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The p-Laplace eigenvalue problem asp → ∞

in a Finsler metric
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Abstract. We consider thep-Laplacian operator on a domain equipped with a Finsler metric. We
recall relevant properties of its first eigenfunction for finitep and investigate the limit problem as
p → ∞.
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1. Introduction

Imagine a nonlinear elastic membrane, fixed on a boundary∂� of a plane domain�.
If u(x) denotes its vertical displacement, and if its deformation energy is given by∫
�

|∇u|
p dx, then a minimizer of the Rayleigh quotient∫

�
|∇u|

p dx∫
�

|u|p dx

onW
1,p

0 (�) satisfies the Euler–Lagrange equation

−1pu = λp|u|
p−2u in �, (1.1)

where1pu = div(|∇u|
p−2

∇u) is the well knownp-Laplace operator. This eigenvalue
problem has been extensively studied in the literature. A somewhat surprising recent result
is that (asp → ∞) the limit equation reads

min{|∇u| − 3∞u, −1∞u} = 0. (1.2)

Here 1∞u =
∑

i,j uxi
uxj

uxixj
, 3∞ = limp→∞ 3p and 3p = λ

1/p
p (see [18, 13]).

Although the function dist(x, ∂�) minimizes‖∇u‖∞/‖u‖∞, it is not always a viscosity
solution of (1.2) (see [18]).
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Now suppose that the membrane is not isotropic. It is for instance woven out of elastic
strings like a piece of material. Then the deformation energy can be anisotropic (see
[5]). Another way to describe this effect is by stating that the Euclidean distance in�

is somehow distorted. It is the purpose of the present paper to generalize the result on
eigenfunctions for thep-Laplacian to the situation where� ⊂ Rn is no longer equipped
with the Euclidean norm, but instead with a general norm| · |, for instance with|x| =

(
∑n

i=1 |xi |
q)1/q andq ∈ (1, ∞). In that case a Lipschitz continuous functionu : � → R

(in a convex domain�) has Lipschitz constantL = supz∈� |∇u(z)|∗, where| · |
∗ denotes

the dual norm to| · |, because|u(x) − u(y)| ≤ L|x − y| with this L. In order to give
a meaningful definition of viscosity solutions, we assume throughout the paper that the
dual normH : Rn

→ [0, ∞) defined byH(η) := |η|
∗ is of classC2(Rn

\ {0}).
It is well known that the∞-Laplacian operator1∞ is closely related to finding a

minimal Lipschitz extension of a given functionφ ∈ C0,1(∂�) into �. In [2] this result
on minimal Lipschitz extensions was generalized from the Euclidean to a general norm
(see also [25]). In [6] the eigenvalue problem was carried over to a general norm and
studied for finitep, while in [5] the eigenvalue problem was investigated first for finitep

and the special non-Euclidean norm|x| = (
∑n

i=1 |xi |
p′

)1/p′

with p′ conjugate top, and
then for the limitp → ∞.

Moreover, the∞-Laplacian operator plays an important role in problems of opti-
mal transportation. For technical reasons it is often approximated byp-Laplacians with
largep (see for instance [12], [8]).

Our paper is organized as follows. In Section 2 we recall the existence, uniqueness
and regularity of weak and viscosity solutions for finitep. In Section 3 we derive the
limit equation forp → ∞. In Section 4 we provide some instructive examples.

2. Existence, uniqueness and regularity of solutions

If we minimize the functional

Ip(v) =

∫
�

(
|∇u|

∗
)p

dx on K := {v ∈ W
1,p

0 (�) : ‖v‖Lp(�) = 1}, (2.1)

then via standard arguments (see [6]) a minimizerup exists for everyp > 1 and it is a
weak solution to the equation

−Qpu := − div((|∇up|
∗)p−2J (∇up)) = λp|up|

p−2up, (2.2)

that is, ∫
�

(|∇up|
∗)p−2

〈J (∇up), ∇v〉 dx = λp

∫
�

|up|
p−2u · v dx (2.3)

for anyv ∈ W
1,p

0 (�). Hereλp = Ip(up) and

Ji(ξ) :=
∂

∂ξi

(
(|ξ |

∗)2

2

)
. (2.4)
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Clearly (2.4) is well defined if the dual normH(η) = |η|
∗ is of classC1(Rn

\ {0}).
Recall that (2.4) is well defined (and single-valued) if and only if the norm| · | is strictly
convex, i.e. if its unit sphere{x : |x| = 1} contains no nontrivial line segments (see [26,
p. 400]). Note further that in this caseJ (0) = 0 and that for the Euclidean norm the
duality map reduces to the identityJ (∇u) = ∇u. Note finally that3p := λ

1/p
p is the

minimum of the Rayleigh quotient

Rp(v) :=
(
∫
�
(|∇v|

∗)p dx)1/p

‖v‖p

(2.5)

on W
1,p

0 (�) \ {0}. Without loss of generality we may assume thatup is nonnegative.
Otherwise we can replace it by its modulus.

Moreover as shown in [6] any nonnegative weak solution of (2.3) is necessarily
bounded and positive in�. If p > n, thenup is Hölder continuous because of the Sobolev
embedding theorem and the equivalence of the usual Sobolev norm and

‖u‖1,p :=

(∫
�

|u(x)|p dx

)1/p

+

(∫
�

(|∇u(x)|∗)p dx

)1/p

. (2.6)

But even for generalp ≥ 2, one can show itsC1,α regularity as in [6]. For the reader’s
convenience let us briefly repeat the arguments. The functionup minimizesIp in (2.1) and
the theory for quasiminima in [14] implies that minimizers ofIp are bounded ([14, Thm.
7.5]), Hölder continuous ([14, Thm. 7.6]), and satisfy a strong maximum principle ([14,
Thm. 7.12]). Thereforeup is positive. Once positivity is known, the uniqueness follows
from a simple convexity argument (see [4] or [6]). Moreoverup ∈ C1,α(�) according to
[23], [24] or [11]. Let us summarize these statements.

Theorem 2.1. Suppose thatH(η) = |η|
∗ is of classC1(Rn

\ {0}) or that the norm| · |

is strictly convex. Then for everyp ∈ [2, ∞), the nonnegative minimizerup of (2.1) is
unique, positive and of classC1,α. It solves(2.2) in the weak sense of(2.3).

The next item will be viscosity solutions. As in [18] and [5] we plan to show that every
weak solution is a viscosity solution. For everyz ∈ R, q ∈ Rn and for every real sym-
metricn × n matrixX we consider the function

F̃p(z, ξ,X) = −(p − 2)(|ξ |
∗)p−4

〈XJ(ξ), J (ξ)〉

−(|ξ |
∗)p−2X ⊗ DJ(ξ) − λp|z|p−2z,

whereX⊗DJ(ξ) is shorthand for
∑n

i,j=1 Xij
∂Ji

∂ξj
(ξ). Now (|ξ |

∗)2/2 is convex and homo-
geneous of degree 2 and its first derivativeJ (ξ) is homogeneous of degree 1. Therefore
its second derivativeDJ(ξ) exists almost everywhere and is essentially bounded. If we
assume thatH(η) := |η|

∗ is of classC2(Rn
\ {0}), thenDJ is well defined and continu-

ous outside the origin, so thatF̃p is well defined and continuous forξ 6= 0. To defineFp

at ξ = 0 we use the homogeneity of the norm| · |
∗ and see that for anyt > 0 andξ 6= 0,

J (tξ) = tJ (ξ) implies DJ(ξ) = DJ (tξ) .
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So if we assume that the dual norm is of classC2 outside the origin, then one easily sees
that forp > 2 the function

F̃p = −(|ξ |
∗)p−2

[
(p − 2)

〈
XJ

(
ξ

|ξ |∗

)
, J

(
ξ

|ξ |∗

)〉
+ X ⊗ DJ(ξ)

]
−λp|z|p−2z (2.7)

has a continuous extension toξ = 0. So now we can define

Fp(z, ξ,X) :=

{
F̃p(z, ξ,X) if ξ 6= 0,

−λp|z|p−2z if ξ = 0,
(2.8)

and the upper and lower semicontinuous envelopesF ∗
p andFp∗ of Fp coincide withFp for

p > 2. Notice that the casep = 2 is more delicate, becausẽF2(z, ξ,X) = X ⊗DJ (ξ)−

λ2z is not continuous atξ = 0. This problem was overcome in [22] forp ∈ (1, 2) by
multiplying Fp with |∇u| and by studying the modified differential equation, but since
we are interested in the limitp → ∞ we do not investigate the rangep ∈ (1, 2] any
further.

Definition 2.2. Let Fp be as in(2.8). We callu ∈ C(�) a viscosity subsolution(resp.
supersolution) of Fp = 0 if

Fp(φ(x), Dφ(x), D2φ(x)) ≤ 0 (resp.Fp(φ(x), Dφ(x), D2φ(x)) ≥ 0) (2.9)

for everyφ ∈ C2(�) with u−φ attaining a local maximum (resp. minimum) zero atx. We
call u a viscosity solutionof Fp = 0 if it is both a viscosity subsolution and a viscosity
supersolution.

Lemma 2.3. Suppose thatH(η) := |η|
∗ is of classC2(Rn

\ {0}). Then forp > 2 every
(weak) solution of(2.3) is a viscosity solution ofFp = 0 with Fp given by(2.8).

Proof. We omit the subscriptp on up and check first ifu is a viscosity subsolution.
Without loss of generality fixx0 ∈ � and chooseφ ∈ C2(�) such thatu(x0) = φ(x0)

andu(x) < φ(x) for x 6= x0. We want to show that

−(p − 2)(|∇φ(x0)|
∗)p−4

〈D2φ(x0)J (∇φ(x0)), J (∇φ(x0))〉

− (|∇φ(x0)|
∗)p−2D2φ(x0) ⊗ DJ(∇φ(x0)) − λp|φ(x0)|

p−2φ(x0) ≤ 0 (2.10)

and argue by contradiction. Otherwise there exists a small ballBr(x0) in which (2.10) is
violated. SetM = sup{φ(x) − u(x) : x ∈ ∂Br(x0)} and8 = φ − M/2. Then8 > u on
∂Br(x0), 8(x0) < u(x0) and

−(p − 2)(|∇8|
∗)p−4

〈D28J(∇8), J (∇8)〉

− (|∇8|
∗)p−2D28 ⊗ DJ(∇8) > λp |φ|

p−2 φ in Br(x0). (2.11)
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If we multiply (2.11) by(u − 8)+ and integrate by parts, we obtain∫
{u>8}

(|∇8|
∗)p−2

〈J (∇8), ∇(u − 8)〉 dx > λp

∫
{u>8}

|φ|
p−2φ(u − 8) dx. (2.12)

Now we exploit the fact thatu is a weak solution of (2.3) and pickv = (u−8)+, extended
by zero outsideBr(x0), as a test function in (2.3). Then∫

{u>8}

(|∇u|
∗)p−2

〈J (∇u), ∇(u − 8)〉 dx = λp

∫
{u>8}

|u|
p−2u(u − 8) dx. (2.13)

Subtracting (2.12) from (2.13) we obtain∫
{u>8}

〈[(|∇u|
∗)p−2J (∇u) − (|∇8|

∗)p−2J (∇8)], ∇(u − 8)〉 dx

< λp

∫
{u>8}

(|u|
p−2u − |φ|

p−2φ)(u − 8) dx. (2.14)

But the right hand side of (2.14) is nonpositive, while the left hand side is nonnegative
because the functional

∫
(|∇v|

∗)p dx is convex inv. Sou(x0) ≤ 8(x0), a contradiction
to 8(x0) < u(x0). This proves thatu is a viscosity subsolution. The proof thatu is also a
viscosity supersolution is left to the reader.

Note that, as a byproduct of this proof, there are no admissible test functionsφ that
touchup at a critical point from below. This shows thatup is not of classC2.

3. The limit eigenvalue equation forp → ∞

In this section we study the sequence(3p, up) of eigenvalues and normalized eigenfunc-
tions asp → ∞. In particular we will derive the equation which is satisfied by the cluster
pointsu∞ of up. Consider a bounded domain� ⊂ Rn. The distance function to the
boundaryδ(x) := infy∈∂� |x − y| is Lipschitz continuous, satisfies|∇δ(x)|∗ = 1 almost

everywhere in� and it is equal to zero on the boundary of�. For everyϕ ∈ W
1,∞
0 (�)

andy ∈ ∂� we then have

|ϕ(x)| = |ϕ(x) − ϕ(y)| ≤ ‖ |∇ϕ|
∗
‖∞δ(x),

which implies
1

‖δ‖∞

≤
‖ |∇ϕ|

∗
‖∞

‖ϕ‖∞

. (3.1)

Now define

3∞ :=
‖ |∇δ|∗‖∞

‖δ‖∞

(
=

1

‖δ‖∞

)
. (3.2)

Then3∞ is a geometric quantity related to�. It is the inverse of the radius of the largest
(in general non-Euclidean) ball inside�. We can now prove the following lemma, which
explains the analytic meaning of3∞.
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Lemma 3.1. The following limit holds:

( lim
p→∞

λ
1/p
p =) lim

p→∞
3p = 3∞.

Here3p = Rp(up) and the Rayleigh quotientRp is given by(2.5).

Proof. From the definition of the Rayleigh quotient andδ(x) we get

3p ≤
|�|

1/p

‖δ‖p

,

which implies
lim sup
p→∞

3p ≤ 3∞.

In order to obtain the opposite inequality, we observe that‖∇up‖p ≤ C < ∞ uni-
formly in p, becauseδ(x) can be used as a test function in any of the Rayleigh quo-
tients. But then (see also [7] and [18]) Hölder’s inequality allows us to conclude that
‖∇up‖m ≤ C < ∞ for p > m > n. We can thus select a subsequence (still denoted by
{up}) converging strongly inCα and weakly inW1,m to a cluster pointu∞ of the original
sequence. Without loss of generality we may assume that eachup hasL∞ norm 1. Then
by the convergence inCα, lim up = u∞ hasL∞ norm 1 and positiveLm norm. From the
lower semicontinuity of the Rayleigh quotient we now get

(
∫
�
(|∇u∞|

∗)m dx)1/m

‖u∞‖m

≤ lim inf
p→∞

(
∫
�
(|∇up|

∗)m dx)1/m

‖up‖m

.

Multiplying and dividing the last inequality by‖up‖p, by Hölder’s inequality forp > m

we get
(
∫
�
(|∇u∞|

∗)m dx)1/m

‖u∞‖m

≤ lim inf
p→∞

(
3p

‖up‖p

‖up‖m

|�|
(p−m)/pm

)
.

By taking first the limit overp and next overm and using (3.1) we conclude that3∞ ≤

lim infp→∞ 3p, which completes the proof of the lemma.

Before we derive the limit equation which a nontrivial cluster pointu∞ of the se-
quenceup must satisfy, let us show thatu∞ is positive in�. The functionsup are viscosity
supersolutions ofHp(∇u, D2u) = 0, where

Hp(ξ, X) := −〈XJ(ξ), J (ξ)〉 −
(|ξ |

∗)2

p − 2
X ⊗ DJ(ξ)

is elliptic and continuous forp > 2 by assumption. Therefore by a well known stability
theorem [9] supersolutions converge to a supersolution of the limiting problem, i.e. to a
supersolutionu∞ of the equation

H∞(ξ, X) = −〈XJ(ξ), J (ξ)〉 = 0

in the viscosity sense. As we saw above,u∞ 6≡ 0. Now the positivity ofu∞ follows from
a comparison result of Barles and Busca (see [3, Lemma 3.2]).
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Theorem 3.2. If H(η) := |η|
∗ is of classC2(Rn

\ {0}) then every cluster pointu∞ of the
sequence{up} is a viscosity solution of the equation

F∞(u, ∇u, D2u) = min{|∇u|
∗

− 3∞u, −Q∞u} = 0

with Q∞u = 〈D2uJ (∇u), J (∇u)〉 representing the∞-Laplacian in the Finsler metric.

Proof. We show first the result for viscosity supersolutions. We consider a subsequence
{up} converging uniformly in� to a functionu∞. Fix a pointξ ∈ � and a function
ϕ ∈ C2 such thatu∞(ξ) = ϕ(ξ) andu∞(x) > ϕ(x) for x 6= ξ . Also fix B2R(ξ) ⊆ �. If
0 < r < R we have

inf{u∞(x) − ϕ(x) : x ∈ BR(ξ) \ Br(ξ)} > 0.

The sequence{up} converges uniformly, so for sufficiently largep we have

inf{up(x) − ϕ(x) : x ∈ BR(ξ) \ Br(ξ)} > up(ξ) − ϕ(ξ).

For thosep we have

inf{up(x) − ϕ(x) : x ∈ BR(ξ)} = up(xp) − ϕ(xp)

with xp ∈ Br(ξ), and obviouslyxp → ξ asp → ∞. The functionup is a viscosity
solution of (2.2), therefore

−(p − 2)(|∇ϕ(xp)|∗)p−4
〈D2ϕ(xp)J (∇ϕ(xp)), J (∇ϕ(xp))〉

− (|∇ϕ(xp)|∗)p−2D2ϕ(xp) ⊗ DJ(∇ϕ(xp)) ≥ 3
p
p |ϕ(xp)|p−2ϕ(xp). (3.3)

Now u∞(ξ) > 0, but then alsoϕ(xp) > 0 for sufficiently largep and by (3.3),∇ϕ(xp)

6= 0 for largep. Dividing both members of (3.3) by(p − 2)(|∇ϕ(xp)|∗)p−4 we obtain

−〈D2ϕ(xp)J (∇ϕ(xp)), J (∇ϕ(xp))〉 −
(|∇ϕ(xp)|∗)2

p − 2
D2ϕ(xp) ⊗ DJ(∇ϕ(xp))

≥
34

p|ϕ(xp)|3

p − 2

(
|ϕ(xp)|3p

|∇ϕ(xp)|∗

)p−4

. (3.4)

Lettingp → ∞ in (3.4), we obtain the necessary condition

3∞ϕ(ξ)

|∇ϕ(ξ)|∗
≤ 1, (3.5)

and taking into account (3.5) and lettingp → ∞ in (3.4) we obtain

−Q∞ϕ(ξ) = −〈D2ϕ(ξ)J (∇ϕ(ξ)), J (∇ϕ(ξ))〉 ≥ 0. (3.6)

Inequalities (3.5) and (3.6) must hold together, and therefore the cluster pointsu∞ of the
sequenceup must satisfy, in the viscosity sense, the equation

min{|∇u(ξ)|∗ − 3∞u(ξ), −Q∞u(ξ)} ≥ 0. (3.7)
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This shows thatu∞ is a viscosity supersolution of

F∞(u, ∇u, D2u) = min{|∇u|
∗

− 3∞u, −Q∞u} = 0.

Let us run the proof for subsolutions. Fix a pointξ ∈ � and a functionϕ ∈ C2 such
thatu∞(ξ) = ϕ(ξ) andu∞(x) < ϕ(x) for x 6= ξ . We have to show that

min{|∇u(ξ)|∗ − 3∞u(ξ), −Q∞u(ξ)} ≤ 0.

Clearly if |∇u(ξ)|∗ − 3∞u(ξ) ≤ 0, then there is nothing to prove. Therefore we assume
|∇u(ξ)|∗ − 3∞u(ξ) > 0, i.e.

ϕ(ξ)3∞

|∇ϕ(ξ)|∗
< 1 − ε. (3.8)

By continuity, this inequality remains true (for every sufficiently largep) if 3∞ is re-
placed by3p andξ by xp, andxp is now the maximum point ofup(x) − ϕ(x). As in the
supersolution case, repeating step by step the proof but reversing the inequality between
the left and right member, we get

−〈D2ϕ(xp)J (∇ϕ(xp)), J (∇ϕ(xp))〉 −
(|∇ϕ(xp)|∗)2

p − 2
D2ϕ(xp) ⊗ DJ(∇ϕ(xp))

≤
34

pϕ(xp)3

p − 2

(
|ϕ(xp)|3p

|∇ϕ(xp)|∗

)p−4

. (3.9)

Lettingp → ∞ and taking into account (3.8) we get

−Q∞ϕ(ξ) ≤ 0,

which ends the proof.

We do not know how to prove uniqueness of solutions to the Dirichlet problem for
F∞(u, ∇u, D2u) = 0, but as in [18], we are able to obtain a comparison result. In the
setting of viscosity solutions given in [10], the functionF∞ is degenerate elliptic but not
proper. Therefore the standard theory cannot be applied directly. The strict positivity of
up for 1 < p ≤ ∞ allows us to consider in place ofF∞(u, ∇u, D2u) = 0 a new equation
satisfied byw∞ = logu∞ (see [5], [18]). Let us write

G∞(∇w, D2w) = 0, (3.10)

where
G∞(∇w, D2w) := min{|∇w|

∗
− 3∞, −Q∞w − (|∇w|

∗)4
}

andQ∞ is defined as before. We claim that ifu is a viscosity supersolution (resp. sub-
solution) ofF∞(u, ∇u, D2u) = 0, thenw = logu is a viscosity supersolution (resp.
subsolution)G∞(∇w, D2w) = 0. Takeξ ∈ � andϕ ∈ C2 such thatϕ(ξ) = w(ξ) and
ϕ(x) < w(x) for x 6= ξ . The functionθ(x) = eϕ(x) is a good test function foru at ξ .
Then we have

min{|∇θ(ξ)|∗ − 3∞θ(ξ), −Q∞θ(ξ)} ≥ 0.
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We write the last inequality in terms ofϕ(x) as

min{eϕ(|∇ϕ|
∗

− 3∞)(ξ), −e3ϕ(Q∞ϕ + 〈∇ϕ, J (∇ϕ)〉2)(ξ)} ≥ 0,

and the claim follows from the observation that〈y, J (y)〉 = (|y|
∗)2. The proof for sub-

solutions is symmetric.
Now we can studyG∞(∇w, D2w) = 0, which (in contrast toF∞ = 0) is now proper.

Theorem 3.3. Let� be a bounded domain, and suppose thatu is a uniformly continuous
viscosity subsolution andv a uniformly continuous viscosity supersolution of(3.10)in �.
Then

sup
x∈�

(u(x) − v(x)) = sup
x∈∂�

(u(x) − v(x)). (3.11)

Proof. There is no loss of generality if we assumeu, v ≥ 0. Otherwise we add constants
to u andv. We proceed by contradiction. Suppose that (3.11) is false; then

sup
x∈�

(u(x) − v(x)) > sup
x∈∂�

(u(x) − v(x)). (3.12)

To obtain a contradiction, we construct a new supersolutionw having the following prop-
erties:

(i) ‖v − w‖∞ is small enough to preserve the inequality (3.12);
(ii) w is astrict supersolution of (3.10).

With those properties in mind, we introduce the function (see [18])

f (z) =
1

α
log(1 + A(eαz

− 1)),

whereα, A > 1. In [18] this function was shown to satisfy (a) through (d) below:

(a) f ′(z) > 1 for everyz > 0;
(b) fA is invertible and(fA)−1

= fA−1 for everyz > 0;
(c) 1− [f ′(z)]−1

+ [f ′(z)]−2f ′′(z) < 0 for everyz > 0;
(d) 0 < f (z) − z < (A − 1)/α for everyz > 0.

We definew = f (v). ForA sufficiently close to 1, property (i) holds easily. We check (ii).
Let ξ ∈ � andϕ ∈ C2 be such thatϕ(ξ) = w(ξ) andϕ(x) ≤ w(x) for x 6= ξ . Set
θ = f −1(ϕ). The functionf −1 is increasing, and soθ is a good test function forv at ξ .
But v is a supersolution of (3.10), therefore

min{|∇θ(ξ)|∗ − 3∞, −Q∞θ(ξ) − (|∇θ(ξ)|∗)4
} ≥ 0. (3.13)

It follows from (3.13) that

|∇θ(ξ)|∗ − 3∞ ≥ 0, (3.14)

−Q∞θ(ξ) − (|∇θ(ξ)|∗)4
≥ 0. (3.15)
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But if we write explicitly

θxj
= [f ′(θ)]−1ϕxj

, θxixj
= [f ′(θ)]−1ϕxixj

− [f ′(θ)]−3f ′′(θ)ϕxi
ϕxj

,

from (3.14) we get
|∇ϕ(ξ)|∗ ≥ f ′(θ(ξ))3∞ (3.16)

or
|∇ϕ(ξ)|∗ − 3∞ ≥ [f ′(θ(ξ)) − 1]3∞ > 0. (3.17)

With some calculus we obtain

D2ϕ = f ′(θ)D2θ + f ′′(θ)∇θ ⊗ ∇θ

so that (becauseJ is homogeneous of degree one)

−Q∞ϕ = 〈D2ϕJ (∇ϕ), J (∇ϕ)〉 = −f ′(θ)3Q∞θ − f ′′(θ)f ′(θ)2(|∇θ |
∗)4.

Together with (3.15) this implies

−Q∞ϕ(ξ) − (|∇ϕ(ξ)|∗)4
≥ (f ′3

− f ′′f ′2
− f ′4)(θ(ξ))(|∇θ(ξ)|∗)4

whose right hand side is positive because of (d). Thus we have shown

− Q∞ϕ(ξ) − (|∇ϕ(ξ)|∗)2
≥ f ′4

(
1

f ′
−

f ′′

f ′2
− 1

)
(v(ξ))34

∞. (3.18)

From (a), (3.17) and (3.18) we conclude

min{|∇ϕ(ξ)|∗ − 3∞, −Q∞ϕ(ξ) − (|∇ϕ(ξ)|∗)4
} ≥ ρ(ξ) > 0, (3.19)

where we have defined

ρ(x):= min

{
[f ′(v(x))−1]3∞,

(
1

f ′
−

f ′′

f ′2
− 1

)
(v(x))34

∞

}
.

Inequality (3.19) and properties (a) and (c) tell us thatw is a strict supersolution.
Now the contradiction follows easily by standard techniques for viscosity solutions

(see [10]). Let us sketch the conclusion. We consider a maximum point(xt , yt ) of the
function

u(x) − w(y) −
t

2
|x − y|

2

in � × �. Up to a subsequence, we have

xt → ξ and yt → ξ,

whereξ ∈ � is a maximum point ofu − w in �. But inequality (3.12) holds, soξ lies
in the interior. We apply the max principle for semicontinuous functions (see Chapter 3
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in [10] for this result and for the definition of the semijetsJ 2,+(u(xt )) andJ 2,−(w(xt ))),
which ensures the existence of real symmetric matricesXt , Yt such that

(t (xt − yt ); Xt ) ∈ J 2,+(u(xt )), (t (xt − yt ); Yt ) ∈ J 2,−(w(xt )),

(Xtν, ν) − (Ytµ, µ) ≤ 3t |ν − µ|
2.

Now u is a subsolution ofG∞ = 0, so

G∞(t (xt − yt ); Xt ) ≤ 0. (3.20)

Sincew is a strict supersolution ofG∞ = 0, from (3.19) we get

G∞(t (xt − yt ); Yt ) ≥ ρ(xt ) > 0. (3.21)

Now (3.20) and (3.21) give after some calculationρ(xt ) ≤ 0, which is obviously a con-
tradiction. This completes the proof.

Remark 3.4. Theorem 3.3 also holds when one of the functions takes the value−∞ on
the whole boundary.

It is well known that for any 1< p < ∞, the eigenvalueλp can be characterized by
the property thatλ = λp is the only real number for which the equation

− div((|∇up|
∗)p−2J (∇up)) = λ|up|

p−2up

has a continuous positive solution with zero boundary value. We will show next that3∞

has an analogous characterization.

Theorem 3.5. Let � be any bounded domain and suppose that the norm| · | is of class
C2(Rn

\ {0}). If u is a continuous positive viscosity solution in� of

min{|∇u|
∗

− 3u, −Q∞u} = 0

with zero boundary value, then3 = 3∞.

To prove this, we need the following gradient estimate. For the standard Euclidean norm
this was derived in [21]. Using a perturbation argument due to Crandall, we show that the
general case follows from the results in [2].

Theorem 3.6. Suppose that the norm| · | is of classC2(Rn
\ {0}). Letu be a nonnegative

viscosity supersolution of−Q∞u = 0 in �, and letδ(x) = dist(x, ∂�) for x ∈ �. Then

|∇u(x)|∗ ≤
u(x)

δ(x)
for a.e.x ∈ �. (3.22)

Proof. It suffices to verify thatu enjoys the followingcomparison with cones from below
property in� (see [2]):

WheneverV ⊂⊂ � is an open set andC(x) = a|x −z|+b with a, b ∈ R, z /∈ V

is a cone function such thatu ≥ C on ∂V , thenu ≥ C in V .
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Indeed, for functions that enjoy comparison with cones from below, (3.22) is Remark 2.17
in [2].

To show that viscosity supersolutions of−Q∞u = 0 enjoy comparison with cones
from below, we argue as in the proof of Theorem 4.13 in [2]. Supposeu does not enjoy
comparison with cones from below in�. Then there is an open setV ⊂⊂ � and a cone
functionC(x) = a|x − z| + b with a, b ∈ R andz /∈ V such thatu = C on ∂V and
u < C in V . If for eachε > 0 we can find a perturbationP ∈ C2(V ) such that|P | ≤ ε

in V and

−Q∞(C + P) ≤ −δ < 0 in V, (3.23)

we will be done. Indeed, forε > 0 small enough, the functionu− (C +P) has an interior
local minimum pointx0 ∈ V . Sinceu is a viscosity supersolution andC + P ∈ C2(V ),
this implies

−Q∞(C + P)(x0) ≥ 0,

contradicting (3.23).
Since we are assuming that the norm|·| is of classC2(Rn

\{0}), suitable perturbations
can be explicitly constructed using this norm. Suppose, without loss of generality, that
z = 0 and putP = γ |x|

2 and γ > 0. ThenC(x) + P(x) = g(|x|) whereg(s) =

as + γ s2
+ b. A direct computation shows that

−Q∞g(|x|) = −g′(|x|)3
〈D2

|x|J (∇|x|), J (∇|x|)〉 − g′′(|x|)g′(|x|)2
〈∇|x|, J (∇|x|)〉2.

Since〈∇|x|, x〉 = |x| by homogeneity andJ (∇|x|) = x/|x| for x 6= 0, this reduces to

−Q∞g(|x|) = −(g′)3
|x|

−2
〈D2

|x|x, x〉 − g′′(g′)2.

Next observe that by the linearity ofh(t) = |tx| we have 0= h′′(1) = 〈D2
|x|x, x〉, so

that

−Q∞(C + P)(x) = −g′′(|x|)g′(|x|)2
= −2γ (2γ |x| + a)2.

This is strictly negative inV if either a ≥ 0, ora < 0 andγ > 0 is sufficiently small. If
γ is sufficiently small we also attain|P | ≤ ε in V .

For the proof of Theorem 3.5, we will also need the following auxiliary comparison
result.

Lemma 3.7. Suppose that the norm| · | is of classC2(Rn
\ {0}). If u is a continuous

positive viscosity solution of

min{|∇u|
∗

− 3u, −Q∞u} = 0 (3.24)

in a bounded domain� with zero boundary values, normalized so thatsupu = 1/3, then

u(x) ≤ dist(x, ∂�) for everyx ∈ �.
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Proof. Fix z ∈ ∂� and fora > 1, γ > 0 let v(x) = a|x − z| − γ |x − z|2. Analogously
to the proof of Theorem 3.6 above, we obtain−Q∞v(x) > 0 provided thatγ > 0 is
sufficiently small. Moreover,

|∇v(x)|∗ = (a − 2γ |x − z|)|∇|x − z| |∗ = a − 2γ |x − z| > 1

if γ is small enough. Thus we have

min{|∇v|
∗

− 1, −Q∞v} > 0. (3.25)

Next notice that due to the assumption supu = 1/3, (3.24) implies

min{|∇u|
∗

− 1, −Q∞u} ≤ 0 in the viscosity sense. (3.26)

Sincev ∈ C2 andv ≥ u = 0 on∂� (if γ is small enough), it follows thatv ≥ u in �.
Indeed, otherwiseu − v would have an interior local maximum point at whichv would
be a test function foru from above, contradicting (3.25) and (3.26).

We have thus shown thatu(x) ≤ a|x − z| − γ |x − z|2 for everyz ∈ ∂�, a > 1 and
γ > 0 sufficiently small. Hence

u(x) ≤ inf
z∈∂�

|x − z| = dist(x, ∂�),

as desired.

Remark 3.8. Lemma 3.7 implies that ifu is any positive viscosity solution to the eigen-
value equationF∞(u, ∇u, D2u) = 0 with zero boundary data, it cannot be differen-
tiable at its maximum points. To see this, normalizeu so that supu = 1/3. Then if
u(x0) = supx∈� u(x), it follows thatδ(x0) = supx∈� δ(x). Sinceδ is not differentiable at
x0 andu ≤ δ, u(x0) = δ(x0), it is now clear thatu is not differentiable atx0.

Proof of Theorem 3.5.Notice first that if3 ≤ 0, then the eigenvalue equation above
reduces to the equation−Q∞u = 0, whose only solution with zero boundary values is
u ≡ 0 (see [2] or [3]).

Normalizeu so that supu = 1/3. Then by Lemma 3.7 we obtainu(x) ≤ δ(x) :=
dist(x, ∂�) for all x ∈�, which together with the gradient estimate (3.22) yields|∇u(x)|∗

≤ 1 for a.e.x ∈ �. Consequently,

‖|∇u|
∗
‖∞

‖u‖∞

≤
1

‖u‖∞

= 3.

Because

3∞ = inf

{
‖|∇w|

∗
‖∞

‖w‖∞

: w ∈ W
1,∞
0 (�) \ {0}

}
by (3.1) and (3.2), we must have3∞ ≤ 3.

To prove the reverse inequality, we approximatev = logu by its semiconcave inf-
convolutions

vε(x) = inf
y∈�σ

{
v(y) +

1

2ε
|x − y|

2
}
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for ε > 0 in the set�σ = {x ∈ � : δ(x) > σ }. Since|∇v|
∗

≥ 3 in the viscosity sense
by the assumptions andvε is twice differentiable a.e., it follows from the properties of
the inf-convolution that|∇vε(x)|∗ ≥ 3 for a.e.x in a smaller set�σ,ε = {x ∈ �σ :
dist(x, ∂�σ )>Cε}. Moreover, the functionevε

is a positive supersolution of−Q∞w=0
in �σ,ε. Thus using the gradient estimate (3.22) we obtain

3 ≤ |∇vε(x)|∗ =
1

evε |∇(evε(x))|∗ ≤
1

dist(x, ∂�σ,ε)

for a.e.x ∈ �σ,ε, and so, lettingε → 0 andσ → 0 gives

3 ≤
1

supx∈� δ(x)
= 3∞.

This completes the proof.

4. Example and concluding remarks

If the norm under consideration forx ∈ � is the usual̀ q norm, i.e.|x| = (
∑n

i=1 |xi |
q)1/q

with q ∈ (1, ∞), the duality map according to (2.4) is easily calculated as

Ji(y) = (|y|q ′)2−q ′

|yi |
q ′

−2yi,

with q ′
= q/(q − 1) being the conjugate exponent. Notice that this differs from theJ

in [2, Example 5.2]. Thep-Laplace operator in this Finsler metric is explicitly given by
(see [6])

Qpu =

n∑
i=1

∂

∂xi

(
|∇u|

p−q ′

q ′

∣∣∣∣ ∂u

∂xi

∣∣∣∣q ′
−2

∂u

∂xi

)
.

For p > 2 this definition is meaningful and forq = 2 (= q ′) it recovers the well known
p-Laplace operator. The operatorQ2 is formally given by

Q2u =

n∑
i=1

∂

∂xi

([
|uxi

|

|∇u|q ′

]q ′
−2

∂u

∂xi

)
.

However,Q2u does not seem to be well defined at critical points ofu. The∞-Laplace
operator in the same Finsler metric is explicitly given by

Q∞u = |∇u|
4−2q ′

q ′

n∑
i,j=1

(
∂2u

∂xixj

∣∣∣∣ ∂u

∂xi

∣∣∣∣q ′
−2

∂u

∂xi

∣∣∣∣ ∂u

∂xj

∣∣∣∣q ′
−2

∂u

∂xj

)
and forq = 2 this expression reduces to the customary

1∞u =

n∑
i,j=1

∂2u

∂xixj

∂u

∂xi

∂u

∂xj

.
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Remark 4.1. It should be remarked that the distance function minimizes the Rayleigh
quotientR∞, but thatδ(x) is in general not a viscosity solution of the limiting eigenvalue
problem, unless� is a “ball” in the Finsler metric (see [18], [19], [5]).

Remark 4.2. If � is a “ball” in Rn andp = n, then all the level sets of solutions to (2.2),

−Qnu = λn|u|
n−2u,

are similar “balls”(see [6]).

Remark 4.3. The smoothness assumption made on the dual spheres in our paper is vio-
lated if the underlying norm is thè1 or `∞ norm. However, the pde−Qp = 1 and its
limit as p → ∞ were studied even in this case in [15]; see also [20], [7], [17] and [16]
for the case of the Euclidean norm and for variants of this problem.

Remark 4.4. Clearly the eigenvalueλp depends on�. There is an analogue of the Faber–
Krahn inequality which states that among all domains of given volume,λp(�) becomes
minimal if � is a “ball” in the Finsler metric. This result is formulated in [6], but it is
based on a rearrangement inequality from [1].
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