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Abstract. The paper analyzes the influence on the meaning ofnatural growth in the gradientof a
perturbation by a Hardy potential in some elliptic equations. Indeed, in the case of the Laplacian
the natural problem becomes

−1u−3N
u

|x|2
=

∣∣∣∣∇u+
N − 2

2

u

|x|2
x

∣∣∣∣2|x|(N−2)/2
+ λf (x) in �, u = 0 on∂�,

3N = ((N − 2)/2)2. This problem is a particular case of problem (2). Notice that(N − 2)/2 is
optimal as coefficient and exponent on the right hand side.

Keywords. Elliptic equations, Hardy potential, quadratic growth in the gradient, optimal summa-
bility

1. Introduction and preliminaries

The problem
−1u = |∇u|2 + f (x), u ∈ W

1,2
0 (�), (1)

where� is a bounded domain inRN , appears in applications as the stationary form of
several mathematical models. Indeed, significant examples are the viscosity approxima-
tion of Hamilton–Jacobi type equations from stochastic control theory (see [15]), the
physical theory of growth and roughening of surfaces, where it is known as the Kardar–
Parisi–Zhang equation (see [14]), and some models of propagation of flames (see [5]). It
is worthwhile to note that the classical change of variablev = eu−1 connects problem (1)
with the study of positive solutions to Schrödinger equations. We refer to the recent paper
[16] for an updated list of references about this interesting problem but collateral with the
purpose of this work. Equations of the form (1) have been widely studied in the litera-
ture: see for example [1], [6], [7], [12] and the references therein. In [1] a deep relation
between problem (1) and some linear elliptic problem with measure data is clarified and a
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complete classification of the solutions in correspondence to the family of singular mea-
sures concentrated on a set of zero capacity is obtained. The presence of the critical zero
order termu|x|−2 motivates the nonexistence result for−1u− cu/|x|2 = |∇u|2 + f (x),
c > 0, u ∈ W

1,2
0 (�) (as is easy to check by using some nonexistence results in [2]).

In this paper we will analyze the meaning of thenatural growth in the gradientunder
the presence of a critical potential. Precisely we will study the following elliptic problem:

−div(|x|−2γ
∇u)−3N,γ

u

|x|2(γ+1)
=

|∇u+
N−2(γ+1)

2
u

|x|2
x|2

|x|2γ−β
+ λf (x) in �,

u = 0 on∂�,

(2)

where� is a bounded open set inRN , N ≥ 3, such that 0∈ �, γ < (N − 2)/2, λ is
a positive constant,f (x) is a positive measurable function,3N,γ = (N − 2(γ + 1))2/4
andβ ≥ (N − 2(γ + 1))/2 (see Theorem 3.1 below to motivate the condition onβ). We
point out that if3N,γ is replaced by 0< c < 3N,γ , similar results could be obtained;
for brevity we only handle the critical case. The termu(x)|x|−2(γ+1) is related to the
following weighted Hardy–Sobolev inequality (see for instance [2]):

3N,γ

∫
�

u2(x)|x|−2(γ+1) dx ≤

∫
�

|∇u|2|x|−2γ dx for all u ∈ C∞

0 (�) (3)

where the optimal constant,3N,γ , is not achieved. It is worth pointing out that the right
hand side in (2) is suggested by the improved inequalities in [3] and [17].

The paper is organized as follows. We start by studying problems of the form{
LN,γ (u) ≡ −div(|x|−2γ

∇u)−3N,γ u(x)|x|
−2(γ+1)

= g in �,
u = 0 on∂�,

(4)

whereg is an integrable function with respect to some weight, which will be precisely
determined. The presence of the termu(x)|x|−2(γ+1) implies that there is no existence
result forg ∈ L1(�), or more generally for a bounded Radon measureµ as a second
member in (4). In this direction we will obtain sufficient conditions to have existence of a
solution in a weaker sense. Such conditions in the case of an integrable function are also
necessary. In Section 3 we study the elliptic problem withcritical growth in the gradient
understood as the right hand side in problem (2). In Subsection 3.1 we give a general
nonexistence result according to the weight, which motivates the hypotheses onβ and the
structure of the right hand side. Moreover, we prove that(N − 2(γ + 1))/2 is optimal as
coefficient and as exponent on the right hand side of problem (2). Subsection 3.2 deals
with a semilinear problem connected to the main equation, furthermore, we obtain exis-
tence and nonexistence results withoptimalregularity. The regularity of general solutions
to (2) is analyzed in Subsection 3.3. This regularity result is the starting point to connect
the study of nonuniqueness in problem (2) with some linear problems with measure data,
and to obtain multiplicity of solutions. Notice that the results are new even in the case
γ = 0, corresponding to the Laplacian and the classical Hardy potential. We point out
that the results require the use of anatural energy spaceHγ which is defined below.
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1.1. Functional setting

We define the spaceHγ as the completion ofC∞

0 (�) endowed with the norm

‖φ‖
2
Hγ

=

∫
�

|∇φ|
2
|x|−2γ dx −3N,2,γ

∫
�

φ2(x)|x|−2(γ+1) dx.

It is not difficult to see thatHγ is a Hilbert space and that the norm ofHγ can be written
in the form

‖φ‖
2
Hγ

=

∫
�

|x|−2γ
∣∣∣∣∇φ +

N − 2(γ + 1)

2
φ(x)|x|−2x

∣∣∣∣2 dx.
The spaceHγ appears in a natural way as a consequence of the improved Hardy–Sobolev
inequalities (see [3] and [17] and the references therein). It is the natural energy space
to study problem (2) and, moreover, motivates the right hand side in (4). We will use
the notationLqθ (�) ≡ Lq(|x|−θ dx,�). We also define the weighted Sobolev space

D1,2
0,(N−2)/2(�) as the completion ofC∞

0 (�) endowed with the norm

‖φ‖
2
D1,2

0,(N−2)/2
=

∫
�

|∇φ|
2
|x|−(N−2) dx.

ThenD1,2
0,(N−2)/2(�) is also a Hilbert space. As in [10], foru ∈ Hγ , definev(x) =

|x|(N−2(γ+1))/2 u. It is easy to check thatv ∈ D1,2
0,(N−2)/2, and conversely, ifv∈D1,2

0,(N−2)/2

thenu(x) = |x|−(N−2(γ+1))/2 v ∈ Hγ . By a direct computation we are able to prove that if
u ∈ Hγ , thenTk(u) ≡ u−sign(u)(|u|−k)+ ∈ Hγ for all k > 0 andw = |u|/(1 + |u|) ∈

Hγ . In this framework we have the following concept of solution: we say thatu ∈ Hγ is
aweak solutionto problem (2) if

|x|β−2γ
∣∣∣∣∇u+ α

u

|x|2
x

∣∣∣∣2 + f ∈ L1(�)

and the equation holds in distributional sense.

2. Right hand side belonging toL1 or to the space of Radon measures

In this section we consider the problem{
LN,γ (u) = ν ≡ g(x)+ ν0 in �,
u = 0 on∂�,

(5)

where� is a bounded open set inRN , N ≥ 3, 0 ∈ �, g ∈ L1(�) andν0 is a singular
bounded Radon measure (singular with respect to the Lebesgue measure).

Given a Radon measureµ on� and a Borel setE ⊂ �, we say thatµ is concentrated
onE if for every Borel setB, µ(B) = µ(B ∩E). If µ is concentrated onA we will write
con(µ) = A. We begin with the following definition.
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Definition 2.1. We say thatu is aweak solutionof problem(5) if u, u|x|−2(γ+1)
∈ L1(�)

and for allφ ∈ C2(�) such thatφ = 0 on ∂�,∫
�

u(−div(|x|−2γ
∇φ)−3N,γφ(x)|x|

−2(γ+1)) dx = 〈ν, φ〉. (6)

Due to the presence of singular or degenerate coefficients and the termu(x)|x|−2(γ+1) we
need to specify conditions ong andν0 to construct a weak solution. This is the result of
the next theorem.

Theorem 2.2. Assume thatν = g(x)+ ν0 is a bounded Radon measure such that:

1. con(ν0) ∩ Ba(0) = ∅ whereBa(0) ⊂ �,
2. |x|−(N−2(γ+1))/2g ∈ L1(�).

Then problem(5) has a weak solutionu such that

(i) Tk(u) ∈ D1,2
0,γ (�),

(ii) u ∈ Mp1(�, |x|−2γ dx), p1 = (N − 2γ )/(N − 2(γ + 1)) if γ < 0 and p1 =

N/(N−2) if γ ≥0 (Mp1(�, |x|−2γ dx) is the corresponding Marcinkiewicz space).
(iii) |∇u| ∈ Lq(�, |x|−2γ dx) for all q < (N − 2γ )/(N − 2γ − 1) if γ < 0, q <

N/(N − 1) if γ ≥ 0.

Moreover, ifν is a positive measure, thenu is positive and in this case problem(5) has a
minimal weak solution.

Proof. By linearity, we can assume that the measureν is positive. Consider a sequence
{kn} of bounded functions such thatkn → ν in the sense of measures. Then by the
hypothesis onν we can assume thatkn = gn + αn wheregn, αn ∈ L∞(�), gn ↑ g in
L1(�) and |x|−(N−2(γ+1))/2gn → |x|−(N−2(γ+1))/2g in L1(�), αn ⇀ ν0 in the sense
of measures and con(αn) ⊂ �\Ba/2(0). Hence|x|−(N−2(γ+1))/2ν is well defined and
|x|−(N−2(γ+1))/2kn → |x|−(N−2(γ+1))/2ν in the sense of measures. Letvn ∈ Hγ be the
minimal solution to the problem

LN,γ (vn) = kn, vn|∂� = 0, (7)

and letψ0 be the unique energy solution to the problem

LN,γ (ψ0) = |x|−2(γ+1), ψ0|∂� = 0. (8)

It is easy to check thatψ0(x) ≤ c|x|−(N−2(γ+1))/2. Usingψ0 as a test function in (7) and
taking into account the hypothesis onν we obtain∫

�

vn(x)|x|
−2(γ+1)

=

∫
�

φ0kn ≤ C(φ0)

∫
�

|x|−(N−2(γ+1))/2 dν ≤ C1.

Thusvn(x)|x|−2(γ+1) is uniformly bounded inL1(�). By takingTk(vn) as a test function
in (7) it follows that

1

k

∫
�

|x|−2γ
|∇Tk(vn)|

2 dx ≤ C for all k > 0. (9)
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Hence, there existswk ∈ D1,2
0,γ (�) such thatTk(vn) ⇀ wk weakly in D1,2

0,γ (�) and

strongly inLqqγ (�) for all q < 2∗. Using the same argument as in [2] we conclude that
vn is bounded in the Marcinkiewicz spaceMq1(�, dµγ ) with dµγ ≡ |x|−2γ dx, q1 =

2∗
γ /2, where, as in [2], 2∗γ =2N/(N − 2) if γ ≥0 and 2∗γ =2(N − 2γ )/(N − 2(γ + 1))

if γ < 0. Indeed, since the norm ofvn inMq1(�, dµγ ) is given by

‖vn‖Mq1(�,dµγ ) = inf{C > 0 : µγ {|vn| > t} ≤ ct−q1},

by using estimate (9) and the Sobolev inequality (2.7) of [2] we get

µγ {|vn| > k} = µγ {|Tk(vn)| = k} ≤

∫
�

|Tk(vn)|
2∗
γ

k2∗
γ

|x|−2γ dx

≤ C(�)
1

k2∗
γ

( ∫
�

|∇Tk(vn)|
2
|x|−2γ dx

)2/2∗
γ

.

Then we obtainµ{x ∈ � : |vn|>k}≤CM2∗
γ /2k−(2∗

γ−2∗
γ /2). Hence‖vn‖Mq1(�,dµγ )≤C

for all n. SinceLq1
γ (�) ⊂ Mq1(�, dµγ ) ⊂ L

q1−α
γ (�) for all α > 0 small, we conclude

that {vn} is uniformly bounded inLq1−α
γ (�). In particular we get the existence ofu ∈

L
q1−α
γ (�) such thatvn ⇀ u weakly in Lq1−α

γ (�) and vn → u a.e. in�. Using the

uniqueness of the limit we infer thatwk = Tk(u) and thenTk(u) ∈ D1,2
0,γ (�) for all k > 0.

By Vitali’s theorem we find thatvn(x)|x|−2(γ+1)
→ u(x)|x|−2(γ+1) in L1(�). Hence

vn(x)|x|
−2(γ+1)

+ kn → u(x)|x|−2(γ+1)
+ ν weakly in the sense of measures and then

we can prove easily thatu is a weak solution to (5). Ifν is a positive measure, then we
can choosekn ≥ 0, thusvn ≥ 0.

The existence of a minimal solution follows by an approximation argument. Indeed,
we take a sequence{gn} of bounded functions such thatgn ↑ g a.e. For fixedn we define
the sequence{vn,k} as follows. Letvn,1 be the solution of

−div(|x|−2γ
∇vn,1) = gn + ν0, vn,1|∂� = 0,

and by iteration we definevn,k as the solution to

−div(|x|−2γ
∇vn,k) = 3N,γ vn,k−1|x|

−2(γ+1)
+ gn + ν0, vn,k |∂� = 0.

Then, by the comparison principle for renormalized solutions, we getvn,k ≤ u for all
(n, k), vn,k ≤ vn,k+1 andvn,k ≤ vn+1,k. Hencevn,k ↑ vn which is a solution to

−div(|x|−2γ
∇vn) = 3N,γ vn|x|

−2(γ+1)
+ gn + ν0, vn|∂� = 0,

with vn ≤ u. Notice thatvn ≤ vn+1. Therefore{vn} converges inL1
γ (�) to a positive

functionw. Sincevn|x|−2(γ+1)
≤ u|x|−2(γ+1), we havew|x|−2(γ+1)

∈ L1(�). Thus we
conclude easily thatw is the weak minimal solution to problem (5). Finally, by (9) and
using the same ideas as in [2] (see also [4]), we conclude thatu satisfies the equation in
the renormalized sense (see [11]). ut

In the case whereν0 = 0 the condition ong is also necessary. This is the contents of the
following result.



162 B. Abdellaoui, I. Peral Alonso

Theorem 2.3. Given an integrable functiong, problem(5) has a weak solution if and
only if |x|−(N−2(γ+1))/2g ∈ L1(�).

Proof. The fact that the condition is sufficient is a particular case of Theorem 2.2. We
prove that the condition is necessary. Without loss of generality we can assume thatg ≥ 0.
If problem (5) has a weak solution, taking it as a supersolution and using an approximation
argument, we see that (5) has a minimal weak solutionw. Letφ0 ∈ Hγ be the solution to

LN,γ (φ0) = 1, φ0|∂� = 0. (10)

One can check thatφ0(x) w c|x|−(N−2(γ+1))/2 in a neighborhood ofx0 = 0. Then by
takingφ0 as a test function in problem (7) withν0 = 0, and using the fact thatvn ↑ w,
we conclude that

C1 +

∫
�

w dx =

∫
�

gφ0 dx ≥ C2

∫
�

g|x|−(N−2(γ+1))/2 dx

by the monotone convergence theorem. ut

Remarks 2.4. (A) Notice that the weak solutionu is obtained as a limit of approxima-
tions (S.O.L.A.). Therefore, one can check that such a solution satisfies the equation in
the renormalized sense (see [11]). Moreover ifν0 ∈ L1(�), thenu is an entropy solution
in the sense of [4] (see also Theorem 4.2 in [2]).
(B) In general ifu is a weak positive supersolution ofLN,γ (u) ≥ 0, there exists a positive
constantc such thatu(x) ≥ c|x|−(N−2(γ+1))/2 as|x| → 0.
(C) Uniqueness for problem (5) in the framework of Definition 2.1 does not hold. For
instance if� = B1(0) is the unit ball, thenu0(x) = −|x|−(N−2(γ+1))/2 log(|x|) is a weak
solution to problemLN,γ (u0) = 0, u0|∂� = 0, and hence ifu is a weak solution to (5),
thenu+ u0 is also a solution.
(D) A weaker sense of solution could be considered (see [9]).

3. Problem with critical growth in the gradient

In this section we deal with the optimality of the exponent and the coefficient of the right
hand side of problem (2). Consider the problemLN,γ (u) = |x|β−2γ

∣∣∣∣∇u+ α
u

|x|2
x

∣∣∣∣2 + λf (x), u ≥ 0 in�,

u = 0 on∂�,
(11)

where� ⊂ RN is a bounded domain,N ≥ 3, 0∈ �, α ∈ R, β, λ > 0 andf is a positive
function with summability that we will specify below.
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3.1. Preliminary results: necessary conditions onα andβ

If (11) has a positive solutionu, in particular it means that

g ≡ |x|β−2γ
|∇u+ αu|x|−2x|2 + λf (x) ∈ L1(�),

and using the result of Theorem 2.3 we obtain∫
�

|x|β−2γ
|∇u+αu|x|−2x|2|x|−(N−2(γ+1))/2 dx < ∞,

∫
�

f

|x|(N−2(γ+1))/2
dx < ∞.

Our first nonexistence result is the following; it allows us to select the admissible values
of β.

Theorem 3.1. Assumeβ < (N − 2(γ + 1))/2 or α 6= (N − 2(γ + 1))/2. If f 6= 0,
then problem(11)has no solution. Iff ≡ 0, then the unique solution isu ≡ 0.

Proof. Assume by contradiction thatu > 0 is a weak solution to (11). Sinceβ <

(N − 2(γ + 1))/2 andγ < (N − 2)/2, considerε > 0 such that(N − 2(γ + 1))/2 −

β > 2ε andγ + ε < (N − 2)/2. Thus we obtain∫
�

|x|β−2γ
|∇u+αu|x|−2x|2|x|−(N−2(γ+1))/2 dx≥C

∫
�

|x|−2(ε+γ )
|∇u+αu|x|−2x|2 dx.

By a direct computation,∫
�

|x|−2(ε+γ )
∣∣∣∣∇φ + α

φ

|x|2
x

∣∣∣∣2 dx =

(
N − 2(ε + γ + 1)

2
− α

)2 ∫
�

φ2

|x|2(ε+γ+1)
dx

+

∫
�

|x|−2(ε+γ )
|∇φ|

2 dx−

(
N − 2(ε + γ + 1)

2

)2 ∫
�

φ2

|x|2(ε+γ+1)
dx, ∀φ ∈ C∞

0 (�).

ConsiderR > 0 such that� ⊂ BR/2(0). Then, by the improved Hardy–Sobolev inequal-
ity of [17], there exists a constantC > 0 such that∫

�

∣∣∣∣∇φ + α
φ

|x|2
x

∣∣∣∣2|x|−2(ε+γ ) dx ≥

(
N − 2(ε + γ + 1)

2
− α

)2 ∫
�

φ2

|x|2(ε+γ+1)
dx

+C

∫
�

φ2

|x|2(ε+γ+1)

(
log

(
R

|x|

))−2

dx. (12)

A density argument gives the same inequality foru. According to (B) in Remarks 2.4,
u(x) ≥ c|x|−(N−2(γ+1))/2 as|x| → 0, which provides a contradiction with the fact that,
for all α, (12) implies ∫

�

u2

|x|2(ε+γ+1)

(
log

(
R

|x|

))−2

dx < ∞.

Henceβ = (N − 2(γ + 1))/2 is optimal.
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Finally, if β = (N − 2(γ + 1))/2 andα 6= (N − 2(γ + 1))/2, then (12) withε = 0
implies ∫

�

u2

|x|2(γ+1)
dx < ∞,

which contradicts the fact thatu(x) ≥ c|x|−(N−2(γ+1))/2 as |x| → 0. Hence the result
follows. ut

Theorem 3.1 motivates why in the following we study the problemLN,γ (u) = |x|−2γ

∣∣∣∣∇u+
N − 2(γ + 1)

2

u

|x|2
x

∣∣∣∣2|x|(N−2(γ+1))/2
+ λf (x) on�,

u = 0 on∂�,
(13)

whereλ is a positive constant andf (x) is a positive measurable function. Notice that
problem (13) corresponds to the critical valueβ = (N − 2(γ + 1))/2.

3.2. Existence and nonexistence

We setv(x) = |x|(N−2(γ+1))/2u(x) (see [10]); then problem (13) becomes{
−div(|x|−(N−2)

∇v) = |x|−(N−2)
|∇v|2 + λ|x|−(N−2(γ+1))/2f (x) in �,

v = 0 on∂�.
(14)

In problem (14) we perform the classical Hopf–Cole change of dependent function, i.e.
w = ev − 1. By a direct computationw solves the problem{

−div(|x|−(N−2)
∇w) = λ|x|−(N−2(γ+1))/2f (x)(w + 1) in �,

w = 0 on∂�.
(15)

It is well known that problem (15) has a unique solution if|x|−(N−2(γ+1))/2f (x) is in the
dual space ofD1,2

0,(N−2)/2(�) andλ is small enough. For instance iff |x|(N+2(γ−1))/2
∈

Lp(�), p > N/2, the right hand side has the required regularity. Then we get the follow-
ing result.

Theorem 3.2. Assumef |x|(N+2(γ−1))/2
∈ Lp(�) and p > N/2. Then forλ small

enough, there exists a unique weak solution to problem(13), u ∈ Hγ , such that

e|x|
(N−2(γ+1))/2u

− 1 ∈ D1,2
0,(N−2)/2(�).

We now give some existence and nonexistence results under some hypothesis onf and
the size ofλ. Assume thatf is a measurable, nonnegative function with the following
natural property (see [1] and [13]):

(A) ∃φ0 ∈ C∞

0 (�) such that
∫
�

|∇φ0|
2

|x|(N−2)
dx < λ

∫
�

f |x|−(N−2(γ+1))/2φ2
0 dx < ∞.

As a consequence we have the following nonexistence result.
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Theorem 3.3. If λ andf satisfy hypothesis(A) above, then problem(13)has no solution.

The proof is elementary as in [1] so we omit the details.
Let f be a nonnegative measurable function, and define

λ1(f ) = inf
φ∈C∞

0 (�)

∫
�

|∇φ|
2
|x|−(N−2) dx∫

�
f |x|−(N−2(γ+1))/2φ2 dx

≥ 0. (16)

We consider the following hypothesis:

(B) f ∈ L1(�, |x|−(N−2(γ+1))/2 dx) and λ1(f ) > 0.

Theorem 3.4. If (B) holds then problem(13) has no solution inHγ (�) for λ > λ1(f )

and has a unique solutionu ∈ Hγ (�) such thate|x|
(N−2(γ+1))/2u

− 1 ∈ D1,2
0,(N−2)/2(�) for

λ < λ1(f ).

Proof. If λ > λ1(f ), then by a density argument we can show that condition (A) holds for
someφ0 ∈ C∞

0 (�) and therefore the nonexistence is a consequence of Theorem 3.3. We
now prove the existence result. A direct computation shows that hypothesis(B) implies
thatf ∈ L1(�, |x|−(N−2(γ+1))/2 dx) and is in the dual space ofD1,2

0,(N−2)/2(�). Assume
thatλ < λ1(f ) and consider the following problem:{

−div(|x|−(N−2)
∇w) = λ|x|−(N−2(γ+1))/2f (x)(w + 1) in �,

w = 0 on∂�.
(17)

Since 0< λ < λ1(f ), the functional

J (v) =
1

2

∫
�

|∇w|
2
|x|−(N−2) dx −

λ

2

∫
�

f (x)w2
|x|−(N−2(γ+1))/2 dx

− λ

∫
�

f |x|−(N−2(γ+1))/2w dx

is well defined inD1,2
0,(N−2)/2(�) and it is easy to check thatJ is coercive and Fŕechet-

differentiable inD1,2
0,(N−2)/2(�). Therefore by the Ekeland variational principle, there ex-

ists a minimizing sequence{wk}k∈N ⊂ D1,2
0,(N−2)/2(�),wk ≥ 0, such that (i)wk ⇀ w

weakly inD1,2
0,(N−2)/2(�); (ii) J (wk)→ c= inf

φ∈D1,2
0,(N−2)/2(�)

J (φ) and (iii) J ′(wk)→ 0.

Thus the weak limit functionw ∈ D1,2
0,(N−2)/2(�), is the unique weak solution to prob-

lem (17). Moreover, one can prove that the convergence of the sequence is strong in
D1,2

0,(N−2)/2(�). By settingv = log(w + 1), we find thatv ∈ D1,2
0,(N−2)/2(�), e

v
− 1 ∈

D1,2
0,(N−2)/2(�) and

−div(|x|−(N−2)
∇v) = |x|−(N−2)

|∇v|2 + λ|x|−(N−2(γ+1))/2f (x).

Henceu(x) = |x|−(N−2(γ+1))/2v satisfiesu ∈ Hγ andu solves (13). ut
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3.3. Regularity and existence of weaker solutions: Relation to elliptic problems with
measure data

We begin by proving the following general regularity result.

Theorem 3.5. Assume thatv ∈ D1,2
0,(N−2)/2(�) is a solution of problem(14), where

f ∈ L1(�) satisfiesf (x) ≥ 0 a.e. in�. Then

eδ|v| − 1 ∈ D1,2
0,(N−2)/2(�) for everyδ < 1/2. (18)

Moreover, ifu solves(13), theneδ|x|
(N−2(γ+1))/2u

− 1 ∈ D1,2
0,(N−2)/2(�) for all δ < 1/2.

Proof. The assertion follows by usingeδ|v|/(1+ε|v|)
− 1 as a test function in (14) and by

letting ε → 0. (See [1] for the details in a simpler but similar setting.) ut

We define thecapacityof a subsetE of � with respect to the spaceD1,2
0,(N−2)/2(�) by

cap(E) = inf

{∫
�

|∇φ|
2
|x|−(N−2) dx

∣∣∣∣ φ ∈ D1,2
0,(N−2)/2(�) andφ ≥ 1 inE

}
.

Theorem 3.6. For a positive functionf ∈ L1(�, |x|−(N−2(γ+1))/2), let u ∈ Hγ (�) be

a solution to problem(13). Setw = e|x|
(N−2(γ+1))/2u

− 1. Then there exists a measureµs ,
concentrated on a set of zero capacity, such that{

−div(|x|−(N−2)
∇w) = λ|x|−(N−2(γ+1))/2f (x)(w + 1)+ µs in D′(�),

w = 0 on ∂�.
(19)

Moreover,µs is the following weak limit in the space of bounded Radon measures:

µs = lim
ε→0

|x|−(N−2)
|∇v|2ev/(1+εv)

(
1 −

1

(1 + εv)2

)
. (20)

Proof. Sinceλ does not play any role, we will takeλ = 1. As above we setv(x) =

|x|(N−2(γ+1))/2u(x). Thenv solves the problem{
−div(|x|−(N−2)

∇v) = |x|−(N−2)
|∇v|2 + |x|−(N−2(γ+1))/2f (x) in �,

v = 0 on∂�,
(21)

andv ∈ D1,2
0,(N−2)/2(�). Definingw = ev − 1, by Theorem 3.5 and Ḧolder’s inequality

we see thatw ∈ D1,q
0,N−2(�) for all q < N/(N − 1). Let ε > 0. If we useev/(1+εv)

− 1

∈ L∞(�) ∩D1,2
0,(N−2)/2(�) as a test function in (21), it follows that∫
�

|∇v|2

|x|N−2
dx =

∫
�

|∇v|2

|x|(N−2)
ev/(1+εv)

(
1 −

1

(1 + εv)2

)
dx

+

∫
�

f

|x|(N−2(γ+1))/2
(ev/(1+εv)

− 1) dx.
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Hence ∫
�

f |x|−(N−2(γ+1))/2(ev/(1+εv)
− 1) dx ≤

∫
�

|∇v|2|x|−(N−2) dx

and by the monotone convergence theorem we conclude that∫
�

f

|x|(N−2(γ+1))/2
(ev/(1+εv)

− 1) →

∫
�

f

|x|(N−2(γ+1))/2
w dx ≤

∫
�

|∇v|2

|x|N−2
dx < ∞.

(22)
Similarly, we obtain∫

�

|∇v|2|x|−(N−2)ev/(1+εv)

(
1 −

1

(1 + εv)2
dx

)
dx ≤

∫
�

|∇v|2|x|−(N−2) dx. (23)

Then, up to a subsequence,

|∇v|2|x|−(N−2)ev/(1+εv)

(
1 −

1

(1 + εv)2

)
⇀ µs

whereµs is a positive Radon measure. Notice thatµs is concentrated on the setA ≡

{x ∈ � : v(x) = ∞} in the sense that∫
v≤k

|∇v|2ev/(1+εv)

(
1 −

1

(1 + εv)2

)
|x|−(N−2) dx → 0 asε → 0 for all k > 0.

Sincev ∈ D1,2
0,(N−2)/2(�), we have cap(A) = 0.

Definewε(x) =
∫ v(x)

0 es/(1+εs)ds ∈ D1,2
0,(N−2)/2(�). Thenwε solves

−div(|x|−(N−2)
∇wε) = ev/(1+εv)

|∇v|2|x|−(N−2)
(

1 −
1

(1 + εv)2

)
+ f (x)|x|−(N−2(γ+1))/2ev/(1+εv)

in the sense of distributions. The last term converges inL1(�) by (22), while the remain-
ing one converges toµs . Sincevε → v in L1(�), it follows thatv satisfies equation (19)
in the sense of distributions. Thereforeµs is uniquely determined and the convergence in
(20) holds for the whole sequence. ut

Theorem 3.7. Assumef is a positive function such that hypothesis(B) holds. Letµ be
a positive Radon measure with bounded total variation such thatcon(µ) ⊂ �\Ba(0).
Then, for allλ < λ1(f ), the problem

−div(|x|−(N−2)
∇w) = λf (x)|x|−(N−2(γ+1))/2(w + 1)+ µ in D′(�),

w ∈ D1,q
0,N−2(�) for all q < N/(N − 1),

Tk(w) ∈ D1,2
0,(N−2)/2(�), log(1 + w) ∈ D1,2

0,(N−2)/2(�),

(24)

has a minimal weak positive solutionw.



168 B. Abdellaoui, I. Peral Alonso

The proof is a direct application of the existence Theorem 2.2. The fact that log(1+w) ∈

D1,2
0,(N−2)/2(�) follows by using a similar argument to the proof of Theorem 2.13 in [1].

A sufficient condition for(B) to hold is thatf |x|(N+2(γ−1))/2
∈ Lp(�), p > N/2.

As a consequence we obtain the next result.

Theorem 3.8. Letµs be a bounded positive measure which is concentrated on a compact
setE ⊂ �\Ba(0) of zero capacity, and letf satisfy(B). For λ < λ1(f ), we definew to
be the solution of the problem

−div(|x|−(N−2)
∇w) = λf (x)|x|−(N−2(γ+1))/2(w + 1)+ µ in D′(�),

w ∈ D1,q
0,N−2(�) for all q < N/(N − 1),

Tk(w) ∈ D1,2
0,(N−2)/2(�), log(1 + w) ∈ D1,2

0,(N−2)/2(�).

(25)

Setv = log(w + 1). Thenv satisfies−div(|x|−(N−2)
∇v) = |∇v|2|x|−(N−2)

+ λ
f (x)

|x|(N−2(γ+1))/2
in D′(�),

v ∈ D1,2
0,(N−2)/2(�).

(26)

Moreover,u(x) = |x|−(N−2(γ+1))/2v belongs toHγ and is a weak solution to(13).

Proof. The existence ofw and the fact thatv = log(w + 1) ∈ D1,2
0,(N−2)/2(�) are an

application of Theorem 3.7. In order to prove thatv satisfies (26), define a sequence{gn}

of positive bounded functions such that‖gn‖1 ≤ c andgn → µs in the sense of measures.
Letwn be the unique solution to{

−div(|x|−(N−2)
∇wn) = λTn(f |x|−(N−2(γ+1))/2(w + 1))+ gn(x) in �,

wn ∈ D1,2
0,(N−2)/2(�).

(27)

It is easy to check thatwn → w in D1,q
0,N−2(�) for all q < N/(N − 1) (see [2] and [4]

for details). We setvn = log(1 + wn). Then by a direct computation one obtains

−div(|x|−(N−2)
∇vn) =

|∇vn|
2

|x|N−2
+ λ

Tn(f (x)|x|
−(N−2(γ+1))/2(w + 1))

wn + 1
+

gn

wn + 1
(28)

in D′(�). Notice that the result follows if we prove that the right hand side of (28) con-
verges to|∇v|2|x|−(N−2)

+ λf |x|−(N−2(γ+1))/2 in D′(�). We have

Tn(f |x|−(N−2(γ+1))/2(w + 1))

wn + 1
→ f (x)|x|−(N−2(γ+1))/2 in L1(�).

We claim thatgn/(wn + 1)→0 inD′(�). To prove this, considerA⊂� with cap(A)=0
andµ concentrated onA. Then, by a direct computation, for allε > 0 there exists an open
setUε such thatA ⊂ Uε and cap(Uε) ≤ ε. Thus, for allε > 0 there existsφ ∈ C∞

0 (�)
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such thatφ ≥ 0,φ ≡ 1 inUε and
∫
�

|∇φ|
2
|x|−(N−2) dx ≤ 2ε. Using the Picone inequal-

ity as in [2], we get∫
�

|∇φ|
2
|x|−(N−2) dx ≥

∫
�

−div(|x|−(N−2)
∇(wn + 1))

wn + 1
φ2 dx ≥

∫
Uε

gn

wn + 1
dx.

Hence we conclude that∫
Uε

gn

wn + 1
dx ≤ 2ε for everyn.

Let φ ∈ C∞

0 (�). We prove that

lim
n→∞

∫
�

φ
gn

wn + 1
dx = 0.

Since ∫
�

φ
gn

wn + 1
dx =

∫
Uε

φ
gn

wn + 1
dx +

∫
�\Uε

φ
gn

wn + 1
dx

we have ∣∣∣∣∫
�

φ
gn

wn + 1
dx

∣∣∣∣ ≤ ‖φ‖∞

∫
Uε

gn

wn + 1
dx +

∫
�\Uε

|φ| gn dx

≤ 2ε‖φ‖∞ +

∫
�\Uε

|φ| gn dx.

As gn → µs in the sense of measures andµ is concentrated onA ⊂ Uε, we conclude that∫
�\Uε

|φ| gn dx → 0 asn → ∞ and the claim follows. To finish the proof, let us show

that|∇vn|2|x|−(N−2)
→ |∇v|2|x|−(N−2) strongly inL1(�), that is,

|∇wn|
2

(1 + wn)2
|x|−(N−2)

→
|∇w|

2

(1 + w)2
|x|−(N−2) strongly inL1(�).

Since the sequence converges a.e. in�, by Vitali’s theorem we only have to show that it is
equi-integrable. LetE ⊂ � be a measurable set. For everyδ ∈ (0,1) andk > 0, defining
En,k ≡ E ∩ {vn ≤ k}, we obtain∫
E

|∇wn|
2

(1 + wn)2

dx

|x|N−2
=

∫
En,k

|∇wn|
2

(1 + wn)2

dx

|x|N−2
+

∫
E\En,k

|∇wn|
2

(1 + wn)2

dx

|x|N−2

≤

∫
E

|∇Tk(wn)|
2 dx

|x|N−2
+

1

(1 + k)1−δ

∫
�

|∇wn|
2

(1 + wn)1+δ

dx

|x|N−2
.

The last integral is uniformly bounded with respect ton, therefore the corresponding term
can be made small by choosingk large enough. Moreover, for everyk > 0, Tk(wn) →

Tk(w) strongly inD1,2
0,(N−2)/2(�) (see [11]), so the integral

∫
E

|∇Tk(wn)|
2
|x|−(N−2) dx

is uniformly small if the measure ofE is small enough. The equi-integrability of the
sequence|∇vn|2|x|−(N−2) follows immediately. Hencev solves (26) and thenu ∈ Hγ
solves (13). ut



170 B. Abdellaoui, I. Peral Alonso

Acknowledgments.We are grateful to two anonymous referees for their comments about this final
version. The second author wishes to thank Professor Haı̈m Brezis for some useful suggestions
about this work.

References

[1] Abdellaoui, B., Dall’Aglio, A., Peral, I.: Some remarks on elliptic problems with criti-
cal growth on the gradient. J. Differential Equations222, 21–62 (2006) Zbl pre05013584
MR 2200746

[2] Abdellaoui, B., Peral, I.: On quasilinear elliptic equations related to some Caffarelli–Kohn–
Nirenberg inequalities. Comm. Pure Appl. Anal.2, 539–566 (2003) Zbl pre02052060
MR 2019067

[3] Abdellaoui, B., Colorado, E., Peral, I.: Some improved Caffarelli–Kohn–Nirenberg in-
equalities. Calc. Var. Partial Differential Equations23, 327–345 (2005) Zbl pre02246503
MR 2142067
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