging isotropic submanifolds.

1.1. Averaging of Riemannian submanifolds

The starting point for our isotropic averaging construction is the statement of Theorem
2.3 in [We]. We first recall some definitions from [We] in order to state the theorem.

2 It would be interesting to find a way to deform any given “nearly isotropic” submanifold to an
honest isotropic one in a canonical fashion.

3 We need to improve Weinstein's theorem in order to ensure that gsapind L be C1-close;
see Remark 1 in Secti¢n 8.



Submanifold averaging 79

If M is a Riemannian manifold andl a submanifold(M, N) is called agentle pair
if (i) the normal injectivity radius ofV is at least 1; (ii) the sectional curvaturesmMfin
the tubular neighborhood of radius 1 abauare bounded in absolute value by 1; (iii) the
injectivity radius at each point of the above neighborhood is at least 1.

The distance between two subspadésF’ of the same dimension of a Euclidean
vector space, denoted byl (F, F’), is equal to the*-distance between the unit spheres
of F andF’ considered as Riemannian submanifolds of the unit spheteThis distance
is symmetric and satisfie&( F, F') = d(F*, F’L). It is always smaller than or equal to
7/2, and it is equal ter/2 iff F andF’* are not transversal.

One can define @1-distance between two submanifoldsN’ of a Riemannian man-
ifold if N’ lies in the tubular neighborhood &f and is the image under the normal expo-
nential map ofV of a section oy N (soN andN’ are necessarily diffeomorphic). This is
done by assigning two numbers to eatke N’: the length of the geodesic segment from
x' to the nearest point in N and the distance betwe& N’ and the parallel translate of
T, N along the above geodesic segment. THedistance is defined as the supremum of
those numbers as ranges oveN’ and is denoted by1 (N, N').

Note that this distance is not symmetric, butM, N) and (M, N') are both gentle
pairs withdy(N, N') < 1/4,thend1(N’, N) < 25Qd1(N, N') (see Remark 3.18 in [We]).

The improvement of Theorem 2.3 [n [We] by Karcher and the author is our Theorem 4
and read

Theorem (Weinstein). Let M be a Riemannian manifold arf@v, } a family of submani-
folds of M parametrized in a measurable way by elements of a probability spasech
that all the pairs(M, N,) are gentle. lld1(Ng, Ni) < € < 1/20000for all g andh in G,
there is a well definedenter of masssubmanifoldV with d1(N,, N) < 250C for all g
in G. The center of mass construction is equivariant with respect to isometrigsawid
measure preserving automorphismsaof

Remark. Foranyg € G the center of mas¥ is the image under the exponential map of
a section ob Ny anddo(Ng, N) < 10Ce.

From this one gets immediately a statement about invariant submanifolds under com-
pact group actions (cf. Theorem 2.2 of [We])).

1.2. Averaging of isotropic submanifolds

Recall that for any symplectic manifold/, ») we can choose a compatible Riemannian
metric g, i.e. a metric such that the endomorphigrmf 7T M determined byw (-, I-) =
g(-, ) satisfiess2 = — Id7 ;. The tuple(M, g, w, I) is called aralmost-Kahler manifold
To prove our Main Theorem we need to assume a bound o6%heorm of Vo (herev
is the Levi-Civita connection given by), which measures how far our almoséhler

4 \We omit the compactness assumption onihés stated there since it is superfluous.
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manifold is from being Iéhlet{ﬂWe state the theorem choosing the bound to be 1 (but see
Remark (i) below).

Theorem 1 (Main Theorem) Let (M™, g, w, I) be an almost-Ehler manifold satis-
fying |[Vo| < 1 and{Ng} a family of isotropic submanifolds df parametrized in a
measurable way by elements of a probability sp&cesuch that all the pair§M, N,)
are gentle. Ifd1(Ng, N;) < € < 1/70000for all g andk in G, there is a well defined
isotropic center of masssubmanifoldZ” with do(Ng, L) < 100G for all g in G. This
construction is equivariant with respect to isometric symplectomorphistsasfd mea-
sure preserving automorphisms@f

Remark.

(i) The theorem still holds if we assume higher bounds|8m|, but in this case the

bound 70000 fore would have to be chosen smaller. See the remark in Séctipn 7.4.
(i) Notice that we are not longer able to give estimates orcthelistance of the isotropic

center of mass from th#&,’s. Such an estimate could possibly be given provided we

have more information about the extrinsic geometry of Weinstein’s center of mass
submanifold; see Remark 1 in Sect[gn 8. Instead we can only give estimates on the

CO-distanceslo(N,, L) = sufd(x, N,) : x € L}.

An easy consequence of our Main Theorem is a statement about group actions. Recall
that, given any action of a compact Lie groGpon a symplectic manifoldM, w) by
symplectomorphisms, by averaging over the compact group one can always find some
invariant metricg. Using w and g one can canonically construct a metgicwhich is
compatible withew (see [Ca]), and sincg is constructed canonically out of objects that
are G-invariant, it will be G-invariant too. Therefore the grou@ acts respecting the
structure of the almost-&hler manifold(M, g, w). In general it does not seem possible
to give any bound ofVw|, whereV is the Levi-Civita connection correspondinggo

Theorem 2. Let(M, g, w, I) be an almost-Ehler manifold satisfyingVw| < 1 and let
G be a compact Lie group acting ai by isometric symplectomorphisms. Lé§ be
an isotropic submanifold o8/ such that(M, Ng) is a gentle pair andi1(Ng, gNo) <
€ < 1/70000for all g € G. Then there is a-invariant isotropic submanifold. with
do(No, L) < 1000Q:.

The invariant isotropic submanifoltl as above is constructed by endowiigwith the
bi-invariant probability measure and applying Theorem 1 to the fafgilyo},cc. The
resulting isotropic average is G-invariant because of the equivariance properties of the
averaging procedure.

1.3. Outline of the proof of the Main Theorem

This is the main subsection of this paper. We will try to convince the reader that the
construction we use to prove Theorem 1 works if only one choesasall enough. Let
us begin by requiring < 1/20000.

5 Recall that an almost-&hler manifold is Kahler if the almost complex structurfas integrable,
or equivalently ifVI =0 orVw = 0.
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Partl. We start by considering the average of the submanifdlgss in Theorem 2.3 of
[We], which we will denoteN. We will use the notation expto indicate the restriction
of the exponential map t@ M|y, and similarly for any of theV,’s. For anyg in G,
the averageV lies in a tubular neighborhood @¥, and is the image under exp of a
sectiono of vN, (see[[We]). Therefore for any point of N, there is a canonical path
¥q(t) = exp,(t - o (p)) from p to the unique poing of N lying in the normal slice ofV,
throughp. Here, writing(vN,)1 for the open unit disk bundle inN,, we use the term
“normal slice” for the submanifold exp (v, N,)1. We define the following map:

Qg - EXPy, (VNg)1 — M, exp,(v) — exp,(,,\v).
Herep, ¢, andy, are as abovey € (v,N,)1, andyq\\ denotes parallel translation along
vq- SO, takes the normal slice expv,N,)1 to exp, (Vert))1, where Verf c T, M is
the parallel translation along, of v, N, C T,,M.

We haved(Vert, v,N) < di(N,, N) < 2500 < 7/2, so Verf and T,N are
transversal. Thereforg, is a local diffeomorphism at all points @f,, and it is clearly
injective there. Using the geometry 8%, N andM, in Propositio@ we will show that
¢, is a diffeomorphism onto if restricted to the tubular neighborhooq\,?xmfg)o_og;
of N,.

We restrict our map to this neighborhood and we also restrict the target space so as to
obtain a diffeomorphism, which we will still denote kpy.

N

Part Il. Now we introduce the symplectic form

w, = ((p;l)*a)
on expy (Vert¥)g os. Notice that is isotropic with respect ta, by construction, hence
also with respect to the 2-f0rry‘i wg Which is defined orﬂgeG expy (Vert$)g,o5. We
would like to apply Moser’s trigk (see [Ca, Chapter Il1]) te andfg w,. To do so we

6 Recall that Moser's Theorem states the followingQif (r € [0, 1]) is a smooth family of
symplectic forms lying in the same cohomology class in a compact manifold then there is a family
of diffeomorphismsp; with pg = Id satisfyingp;Q; = Qo.
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first restrict our forms to a smaller tubular neighborhood tabN, which we define in
Sectior] 7.].. To apply Moser’s trick we have to check:

1. Ontub® the convex linear combinatian; = w + t(fg wg — ) is a symplectic form
for eachr € [0, 1].

Indeed, we will show that on tdkthe differential Of(pgl is “close” to the parallel
translation\) along certain “canonical” geodesics that will be specified at the beginning
of Section[8. This and the bound ¢Ww| imply that for anyg € tub® and nonzero
X, Y eT,M,

@g)g(X. Y) = 0,1, (@D (X, (0 He(V) ¥ 0,1, \XAY) ¥ 0y (X, V),

i.e. w, andw are very close to each other. 89(X, IX) ~ w(X,IX) = 1X|2 > 0.
Therefore eachy, is nondegenerate, and clearly it is also closed.

2. Ontub® the formsw andfg w, belong to the same cohomology class

Fix g € G. The inclusion : tub® — expy, (VNg)1 is homotopic '[Orpg_l D tub® —
expy, (VNg)1. A homotopy is given by thinking oV as a section ob N, and “sliding
along the fibers” to the zero section. Therefore these two maps induce the same map in
cohomology, and pulling back we have

[wlutr] = i*[0] = (9 H*[0] = [wg].
Integrating ovelG finishes the argument.

Now we can apply Moser’s trick: i& is a 1-form on tub such thatd« is equal to
%a)t = fg w, — o, then the flowp, of the time-dependent vector fiedd := —c?),‘l(a) has
the propertyp;w; = w (and in particulapf(fg wg) = w) Where it is defined. Therefore if

L:= ,ol_l(N) is a well defined submanifold of téipthen it will be isotropic with respect
to w sinceN is isotropic with respect tgfg wg.

We will construct canonically a primitive as above in Sectign 7.2. Using the fact that
the distance between th¢,’s and N is small, we will show that: has small maximum
norm. So, ife is small enough, the time-1 flow of the time-dependent vector field _,}
will not take N out of tulf andL will be well defined.

Since our construction is canonical after fixing the almoahl€r structurdg, w, I)
of M and the probability spac&, the construction of is equivariant with respect to
isometric symplectomorphisms 8f and measure preserving automorphismé& of

1.4. Structure of the paper and acknowledgements
This paper is organized as follows: In Section 2 we present the improvement of Theo-

rem 2.3 of [We] obtained by Karcher and the author. In Section 3 we will start the proof
of the Main Theorem by studying the map. In Section 4 we will state a proposition
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about geodesic triangles, and in Section 5 we will apply it in our setup. This will al-
low us to show in Section 6 that eagl is injective on exg, (vNg)o.0s. The proofs of
some estimates of Sections 4 and 5 are rather involved, and we present them in the three
appendices. This will conclude the proof of the first part of the theorem.

In Section 7 we will make use for the first time of the symplectic structura/of
We will show that thev,’s are symplectic forms and that the 1-foomand therefore the
Moser vector fieldv;, are small in the maximum norm. Comparison with the results of
Section 6 will end the proof of the Main Theorem.

Section 8 will be devoted to remarks about the Main Theorem, and in Section 9 we
will present a simple application to Hamiltonian group actions.

At this point | would like to thank everyone who helped me and supported me in the
preparation of this paper. In particular | would like to thank Alan Weinstein for helpful
discussions during the preparation of this paper, the referee for his careful review of the
manuscript, his interest and for suggesting improvements, Yael Karshon for proposing
the application in Section 9 and River Chiang for simplifying the arguments used there.
Further | thank Hermann Karcher for sharing the ideas involved in Section 2 and for the
collaboration.

2. Improved error estimates for the shape operators of parallel tubes with
application to Weinstein's submanifold averaging

In this section we will present the improvement of Theorem 2.3 _of [We] obtained by

Hermann Karcher and the author. In the first subsection we will improve Proposition 3.11
of [We]. Then using this result we will follow Weinstein’s proof and present the statement

of the improved theorem.

2.1. Estimates for the shape operators of parallel tubes

In Proposition 3.11 of[[We] one has the setup we are going to describe Mois. a
Riemannian manifold)V is a submanifold ofM such that(M, N) form a gentle pair
(so the second fundamental forfhof N satisfies|B| < 3/2, see [We, Cor. 3.2]). In
the tubular neighborhood of radius 1 abadutlet p) be the distance function from,
and Py = %pf\,. We are interested in estimating the HessiarPgf i.e. the symmetric
endomorphism of each tangent space of the tubular neighborhood givéh by =
V, grad Py . Differentiating the relation graéty = py - gradpy we see that

Hy ) = (Un,v)Un + pn - SN (Pr(v))

whereUy = gradpy is the radial unit vector (pointing away from), pr denotes orthog-
onal projection ontdjﬁ, andSy is the second fundamental form of the tube given by a
level setr (r) of py in the direction of the normal vectderE]

7 SoSyv = pr(V,Uy) for all vectorsv tangent tor (¢), whereV is the Levi-Civita connection
onM.
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Proposition 3.11 of [We] states that, at a pgindf distance < 1/4 from N, the fol-
lowing estimate holds for the decompositions into vertical and horizontaﬁ;rairﬂs,M:

064-1 0 " 132.1 0
0 .0~V o .|

where for two symmetric matrice® and Q the inequalityP < Q means thap — P is
positive definite.

The above proposition is proved using the Riccati equation. An immediate conse-
guence is Corollary 3.13 in_[We], which states thaty ifs a horizontal vector and a
vertical vector atp, then|(Hy (v), w)| < 3v/f|v||w|. This square root is responsible for
the presence of upper bounds proportionalforather thare in Theorems 2.2 and 2.3
of [We].

We will improve the estimate of Corollary 3.13 6f [We], determinifyg by means of
Jacobi field estimates rather than by the Riccati equation. More precisely, we will make
use of this simple observation:

Lemma 2.1. Let N be a submanifold of the Riemannian maniféfdland fixr < normal
injectivity radius ofN. Let p lie in the tube (¢) := p;l(t), andletSy : T,t(t) — T, (1)
be the second fundamental form in the directiod/gf. For anyv € 7,z (¢) consider the
Jacobi fieldJ (r) arising from the variation — eXP.s) FUn (c(s)), wherec(s) is any
curve int(¢) tangent tov. Then

Syv = J'(0).

Proof. Denoting by f (s, r) the above variation and by the Levi-Civita connection on
M we have

i/<0>—V d f( >—V d f( >—v Un(c(s))
_dr OdSO 7 _dS Odro 57 _dSO Ncs
= V,Uy = pr(V,Uy) = Syv. O

Using the above lemma we will be able to prove this improvement of Proposition 3.11 of
[We], for which we do not requiréM, N) to be a gentle pair but only a bound @8] and
the curvature assumptigi’ | < 1:

Theorem 3. Let N be a submanifold of the Riemannian maniféfdwith second funda-
mental formB, and fixt < normal injectivity radius ofV. Lety be a unit-speed geodesic
emanating normally frorv. Assumék | < 1in the radiust tubular neighborhood oi.
Letz(¢) be ther-tube aboutv, and letSy () denote the second fundamental form @f)

in direction y (r) at y (t). Then with respect to the splitting into vertical and horizontal
spaces of, (1), as long ag < min{1/2, 1/2|B|}, we have

I 0 1612 162
t-SN(t)S[O ,B}+<16¢2 (22+2|B|2)t2)'

8 See our SectioE]B or Section 2.1 in_[We] for the definition of vertical and horizontal bundle
atp.
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Remark. We adopt the following unconventional notationMf, M are matrices anda
real numberM < M + ¢ means thaMl — M has operator norre c¢. Generalizing to the
case where we consider also vertical-horizontal decompositions of matrices,

A B A B a b
<|% x|+
C D|—|(C D c d
means that the above convention holds for each endomorphism between horizontal/ver-
tical spaces, i.eA — A has operator norrs a and so on.

Proof of TheorerﬂS.Choose an orthonormal bagigs, . .., E,_1} of y(0)* C T, oM
such thatEq, ..., E¢ lie in the normal space t& and Ex41, ..., E,—1 lie in the tan-
gent space tav. (Here dim(M) = n.) Now we define Jacobi field§ alongy with the
following initial conditions:

Ji(0) =0, J/(0) =E; if i < k (vertical Jacobi fields),
Ji(0)=E;, J/(0)=ByoE; Iifi=>k+ 1 (horizontal Jacobi fields).

Notice that, among alV-Jacobi fields (see Sectiph 3 for their definition) satisfyf@)
= E;, our J; are those having smallest derivative at time zero. Also notice that; all
and their derivatives are perpendiculagt®), therefore, as long as thk(r) are linearly
independent, they form a basis pfr)t = »»T(). Also, theJ;’s are N-Jacobi fields,
i.e. Jacobi fields for whicli; (0) is tangent taV and.J/ (0) — By (o) J; (0) is normal toN, or
equivalently Jacobi fields that arise from variations of geodesics emanating normally from
N (see [Wa, p. 342]). Moreover thg's are a basis of the space dfJacobi fields along
y which are orthogonal tgr, and this space coincides with the spac&vefacobi fields
arising from a variation of unit-spd@@eodesics normal t&/. The velocity vectors of
such variations at timecoincide withUy . Therefore applying Lemnja 2.1 with= J; (1)
we conclude thaSy (1) J; (r) = J/(¢) for all ;.

Now consider the maps

J(@0) R = T,ht(t), e > Ji(D),
and
J'@) RS Tt@), e JN0),
where{e;} is the standard basis &' ~1. As long as theJ; (r)’s are linearly independent,

we clearly have
Sy =J'(0)-J)~L.

Propagating theE;’s along y by parallel translation we obtain an orthonormal basis
{Ei(®)} of T),(hT(r). Furthermore{E1(t), ..., Ex(t)} together withy () span the ver-
tical space ay (¢t) and{Ex+1(?), ..., E,—1(t)} span the horizontal space there. We will

9 Indeed, connecting the points of an integral curve {n of someJ;(r) to N by unit-speed
shortest geodesics we obtain such a variation, and the Jacobi field arising from this variation must
be J; since it is anW-Jacobi field orthogonal tp which coincides with/; (r) at timet.
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represent the mapé(s), J'(¢) and Sy (¢) by matrices with respect to the badeg} for
R*=Yand{E; (1)} for T,z (2).

Now we use Jacobi field estimates adin [BK, 6.3.8iii] to determine the operator norm
of J(¢), or rather of the endomorphisrdst)yy, J(t)gv, J(t)yy andJ (¢t) gy thatJ ()
induces on horizontal and vertical subsp@ﬁhis will allow us to obtain corresponding
estimates fov ~1(¢) and J/(¢), and therefore fofy ().

For alli let us define the vector fields; (r) = \(J; (0) + - J/(0)), where\\ denotes
parallel translation along. The mapR"~! — T,»t(t), e — A;(t), in matrix form

reads
t1 0
A(’)z[o 1+tBi|'

Fori < k we haveJ;(0) = 0 and{J/(0)} is an orthonormal set. kicy, ..., ¢, 0,...,0)
is a unit vector iMR”~1, we have (3" ¢; J;)' (0)| = 1, so applying[[BK, 6.3.8iii] we obtain
| > ci(Ji(t) — Ai(1))] < sinh(t) — 1.

Similarly, fori > k + 1, the sef{J;(0)} is an orthonormal set ang (0) = B(J;(0)).
Again, if (0,...,0, cs1,...,cn_1) IS @ unit vector inR*~1, since |3 ¢;J;)'(0)] =
|B(X_ciJi(0)| < |B|, we havel ) c;(Ji(t) — Ai(1))| < coshit) — 1+ |B|(sinh(t) —1).
Therefore we have

. sinh(t) —¢ coshz) — 1+ |B|(sinh(t) — t) %13 %tz
J()—A@) = F1(t) < (Sinh(t) —t cosht) — 1+ |B|(sinh(t) _t)) < <%t3 %tz .

Now we want to estimate/ ~1(r). Notice that, suppressing thedependence in the
notation, we havd = A - [I + A~1F], so that

I =1+ A YRt AT

Clearly A is invertible and

-1 |1 0 1 0
‘A _[o t-(1+tB)1]5<o 2;)

since we assume< 1/2|B|. We have

1 £? %t
AT F1 < 2,3 3.2
507 3
Clearlﬂ its norm is less than/231v/1+ 42 < 31 < 1 sincer < 3. Thereforel +
A~1Fisinvertible and [ + A~1F1] ™t = Y %2 [-A~1Fy)/. Using the above estimate

10 15 be more precisel (t)yy : RF x {0} — Hor(¢) is given by restricting/ (¢) and then
composing with the orthogonal projection onto the horizontal spagérat
e [AB] < (2%) then the full operator norm of the matrix is bounded by

Jmax{[ 4], |51} +ab + cd < V2Zmax({|%].|}]}.
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for A—1F; we have

1oz (3" 38
AT F1]° < .
[ ] 3t
Using the coarse estimate™F; < 37 andr < 1 we haved 22 5[-A1F1]/ < 143,
Putting together these estimates we obtain

“1p1-1_ 2 5
[I+A F1] =1+ F, where F; < .

2
3 19,2
15° =t

To estimate/’(r) we first estimatdJ”(r) — A”(¢)| and then integrate. For allwe
have

|7 () — Al = [T/ )] < |4 (@0)]

by the Jacobi equation using the bound on curvature, and an analogous estimate holds for
linear combination$_ ¢; J; (¢).

If (c1,...,ck, 0,...,0) is a unit vector inR"~1 we have| > ¢ Ji(t)| < sinh(z) by
Rauch’s theorem.

Similarly, if (0, ..., 0, k41, . .., cn—1) iS a unit vector inR"~1 we have| > ¢ Ji(0)]
= land|) ¢;J/(0)] < |BJ, so by Bergers extension of Rauch’s theorem (see Lemma
2.7.9in [KI]) we havel Y ¢; J; (¢)| < cosht) + |B| sinh(t).

In both cases integration yields

Yo -aim)| < [ t

_ Jeosht) 1< 312 if i <k,
sinh(r) + |Bl(coshr) — 1) < 3t ifi > k+1.

> (@) — Al @) |de

So altogether we obtain

2

J'(t) — A'(t) =: F3(t) where F3(t) < ( 5

NIw NIw
~ o~
S~—

BlwW Alw

t
Now finally we can estimate

SN =tJ' TV =(A +F3)- I+ Fp)-1A7!
3,2 3 15,2 4 3
BT G AT S ) (ot s\ |
|0 Bl T\32 3% 15B|3 L2|B|s2 30t 183
I 0 0 o 312 32 B2 102
< + 22+ +(..2
0 ¢B] \0 2B|% 312 32 15/B|r3  19/B|r3
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At [ 0] (@ O N_(1 0
=10 I 0 2B|?2) = \0 2

in the last inequality. In view of our bounds erand the fact thafy (¢) is a symmetric
operator this gives the claimed estimate. O

Here we used

Returning to the case whea@/, N) is a gentle pair, so thaB| < 3/2, we obtain our
improvement of Corollary 3.13 in [WWe]. Now we can achieve an upper bound proportional
to 2, versus the bound proportional { in Corollary 3.13 of [We].

Corollary 2.1. Let M be a Riemannian manifold, and a submanifold so thatM, N)
form a gentle pair. Ifv is a horizontal vector andv a vertical vector at some point of
distancer < 1/3from N, then|(Hy (v), w)| < 16¢2|v||w.

2.2. Improvement of Weinstein's averaging theorem

Now we use Corollarly 2]1 to replace some estimates ir [We] that were originally derived
using Corollary 3.13 there. We will improve only estimates contained in Lemmata 4.7
and 4.8 of [We], where the author considers the covariant derivative of a certain vector
field V on M in directions which are almost vertical or almost horizdHaith respect
to a fixed submanifoldv,. (The zero set oV is the averagéy of the family {N,}.) As in
[We] all estimates will hold foe < 1/20000, and we set= 100k.

We will replace the constant 3200 in Lemma 4.7 of [We] by /b as follows:

Lemma 2.2. For any almost vertical vectar at any point ofV,
4
(DY, v) = Zlvl*

Proof. By Theorem 3 (applied to the gentle p&i, N,)) for the operator norm off,,
we have 1- 1612 < |Hg|, so that one obtain&, (Pr,v, Pr,v) > 19/20 in the proof of
Lemma 4.7 in[[We]. Similarly, Theorem 3 together with footnote 11 implies tHat <
1.01. Using these estimates in the proof of Lemma 4.7 in [We] gives the claim. O

Similarly, we will replace the term 6@ in Lemma 4.8 of[[We] by 1950
Lemma 2.3. For any almost horizontal vectar at any point ofv,
|IDV(v)| > 195C|v|.

Proof. By CoroIIary we can replace8 by 162 in the proof of Lemma 4.8 i [We]
and we can use 1.01 instead of 1.32 as an upper bouné{orFurthermore, we replace
the constant 1000 coming from Lemma 4.3[in_[We] by 5’.his gives the improved
estimateH, (v, Prw) < 85C|v| - lw| and simple arithmetic concludes the proof. O

12 see our SectioE]S or Section 3.2 n_[We] for the definitions of almost horizontal and almost
vertical bundle.
13 Lemma 4.3 of [WE] quotes incorrectly Proposition A.8 from its own appendix.
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From these two lemmas it follows that the operator fr@vert). to avert whose graph
is Ty N has norm at m053 -195C:. Following to the end the proof of Theorem 2.3[in [We]
allows us to replace the bound 136 by a bound linear i, so we obtain the following
improved statement:

Theorem 4. Let M be a Riemannian manifold afdv,} a family of submanifolds a¥/
parametrized in a measurable way by elements of a probability spasach that all the
pairs (M, N,) are gentle. lfd1(N,, N;) < € < 1/20000for all g andh in G, there is a
well definedcenter of masssubmanifoldV with dy(N,, N) < 250 for all g in G. The
center of mass construction is equivariant with respect to isometridg ahd measure
preserving automorphisms 6f.

3. Estimates on the mapp,

In Sectiong BH7 we will prove the Main Theorem. The reader is referred to Sgction 1.3
for an outline of the proof and some of the notation introduced there. We will present Part
| of the proof in Sectionf|846 and Part Il in Sectidn 7.

Fix ¢ € G and letp be a point in the tubular neighborhood 8f andX < T, M.

The aim of this section is to estimate the difference betwgeX and\ X. This will be
achieved in Proposition 3.4.

Here we denote by X the following parallel translation ok, wherery, is the pro-
jection ontoN, along the normal slices. First we parallel transl&t@along the shortest
geodesic fronp to 7y, (p), then along the shortest geodesic froaf), (p) € N, to itsim-
age undep,, and finally along the shortest geodesig{gp). We view “\\" as a canonical
way to associat& € 7, M to a vector inT, ,) M.

Before we begin proving our estimates, following Section 2.1 _ofl [We] we introduce
two subbundles oTM|eXpNg(VNg)1 and their orthogonal complements.

Thevertical bundleVert® has fiber ap given by the parallel translation of[Ng (»Ng
along the shortest geodesic frorg, (p) to p.

Thealmost vertical bundl@Vert has fiber ap given by the tangent spaceabf the
normal slice taV, throughzy, (p).

Thehorizontal bundléHor$ and thealmost horizontal bundlaHo# are given by their
orthogonal complements.

Remark. Notice that aveftis the kernel ofy, )., and that according to Proposition 3.7
in [We] we haved (Vert, aVerl;‘;) < %d(p, Ng)2 foranyp in expNg(ng)l, and similarly
for Hor¢ and aHof.

Since%d(p, Ng)2 < /2, Vert and aHof are always transversal (and clearly the
same holds for Hérand avert). As seen in Section 1.3, Vérand TN are transversal
alongN, and aVert andT N are also transversal singécorresponds to a section o,
and avert = Ker (y, ).

Now we are ready to give our estimates on the mapRecall from the introduction
that for any poiny of the tubular neighborhood af, we denote by, the geodesic from
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7N, (q) € Ng 1o g. Until the end of this section all geodesics will be parametrized by arc
length.
In Section$ B tp]6 all estimates will hold fer< 1/20000.

3.1. Case 1p is a point ofN,

Proposition 3.1. If p € N, andX € T, N, is a unit vector, then
[@gx(X) — \X| < 320C.

Remark. Notice that ifX is a vector normal tav, by definition ofp, and\\ we have
9q+(X) = \X. Therefore in this subsection we will assume thi&s tangent taV,.

Also, we will denote byA the second fundamental fdffhof Ny, i.e. Az vi=—(V,€)7
for tangent vectors of N, and normal vector fields, where(-)” denotes projecting to
the component tangent #d, andV is the Levi-Civita connection oM. Since(M, N)
is a gentle pair, the norm of is bounded by &, as shown in [We, Cor. 3.2].

Now letp € N,, X € T, N, a unit vector, ang := ¢, (p). We will denote byE the
distanced(p, ¢, (p)) < 10Ce (see end of Section 4 in [We]). We will show thatgat

\X ~ J(E) = H =~ @g:(X)
where the Jacobi field and the horizontal vectai will be specified below.

Lemma 3.1. Let J be the Jacobi field along the geodesicsuch that/(0) = X and
J'(0) = —A);q(o)X. Then

3
7(E) = \X]| = S(e" = D).
Proof. This is an immediate consequence [of |BK, 6.3.iWhich will be used later

again and which under the curvature assumpitioh< 1 states the following: iff is any
Jacobi field along a unit-speed geodesic, then we have

17(0) =\ ©) +1 - J'(O)] < [J(O)(coshr) — 1) + | (0)|(sinh) — 1),

where?\\ denotes parallel translation to the starting point of the geodesic. Usjng, X |
< 3/2 by [We, Cor. 3.2] the above estimates giVgsE) — \X| < (coshHE) — 1)
+ %sinh(E). Alternatively, this lemma can be proven using the methods[ of] [We,
Prop. 3.7]. O

Before proceeding we need a lemma about projections:

14 1n Sectior|  we adopted the sign conventior{ 6f [We] which differs from this.

15 [BK] 6.3.8] assumes that(0) and J'(0) are linearly dependent. However statement iii holds
without this assumption, as one can always decompoasJ = J1 + Jo, whereJq and J, are
Jacobi fields such that; (0) = J(0), J;(0) = 0 andJ1(0) = 0, J1(0) = J'(0) respectively.
Furthermore we make use pf|’(0) < |J/(0)].
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Lemma3.2. If Y e T, M is a vertical unit vector, writd/’ = Yay, + ¥}, for the splitting
into its almost vertical and horizontal components. Then

2
[Yn| <tan(E</4) and |Ya| < m
Proof. By [We, Prop. 3.7] we have(Vert, averf)) < E?/4 < 7/2, so the subspace
avert of T, M is the graph of a linear map : Vert; — Hor;. SoYay = Y + ¢(¥) and

Yh = —¢(Y). Since the angle enclosed lByandYjy is at mostd(Verl;j, aVert’j) < E?/4,

one obtaingY| > cog E2/4)|Yay|, Which gives the second estimate of the lemma. From
this, using|Yh|2 = |Yav|? — |Y|? we obtain the first estimate. o

Lemma 3.3. If H is the unique horizontal vector gtsuch that(zy,).(H) = X, then

1
CoSE2/4)
Proof. Let J be the Jacobi field of Lemnja 3.1. Writg E) = W + Y for the splitting
into horizontal and vertical components. Then, using the notation of L¢miha 3.2, we have
J(E)h = W+YhandJ (E)ay = Yav. Notice that the Jacobi field arises from a variation
of geodesics orthogonal ¥, (see the Remark in Secti@.Z), 6oy, )« J(E) = X =
(N, )« H . Using aVert = ker (zy, )« it follows that H = J(E)n. So

|J(E) — H| < g(eE -1

3 1
J(E) — H| =Y, V—— < —(ef - 1) ——
IJ(E) | = Yavl < | lcos(E2/4)§2(e )cos(E2/4)
where we used Lemnja 3.2 afid| < |J(E) — \X| together with Lemmpa 3] 1. O

Now we will compareH to ¢, (X) and finish our proof.
Proof of Propositiofj 3J1.We have

NX — @e(X)| = \X = J(E)| + [J(E) — H| + |H — @ (X)].
The first and second terms are bounded by the estimates of Lefnnjata B.I]and 3.3. For the
third term we proceed analogously to Lem 3.3: singgX) and H are both mapped
to X viamy,, one hasgg«(X))ay = ¢« (X) — H. As earlier, ifpg.(X) = W + Y is the
splitting into horizontal and vertical components, we hapg. (X))ay = Yav. Therefore

sin(2500)

cog E2/4) COS E2/4)"
Here we also used Lem.2 and the fact that the angle enclosgg. 0Y) and its

orthogonal projection onto Hpiis at most (Hor;,, 7, N) < 250G by Theorem 4. Alto-
gether we have

l9ex(X) — H| = |Ya| < |Y| < |pgu (X))

1 sin(2500)
COSE?/4) COSEZ2/4)"
Using this inequality we can boung,.(X)| from above in terms of ande. Substituting

into the right hand side of the above inequality we obtain a functioa @kcall that
E = 10C) which is increasing and bounded above by 3200 O

3
X — e (0] < (e —1)[1+ }+|¢g*<x>|
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3.2. Case 2p is a point ofd expy, (VNg)L andX e T, M is almost vertical

In this subsection we requite < 1, as in the definition of gentle pair.

Remark. Jacobi fields/ alongy, (the geodesic fromy, (p) to p) with J (0) tangent to
N, andAy, 0 J(0) + J'(0) normal toN, are calledV,-Jacobi fields They clearly form
a vector space of dimension equal to dih) and they are exactly the Jacobi fields that
arise from variations of, by geodesics that start avi, and are normal t&v, there.

Since(M, Ny) is a gentle pair, there are no focal pointsmof, (p) alongy,, so the
map _ -

{N,-Jacobi fields along,} - T,M, J— J(L),
is anisomorphism. Th&,-Jacobi fields that map to avgrare exactly those withi (0) =0
andJ'(0) € vxy, (» N, Indeed, such a vector field is the variational vector field of the
variation
[s(0) = expry () 11Yp(0) + sJ'(0)],

soJ (L) will be tangent to the normal slice @f, atzy, (p). From dimension considera-
tions it follows that theV,-Jacobi fields that satisty(0) € T, (») N, andA;, )/ (0) +
J’(0) = 0—which are calledtrong N, -Jacobi fields—map to a subspace @}, M which

is a complement of qu?';t As pointed out in [Wa, p. 354], these two subspaces are in
general not orthogonal.

Proposition 3.2. If p € aexpNg(ng)L andX € T,M is an almost vertical unit vector,

then

sinh(L) — L
l0g (X) —\X| < ZSin—(L)

We begin by proving
Lemma 3.4. LetJ be a Jacobi field along, such that/(0) = 0andJ’(0) € Yy, (»Ng,
normalized so that/(L)| = 1. Then
sinh(L) — L
sin(L)
Proof. Again [BK|, 6.3.8iii] shows thatJ (L) — L\J'(0)| < |J/(0)|(sinh(L) — L). Using

the upper curvature bourfd < 1 and Rauch’s theorem we obtdif (0)| < 1/sin(L) and
we are done. O

[J(L) = L -, \J' O] <

We saw in the remark above thiitis equal toJ (L) for a Jacobi field/ as in Lemm& 34,
and that/ comes from a variatiorf, (1) = exg,Ng P 1[Yp(0)+5J'(0)]. SO¢@,+(X) comes
from the variation ‘

@ (f5()) = EXBy (n, (p)) 1[\¥p(0) 4+ s\ J'(0)]

along the geodesig, (y,(1)). More precisely, if we denote by(¢) the Jacobi field that
arises from the above variation, we will hayg, (X) = J(L). Notice that/(0) = 0 and
J'(0) =\J'(0).
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Lemma 3.5. inhL) — L
o ., sinh(L) —
(L) = L o\ O = 0=
Proof. Exactly as for Lemmh 34 sinck0) = 0 and|J/(0)| = |./(0)). O

Proof of Propositiol We haveX ~ LJ/(0) = LJ'(0) ~ @q+(X). Here we identify
tangent spaces t/ parallel translating along,, along the geodesig,, (T (P) from
7N, (p) tO its gg-image and along, o y, respectively. Notice that these three geodesics
are exactly those used in the definition &f"
The estimates for the two relations™are in Lemmatg 314 arjd 3.5 respectively (recall
= J(L) andgg.(X) = J (L)), and the equality holds becaug&0) = \\J'(0). O

3.3. Case 3p is a point ofd expy, (VNg)L andX = J(L) for some strongv,-Jacobi
field J alongy, ‘

From now on we have to assume< 0.08.
Proposition 3.3. If p € 9 expy, (VNg)L and X is a unit vector equal to/ (L) for some
strongN,-Jacobi fieldJ alongy,, then

18
|9« (X) =\X| = L + 370C.

We proceed analogously to Case 2.

Lemma 3.6. For a vector field/ as in the above proposition we have

el —
2(6—1)<9L

(L) =\ O = —= 3t -1~ 5

1
Furthermore we have/ (0)] < I D
Proof. By Lemm we have/ (L) — , \J(0)] < %(eL — 1)|J(0)], from which we

obtain the estimate fd/ (0)| and then the first estimate of the lemma. O

J comes from a variatiorf; (r) = exp, tv(s) for some curver in N, with 6(0) =
J (0) and some normal vector fieldalongo. We denote by the Jacobi field along the
geodesigy, (v, (1)) arising from the variation

Fs(0) = @g(fs(1) = exps ) (1\0(5)),

wheres = ¢, o o is the lift of o to N. Then we havel/ (L) = @q+(X). Notice that here
\\v(s) is just the parallel translation ef(s) alongy; ) =: ;.

Lemma 3.7. :
(L) = oy, N O)] = £ L.
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Proof. Using [BK|, 6.3.8iii] as in Lemm 3|1 we obtain
|T(L) = 4,0y, \J (O)] < |J'(0)] sin(L) + |J (0)|(coshL) — 1), (%)

so that we just have to estimate the normg @) andJ’(0).

SinceJ (0) = gg..J (0), Propositior] 3JL gives/ (0) —,\J (0)| < 320C:|J (0)|. Using
the bound fo J(0)| given in Lemma 3,6 we obtain
1+ 320Q

jo) = =2
10l = 50—

To estimateJ’(0) notice that in the expression fof,(r) we can choose(s) =
«\[70(0) + sJ'(0)], where,\ denotes parallel translation from(0) to o (s) alongo.
So

N (s) =\ o,\[10(0) + sJ'(0)],

and
Jo =
" ds

\vJ
\v(s)) = 7 v\ 0, \70(0) 4 4\ J'(0)
0 Slo

where we used the Leibniz rule for covariant derivatives to obtain the second equality.

To estimate the first term note that the difference between the identity and the holon-
omy around a loop in a Riemannian manifold is bounded in the operator norm by the area
of a surface spanned by the loop times a bound for the curvature (see [BK, 6.2.1]). There-
fore we write, \\ 5\ 70(0) ass\ ,,\0(0) + £(s) wheree(s) is a vector field along (s)
with norm bounded by the area of the polygon spanned ®), o (s), 6 (s) anda (0).
Assuming thatr has constant spedd (0)| we can estimaté (o (0), o (s)) < s[J(0)],
and using Propositio@.l to estimdte(s)| = |@4+5 (s)| we obtaind(c(0), 5 (s)) <
s(1+ 320Q)|J (0)]. Usingd (6 (s), o (s)) < 100 and Lemma 3]6 we can bound the area
of the polygon safely by

100es (2 + 320Q)

1—3(L -1

So we obtain
100 (2 4+ 320()
1-3(L-1

v ol = | Y -
s 0ys\\as\\yo( )= |7 Oe(s) <

To bound,\J'(0) notice that|J'(0)| < %|J(0)| using the fact that is a strong Jacobi
field and [We, Cor. 3.2], so

17'(0)] < > :
T 21-3El -1

Substituting our estimates fo¥ (0)| and|J’(0)| in (x) we obtain a function which, for
€ < 1/20000 and. < 0.08, is bounded above L. O

The vectors/ (0) and\\J (0) generally are not equal, so we need one more estimate that
has no counterpart in Case 2:
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Lemma 3.8. 320G
JO) —\J(O)| < ———— < 3700C.
|7 (0) \\()I_l_%(eL_l)_

Proof. SinceJ (0) = PgxJ (0), Propositio gives

320G

J(0) —\J ()| <320¢|J(0)| < — .
O =\ O £ 320010 = 7—5 7

Since < 1.15 whenL < 0.08 we are done. O

1
1-3(el -1

Proof of Propositio.We haveX ~ J(0) ~ J(0) ~ @q+(X) where we identify
tangent spaces by parallel translation algpgyo andg, o y, respectively. Combining
the last three lemmas and recalliig= J (L), ¢g+(X) = J (L) we finish the proof. 0

3.4. The general case

This proposition summarizes the three cases considered up to now:

Proposition 3.4. Assumes < 1/20000and L < 0.08. Letp € aexpNg(ng)L and
X € T, M a unit vector. Then

[@gs(X) —\X| < 4L + 410C.

We will write the unit vectorX asJ(L) + K (L) whereJ and K, up to normalization,
are Jacobi fields as in the next lemma. We will need to estimate the norshd pfand
K (L), so we begin by estimating the angle they enclose:

Lemma 3.9. Let J be anN,-Jacobi field alongy, with J(0) = 0, J'(0) normal toN,
(as in Case?) and K a strongN,-Jacobi field (as in Cas8), normalized so thaf (L)
and K (L) are unit vectors. Then

L. KLy < 2D 1 sinh(L) — L

9
. - < -L.
T1-3E-1) 1-3@EL-1 sin(L) 5
Proof. Identifying tangent spaces alomgg by parallel translation, we have

(J(L), K(L))| = [{J(L), K(L)) = (LJ'(0), K(0))]
< [{(J(L), K(L) = K(O)| + {J(L) — LI (0), K (0))]
< |K(L) = K©)|+ KO- [J(L) = LI (0)],
which can be estimated using Lemmaig 3.6[an{l 3.4. o

Lemma 3.10. Let X € T, M be a unit vector such that = J(L) + K(L) whereJ, K
are Jacobi fields as in Lemr{#d (up to normalization). Then

DL IK (L) < —— <11

vi-3L
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Proof. Let ¢ := (J(L)/|J(L)|, K(L)/|K(L)|), so|c| < %L. There is an orthonormal

basis {e1, e2} of spariJ(L), K(L)} such thatJ(L) = |J(L)lex and K(L) =
|K (L)|(cer++/1 — c2e5). An elementary computation shows that1|J (L) + K (L)|? >
1= |eD(1J (L)) + | K (L)]?), from which the lemma easily follows. O

Proof of Propositior] 3}4.The remark at the beginning of Case 2 implies that we can
(uniquely) writeX = J(L) + K (L) for N,-Jacobi fields/ andK as in Lemma 3.70. So,

by Lemmg 3.1, Propositign 3.2 and Proposifior} 3.3,

|@gsx (X) — \X| < [@gsJ (L) = \J(L)| + g K (L) — \K(L)]
51.1(23“1““ —L 18

—L + 370G | <4L + 410G. O
sin(L) +5 + )‘ +

4. Proposition 4.1 about geodesic triangles i

Fix g in G and letp, be the map from a tubular neighborhoodf to one of N defined
in the introduction. Our aim in the next three sections is to show tha};gexp/g)g_% isa
tubular neighborhood aV, on whichgs, is injective.

We will begin by giving a lower bound on the length of edges of certain geodesic
triangles inM.

In this section we také/ to be simply any Riemannian manifold with the following
two properties:

(i) the sectional curvature lies between and 1,
(i) the injectivity radius at any point is at least 1.

In our later applications we will work in the neighborhood of a submanifold that forms a
gentle pair withM, so these two conditions will be automatically satisfied.

Now choose pointdt, B, C in M and assumé(C, A) < 0.15 andd(C, B) < 0.5.
Connecting the three points by the unique shortest geodesics defined on the intdryal [0
we obtain a geodesic triangleBC.

We will denote by the symbal’B the initial velocity vector of the geodesic frot
to B, and similarly for the other edges of the triangle.

Proposition 4.1. Let M be a Riemannian manifold and BC a geodesic triangle as
above. LetPc and P4 be subspaces dic M and Ty M respectively of equal dimensions
such thatCB € Pc andAB € P4. Assume that

L(Py, AC)>7/2—8

and
0 :=d(Pa, cA\Pc) <Cd(A,C)

for some constants C. Assumé& < 2. Then

d(C, B) > 10 cogd)
’ - 11 '

C+1
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Remark 1. Here ca\ Pc denotes parallel translation & along the geodesic fro@
to A. Theanglebetween the subspaéy and the vectoAC is given as follows: for every
nonzerov € P4 we consider the nonoriented anglév, AC) € [0, =]. Then we have

£(Py4, AC) := min{£ (v, AC) : v € P4 nonzerd € [0, 7/2].

Notice that£ (P4, AC) > /2 — § iff for all nonzerov € P4 we have£ (v, AC) €
[m/2—8,7/2+ §].

Remark 2. This proposition generalizes the following simple statement about triangles
in the plane: if two edge€ B and A B form an angle bounded by the length of the base
edgeAC times a constard, and if we assume th@ B and A B are nearly perpendicular

to AC, then the length§C B| and|A B| will be bounded below by a constant depending
onC (but not on|AC]).

In the general case of Propositign ]4.1, however, we make assumptions on
d(Ps, cA\Pc) from which we are not able to obtain easily bounds on the angle
£(CB, AB) at B (such a bound together with the law of sines would immediately im-
ply the statement of the proposition).

Proof of Proposmm.l Using the chart expwe can lift B andC to the pointsB andC

of T4 M. We obtain a triangle BC, which differs in one edge from the lift of the triangle
ABC. Denoting byQ the endpoint of the vectaB — C translated to the origin, consider
the triangle B Q. Let P be the closest point t® in P,.

Claim 1. y
|B— P| <tan()|Q — P|.

Using £ (Pa, AC) > /28 andAC = C — 0 we see that the angle between any vector
in P, andC — 0 lies in the interval £/2 — 8, 7/2 + 3] SinceC — 0 andQ — B are
parallel, the angle between any vectorrof andQ — Bliesin [x/2 -8, m/2+ 8]. Since
P — B € P4, we have

L(P—B,Q—B)e[r/2—-5,7/2+3].
The triangleB P O has a right angle &, so£(P — Q, B— Q) < §, and Claim 1 follows.

Claim 2.

|Q — P| <sin[(1+C)-d(C, A)]-|Q -0l
In Corollary. of Appendix A we will estimate the angle betwen- C = Q — 0 €
TaM andc\CB € TyM, i.e. the parallel translation it/ of CB along the geodesic
from C to A. Our estimate will be

K@AC&Q—QS%ﬂAC)

Now let P’ be the closest point tp\ CB in P4. As P’ — 0 € P, andCB € Pc,
using the definition of distance between subspaces we get
£(cA\CB, P’ —0) <d(Pa, cA\Pc) =60 <Cd(C, A).
Finally, we will show (see Corollafy A]2) that

1
L(P—-0,P -0 < éd(C, A).
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Combining the last three estimates we ge¢P — 0, 0 — 0) < (1+C)d(C, A), which
is less thanr /2. Claim 2 follows since @ Q is a right triangle atP.

Claim 3.

d(C B)>10
=110 +1

cogs).

The triangleB P Q is a right triangle aP, so using Claims 1 and 2 we have

10— B?=|B—P?+10 - P? < (1+tarfs)-|Q — P|?
< (1+tarfs) - (L+C)%-d(C, A)?-|0 — 0%

The vectorQ — B is just 0— C, the length of which ig/(4, C), and the vectoQ — O is

B—-C.So
d(A,C) <V1+tar?s (1+C)-d(C, A)|B —C|,

and
1 A
<|B-C|.
A+ O)V1+tards
Using standard estimates (see Corol A.3) we obgir C| < %d(c, B), and since
1/+/1 + tarts = |cog8)| the proposition follows. O

5. Application of Proposition[4.] toVerts

Fix g in G. Let C and A be points on Weinstein's averagé with d(C, A) < 0.15
joined by a minimizing geodesig in M. Suppose that exiv) = exp,(w) =: B for
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vertical vectors € Vert}. andw € Vert), of lengths less than 0.5. In this section we will
apply Propositiofi 4]1 to the geodesic triangle given by the above three poihfsaofl
P4 = Vert}, Pc = Vert{.. We will do so in PropositioS.

To this end, first we will estimate the constaiteindC of Propositior{ 4.1 in this
specific case. As always our estimates will holddos 1/20000.

Roughly speaking, the constasit—which measures how much the angle between
CA = y(0) and Verg deviates fromrz /2—will be determined by using the fact thalt
is C1-close toN,, so that the shortest geodegibetweenC andA is “nearly tangent” to
the distribution Hof.

Bounding the constart—which measures how the angle between 4/emd Verf.
depends od (A, C)—will be easier, by noticing that both spaces are parallel translations
of normal spaces &/, which is a submanifold with bounded second fundamental form.

Since

L((0), Vertg) = /2 — £(7(0), Horf.),
to determinegS we just have to estimate the angle

a = £(y(0), Hor}.).

We already introduced the geodesgi¢) from C to A, which we assume to be paramet-
rized by arc length. We now consider the cume) = TN, oy (1) in Ng. We can lift the
curver to a curvep, o r in N connectingC andA; we will call ¢(¢) the parametrization
by arc length of this lift.

v+ will denote the connection induced oV, by the Levi-Civita connectiorV of
M, andib\\ applied to somé& € v, )N, will denote itsV-+-parallel transport from (z)
to 7 (0) alongrw. (The superscript “b” stands for “backwards” and is a reminder that we
are parallel translating to the initial point of the curvg

Further we will need

r =100 + L(y)/2 = supd(y(t), Ng)} and f(r) :=codqr) — :—;sin(r).
t

Notice thatr < 0.08 due to our restrictions anandd (C, A).

c(t A

N

N y(®

Verty

Vertg
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Using the fact that is a curve inN and N is C1-close toN,, in Appendix B we will
show that the sectiofi:= exp;,l(c(t)) of vN, alongr is “approximately parallel”. This
will allow us to bound from above the “distance” between its endpoints as follows:

Proposition 5.1.

1 Lyl 3150
€XBR(C) = \eXp ()] = L)~ .

Using the fact thay is a geodesic and our bound on the extrinsic curvaturé,ofn Ap-
pendix C we will show that the sectigh:= exp;,gl(y(t)) of vN, alongm approximately
“grows at a constant rate”. Since its covariant derivative at zero dependsamwill be

able to estimate the “distance” between its endpoints (which are also the endpaints of
in terms ofa. We will obtain:

Proposition 5.2.
|expy, (C) — i\expy (4)]

Bl ) o0 v pon(r+ 7137

Comparison of Propositiofs 5.1 gnd]5.2 gives

3150 _ 99
f(r) ~ 100

o— Z) —5005—3r—gL(y)(r+ r+3/2).

f(r)
Recall that- = 100 + L(y)/2. If L(y) ande are small enough one can solve the above

inequality fora. With our restrictiore < 1/20000 this can be done whenevsly) < 0.1.
One obtains

e ' @ 3150 § r+3/2
8(e, L(y)) := 4+arcsm{ 59 [ 0 + 500 + 3r + 3L(J/)(r+ o) )“ -«

We can now state the main results of this section. First we determine the canstant
Propositiorf 4.]L in our setting.

Proposition 5.3. LetC, A be points inV andy the shortest geodesic i1 from C to A.
Assume < 1/20000and L(y) < 0.1. Thend (e, L(y)) is well defined and

L(Hor., y(0)) = o < 8(¢, L(y)).

Therefore
A(\Vertl., y(0)) > /2 — (e, L(y))

and for symmetry reasons
L(Verth, —y(L(y))) = /2 —8(e, L(y)).

To determine the consta@itwe only need Lemma G.3:
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Proposition 5.4. LetC, A andy be as above and assumgy) < 0.1. Then
d(Verty,, n\Vert}) < 2L(y).

Proof. By Lemmg C.B we have

d(Verts., n\Vert)) < arcsir[L()/)<r + = }r(f)/Zﬂ

wherer = 100 + L(y)/2. For the above values efand L(y) this last expression is
bounded above byI2y). O

Now making use of the estimates in the last two propositions we can apply Proposition

41

Proposition 5.5. Fix g € G. Let C, A be points inN such thatd(A, C) < 0.1 and
suppose thagxp- (v) = exp, (w) =: B for vertical vectorsy € Vert%, w e Vert‘f;. Then

lvl, [w| = %005(5(6, d(A, C))).

Proof. If [v| > 0.5 then the estimate fgo| clearly holds, as the right hand side<is3/10.
So we assump)| =d(B, C) < 0.5.

Sinced(B, N,) < 0.5+ 100 < 1 and(M, N,) is a gentle pair, the triangl@d BC
lies in an open subset af with the properties

(i) the sectional curvature lies betweerd and 1,
(ii) the injectivity radius at each point is at least 1.

Therefore we are in the situation of Proposition| 4.1. Setfiag= Vert{. and P, = Vert},
in the statement of Propositipn #.1, Proposition$ 5.3 and 5.4 allow us to choose

§=05(d(A,C) and C=2

Therefore, since? - 7= > 2, we obtain

lv] > %COS(S(G, d(A, 0))).

The statement fow| follows exactly in the same way. O

6. Estimates on tubular neighborhoods oV, on which ¢, is injective

In this section we will finally apply the results of Sectigrjs 4 ghd 5, which were summa-
rized in Propositio@S, to show that e»(gmng)o,og, is a tubular neighborhood a@¥ on
which ¢, is injective. We will also bound from below the size ((')TgeG expy (Vert$)o o5
(where the 2-forny, o, is defined).
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Proposition 6.1. If ¢ < 1/20000the map
9 eXpy, (VNg)o.05 — expy (Vertf)o,os

is a diffeomorphism.

Proof. From the definition of, it is clear that it is enough to show the injectivity of
expy : (Vert®)g o5 — expy (Vertd)gos.

Let A,C € N andv € Vert},, w € Vert) be vectors of length< 0.05. We argue by
contradiction and suppose that exp) = exp,(w). Clearlyd(A, C) < 0.1. We can
apply Propositi05, which impligs|, |w| > 1—30005(8(6, d(A, C))). Since the function
8(e, L) increases witl. we have

3
[vl, lw| > Ecos(a(e, 0.1)).

Fore < 1/20000 the above function is larger thar®®, so we have a contradiction.
Hence exp(v) # exp, (w) and the above map is injective. O

For eachL < 0.05 we want to estimate the radius of a tubular neighborhoad obn-

tained in(,. expy (Vert*) .. This will be used in Section| 7 to determine Whgfgeag

is nondegenerate, so that one can apply Moser’s trick there. As a by-product, the propo-
sition below will also give us an estimate of the size of the neighborhood in vy@idg

is defined.

Proposition 6.2. For L < 0.05ande < 1/2000Q using the notation
RS :=sin(L) cos(8(e, 2L) + 2L?)

we have

expy (VN)gs C () expy(Vert),..
geG

Remark. The functionR; o5 decreases with and assumes the valued89. .. ate =0
and the value ©27... whene = 1/20000.

To prove the proposition we will again consider geodesic triangles:

Lemma 6.1. Let ABC be a geodesic triangle lying iaxpNg (vNg)1 suchthati(A, B) <

d(C, B) =: L < 0.05. Lety denote the angle af, and supposg € [7/2—3§, 7/2+3].
Then

d(A, B) > sin(L) coss + 2L?).
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Proof. Denote by, 8 the angles att and B respectively, and denote further &, g/, v’
the angles of the Aleksandrov triangle §R corresponding toA BC (i.e. the triangle in
52 having the same side lengths 48C). By [KI, Remark 2.7.5] we have

sin(y”)

sin(d(A, B)) = sin(d(C, B)) s::(a’)

> sin(d(C, B)) sin(y’).

By Toponogov’s theorem (see [KI]); > y. The sum of the angles of the triangleSA
deviates from 180by the area of the triangle, which is bounded above.Bysee [BK,
6.7.1]). The same holds for the corresponding triangle in standard hyperbolic BBace
Hence, using[BK, 6.4.3], we obtajn — y < 2L2. So

v e[rn/2—=38,7/2+45+2L2.
Altogether this gives
d(A, B) > sin(d(A, B)) > sin(d(C, B))sin(y’) > sin(L) sin(/2 + & + 2L%. o
Now we want to apply Lemrna §.1 to our case of interest:

Lemma 6.2. LetC € N and B = exp-(w) for somew € Vert‘é of lengthL < 0.05, and
assume as usual < 1/2000Q Then

d(B, N) > sin(L) cog8(e, 2L) + 2L?) = RS.
Here the functiord is as in Sectiofy,

Proof. Let A be the closest point iV to B. Clearlyd(A, B) < d(C, B) = L, so the
shortest geodesie from C to A has lengthL(y) < 2L. By Propositiorj 5.3 we have

£(y(0),Vertl) > w/2—§ (e, L(y)) > n/2 — 8(e, 2L).
So, sincew € Verty,
A(y(0),w) € [r/2—8(€, 2L), /2 + 8(€, 2L)].

If we use the fact that, for any € G, the triangleA BC lies in expy, (VNg)1, the lemma
follows from Lemmd 6./ with§ = (e, 2L). u]

Proof of Propositiory 62.For anyg € G and positive numbet < 0.05, by Lemma 6]2
each pointB € 3 expy (Vert®);, has distance at least

Sin(L) cos (e, 2L) + 2L?) = RS

from N. Therefore tubRs) lies in expy (Vert®),, and since this holds for ajj we are
done. O



104 Marco Zambon

7. Conclusion of the proof of the Main Theorem

In Sectiong BH6, making use of the Riemannian structur#f pfve showed that the 2-
form fg w, is well defined in the neighborhoc@geG expy (Vert$)g o5 of N (recall that

wg = (g H*w was defined in the introduction). In this section we will focus on the
symplectic structure oM and conclude the proof of the Main Theorem, as outlined in
Part Il of Sectio_1.13.

First we will show thatfg wy is a symplectic form on a suitably defined neighborhood
tub® of N. Then it will easily follow that the convex linear combinatian = o +
t(fg w, — w) is a symplectic form for alt € [0, 1].

As we saw in the introductiongf] = [fg wg] € H?(tubf, R), so we can apply Moser’s
trick. The main step consists of constructing canonically a primitieé small maximum
norm for the 2—form(%a),. Comparing the size of the resulting Moser vector field with the
size of tuls we will determine are for which the existence of an isotropic average of the
N,'s is ensured.

In this section we requiré < 0.05. Notice that the estimates of Sectjgn 3 hold for
suchL. We start by requiring < 1/20000 and introduce the abbreviation

DS = 4L + 410G
for the upper bound obtained in Proposition] 3.4 on,gierts) .

7.1. Symplectic forms itub®

In Sectior[? we estimated the difference betwgenX and\\X. This lemma does the
same forp, .
Lemma7.1. Letg € d expy(Vert!), andX e T, M a unit vector. Then

€

(@ DX — \X]| < DL
Vg r =1-D¢

Furthermore,

< (g HsX| <

1+Dj ~ 1-D§°

Proof. Let p := ¢, (¢). By Propositio, for any vectet € T, M we have

|fg*(zé)| <1zl < prg*(Z)I.

+ D§ 1- DS

The second statement of the lemma follows by setdng ((p;l)*X.
Choosing instead = ((pg_l)*X —\X € T,M and applying once more Proposition

[3.4 gives

X — e \X| _ D]

-1
X —\X| < .
g X = \XI = 50— < 0

O
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Since ((pg_l)*X is close to\X and since our assumption ofw allows us to control
to what extenw is invariant under parallel translation we are able to show d¢hanhd
wg = ((pg_l)*w are close to each other:

Lemma 7.2. Let X, Y be unit tangent vectors gt € expy (Verts) . Then

D} D}
|(wg—a))(X,Y)|§m 1—DZ+2 + 2L + 100Ce.

Proof. Settingp := ¢, *(¢) we have

(g — 0)g(X. Y) = 0p((9 D+ X, (97 DsY) — 0g(X. Y)
= wp(\X — [y DX = \XL\Y — [(9; DY —=\Y]) — 0y (X, Y)
= w0p((9 )X = \X, (9 DY —\Y)
+wp(\X, (0, DY = \Y) + 0p((p; DX — \X, \Y)
+@p(\X, \Y) — 0y (X, Y).

Now since 4" is the parallel translation along a curve of length 2L + 100 (see
Sectior| 3) andVw| < 1 we havew,(\X, \Y) — w,(X,Y) < 2L + 100 and using
Lemma_ /.1 we are done. |

Since the symplectic form is compatible with the metric and thg,’s are close ta we
obtain the nondegeneracy ©f for L ande small enough.

Corollary 7.1. Let X be a unit tangent vector at € ﬂgeG expy (Vert®) . Then for all
t € [0, 1],

Dy,
1-Dj

D€
a)t(X,IX)zl—|: ( L +2)+2L+1005}.

1-D5
Proof. By definition

w0 (X, IX) = (X, I1X) +1- /(a)g — w)(X, IX).
8

The first term is equal to 1 becauseis almost-Kahler, the norm of the second one is
estimated using Lemnja T.2. O

Remark. The right hand side of Corollafy 7.1 is surely positiveif < 0.1. We s¢tj

0.1 4100
T4

and requires < 1/70000. We obtain immediately:

L€ :

16 This choice ofL¢ will allow us to obtain good numerical estimates in Se 7.4.
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Proposition 7.1. On
tub® = expy (vN)ge, C () expy (Vert) .«
geG
the convex linear combination; = w + t(fg wg, — w) is a symplectic form for all
t € [0, 1].

Remark. Recall that the functioR] was defined in Propositi¢n §.2. See Secfiof 7.4 for
the graph ofRS. a function ofe.

7.2. The construction of the primitive §;‘w[

We want to construct canonically a primitiweof

d
Ew;: gwg—w

on ﬂgec expy (Verts)g os5. We first recall the following fact, which is a slight modification
of [Ca, Chapter IlI].

Let N be a submanifold of a Riemannian manifal, and letE — N be a sub-
bundle of TM|y — N such thatE @ TN = T M|y. Furthermore leU be a fiber-wise
convex neighborhood of the zero sectionfof> N suchthatexp I/ — U C Mis a
diffeomorphism. Denote by : U — N the projection along the slices given by expo-
nentiating the fibers of, and byi : N < M the inclusion. Then there is an operator
0 :Q*(U) - Q*1(U) such that

Id—(iom)* =dQ + Qd : Q*(U) — Q*(U).

A concrete example is given by consideripg: U — U, exp,(v) — exp,(rv), and
wt|p,(p) = %vahos(p)- Then

1
of 32/0 Qi fdt,  Qif = p;iw, [,

gives an operator with the above property.
Note that for a 2-formw evaluated ak € 7, M we have

[(Qiw)p X | = |wp (Wil p,(p): P15 (X)) < |@plop - d(p, 7(P)) - |p14(X)] (%)

where|pop is the operator norm @b, : T,M — T, M and the inner product ofiy M
is induced by the one ofi, M.

For eachg in G we want to construct a canonical primitive of w, — @ on
expy (Vert$)g 0s. We do that in two steps:

Step I. We apply the above procedure to the vector bundlesVest N to obtain an
operatorQ$; such that

Id — (m5)* o (in)* =d Q% + 0%d
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for all differential forms on exg (Vert®)g,0s. SinceN is isotropic with respect ta, and
wg — w is closed we have

wy — 0 =d Q% (wg — ®) + (T5)*(in)*(—w).

Step Il. Now we apply the procedure to the vector bund, — N, to get an operator
O, on differential forms on exp, (VNg)100:- SinceN, is isotropic with respect te we
have

w=dQnN,w,
so we have found a primitive @ on exg\,g(uNg)lo&. SinceN C expNg(uNg)looE the
1-form g8 1= iy (Qn,») on N is a well defined primitive of .

Summing up these two steps we see that
af == O (wg — w) — (T3 B¢
is a primitive of w, — @ on expy (Vertf)gos. So clearlyo = fg a8 is a primitive of

G = Jo @5 — 0N, expy (Vert)oos.

7.3. Estimates on the primitive &fo,

In this section we will estimate th&%-norm of the 1-formx constructed in Sectidn 7.2.

Step Il. We will first estimate the norm oB* := i} (Qn,®) using (%) and then the
norm of (= §)*BE.

Lemma7.3.If p € exXpy, (VNg)100:, and X € T, M is a unit vector, then for any
[0, 1],
[(on,)ex X| < 5/4.

Proof. Let L := d(p, N,) < 100 < 1/700 and writeX = J(L) + K(L), whereJ
and K are N,-Jacobi fields along the unit-speed geodesidrom p’ := my,(p) to p
such that/ (0) vanishes,/J’(0) is normal toN,, andK is a strongV,-Jacobi field (see the
remark in Sectiop 3]2).

J (¢) is the variational vector field of a variatiofy (1) = exp, (tv(s)) where thev(s)’s
are unit normal vectors at'. Therefore

d d
(on ) (L) = o [(ony)e o €Xp, (Lu(s))] = —| [exp, (tLv(s))] = J(tL).
S 0 ds 0
Using Lemmd 3}4 we have on the one hand’(0)] < (1 + o(L))|J(L)| and on the

other handJ (tL)|(1 — o (¢tL)) < tL|J’(0)| whereo (x) := (sinh(x) — x)/ sin(x). So

e <=0y < Zaw)
='"1-50¢L) =20 '



108 Marco Zambon

Similarly we have(oy,)«K (L) = K (tL). Using LemmeiE]G we deduce tha& (0)| <
(1+ 2L)|K (L)l and|K (tL)| < |K(0)|/(1 — 2L), therefore

oL
|K(tL)| < >

21
1 gtLIK(L)I = 59/ K@D
-5

Altogether we have
[(on)eX1? = |J(tL) + K (tL)[?

2 2 9
= J@DI"+ K@) +2- gILIJCL)[[K@L)]

3 <2_1)2'|J(L)|2+ KW + ELU(L)HK(L)I]
=\20) | 5

<<2—1)2—J(L) K (L)|? 3—6L J(L)||K (L)
=13 _I + )|+5| I I]

21\’ 36 5
<(=) |1+=-12°L| <=
—<2o)_+5 }—4

where in the first and third inequalities we used Lemimé 3.9, and in the fourth in addition
Lemmd3.1D. O

Corollary 7.2. Thel-form B8 on N satisfies
B8] < 125.

Proof. At any pointp € N C expNg(ng)moE, using (%), the fact that®|op = 1 and
Lemm@, we havi Oy, w),| < 125%. Clearly

(Qn,@)p] = 11 (O, @)pl = 151, o

Now we would like to estimatéry,),. X for a unit tangent vectax . Sincery, = (p5), we
prove a stronger statement that will be used again later. Recall that we assarf®5.

Lemma7.4. If g € expy(Vertd), andX e T, M is a unit vector then for any < [0, 1]
we have

1+ Dj

1-D§°

(o)X | < 1.5

Proof. Using Lemma 7]1 we have
(05X | < A+ DY@z Hulpf) X1

Clearly (,of;',), 0 @g = @g o (pn,):, SiNCE—UP to exponentiatinggz mapsv N, to Vert,
and(pn, ) and(pfv), are just rescaling of the respective fibers by a factar of
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If we reproduce the proof of Lemn@.S requiripgto lie in eXpy, (VNg)L we ob-

tairft’] |(ow, )i« | < 1.5 for unit vectorsy at p. Using this and Lemn@.l respectively
we have

(N )iz DX ] < L5l(9p D X] and (o huX] < 71
L

Altogether this proves the lemma. O
Corollary 7.3. Onexpy (Vert?), we have

1+ DS
1-DS

() BE| < 200

Proof. This is clear from the equality((§)*B%)X| = |84 (). X)|, Corollary 7.2 and
Lemma Z.4. O

Step I. Now we estimaté;Qlj'\,(cqg — w)|. This is easily achieved using Lemm 7.2 and
[7.4 to estimate the quantities involved(if):

Corollary 7.4. For g € d expy (Vert®), we have

. 1+ D§ DS ( DS
L L L

Remark. By Proposition 5.24(¢, N) > Rj. Furthermore, wher < 1/70000 and

L < 0.05, one can show that zigL. SoL < 3d(q, N).

Now finally using Corollarief 7|3 a@A we can estimate the noran:ef [, a*:

Proposition 7.2. AssumingL < 0.05atq € (), expy (Vert’), we have

1+ D¢ 3 DE D¢
<15 L. Zd(g,N)- L L 2| + 2L + 100
gl = 15— - 54 )[1—D;<1—D;+ ek
1+ D¢
200 L.
TR TDe

7.4. The end of the proof of the Main Theorem

Propositio showed that the Moser vector field:= —d),‘la is well defined on
tub C (M, €Xpy (Vert) c. Recalling thatDf. = 0.1, CoroIIar immediately im-
plies

Corollary 7.5. Atg € tub® C (1), expy(Vert®), .« we have
1

—— <153
1- [ 2k (k- +2) +2L¢ + 100

~ -1
|(wt)q lop <

17 sinceL < 0.05 now we have to replace the constantZLin that proof by the constant’b.
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From Corollary 7.5 and Propositin }.2 we obtain:
Proposition 7.3. For all ¢ € [0, 1] andg € tub®,
(gl < |((1~)t);1|0p' |y < 1.45d(q., N) + 374.

Lety (¢) be an integral curve of the time-dependent vector figldn tuls such thatp :
y(0) € N. Whered( -, p) is differentiable, its gradient has unitlength.%@’(y(r), )2)
ly (@)

By Propositiorj 7.3 we havig’ ()| < 1.45d(y (1), p) + 374. So altogether

IA

d
Ed(y(l), p) < 145d(y (1), p) + 374.

The solution of the ODE(¢) = As(¢) + B satisfyings(0) = 0 is %(e*” — 1). Hence, if
the integral curve is well defined at time 1, we have

d(y(1), N) <d(y(1), p) < %(el-45 —1) < 84%.

Let us denote by, the time-1 flow of the time-dependent vector field so that,ol_1
is the time-1 flow of—v1_;. Since by definition tub:= expN(vN)Rzg the submanifold

L= p;l(N) will surely be well defined if
842 < Rj..

This is always the case sinee< 1/70000.

0.02

0. 015

0. 005

5 10°° 0.00001 0.000015 0.00002

Graphs of 842 (increasing) an®; . (decreasing).

The estimate fotlp(N,, L) is obtained by usingo(N, L) < 842 anddp(N,, N) <
10Ce. The proof of the Main Theorem is now complete.

Remark. Inthe Main Theorem we assumed th®ty| < 1. Let us now consider the case
that|Vw| > 1. Then the statement of the Main Theorem still holds verbatim if one makes
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the bound ore smaller, as follows. The bound dWw| enters our proof directly only in
Lemmd7.2; if V| > 1, the inequality of that lemma should read

Dy Dy
(g = &)(X. V)| < 7= e (1— bt + 2> + |Vo|(2L + 100¢)

instead. Similarly, the quantity/2+ 100 appearing in Corollary 7|1, Corollafy 7.4 and
Propositiory 7. should be multiplied by w|. Now assume that
1 1
E< ————
|[Vw| 70000
and replacd.€ everywhere by
e 0.1/|Vow| — 410G
: 1 .

Then the bounds ohjcbl);llop and|(vs)4| given in Corollary 7.5 and Propositi .3 still
hold, and our isotropic averadewill be well defined if 842 < R}- This is satisfied for
e small enough, sinc&_is a continuous function anﬂg0 is positive.

8. Remarks on the Main Theorem

Remark 1 (Is the isotropic averagé C1-close to theV,’s?). The main shortcoming of
our Main Theorem is surely the lack of an estimate on(tﬁajistanceil(Ng, L).
To bounddy(Ng, L) it is enough to estimate the distance between the tangent spaces
T,L andT,, ) N. Indeed, this would allow us to estimate the distance betWgénand
Ty, () Ng.» Using which—wher is small enough—one can conclude that : L — N,

is a diffeomorphism and give the desired bound ondAedistance.

Using local coordinates and standard theorems about ODEs it is possible to estimate
the distance betweeh), L andT,,(,y N provided one has a bound on the covariant deriva-
tive of the Moser vector field, for which one would have to estimaté,) 2. To do that
one should be able to bound expressions Wke((gogl)*X) for parallel vector fieldsY
along some curve.

This does not seem to be possible without more information on the extrinsic geometry
of N. We recall that it is not known whether the averagdorms a gentle pair with/

(see Remark 6.1 in [We]). We are currently trying to improve Weinstein's theorem so that
one obtains a gentle average.

Remark 2 (The case of isotropi@v). Unfortunately, if the Weinstein averagé hap-
pens to be already isotropic with respecttoour construction will generally provide an
isotropic averagé different fromN. Indeed, while Step | of Sectign 7.2 always gives a
1-form vanishing at points a¥, Step Il does not, even ¥ is isotropic forw.

The procedure outlined in Remark 3, on the other hand, would profues the
isotropic average, but in that case the upper bound feould depend on the geometry
of N.
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Remark 3 (Averaging of symplectic and coisotropic submanifhldshe averaging of
Cl-close gentle symplectic submanifolds of an almo&hker manifold is a much sim-

pler task than for isotropic submanifolds. The reason is @fasmall perturbations of
symplectic manifolds are symplectic again and one can simply apply Weinstein's averag-
ing procedure [[We, Thm. 2.3]).

Unfortunately our construction does not allow averaging coisotropic submanifolds.
In our proof we were able to canonically construct a primitive/ofs, — w using the
fact that theN,’s are isotropic with respect to. If they are not, it is still possible to
construct canonically a primitive, following Step | of our construction and making use of
the primitived*(A—li;,(wg —w)) of iy (wg — w) (but the upper bound on its norm would
depend on the geometry &f).

Nevertheless, our construction fails in the coisotropic case, since the faady tisat
coisotropic for allw,’s does not imply that it is for their averagg Wy

9. An application to Hamiltonian actions

As a simple application of our Main Theorem we apply Theorem 2 to almost invariant
isotropic submanifolds of a Hamiltoniafi-space and deduce some information about
their images under the moment map.

We start by recalling some basic definitions (see [Ca]): consider an action of a Lie
groupG on a symplectic manifoldM, ») by symplectomorphisms. moment mayfor
the action is a map : M — g* such that for alv € g we havew(vy, -) = d{J, v)
and which is equivariant with respect to theaction onM and the coadjoint action @
on g. Herewvy, is the vector field onM given byw via the infinitesimal action. An action
admitting a moment map is called thiamiltonian action

This simple lemma is a counterpart to [Ch, Prop. 1.3].

Lemma 9.1. Let the compact connected Lie grodpact on the symplectic manifold
(M, w) with moment mag . Let L be a connected isotropic submanifold®f, ) which
is invariant under the group action. Theh ¢ J~1(u) wherep is a fixed point of the
coadjoint action.

Proof. Let X € T, L. For eachv € g we have
di{J, )X = w(y(x), X) =0,

since bothvy,(x) and X are tangent to the isotropic submanifald Therefore every
component of the moment map is constant aléngoL ¢ J~1(u) for someu € g*.
Now letxp € L and letG -xg C L be the orbit throughg. Then from the equivariance
of J it follows that for all g we haveu = J(g - xo) = g - J(x0) = g - 1, sou is a fixed
point of the coadjoint action. O

Now we apply the lemma above to the case wheigs almost invariant.
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Corollary 9.1. Letthe compact Lie grou@ act on the symplectic manifold/, ») with
moment map : M — g*. Suppose is endowed with &-invariant compatible Rie-
mannian metric so that the Levi-Civita connection satisfes| < 1. If a connected
isotropic submanifold. ¢ M satisfies:

(i) (M, L)isagentle pair,
(i) di(L,g-L) <€ < 1/70000forall g € G,

thenJ (L) lies in the ball of radius00Q: - C about a fixed poing of the coadjoint action.
Hereg* is endowed with any inner product adtl:= max{|vy| : v € g has unit length.

Proof. By Theorem 2 there exists an isotropic submaniffldinvariant under theG-
action withdo(L, L') < 100C. By Lemma[ 9.1,L lies in some fiber/~1(u) of the
moment map, wherg is a fixed point of the coadjoint action. We will show thdt{p) —
u| < 100G - C forall p € L.

Let p’ a closest point tg in L’. The shortest geodesijc from p to p’, which we
choose to be defined on the interval 19, has length< 100Q:. Therefore for any unit-
lengthv € g (with respect to the inner product inducedghy its dual) we have

1 1
(J(p) =, v) =f0 (dJ(V(t)))?(t),v)dt=/o d{J,v)y(r)dt

1
= /0 w(vy, y())dt.

Since for allz we havelw (vy, y (1))| < |lvm| - |y (¢)] < 100 - C we are done. O

A. The estimates of Propositior 41

Here we will prove the estimates used in the proof of Proposition 4.1. See Sgfction 4 for
the notation.
We first state a general fact about the exponential map:

LemmaA.l. If y is a geodesic parametrized by arc length aide T, M, then for
t < 0.7,

sinh(t) —¢ 12
I\ iy 0 ©XR, @)W = W| = ————IW| = ZIW|

and
12 12
(1— g)IWI <lexp, W| < <1+ E)IWI-

Proof. The unique Jacobi field along such that/(0) = 0 andJ’(0) = W is given by

J(t) = (diy(0) €XP,(0) (1 W) (see [Jo, Cor. 4.2.2]). The bourinh(z) — ¢)/t follows

from [BK] 6.3.8iii]. This expression is bounded aboverBy5 when: < 0.7. The second
estimate follows trivially from the first one. We prefer to use these estimates rather than
more standard ones (see [BK, 6.4.1]) in order to keep the form of later estimates more
concise. O
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Corollary A.1.
. 1
£(Q —0,caA\CB) < éd(C, A).

Proof. By [BK] 6.6.1] (choosingy = € — 0 andw = ¢4\ CB) we get
d(expy ((C — 0) +ca\CB), exp- CB = B)

IA

%d(A, C)-d(C, B) -sinh(d(A, C) +d(C, B)) - sin(£(C — 0, cA\CB))

IA

%d(A, C)d(C, B)

usingd(A, C) < 0.15 andd(C, B) < 0.5.
In order to estimate distances iy M (instead of inM) we denote the shortest
geodesic from exp((C — 0) + ¢a\CB) to B by t, and by7 its image under expl.

By LemmgA.l,

2
Dl = (1— ‘“’“%)ﬁ(sn < [t (s)]
(usingd(z(s), A) < 0.7 in the first inequality), so
- . 9 . . -
d(exp,((C —0) + caA\CB), B) > F)KC -0+ caA\CB — (B —-0)]
9 . - -
= E|CA\\CB —(B—-0)|

Altogether, since8 — C = Q — 0, we obtaincA\CB — (Q — 0)| < 2d(A, C)d(C, B),
and using®™* > Zfor x € [0, 0.8], we obtain
. 8 . . 1
£(cA\CB, Q0 —0) < = Sin(£(cA\CB, Q —0)) < 5d(C. A). O
Corollary A.2.
1
L(P—0,P —0) < 5d(C, A).

Proof. We first want to boundP’ — P| from above andP’ — 0| from below. SinceP’
and P are the closest points iR4 to ¢ A\ C B and Q respectively,

. 2
|P—P'| <1(Q—0)—caA\CB| < £4(A. C)d(C. B).

by the last estimate of the proof of Corollgry A.1.
On the other hand, we have

|P’ — 0] = |CB| - coS4(cA\CB, Py)) > |CB| - cos0)

> |CB|vV1— 62> |CB|v1—C2d(C, A)2.
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Therefore we have

P —P| 2 1
sin<(P'—0,p—op < L~ Pl _2 d(C, A).
[P"—0] = 5./1—C2d(C, A)?

So, using the restrictions < 2 andd (C, A) < 0.15, and usin T" > %forx € [0, 0.8],
we obtain

8 . 1
L(P'—0,P —P) < - Sin(£(P' — 0, P — P)) < 5d(C. A). O

We conclude this appendix by deriving the estimate needed in Claim 3 of Proppsifion 4.1.

Corollary A.3.
|B —C| lld(c B)
— < — S .
10

Proof. This follows by choosing a shortest geodesic betw€emd B and using Lemma
[AT] exactly as we did in the proof of Corolldry A.1. o

B. An upper bound for « using the curvec

Here we will prove Proposition 5.1, namely the estimate

expr1(C) — Lnexpel(A)] < Liy) 2%
| pNg( ) — o\ pNg( ) = (V)W.
To do so we will use the fact that is C*-close toN, (see Lemmf BJ3).

In addition to the notation introduced in Sectjgn 5 to state the proposition, we will use
the following. We will denote byr.(¢) the curvery, o c(t), som, is just a reparametriza-
tion of 7. We will use exp as a short-hand notation for the normal exponential map
expy, : (VNg)1 — exXpPy, (VNg)1. Thereforec(r) = exp L(c(r)) will be a section of
VN, alongr.. The image under expof the Ehresmann connection corresponding to
will be the subbundle LE of TM|expNg(ng)l. To simplify notation we will denote by

pr; ) Horé the projection ofy (t) € T, )M onto Verf/(t) along Hot}‘j(t). We will also
use pf,,) aHor and pr,,, LC# to denote projections onto aV%% along aHof(l) and
LCf,m respectively.

. 1. —1

Our strategy will be to bound abovét—c(tﬂ = [exp;, ~(prs,) LC#)| (see Lemm3)
using
TN ~ Hor® ~ aHo¥ ~ LCS.

Integration alongr. will give the desired estimate.

The estimates to make preci&/ ~ Hor® and Hof ~ aHo# were derived in[[We].
In the next two lemmata we will do the same for aHer LCS.
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LemmaB.1. If L < 0.08and p is a pointind exg\,g(ng)L, then
g (9
d(aHor, LC}) < arcsi L)
Proof. It is enough to show that, ¥ < LC‘,% is a unit vector, then
9
|pry aHo# | < EL'

Let B(s) be a curve tangent to the distribution £8uch that3(0) = p and(0) = Y.
Then exp1(B(s)) = L&(s) for a unit-length parallel sectioh of VN, along the curve
y(s) == mn,(B(s)). If we denote byK the N -Jacobi field arising from the variation
fs(t) = exp(t&(s)), then clearlykK (L) = Y andK (0) = y(0).

~ We claim that¢ is a strong Jacobi field (see the remark in Sedfion 3.2): we have
Llofs(t) = £(s), so

\V/ 1

K'(0) = o

d
085‘

\Y% v
fs(t)=d—‘ §(s) =
0 Slo

I 0$(S) — A7 (0) = —Ag 0K (0).

The claim follows sincé& (0) = y,(0), wherey, denotes the unique geodesic paramet-
rized by arc length connectingy, (p) to p.

Now let us denote by the N,-Jacobi field along, vanishing at 0 such that(L) =
pry aHoE € aVerlf;. By Lemm, using the fact thitis a unit vector, we have

Ipry aHoE |2 = (pry aHo¥, Y) = [(J(L), K(L))| < gL - |pry aHor|

and we are done. ]

Lemma B.2. Let L < 0.08. For any pointp in 9 expy, (VNg)L the projectionsl;, M —
avert; alongaHor;, andLCj differ at most by2L in the operator norm.

Proof. Let ¢ : aHor, — aVert; be the linear map whose graph is{.Q.etX € T,M
be a unit vector and writ& = X + Xay for the decomposition oX into almost hori-
zontal and almost vertical vectors. Th&n= (Xan+ ¢ (Xan) + (Xav — ¢ (Xap)) is the
decomposition with respect to the subspace§ B6d aVerﬁ. The difference of the two
projections onto aVeﬁtmast to ¢ (Xan). Now

L
V1-(2L)?

where we used [We, Cor. A.5] in the second inequality and Lefnmi B.1 in the third
one. |

[6;1]¢e]

¢ (Xan)| < |$lop < tan(d(aHok;, LCH)) < < 2L,

Now we are ready to bound the covariant derivativeé @f:
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Lemma B.3. For all ¢,

Proof. Let

denote—c(t) € vr.()N, but considered as an element B, (vz.()N,). First no-

tice that, by deflnltlon,dt ¢(t) is the image oﬁ(t) under the projectioz)(VN,) —
Tz+) (v (1) Ng) along the Ehresmann connectioma¥, corresponding t& . Therefore,
since exp maps the Ehresmann connection togLahd tangent spaces to the fibers of,
to avert, we have

o1
exp, (V—c(t)) ) LCS.

Notice that here expdenotes/;(,) expy, -

The fact thatV is C1-close toN, (see TheorerE|4) implieg(¢(z), Horg(t)) < 2500
sincec(t) € T.q)N. By [We, Prop. 3.7]d(Hor® o(t)’ aHorgU)) < €/4 sinced(c(t), N,) <
100:. Therefore<(¢(z), aHorg(t)) < 250% and|pr;,) aHo¥ | < sin(250%k) < 250%.

On the other hand, by Lem ﬂ e aHo¥ —pr,) LC#| < 20Ce. The triangle

inequality therefore givepr,, LC?| < sin(270%). Therefore, using Lem@.l and
€ < 1/20000,

lexp, 1(pry) LC#)| < ———|pry, LC¥| < 2702, o

—¢/5

Lemm 3 allows us to boungxp=1(C) — L)\expL(4)| in terms ofL(c). However,

we wantabound in terms @f(y), so now we will compare the lengths of the two curves.
Recall thatf(x) = cogx) — %sin(x) andr := 100 + L(y)/2. Notice also that

r < 0.08 due to our restrictions anandd(C, A).

Lemma B.4.

1+ 320C
L(c) < WL(V)'

Proof. Sincepg.(tn,, (1)) = ¢(1), by Propositio@l we havé(r) — \(ty,)«¢(1)] <
320 (N, )«C(1)], SO
lé(0)] < (14 320Q)|(ry, )«C(0)]-

SinceL(wy, oc) = L(w), it follows thatL(c) < (1+320Q)L(xr). By [We, Lemma 3.3]
we havef (r)L(r) < L(y) and we are done. O
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Proof of Propositiotj 5]1.We have

L(c) vi
’/ c(t) dt

L(c)
lexp(C) — b\\eX Y= ‘/ 7 ,,b\\C(l)dt

1+ 320G
< 270%L(c) < 27026+—L(y)
f(r)
where we used Lemmgita B.3 gndB.4 in the last two inequalities. The proposition follows
by using the bound < 1/20000. O

C. Alower bound for « using the curvey

Here we will prove Proposition 5.2, i.e. the estimate
lexpy (C) ~o\expy (A)I

> L(y)[f—&sm(a - Z) — 500 — 3r — gL(V)<r g }—:)/2)]

We will use the fact thav, has bounded second fundamental form (see the first statement
of Lemmg C.B) and that is a geodesic (see the second statement of the same lemma).

We will use the notatlon introduced in Sect[dn 5 and at the beginning of Appendix B.
Recall thaty (¢) := expN ()/(t)) is a section ob N, alongr.

First we will set a Iower bound on the initial derivative pf

Lemma C.1. We have

—J/(O)‘ > 100[Sm< 4) - 2005}.

Proof. Analogously to the proof of Lemn@ 3 we have g«%—y(O)) = pry LCS,

Whereﬁy(O) is an element of’;; (o) vz (0) V.
By [We, Prop. 3.7] we haveé(Hor?., aHoE.) < €/4. So
£(y(0), aHor.) > £L(y(0), Hor{.) — d(Hor;., aHor.) > o — €/4.

Therefore|pry (0 aHo® | > sin(a — €/4).
On the other hand, by Lemrhia B.x, o, aHOF — pry, o, LC¥| < 20C. The inverse
triangle inequality gives

IPry o) LCé8| > sin(a — €/4) — 200k.
Applying exg L, by Lemm we have

lexp, 1 (pry o, LCH)| > 11570 LC#],

/5

and sinc / > 100 we are done. O
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Our next goal is to show that(z) “grows at a nearly constant rate”. This will be
achieved in Corollary C|3. Together with Lemfna|C.1 and integration atotigs will
give the estimate of Propositipn b.2.

The next two lemmas will be used to prove Corollary|C.1, where we will show that

—

Z—j;?(O) and exglo P\ © ex&(%—ff(r)), i.e. the parallel translate %j—)?(t) “alongy”,

are close for alk. Here d—j;?(t) denotes the vectojiq'—f)?(t) regarded as an element of
Ty (vz 1y Ng). To this end we show that

8 ~ 8 ~ 8 ~ 8
Pry (o) LCé ~ Pry (o) Horé ~ Pry (1) Horé ~ Pry (1) LCSE,

where we identify tangent spaces by parallel translation ajarithe crucial step is the
second %", where we use the fact thatis a geodesic. Applying ex will easily imply

Corollar since e>§p1(pry(t) LC8) = Z—f;?(t).

Lemma C.2. ForanyL < 1and any poinfp < exg\,g(ng)L the orthogonal projections
oM — aHorf, andT,M — Horf, differ at most by.2/5 in the operator norm.

Proof. This follows immediately from [We, Prop. 3.7]. O

Lemma C.3. For all ¢,

d(Vertl,, o\Vert) ) < arcsir[t (r +7 }—(::)/2”

Furthermore,

r+ 3/2)
f )
Proof. We first want to estimatd(Vert‘é, yb\\Vertf;(t)). Letv € vcN, be a normal unit

vector.
First of all, for theV and V-~ parallel translations along from C to (r) we have

Ipry, ) Hor® — o\ pry, ) Hor¥ | < t(r +

i 3L 3t
l\v — 7\v| < > (o) < Em
The first inequality follows from a simple computation involving the second fundamental
form of N, which is bounded in norm by/2 (see [We, Cor. 3.2]). The second inequality
is due tof (r)L(7|jo,]) < L(y¥lo,:), Which follows from [We, Lemma 3.3].
Secondly, denoting by, the unit-speed geodesic framit) to v (z), we have

1
l\v = 0\ © 5\ o 2\V| < rt<1 + m)
Indeed, the above expression just measures the holonomy as one goes once around the
polygonal loop given by the geodesiq% 7, 7; andyP®. Using the bounds on curvature,
we know that this is bounded by the area of a surface spanned by the polygdn ($ee [BK,
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6.2.1]). The estimate given above surely holds sibeg), L(zo) < r, L(y|jo,]) = ¢ and,
as we just sawl. ([ 1) < t/f(r).
Together this gives

i\ = 8\ 0 1\ 0 7\l < lrhv = 8\ 0 £\ 0 A\ vl + [, 0\ o [\ v — 7\l

<i(r 22
B f )

So we obtain a bound on the distance frgjw € Vert{. to a unit vector inyb\\Vertf;(l).
This yields the first statement of the lemma. The second follows from [We, Prop. A.4],
since, 0\ pry, ;) Horé = pr; g, (, 6\ Hor® ) because is a geodesic. O

y(
Corollary C.1. Forall ¢,

vl vt 51 52
expy o0\ o exp, (Eﬂﬂ) “a 70| %[2'1(1005 o +t<r i r;(m/ ﬂ

Proof. From Lemmat@ C]2 arjd B.2 we have, forzall

lpry ) Horé —pr,, ) LC#| < |pr;,y Hor® — pr,, ) aHo# | + |pr,, ) aHor —pr; ) LC#|

y( 4
<r?/5+42r <2.1r.

Fort = 0, sinced(C, Ng) < 100, we have the better estimate
Ipry ) HOr® — pry, ) LC#| < 21Ce.

Combining this with the second statement of Lenjmg C.3 gives

r+3/2>
foy )

IPry o) LCE — P\ P LCE8| < 2.1(100 +r) + t(r +

vector X € TcM we havelexp, 1 X| < |X|/(1 — €/5) by Lemma A.1. So applying

Recall that pg, LC* = exp*(%?(t)), as in the proof of Lemm. Also, for any
(exp) to pry g, LC% — 6\ pry(,, LC# we get

vt 1 vi_
——7(0) —exp, "o, n\ o exp, (EV(I)N

dt
r+3/2 1
< |:2.1(1OOE +r) +t<r+ ) >i| -5

Now let& be a unit vector irv; ) N,. Denote byé the same vector thought of as an ele-
ment of7; ;) (v (1) Ng). In the next two lemmas we want to show tfrrg;\té and exg to W\

o expké e TcM are close to each other, i.e. that under the identification by exp the
parallel translation along and theV-parallel translation along do not differ too much.
Here we also make use of the fact thiddthas bounded second fundamental form (see

Lemm). In CorollarZ we will apply this to the vect%?)?(t).




Submanifold averaging 121

Lemma C.4. Denoting byr; the unit-speed geodesic frantz) to y (1), we have
1 o1
I\ oo\ o \E —expt o0\ o exp, €] < =

Proof. First let us notice that applying Lem@.l three times we get

| ALo\exp, ] — exp, ' s\exp, ] < —|exp* ', s\exp, €]
r2 1 r21+r2/5
< — 51_ 2/5| b\\eXp*$|_ 51—2/5-

Therefore, by applying Lemnfa A.1 & the left hand side of the statement of this lemma
is bounded above by

|8\ 0, \[NE] = 8\ o o\ [exp, E]1 + | o\ o [,o\exp, €] — exp [, s\exp, 51|
r2 21425, 2

— + = <r .
5 51-r2/5~ 5(1—r2/5)

=

Lemma C.5.

. 2 3/2
lexp, o b\ o exp, € — Tp\E| < % +t<r+ r}r(r)/ )

Proof. The left hand side is bounded above by
lexpto i\ o exp, & — B\ o\ o NI+ 18\ 0,8\ 0 \E — 28\E| + [r8\E — o\E]

<f+rt<1+i>+§ !
T2 fn) 2fr)

The first term is estimated by Lemr@: .4. The second one is just the holonomy as one
goes around the loop given hy, y°, o andr, which was bounded above in the proof of
Lemmg C.3B. The third and last term is estimated in the proof of Lefnma C.3 as well.

J20,4,(, 132
_3r —|—3<r—|— o) )

Proof. We apply Lemm.5 o~ y(t) where now we have to take into consideration

Corollary C.2. The sectiory satisfies

vl

Vl
_1 ~ 1 ~
exp; = o ,n\ o exp, (Ey(t)) - ﬂb\EJ/(t)

the length of¥— Y y(t) in our estimate. We have

‘—y(t)

lexp, 1(pry(t) LCH)| < 1 Ipry () LCE|

1
2/5
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by LemmgA.l, and

Ipry ¢y LC#| < |pry () LC® —pr; () @HOF| + |pr; ) @aHOF| < 2r +1

y(t

by Lemm. Sinc 2“5}5 < % for r < 0.08 we are done. u]

Now Corollaried C.Jl anl G.2 immediately imply thags) “grows at a nearly constant
rate”:

Corollary C.3. The sectiory satisfies

vt LV 8 r+3/2
E)/(O)—nb\\?)/(t) < 3(1OOE+V)+§I<V+ 10 )
Proof of Propositiof 5.2.The estimate of Propositi¢n 5.2 follows from
L) |yl
lexp(C) — rp\exp H(A)]| = /0 ANV (1) di
Liy) gL Ly) s y+
= | [ o - | [T (70 b\\—ya))
0
\v/ L(y) VJ_ N VJ_
L(y)-|—7(0)] — — 50 —tN—7
> L(y) ‘dr V(O)' o 7(0) — 7\ AU
by using Lemm& C]1 and Corolldry T.3. O
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