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The p-Laplace eigenvalue problem ap — oo
in a Finsler metric

Received July 10, 2004 and in revised form April 3, 2005

Abstract. We consider the-Laplacian operator on a domain equipped with a Finsler metric. We
recall relevant properties of its first eigenfunction for finiteind investigate the limit problem as
p — 00.
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1. Introduction

Imagine a nonlinear elastic membrane, fixed on a bound@nf a plane domairn?.
If u(x) denotes its vertical displacement, and if its deformation energy is given b
fQ |Vu|? dx, then a minimizer of the Rayleigh quotient

Jo IVul? dx

Jo lulP dx

<

on W(}*"(sz) satisfies the Euler—Lagrange equation
—Apu =)Lp|u|”_2u in Q, (1.1)

whereA,u = div(|Vu|P~?Vu) is the well knownp-Laplace operator. This eigenvalue
problem has been extensively studied in the literature. A somewhat surprising recent result
is that (asp — o0) the limit equation reads

min{|Vu| — Acott, —Axou} = 0. (1.2)

L

Although the function digt, 02) minimizes||Vu| s /|lullco, it iS NOt always a viscosity
solution of [1.2) (se€ [18]).

Here Aqou = Z»juxiuxjuxixj, Ao = lim, oo Ap and A, = A,l,/” (see [18[1BY)).
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Now suppose that the membrane is not isotropic. It is for instance woven out of elastic
strings like a piece of material. Then the deformation energy can be anisotropic (see
[5]). Another way to describe this effect is by stating that the Euclidean distan@e in
is somehow distorted. It is the purpose of the present paper to generalize the result on
eigenfunctions for the-Laplacian to the situation whete c R” is no longer equipped
with the Euclidean norm, but instead with a general norm, for instance with|x| =
(03 1x;|9)Y4 andg € (1, o0). In that case a Lipschitz continuous function @ — R
(in a convex domaiif2) has Lipschitz constart = sup ., |Vu(z)|*, where| - [* denotes
the dual norm tg - |, becauséu(x) — u(y)| < L|x — y| with this L. In order to give
a meaningful definition of viscosity solutions, we assume throughout the paper that the
dual normH : R" — [0, co) defined byH (n) := |n|* is of classC2(R" \ {0}).

It is well known that theco-Laplacian operatoA o, is closely related to finding a
minimal Lipschitz extension of a given functighe C%1(32) into €. In [2] this result
on minimal Lipschitz extensions was generalized from the Euclidean to a general norm
(see alsol[25]). In[[6] the eigenvalue problem was carried over to a general norm and
studied for finitep, while in [5] the eigenvalue problem was investigated first for fipite
and the special non-Euclidean notm = (3~ _; Ix; |PHY P with p’ conjugate tgp, and
then for the limitp — oo.

Moreover, theco-Laplacian operator plays an important role in problems of opti-
mal transportation. For technical reasons it is often approximateetlbgplacians with
large p (see for instance [1.2],[8]).

Our paper is organized as follows. In Section 2 we recall the existence, uniqueness
and regularity of weak and viscosity solutions for finge In Section 3 we derive the
limit equation forp — oo. In Section 4 we provide some instructive examples.

2. Existence, uniqueness and regularity of solutions

If we minimize the functional

1,(v) =/ (IVul*)? dx on K:={ve W(}”’(sz) vl = 1}, (2.1)
Q

then via standard arguments (see [6]) a minimizgexists for everyp > 1 anditis a
weak solution to the equation

—Qpu = —div((|Vup|*)P 2T (Vup)) = Apluy|P"2u,, (2.2)
that is,
/(|vu,,|*)P—2<J(w,,),vU>dx :xp/ lup|P2u - v dx (2.3)
Q Q

foranyv € Wol’p(sz). Herex, = I,(u),) and

P *\2
Ji(¢) = g(ﬂélz) ) (2.4)
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Clearly ) is well defined if the dual nori () = |n|* is of classC1(R” \ {0}).
Recall that[(2.}4) is well defined (and single-valued) if and only if the npriris strictly
convex, i.e. if its unit sphergx : |x| = 1} contains no nontrivial line segments (seel [26,
p. 400]). Note further that in this casg0) = 0 and that for the Euclidean norm the
duality map reduces to the identity(Vu) = Vu. Note finally thatA, := All,/p is the
minimum of the Rayleigh quotient

_ (JoUVu[")Pdx)t/r

R :
» (@) o,

(2.5)

on Wol”’(sz) \ {0}. Without loss of generality we may assume thgtis nonnegative.
Otherwise we can replace it by its modulus.

Moreover as shown in_[6] any nonnegative weak solution[of] (2.3) is necessarily
bounded and positive if2. If p > n, thenu,, is Holder continuous because of the Sobolev
embedding theorem and the equivalence of the usual Sobolev norm and

1/p 1/p
lully, = ( /Q |u(x>|"dx) +( /Q (|Vu<x>|*)"dx) . (2.6)

But even for generap > 2, one can show it6 ¢ regularity as in[[6]. For the reader’s
convenience let us briefly repeat the arguments. The funeioninimizesl, in (2.1) and

the theory for quasiminima in_[14] implies that minimizerslgfare bounded|([14, Thm.
7.5]), Holder continuous [([14, Thm. 7.6]), and satisfy a strong maximum principlé ([14,
Thm. 7.12]). Therefore, is positive. Once positivity is known, the uniqueness follows
from a simple convexity argument (séé [4] or [6]). Moreougre ct(Q) according to
[23], [24] or [1]]. Let us summarize these statements.

Theorem 2.1. Suppose thatl () = |n|* is of classC1(R" \ {0}) or that the norm - |
is strictly convex. Then for evepy € [2, oo), the nonnegative minimize, of @) is
unique, positive and of clagg™. It solves(2.d)in the weak sense q®.3).

The next item will be viscosity solutions. As in [18] and [5] we plan to show that every
weak solution is a viscosity solution. For everye R, ¢ € R” and for every real sym-
metricn x n matrix X we consider the function

Fp(z, &, X) = —(p — D(EI)PHX I (), J (£))

—(EIMP 72X ® DJ (&) — 1plzlP 2%,
whereX ® D J (§) is shorthand foEZj:l Xij g—gjf(g). Now (|£]*)?/2 is convex and homo-
geneous of degree 2 and its first derivatiug) is homogeneous of degree 1. Therefore
its second derivativ® J (¢) exists almost everywhere and is essentially bounded. If we
assume thall (n) := |n|* is of classC2(R" \ {0}), thenDJ is well defined and continu-
ous outside the origin, so th&j, is well defined and continuous fér# 0. To defineF,
até = 0 we use the homogeneity of the norm* and see that for any> 0 andé # O,

J(@&) =tJ(E) implies DJ(E) = DJ (t§).
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So if we assume that the dual norm is of cl&@®soutside the origin, then one easily sees
that for p > 2 the function

Fr= _(|§|*)p_z[(p - 2)<X’<|§|*)’ J(|§|*)>+ xe D’@)}

—AplzlP 7%z (2.7)

has a continuous extension&ce= 0. So now we can define

Fy(z,&,X) if&#0,

2.8
—AplalP2 i & =0, @9

Fp(Z, £, X)) = {

and the upper and lower semicontinuous enveldfjeandF),.. of F;, coincide withF), for

p > 2. Notice that the case = 2 is more delicate, becauge(z, &, X) = X @ DJ (§) —

A2z is not continuous a& = 0. This problem was overcome in[22] fer € (1, 2) by
multiplying F, with |[Vu| and by studying the modified differential equation, but since
we are interested in the limp — oo we do not investigate the range € (1, 2] any
further.

Definition 2.2. Let F,, be as in@). We callu € C(2) a viscosity subsolutiorfresp.
supersolutiopof F, = 0 if

Fp(¢(x), Do(x), D?*p(x)) <0 (resp.F,(¢(x), Do(x), D’p(x)) = 0)  (2.9)

for everyp € C2(£2) with u —¢ attaining a local maximum (resp. minimum) zeracatVe
call u a viscosity solutiorof F,, = 0 if it is both a viscosity subsolution and a viscosity
supersolution.

Lemma 2.3. Suppose thaH () := |n|* is of classC2(R" \ {0}). Then forp > 2 every
(weak) solution o{2.3)is a viscosity solution of,, = 0 with F, given by(2.8).

Proof. We omit the subscripp on u;, and check first ifu is a viscosity subsolution.
Without loss of generality fixg € Q and choos@ € C2(Q) such thatu(xg) = ¢ (xo)
andu(x) < ¢ (x) for x # xo. We want to show that

—(p — (Vo (x0) )P~ D3P (x0)J (V¢ (x0)), J (Ve (x0)))
— IV (x0)|*)P~2D%p (x0) ® DJ (Ve (x0)) — Aplp (x0)|” %p(x0) <0  (2.10)

and argue by contradiction. Otherwise there exists a smallBhétlp) in which (2.10) is
violated. SetM = sup¢(x) — u(x) : x € 3B,(x0)} and® = ¢ — M /2. Then® > u on
9B, (x0), ®(x0) < u(xo) and
—(p = (V[P HD*®J(VD), J (VD))
— (IVO[")P72D?d ® DJ (VD) > A, 9|P2¢ inBy(xg). (2.11)
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If we multiply (2.11) by(x — ®)* and integrate by parts, we obtain

/ (VOIP~2(J(VD), V(u — D)) dx > xp/ 1pIP %) (u — D) dx. (2.12)
{u>®o} {u>®d}
Now we exploit the fact that is a weak solution of (2]3) and pick= (u—®)*, extended
by zero outsideB, (xo), as a test function i (2.3). Then

/ (Vul*)P~2(J (Vu), V(u — ®)) dx = x,,/ lulP2u(u — ®)dx. (2.13)
{u>d} {u>%}

Subtracting[(2.7]2) fronj (2.13) we obtain

/ ([AVul*P~2I(Vu) — (IVO[*)P2J(VD)], V(u — ®)) dx
{u>o}

<% / (ul?%u — 1¢|P%¢)(u — ®)dx. (2.14)
{u>>d}

But the right hand side of (2.]14) is nonpositive, while the left hand side is nonnegative
because the functiongl(|Vv|*)? dx is convex inv. Sou(xp) < ®(xp), a contradiction
to ®(xg) < u(xp). This proves that is a viscosity subsolution. The proof thats also a
viscosity supersolution is left to the reader.

Note that, as a byproduct of this proof, there are no admissible test fungtitives
touchu,, at a critical point from below. This shows that is not of classC2.

3. The limit eigenvalue equation forp — oo

In this section we study the sequen@s,, u,,) of eigenvalues and normalized eigenfunc-
tions asp — oo. In particular we will derive the equation which is satisfied by the cluster
pointsu, of u,. Consider a bounded domafa C R". The distance function to the
boundarys (x) := infycsq [x — y| is Lipschitz continuous, satisfig¥s(x)|* = 1 almost
everywhere ir2 and it is equal to zero on the boundaryf For everyp € W&’OO(SZ)
andy € 92 we then have

lo()| = lox) — (M| < Vel [l (x),
which implies
1 < 1Vel*lloo
161lc ll@lloo

I1V8]*[lso ( 1 )
Aso i= = . (3.2)
> 18110 18106

ThenA  is a geometric quantity related fa. It is the inverse of the radius of the largest
(in general non-Euclidean) ball inside We can now prove the following lemma, which
explains the analytic meaning of..

(3.1)

Now define




128 M. Belloni et al.

Lemma 3.1. The following limit holds:

(pleoox,ﬁ/” =) lim A, = Ac.
Here A, = R,(u,) and the Rayleigh quotierr), is given by(2.5).
Proof. From the definition of the Rayleigh quotient ah¢) we get

|g2|1/17

<
P — ’
1811

which implies

limsupA, < Ax.

[]—)OO

In order to obtain the opposite inequality, we observe fai,|l, < C < oo uni-

formly in p, becausé(x) can be used as a test function in any of the Rayleigh quo-
tients. But then (see alsbl[7] and [18]¥lder’s inequality allows us to conclude that
Vupllm < C < oofor p>m > n. We can thus select a subsequence (still denoted by
{up}) converging strongly irfC* and weakly inW1 to a cluster point ., of the original
sequence. Without loss of generality we may assume thatigalshsL> norm 1. Then
by the convergence i@“, limu, = uy hasL> norm 1 and positived” norm. From the

lower semicontinuity of the Rayleigh quotient we now get
<lim

(Jo(Vuso*)™ dx)¥/™m it Jo(IVup*y™ dx)t/m

llt00lm p—00 lleepllm

Multiplying and dividing the last inequality blju, |,, by Holder's inequality forp > m
we get
(fo (I Vucol*)™ dx)t/™

< liminf (APM|Q|(p—m)/pm>_
oo llm p—>00 lleep llm

By taking first the limit overp and next over: and using[(3]L) we conclude thaAt, <
liminf,_, o A,, which completes the proof of the lemma.

Before we derive the limit equation which a nontrivial cluster poigt of the se-
guence:;, must satisfy, let us show thay, is positive inQ. The functions,, are viscosity
supersolutions off, (Vu, D?%4) = 0, where

*\2
(161 X ® DJ(E)
p—2

is elliptic and continuous fop > 2 by assumption. Therefore by a well known stability
theorem|[[9] supersolutions converge to a supersolution of the limiting problem, i.e. to a
supersolution, of the equation

Hyo(§,X) = —(XJ(),J() =0

in the viscosity sense. As we saw abawg, £ 0. Now the positivity ofu., follows from
a comparison result of Barles and Busca (5ée [3, Lemma 3.2]).

Hp(, X) == —(XJ(&),J(&)) —
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Theorem 3.2. If H(n) := |n|* is of classC2(R" \ {0}) then every cluster point,, of the
sequencéu,} is a viscosity solution of the equation

Foo(u, Vu, D?u) = min{|Vu|* — Asott, —Qoott} = 0
with Quou = (D%uJ (Vu), J(Vu)) representing theo-Laplacian in the Finsler metric.

Proof. We show first the result for viscosity supersolutions. We consider a subsequence
{up} converging uniformly inQ to a functionu. Fix a pointé € € and a function

¢ € C2such thatus(§) = @(&) anduse(x) > ¢(x) for x # £. Also fix Bog (&) C Q. If

0 <r < Rwe have

iNf{uco (x) — ¢(x) 1 x € Br(§) \ By (§)} > 0.
The sequencgy,} converges uniformly, so for sufficiently largewe have
inf{up(x) —@(x) 1 x € Br(E) \ Br(§)} > up(§) — ¢(é).
For thosep we have
inf{up(x) —@(x) 1 x € Br(§)} = up(xp) — ¢(xp)

with x, € B.(§), and obviouslyx, — & asp — oo. The functionu, is a viscosity
solution of [2.2), therefore

—(p — (Vo)) HD%p(xp) T (Vo(xp)), I (Vo (xp))
— (IVo(xp)[M)P2D%p(xp) ® DJ (Vo (xp) = Aplo(xp)IP%p(x,).  (3.3)
Now u~(§) > 0, but then als@(x,) > 0 for sufficiently largep and by YVo(xp)
# 0 for largep. Dividing both members of (33) byp — 2)(IVe(x,)|*)?~* we obtain

(Vo (xp)|*)?

—(D%0(xp)J (Vo(xp)), J (Vo (xp))) — D?p(x,) ® DJ(Vg(x)))

—2
zA3|‘p(xﬂ)'3<l<ﬂ(xp)lAp)p4. (3.4)
p—2 \IVe(xp)l*
Letting p — oo in (3.4), we obtain the necessary condition
Accp(§) <1, (3.5)
IVo@)I*
and taking into accounit (3.5) and lettipg— oo in (3.4) we obtain
— 0000 (§) = —(D?0 ()T (Vo(£)), J (Vo(£))) = 0. (3.6)

Inequalities[(3.6) and (3.6) must hold together, and therefore the cluster pginithe
sequencea, must satisfy, in the viscosity sense, the equation

min{|Vu(&)[* — Asctt(§), —Qoout(§)} = 0. 3.7)
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This shows that, is a viscosity supersolution of
Foo(u, Vu, D%u) = min{|Vu|* — Aoott, —Qoott} = 0.

Let us run the proof for subsolutions. Fix a point © and a functiornp € C? such
thatuso (&) = (&) andus (x) < @(x) for x # &. We have to show that

min{|Vu(@)[* — Aot (§), —Qoott(§)} < 0.

Clearly if |Vu(&)|* — Asou(€¢) < 0, then there is nothing to prove. Therefore we assume
IVu@)* — Aocu(§) > 0, i.e.
9(§)Aoo
Vo (&) I*
By continuity, this inequality remains true (for every sufficiently laggeif Ao is re-
placed byA , and& by x,, andx, is now the maximum point af,, (x) — ¢(x). As in the
supersolution case, repeating step by step the proof but reversing the inequality between
the left and right member, we get

<l-—e. (3.8)

(IVo(xp)|*)?

—(D%0(xp)J (Vo(xp)), J (Vo (x,))) — D?p(x,) ® DJ(Vg(x)))

-2
A4 3 p—4
- »P(xp) <|g0(xp)|Ap) 39
p—2 \IVo(x,)l*
Letting p — oo and taking into accounft (3.8) we get
—0xp(§) <0,

which ends the proof.

We do not know how to prove uniqueness of solutions to the Dirichlet problem for
Foo(u, Vu, D%u) = 0, but as in[[1B], we are able to obtain a comparison result. In the
setting of viscosity solutions given in [10], the functidh, is degenerate elliptic but not
proper. Therefore the standard theory cannot be applied directly. The strict positivity of
up for 1 < p < oo allows us to consider in place &%, (u, Vu, D2u) = 0anew equation
satisfied bywo, = logu (seel5], [18]). Let us write

Goo(Vw, D?w) = 0, (3.10)

where
Goo(Vw, D?w) := min{|Vw|* — Ao, —Qoow — (|Vw|*)*}

and O is defined as before. We claim thatifis a viscosity supersolution (resp. sub-
solution) of Fao (u, Vu, D%u) = 0, thenw = logu is a viscosity supersolution (resp.
subsolution)G . (Vw, D?w) = 0. Taket €  andg € €2 such thaip (&) = w(€) and
o(x) < w(x) for x # £. The functiond(x) = ¢*™) is a good test function foz at &.
Then we have

min{|VOE)[* — Axb(§), —Q08(8)} = 0.
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We write the last inequality in terms ¢f(x) as

min{e? (IVo[* — Axo) (), =3 (Quop + (Vo, J(V9))?) ()} > 0,

and the claim follows from the observation tHat J(y)) = (|y|*)2. The proof for sub-
solutions is symmetric.
Now we can study o (Vw, D?w) = 0, which (in contrast td,, = 0) is now proper.

Theorem 3.3. Let2 be a bounded domain, and suppose thegt a uniformly continuous
viscosity subsolution anda uniformly continuous viscosity supersolutior(@&fLQ)in €.
Then

sup(u(x) — v(x)) = sup(u(x) — v(x)). (3.11)

xeQ xX€0Q

Proof. There is no loss of generality if we assumey > 0. Otherwise we add constants
to u andv. We proceed by contradiction. Suppose that (3.11) is false; then

sup(u(x) — v(x)) > sup(u(x) — v(x)). (3.12)
xeQ xedQ

To obtain a contradiction, we construct a new supersolutitraving the following prop-
erties:

(i) llv — wlls is small enough to preserve the inequality (B.12);
(i) w is astrict supersolution of (3.10).

With those properties in mind, we introduce the function (5eé [18])

f@) = gll log(1+ A(e** — 1)),

wherea, A > 1. In [18] this function was shown to satisfy (a) through (d) below:

(@) f'(z) > 1foreveryz > 0;

(b) fa isinvertible and(f4)~t = f,-1 for everyz > 0;
© 1-[f' @I+ [f'(@]72f"(z) < O foreveryz > 0;
(d) O< f(z) —z < (A —1)/a foreveryz > 0.

We definew = f(v). For A sufficiently close to 1, property (i) holds easily. We check (ii).
Leté € Q andy € C2 be such thap(¢) = w(&) ande(x) < w(x) for x # &. Set

6 = f~1(p). The functionf —1 is increasing, and s@ is a good test function for at&.
But v is a supersolution of (3.10), therefore

MIN{[VOE)* — Ao, —Qoof(§) — (IVOE)M)* > 0. (3.13)
It follows from (3.13) that

IVOE)* — Ao = 0, (3.14)
—0oc0(§) — (IVOE)M* > 0. (3.15)
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But if we write explicitly
O, = L' O] 0x,.  Ouy = L O] 0un, — L/ @173 1" O)px, 01,

from (3.14) we get
IVo@®I" = f(0(€) Ao (3.16)

i IVO@E)I* — Aoo = [f/(0(8)) — 1]As > O. (3.17)
With some calculus we obtain
D%p = f'(0)D%0 + f"(H)VH Q@ Vb
so that (becausé is homogeneous of degree one)
— Qo9 = (D0 (V), J (V) = = ['0)°Qoct — f"(©0) f'©)2(IVO")*.

Together with[(3.15) this implies

— Qoo (&) — (IVp@&)[)* = (f2 = 172 = H0E)(VoE) )

whose right hand side is positive because of (d). Thus we have shown
1 "
— Qoop(®) — (IVp(&)")? = f/“<7 — 1) WE))AL. (3.18)
From (a), [(3-1]) and (3:18) we conclude
Min{|Vo(&)1* — Aso, —Qoop(§) — (IVe(®)[))* = p(&) > 0, (3.19)

where we have defined
. : ’ 1 f” 4
px):=mini [ f (v(x))—1]Aco, TR 1)(w(x)AL ¢
Inequality [3.19) and properties (a) and (c) tell us tas a strict supersolution.
Now the contradiction follows easily by standard techniques for viscosity solutions

(see [[10]). Let us sketch the conclusion. We consider a maximum pging,) of the
function

! 2
u(x) —w(y) — Elx =l
in Q x Q. Up to a subsequence, we have
x —> & and y, — &,

where¢ € Q is a maximum point ofi — w in Q. But inequality |(3.1R) holds, sb lies
in the interior. We apply the max principle for semicontinuous functions (see Chapter 3
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in [L0] for this result and for the definition of the semijet$* (u(x;)) andJ%~ (w(x;))),
which ensures the existence of real symmetric mattgesy; such that

(e =y Xo) € T2 (), (¢ — y0); Yo) € T2 (w(x)),
(X0, v) — (Yo, p) < 3tlv — pl%

Now « is a subsolution 065, = 0, so
Goo(t(xr — y1); X4) < 0. (3.20)
Sincew is a strict supersolution @, = 0, from {3.19) we get
Goo(t(x; — y1); Y1) = p(xs) > 0. (3.21)

Now (3.20) and[(3.21) give after some calculatjofx;) < 0, which is obviously a con-
tradiction. This completes the proof.

Remark 3.4. Theoreni 3.8 also holds when one of the functions takes the vadueon
the whole boundary.

It is well known that for any 1< p < oo, the eigenvalug., can be characterized by
the property thak = 1, is the only real number for which the equation

— diV((| Vi, )P 72T (Vup)) = AuplP2u,

has a continuous positive solution with zero boundary value. We will show nexathat
has an analogous characterization.

Theorem 3.5. Let 2 be any bounded domain and suppose that the rjorps of class
C?(R" \ {0}). If u is a continuous positive viscosity solutionsnof

min{|Vu|* — Au, —Qoout} =0
with zero boundary value, thelh = A .

To prove this, we need the following gradient estimate. For the standard Euclidean norm
this was derived in [21]. Using a perturbation argument due to Crandall, we show that the
general case follows from the resultslin [2].

Theorem 3.6. Suppose that the nor| is of classC2(R" \ {0}). Letu be a nonnegative
viscosity supersolution 6f Qou = 0in 2, and let§ (x) = dist(x, 32) for x € Q. Then

[Vu()l* < u)

for a.e.x € Q. 3.22
=30 ora.e.x € ( )

Proof. It suffices to verify thai: enjoys the followingcomparison with cones from below
property inQ (seel2]):

WhenevelV cc Qisanopensetand(x) = alx —z|+bwitha,b e R,z ¢ V
is a cone function such that> C ondV, thenu > Cin V.
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Indeed, for functions that enjoy comparison with cones from befow, |(3.22) is Remark 2.17
in [2].

To show that viscosity supersolutions efQ.u = 0 enjoy comparison with cones
from below, we argue as in the proof of Theorem 4.13in [2]. Suppodees not enjoy
comparison with cones from below f2. Then there is an open sétcc Q and a cone
functionC(x) = alx — z|] + b witha,b € Randz ¢ V such thatt = C onadV and
u < Cin V. If for eache > 0 we can find a perturbatioA € C2(V) such thatP| < ¢
in V and

—Q00(C+P)<—-3<0 inV, (3.23)

we will be done. Indeed, far > 0 small enough, the functian— (C + P) has an interior
local minimum pointxg € V. Sinceu is a viscosity supersolution a@+ P € C3(V),
this implies

—000(C + P)(x0) = 0,
contradicting|(3.23).

Since we are assuming that the ndrtris of classC2(R" \ {0}), suitable perturbations
can be explicitly constructed using this norm. Suppose, without loss of generality, that
z=0and putP = y|x|2andy > 0. ThenC(x) + P(x) = g(|x|) whereg(s) =
as + ys® + b. A direct computation shows that

—Qoog(x]) = —g'(IXD3D?[x|J (VIx]), J(VIxD) — " (xDg’ (xD3(VIx], J (V]x]))2.
Since(V|x|, x) = |x| by homogeneity and (V|x|) = x/|x| for x # 0, this reduces to
—Qo0g(Ix]) = —(g"3xI72(D?|x|x, x) — g"(g))?.

Next observe that by the linearity a{r) = |zx| we have 0= h”(1) = (D?|x|x, x), SO
that

—Q00(C + P)(x) = —g"(IxDg'(Ix)? = =2y 2y |x| + a)?.

This is strictly negative irV if eithera > 0, ora < 0 andy > 0 is sufficiently small. If
y is sufficiently small we also attaiP| <ein V.

For the proof of Theorein 3.5, we will also need the following auxiliary comparison
result.

Lemma 3.7. Suppose that the norm | is of classC2(R" \ {0}). If u is a continuous
positive viscosity solution of

min{|Vu|* — Au, —Qoout} =0 (3.24)
in a bounded domaif with zero boundary values, normalized so thapu = 1/A, then

u(x) < dist(x, 0Q2) for everyx € Q.
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Proof. Fix z € 9 and fora > 1, y > 0 letv(x) = a|x — z| — y|x — z|%. Analogously
to the proof of Theorern 3.6 above, we obtai.v(x) > 0 provided thaty > 0 is
sufficiently small. Moreover,

IVu@)|* = (@ —2ylx —zDIVIx —z| " =a - 2y|x —z| > 1
if v is small enough. Thus we have
min{|Vv|* — 1, —Qov} > 0. (3.25)
Next notice that due to the assumption sug 1/A, (3.24) implies
min{|Vu|* — 1, —Qu} <0 inthe viscosity sense (3.26)

Sincev € C? andv > u = 0 0nd<2 (if y is small enough), it follows that > u in Q.
Indeed, otherwise — v would have an interior local maximum point at whigtwould
be a test function for from above, contradicting (3.25) ar{d (3.26).

We have thus shown thaix) < a|x — z| — y|x — z|? for everyz € 922, a > 1 and
y > 0 sufficiently small. Hence

u(x) < inf |x — z| = dist(x, 92),
z€0R2

as desired.

Remark 3.8. Lemma 3.7 implies that if is any positive viscosity solution to the eigen-
value equationF (1, Vu, D?u) = 0 with zero boundary data, it cannot be differen-
tiable at its maximum points. To see this, normalizeo that sup = 1/A. Then if
u(x0) = SUP,cq u(x), it follows thats (xg) = sup.cq 8 (x). Sinces is not differentiable at
xo andu < 8, u(xg) = 8(xg), it is now clear that: is not differentiable atg.

Proof of Theoren 3|5Notice first that if A < 0O, then the eigenvalue equation above
reduces to the equationQ.,u = 0, whose only solution with zero boundary values is
u = 0 (seel[2] or[[3]).

Normalizeu so that sup = 1/A. Then by Lemmé 3|7 we obtain(x) < §(x) =
dist(x, 92) for all x € 2, which together with the gradient estimdte (3.22) yi¢Ms(x)|*
< 1fora.ex € Q. Consequently,

MVul*lloc . 1 _

lulloo ™~ llulloo

Because .
Vw[*|leo

A = inf{
lwlloo

by (3.3) and[(3R), we must have,, < A.
To prove the reverse inequality, we approximate- logu by its semiconcave inf-
convolutions

w e Wy () \ {0}}

() = inf {v(y) +le- y|2}
2¢

YEQ,
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fore > Ointhe setQ, = {x € Q : §(x) > o}. Since|Vv|* > A in the viscosity sense
by the assumptions and is twice differentiable a.e., it follows from the properties of
the inf-convolution thatVv® (x)|* > A for a.e.x in a smaller sef2, . = {x € Q, :
dist(x, 382, ) > Ce}. Moreover, the functior is a positive supersolution 6f 0 s,w =0

in Q4. Thus using the gradient estimdfte (3.22) we obtain

1 &
A < |Vve *= |V v(x)*<'—
= VI = Z2IVE 1 = G a000)

fora.e.x € Q,,, and so, letting — 0 ando — 0 gives

1

A< —m =Ag.
= SUPcq 8(x) o

This completes the proof.

4. Example and concluding remarks

If the norm under consideration fere < is the usual, norm, i.e|x| = (3 i, |x;|9)Ya
with ¢ € (1, 00), the duality map according tp (2.4) is easily calculated as

i) = (v F 1 1yl 2y,

with ¢’ = ¢/(g — 1) being the conjugate exponent. Notice that this differs from.the
in [2, Example 5.2]. Thep-Laplace operator in this Finsler metric is explicitly given by

(seell6])
" ou
ax; )

For p > 2 this definition is meaningful and fgr = 2 (= ¢’) it recovers the well known
p-Laplace operator. The operat@p is formally given by

" (T luw] 7772 0u
QZ“—Za—m([—me a—x,-)

i=1

n

0 o
qu = Z a<|Vu|5/ 1

i=1 !

ou

8)6,'

However, Qou does not seem to be well defined at critical points 0T he co-Laplace
operator in the same Finsler metric is explicitly given by
72 5,
)

4-2q' < 9%u
u=\Vu|,
Qoo = [Vul), " " (ij

i,j=1

/_
-2 5y

3)6,'

ou

8x,~

ou

3Xj

and forg = 2 this expression reduces to the customary

" 32y Qu du

Py 0x;xj dx; 0x;

Acoll =
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Remark 4.1. 1t should be remarked that the distance function minimizes the Rayleigh
guotientR,, but thats (x) is in general not a viscosity solution of the limiting eigenvalue
problem, unless2 is a “ball” in the Finsler metric (seé [18], [19].I[5]).

Remark 4.2. If Qis a“ball”in R” andp = n, then all the level sets of solutions fo (.2),
~Quut = hnlul"u,
are similar “balls”(se€ [6]).

Remark 4.3. The smoothness assumption made on the dual spheres in our paper is vio-
lated if the underlying norm is thé or £, norm. However, the pde-Q, = 1 and its

limit as p — oo were studied even in this case n [15]; see also [20], [7], [17] and [16]
for the case of the Euclidean norm and for variants of this problem.

Remark 4.4. Clearly the eigenvaluk, depends o®. There is an analogue of the Faber—
Krahn inequality which states that among all domains of given volup&?) becomes
minimal if Q is a “ball” in the Finsler metric. This result is formulated A [6], but it is
based on a rearrangement inequality from [1].
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