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Abstract. The paper analyzes the influence on the meaningaafral growth in the gradienof a
perturbation by a Hardy potential in some elliptic equations. Indeed, in the case of the Laplacian
the natural problem becomes

o N—-2 u

2
—Au—Ay Vu+—"" x| xI¥ D24 fx)inQ, u=00ndQ,
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AN = ((N — 2)/2)2. This problem is a particular case of probldm (2). Notice {at- 2)/2 is
optimal as coefficient and exponent on the right hand side.

Keywords. Elliptic equations, Hardy potential, quadratic growth in the gradient, optimal summa-
bility

1. Introduction and preliminaries

The problem
—Au=|Vul?+ f(x), ue WyAQ), (1)

whereQ is a bounded domain iR", appears in applications as the stationary form of
several mathematical models. Indeed, significant examples are the viscosity approxima-
tion of Hamilton—Jacobi type equations from stochastic control theory [(see [15]), the
physical theory of growth and roughening of surfaces, where it is known as the Kardar—
Parisi-Zhang equation (see [14]), and some models of propagation of flames (see [5]). It
is worthwhile to note that the classical change of variabie ¢* — 1 connects probler)(1)

with the study of positive solutions to Sdtinger equations. We refer to the recent paper
[16] for an updated list of references about this interesting problem but collateral with the
purpose of this work. Equations of the forfj (1) have been widely studied in the litera-
ture: see for examplé][1],[6].[7]..[12] and the references thereiri.lIn [1] a deep relation
between problenf{1) and some linear elliptic problem with measure data is clarified and a
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complete classification of the solutions in correspondence to the family of singular mea-
sures concentrated on a set of zero capacity is obtained. The presence of the critical zero
order termu|x|~2 motivates the nonexistence result foAu — cu/|x|% = |Vu|? + f(x),
¢c>0,uc W&’Z(Q) (as is easy to check by using some nonexistence results in [2]).

In this paper we will analyze the meaning of thegtural growth in the gradientinder
the presence of a critical potential. Precisely we will study the following elliptic problem:

-2 1
P e
—div(|x|"% Vi) — Ay, D = WL +Af() INQ, ()

u=0 0nos,

whereQ is a bounded open set RV, N > 3, such thatOc Q,y < (N —2)/2, A is

a positive constantf (x) is a positive measurable functiony , = (N — 2(y + 1))2/4
andp > (N — 2(y + 1))/2 (see Theorein 3.1 below to motivate the conditiorgdriVe
point out that ifAy , is replaced by O< ¢ < Ay ,, Similar results could be obtained,;
for brevity we only handle the critical case. The temtx)|x|~2¥*D is related to the
following weighted Hardy—Sobolev inequality (see for instance [2]):

AN,),fQuz(x)|x|—2<V+l>dx5/§2|W|2|x|—2V dx forallueC(Q)  (3)

where the optimal constant,y ,,, is not achieved. It is worth pointing out that the right
hand side in[(R) is suggested by the improved inequaliti€s in [3][and [17].
The paper is organized as follows. We start by studying problems of the form

{LN,y(u) = —div(|x|72 Vu) — Ay ,u(x)|x| 20D = ¢ inQ, @)

u=0 0nog,

whereg is an integrable function with respect to some weight, which will be precisely
determined. The presence of the tem)|x|~2¥+D implies that there is no existence
result forg € LY(), or more generally for a bounded Radon meaguras a second
member in[(%). In this direction we will obtain sufficient conditions to have existence of a
solution in a weaker sense. Such conditions in the case of an integrable function are also
necessary. In Sectign 3 we study the elliptic problem wittical growth in the gradient
understood as the right hand side in probléin (2). In Subselctign 3.1 we give a general
nonexistence result according to the weight, which motivates the hypothegesmnaithe
structure of the right hand side. Moreover, we prove that- 2(y + 1))/2 is optimal as
coefficient and as exponent on the right hand side of prodlém (2). Subsecfion 3.2 deals
with a semilinear problem connected to the main equation, furthermore, we obtain exis-
tence and nonexistence results wafitimalregularity. The regularity of general solutions

to (2) is analyzed in Subsectipn B.3. This regularity result is the starting point to connect
the study of nonunigqueness in probldr (2) with some linear problems with measure data,
and to obtain multiplicity of solutions. Notice that the results are new even in the case
y = 0, corresponding to the Laplacian and the classical Hardy potential. We point out
that the results require the use afiaural energy spacél, which is defined below.
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1.1. Functional setting

We define the spack, as the completion af;°($2) endowed with the norm

”M@f=AKWﬂMJWW—AWzﬂL¢%Mﬂ4W“Wx

It is not difficult to see tha#, is a Hilbert space and that the norm&§ can be written

in the form
uwg=/uﬂy
Q

The spaced, appears in a natural way as a consequence of the improved Hardy—Sobolev
inequalities (see [3] and [17] and the references therein). It is the natural energy space
to study problem[{2) and, moreover, motivates the right hand sidg in (4). We will use
the notationL(Q) = L9(|x|~% dx, ). We also define the weighted Sobolev space

Dé’(ZN_Z)/Z(Q) as the completion af;°(£2) endowed with the norm

=/WV¢ﬁer*”¢n
Q

2

N -2y +1) i

-2
5 ¢ (x)|x|"x

Vo +

2
112 1
0,(N—2)/2

Then Dé:(szz)/z(Q) is also a Hilbert space. As i [10], for € H,, definev(x) =

x| (V20-+1)/2y, |tis easy to check thate Dy %y _,, ,, and conversely, il € Dggy
thenu(x) = |x|~V—20+D)/2y ¢ g, . By a direct computation we are able to prove that if
u € Hy,thenTy(u) = u —sign(u)(Ju| — k)4 € H, forallk > 0 andw = |u|/(1+ |u]) €
H,. In this framework we have the following concept of solution: we say thatH,, is
aweak solutiorto problem[(®) if

2

|x|P=2 + feLYQ)

u
Vu +a—2x
x|

and the equation holds in distributional sense.

2. Right hand side belonging toL! or to the space of Radon measures

In this section we consider the problem

Ln,ym)=v=gx)+v Ing, (5)
u=0 onaJ,

whereQ is a bounded open set®Y, N > 3,0¢ Q, g € L1(Q) andyvy is a singular
bounded Radon measure (singular with respect to the Lebesgue measure).

Given a Radon measureon 2 and a Borel seE' C 2, we say thajs is concentrated
on E if for every Borel setB, u(B) = u(B N E). If u is concentrated oA we will write
con(u) = A. We begin with the following definition.
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Definition 2.1. We say thai is aweak solutiorof problem(B) if u, u|x| 27+ e LY(Q)
and for all¢ € C%(2) such thatp = 0ondg,

/ u(=dV(x 2 Vo) — An., ¢ () x 20 HD) dx = (v, ). ©)
Q

Due to the presence of singular or degenerate coefficients and theerm| 2+ we
need to specify conditions gnandvg to construct a weak solution. This is the result of
the next theorem.

Theorem 2.2. Assume that = g(x) + vg is a bounded Radon measure such that:

1. conwg) N B,(0) = @ whereB,(0) C €,
2. |x|"W=2v+D)/2 ¢ L1(Q).

Then problen5) has a weak solution such that
(i) Ti) € Dy (<),
(i) u € MPYRQ, |x|7 dx), p = (N —2y)/(N =2y +1) if y < Oandpy =
N/(N—=2)if y >0 (MP1(Q, |x|~% dx) is the corresponding Marcinkiewicz space).
(i) |Vu| € LYU(Q,|x|"% dx) forall g < (N—=2y)/(N=2y -1 ify < 0,¢q <
N/(N -1 ify >0.

Moreover, ifv is a positive measure, thenis positive and in this case probleff) has a
minimal weak solution.

Proof. By linearity, we can assume that the measuig positive. Consider a sequence
{k,} of bounded functions such tha; — v in the sense of measures. Then by the
hypothesis on we can assume th&}, = g, + «, whereg,, @, € L*(Q), g, 1 g in
LY(Q) and|x|~V=20+D)12g s |x|-(N=20+D)/2¢ in LY(Q), a, — vp in the sense
of measures and c@m,) C Q\Bg/2(0). Hence|x|~V—20+1)/2), js well defined and
x|~ N=20+ D)2k, s x|~ N=20r+D)/2), in the sense of measures. Lgt e H, be the
minimal solution to the problem

EN,y(vn) = kn, UnjaQ = 0, (7
and letyg be the unique energy solution to the problem
LyyWo) = Ix|727*D, yopq =0. (8)

Itis easy to check thato(x) < c|x|~N~=2+D)/2_ Usingy as a test function if{7) and
taking into account the hypothesis onve obtain

f U () x| 720D = / dokn < C(¢o) / x|~ V=20 D2 gy < 4.
Q Q Q

Thusv, (x)|x|~27*D is uniformly bounded ir.1(€2). By taking7x (v,) as a test function
in (7 it follows that

1
%/ Ix|"% |V T (vy)|?dx < C forallk > 0. (9)
Q
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Hence, there exists; € Déﬁ(sz) such that7y(v,) — wi weakly in Dé:i(fz) and
strongly inLZy(Q) for all ¢ < 2*. Using the same argument aslin [2] we conclude that
v, is bounded in the Marcinkiewicz spage91 (2, du, ) with du, = Ix|7% dx, g1 =

25 /2, where, as in[2], 2=2N/(N —2) if y >0and 2 =2(N — 2y)/(N — 2(y + 1))

if y < 0. Indeed, since the norm of in M%(2, du, ) is given by

vnll mar@,dp,) = INF{C > 0wy {Jvn] > 1} < cr™},

by using estimatd {9) and the Sobolev inequality (2.7) bf [2] we get
Tx (vn % _
ol = k) = 1, (1T = k) = [ BRSO g2

1 5 ) 2/2;‘/
< c<sz>7(f 9 T (o) x| de) .
kr \Ja

Then we obtainu{x € Q@ : |v,| > k} < CM%/%k~ %272 Hence|lv || por(.d,) < C
for all n. SinceL?*(Q) ¢ M9(Q, dp,) c LI () for all « > 0 small, we conclude
that {v,} is uniformly bounded inL,",l_”‘(Q). In particular we get the existence ofe
LT7%(Q) such thatv, — u weakly in L{**(Q) andv, — u a.e. in. Using the
uniqueness of the limit we infer that, = T} («) and therl} (1) € Dé;ﬁ(@) forall k > 0.
By Vitali's theorem we find thab, (x)|x| 27D — u(x)|x|727+D in L1(Q). Hence
Un () x| 72D 4k, — u(x)|x] 72+ 4y weakly in the sense of measures and then
we can prove easily that is a weak solution td {5). If is a positive measure, then we
can choose, > 0, thusv, > 0.

The existence of a minimal solution follows by an approximation argument. Indeed,
we take a sequendg, } of bounded functions such thgt 1 ¢ a.e. For fixedi we define
the sequencév, } as follows. Letv, 1 be the solution of

—div(1x|"? Vv,1) = gn + V0. Vn1pg = 0.
and by iteration we defing, ; as the solution to
—div(|x| 7% Vo) = Ay oy i-1lx] 2V 4 gy 400, vpkjpq = 0.

Then, by the comparison principle for renormalized solutions, wevget< u for all
(n, k), vnk < Uy k+1 aNduy, k < vy414. HENCev, ¢ 1 v, Which is a solution to

—div(|x|7% V) = Anyoalx| 27 4 g, v, vpppq =0,

with v, < u. Notice thatv, < v,y1. Therefore{v,} converges inL)l,(Q) to a positive
functionw. Sincev, |x|2¥+D < y|x|=2+D we havew|x|2+D e L1(Q). Thus we
conclude easily thab is the weak minimal solution to problern| (5). Finally, Yy (9) and
using the same ideas as iin [2] (see algo [4]), we conclude:thatisfies the equation in
the renormalized sense (seel[11]). O

In the case wherep = 0 the condition ory is also necessary. This is the contents of the
following result.
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Theorem 2.3. Given an integrable functiog, problem(5) has a weak solution if and
only if |x|~N=20+1)/2¢ ¢ L1(Q).

Proof. The fact that the condition is sufficient is a particular case of Thegrem 2.2. We
prove that the condition is necessary. Without loss of generality we can assumesti@at

If problem [§) has a weak solution, taking it as a supersolution and using an approximation
argument, we see thaf (5) has a minimal weak solutiobet ¢o € H, be the solution to

Lny(@o) =1 ¢opo=0. (10)

One can check thagg(x) » c|x|~N=2¢+1)/2 jn a neighborhood ofy = 0. Then by
taking ¢ as a test function in problerf](7) witly = 0, and using the fact thaf, 1 w,
we conclude that

C1+ f wdx = / ghodx > C2 / gl |20 gy
Q Q Q

by the monotone convergence theorem. O

Remarks 2.4. (A) Notice that the weak solution is obtained as a limit of approxima-
tions (S.0.L.A.). Therefore, one can check that such a solution satisfies the equation in
the renormalized sense (seel[11]). Moreovepit L1(Q), thenu is an entropy solution

in the sense of|4] (see also Theorem 4.Zin [2]).

(B) In general ifu is a weak positive supersolution 8y , (1) > 0, there exists a positive
constant such that:(x) > c|x|~N—20+D)/2 g5|x| — 0.

(C) Uniqueness for problen](5) in the framework of Definit 2.1 does not hold. For
instance if2 = B1(0) is the unit ball, themo(x) = —|x|~ V=20 +1)/2|og(|x|) is a weak
solution to problenCy , (uo) = 0, uge = 0, and hence ifi is a weak solution td (5),
thenu + ug is also a solution.

(D) A weaker sense of solution could be considered (see [9]).

3. Problem with critical growth in the gradient

In this section we deal with the optimality of the exponent and the coefficient of the right
hand side of probleni[2). Consider the problem

2

L.y @) = |x|P~% +if(x), u=0 inQ, (11)

u=0 o0nos,

u
Vu+a——sx
|x|?

whereQ c R¥ is a bounded domaiy > 3,0e€ Q,a € R, 8, 2 > 0 andf is a positive
function with summability that we will specify below.



Problem with natural growth in the gradient 163

3.1. Preliminary results: necessary conditionscoand 8

If (LT) has a positive solution, in particular it means that
g = xIP7% | Vu + aulx|7%x)? + Af (x) € LX),

and using the result of Theor¢gm 2.3 we obtain

B2y —2.12) —(N=2(y+1))/2 f
/Q|x| |Vu+oulx|™x||x| dx < oo, L—|x|(N—Z(V+1))/2 dx < oo.

Our first nonexistence result is the following; it allows us to select the admissible values
of B.

Theorem 3.1. Assume8 < (N —2(y +1))/20ra # (N —=2(y +1)/2. If f £ 0O,
then problen({T1)) has no solution. Iff = O, then the unique solution is= 0.

Proof. Assume by contradiction that > 0 is a weak solution t (11). Singgé <
(N —2(y +1)/2andy < (N — 2)/2, consider > 0 such thatN — 2(y + 1))/2 —
B > 2¢ andy + ¢ < (N — 2)/2. Thus we obtain

/|x|ﬁ*2V|Vu+au|x|*2x|2|x|*<N*2<V+1>>/2dxzc/ x| "2 | Vut-au|x) " 2x|? dx.
Q Q

By a direct computation,
2 2 2
~2e+y) ¢ _(N-2ety+D _°
/S;bcl Vq)—i—ot'x'zx dx = < > a ==y dx

_ N-2¢+y+1)? ¢?
2(e+y) 2 5. 00
+/Q|x| IV$|? dx ( 5 ) /Q—|x|2<8+v+l> dx, V¢ € CF Q).

ConsiderR > 0 such that2 C Bg,2(0). Then, by the improved Hardy—Sobolev inequal-
ity of [17], there exists a constant > 0 such that

2 B 2 2
/ |72 gy > (N 26+y+1D a) / ¢
Q Q

2 |x |2(s+y+l)

¢? R\
+C/Q|x|2(€+7/+1) (Iog(m)) dx. (12)

A density argument gives the same inequality forAccording to (B) in Remarks 2.4,
u(x) > c|x|~V-2r+1)/2 35|x| — 0, which provides a contradiction with the fact that,

for all o, (13) implies
u? R -2
/g 27 <'°g<ﬁ>> oo

Henceg = (N — 2(y + 1))/2 is optimal.

Vo + aix
|x[2
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Finally, if 8 = (N — 2(y + 1))/2 anda # (N — 2(y + 1))/2, then[[IR) withe =0
implies

u2
/Q—|x|2(7’+1) dx < o0,

which contradicts the fact that(x) > c|x|~V—20+1)/2 a5|x| — 0. Hence the result

follows. o

Theorenj 3]l motivates why in the following we study the problem

2

N-2v+D u ) v-20+02 4 370y ong,

_ -2
L.y @) = |x|[7% IR

u=0 onog,

Vu + X

13

whereA is a positive constant angl(x) is a positive measurable function. Notice that
problem [(IB) corresponds to the critical vajgie= (N — 2(y + 1))/2.

3.2. Existence and nonexistence

We setv(x) = |x|V=20+D)/2y(x) (see[[10]); then probleni (13) becomes

{ —div(jx|"N=2Vy) = |x|" V=2 | V|2 + A|x| V202 £(x) inQ,

v=0 onJiQ. (14)

In problem [I4) we perform the classical Hopf—Cole change of dependent function, i.e.
w = e’ — 1. By a direct computatiow solves the problem

{ —div(jx]"V-2Vw) = Alx| "N 20tD2 f w4+ 1) inQ,

w=0 ono. (15)

It is well known that problen{(15) has a unique solutiofxif~ N =2+1)/2 £ (x) is in the

dual space oDé:(ZN_Z)/Z(Q) and is small enough. For instance jfjx|(V+2(r=1)/2 ¢
LP(Q), p > N/2, the right hand side has the required regularity. Then we get the follow-
ing result.

Theorem 3.2. Assumef |x|N+2r=D)/2 ¢ [P(Q) and p > N/2. Then forx small
enough, there exists a unique weak solution to prolfflEf) u € H,,, such that

(N=2(y+1)/2 1,2
el " — 1€ Dyiy_ 22D

We now give some existence and nonexistence results under some hypothgsimadn
the size ofA. Assume thatf is a measurable, nonnegative function with the following
natural property (se€l[1] and [13]):

|Vol?

o0
(A) 3¢0 [S CO () such that/ |x|(T2)

i dx < xfﬂf|x|—(N—2<V+1>)/2¢§dx < 0.

As a consequence we have the following nonexistence result.
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Theorem 3.3. If 1 and f satisfy hypothesi®) above, then probleifL3) has no solution.

The proof is elementary as inl[1] so we omit the details.
Let f be a honnegative measurable function, and define

\V/ 2 7(N72)d
Jo|VoPuI N 2dx )

M) = i
1) $eCE (@ [q flx|m N2+ /2¢2dx

We consider the following hypothesis:
(B) fe L@, x|"N20tD2 4y and Aq(f) > O.

Theorem 3.4. If (B) holds then problenfI3) has no solution ind,, () for A > A1(f)

and has a unique solutiom € H, (2) such thatel V272 _q ¢ D(l)’(zN_Z)/Z(Q) for

A < r(f).

Proof. If A > A1(f), then by a density argument we can show that condi#igrhflds for
somego € C3°(R2) and therefore the nonexistence is a consequence of Thm 3.3. We
now prove the existence result. A direct computation shows that hypotfsisiplies

that f € LY(Q, |x|~¥—2r+1)/2 gx) and is in the dual space difcl,’(szz)/z(Q). Assume

thatA < A1(f) and consider the following problem: ’

{ —div(lx|"NV-2Vw) = Alx|" V20 D)2 f()y(w 4+ 1) in Q, 17)

w=0 0no.

Since O< A < A1(f), the functional
1 A
J(v) = -/ IVw|?|x|~ N2 gx — —/ w2 " N=204+1)/2 g
2Jq 2 Jo

_)\/ Fle~N-204D)/2y, 4
Q

is well defined inDé:(ZN_z)/Z(Q) and it is easy to check that is coercive and Fachet-
differentiable inDé’(zN_z)/z(Q). Therefore by the Ekeland variational principle, there ex-
ists a minimizing sequendevy ey C Dé’(ZN_Z)/Z(Q),wk > 0, such that (jwy — w

. 1,2 e .
weakly InDO,(N—Z)/Z(Q)' (i) J(wg) > c= Inf¢eD3:<2N72)/2(§2) J(¢) and (iii) J'(wy) — O.

Thus the weak limit functionw € Dé’(ZN_Z)/Z(Q), is the unique weak solution to prob-
lem (I7). Moreover, one can prove that the convergence of the sequence is strong in
Dé”(szz)/Z(Q). By settingv = log(w + 1), we find thatv € Déj(szz)/z(Q), e’ —1e¢

1,2
IDO,(N72)/2(Q) and
—div(jx|~ N2 V) = x|V 72| Vo2 4 a|x [TV T2OF2 £y,

Henceu(x) = |x|~N-20+1)/2y satisfies: € H, andu solves[(IB). O
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3.3. Regularity and existence of weaker solutions: Relation to elliptic problems with
measure data

We begin by proving the following general regularity result.

Theorem 3.5. Assume thabt € Dé”(szz)/z(Q) is a solution of proble), where
f e LX) satisfiesf (x) > 0 a.e. inQ. Then

Sl 1 ¢ Dé,’(zzv_z)/z(g) for everys < 1/2. (18)

S|x|(N=2r+1)/2,

Moreover, ifu solves(13), thene —1e¢ Dé:(zN_z)/z(Q) forall § < 1/2.

Proof. The assertion follows by using'!’//+¢D _ 1 as a test function i (14) and by
lettinge — 0. (Seel[1] for the details in a simpler but similar setting.) O

We define thecapacityof a subsef of Q with respect to the spadéé:(zN_z) /2(82) by

capE) = inf{/ Vo2 1x|" VD dx | ¢ € Dyly_p) 5 andg > 1in E}
o ,

Theorem 3.6. For a positive functionf e LY(Q, |x|~¥=20+D)/2) ety e H,(2) be

a solution to problen{I3). Setw = WINPT Then there exists a measure,
concentrated on a set of zero capacity, such that

(19)

—div(lx|"VAVw) = Alx|[TNVT2OFD2 f () (w + 1) + g InD(Q),
w=0 ono.

Moreover,u is the following weak limit in the space of bounded Radon measures:

1+ ev)?

Proof. Since) does not play any role, we will take = 1. As above we set(x) =
|x|(N=2(v+1)/2,(x). Thenv solves the problem

. 1
s = Slino|x|_(N_2)|Vv|26U/(l+8v) <1— —) (20)

{ —div(lx|"V=2Vv) = |x|" V=2 | Vo2 4 |x|"V20+D)/2 () inQ, (21)

v=0 o0onoJo,

andv € Dé:(ZN_Z)/Z(Q). Definingw = ¢¥ — 1, by Theore5 and dider’s inequality
we see thatv € Dé:?\,_z(sz) forallg < N/(N —1). Lete > 0. If we usee?/A+ev) _ 1
€ L®(Q)N Dé;(ZN_z)/Z(Q) as a test function irf (21), it follows that

2 2
/ V| dr — / Vvl ev/(l+£v) 1— ; dx
q |x|N-2 o [x|(V=2 1+ ev)?

f v/(1+ev)
+Lgmﬁﬁmﬂe ~ 1y dx.
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Hence
/f|x|—<N—2<y+1>>/2(ev/<1+sv>_Ddx5/ VolRlx |~V dx
Q Q

and by the monotone convergence theorem we conclude that
f v/(1+ev) f |Vv|2
/Q x| (N—20+1)/2 (e - o |x|(N—2(y+1))/2de = o [X[N-2 dx < oo.

(22)
Similarly, we obtain

1
/|VU|2|x|<N2)e”/<l+€v>(1—mdx> dx 5/ IVollx|~ V=2 gx. (23)
Q &v Q
Then, up to a subsequence,
1
\V/ 2, 1—(N=2) jv/(1+ev) 1— N
[Vul%|x| e A+ e0)? Ms

where i is a positive Radon measure. Notice thatis concentrated on the sdt =
{x € Q:v(x) = oo} in the sense that

1
/ |Vv|2e?/te) (1 — —2)|x|<N2> dx — 0 ase— 0 forallk > 0.
v<k 1+ ev)
Sincev € Dé:(zN_z)/z(Q), we have cad) = 0.
Definew, (x) = fov(x) e/ Ates)gg ¢ Dé:(ZN_Z)/z(Q). Thenw, solves

. 1
—div(lx|~ N2 Vw,) = /M| vy P~V (1 - ———
1+ ev)

+ f(x) |x|—(N—2(V+1))/26U/(1+8v)

in the sense of distributions. The last term convergds'i®2) by (23), while the remain-
ing one converges ta,. Sincev, — v in LY(), it follows thatv satisfies equatiof (19)
in the sense of distributions. Therefqtg is uniquely determined and the convergence in
(20) holds for the whole sequence. O

Theorem 3.7. Assumef is a positive function such that hypotheds holds. Letu be
a positive Radon measure with bounded total variation suchdbatu) c Q\B,(0).
Then, for allx < 11(f), the problem

—div(|x|"V=AVw) = Af () |x|" V20D 20 + D+ u iInD(RQ),
we Dy (@) forallg < N/(N —1), (24)
Ti(w) € Dty _p, 2(Q),  log(l+w) € Dyoy_2) 12(),

has a minimal weak positive solutian
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The proof is a direct application of the existence Thedrerh 2.2. The fact thatHog)
D(l]:(zN_z)/Z(Q) follows by using a similar argument to the proof of Theorem 2.138in [1].
A sufficient condition for(B) to hold is thatf |x| N +2r=D)/2 ¢ LP(Q), p > N/2.

As a consequence we obtain the next result.

Theorem 3.8. Letu, be a bounded positive measure which is concentrated on a compact
setE c Q\B,(0) of zero capacity, and lef satisfy(B). For A < A1(f), we definaw to
be the solution of the problem

—div(x|"VAVw) = Af () |x|" V20D 20 + 1)+ u iInD(RQ),
w e Dyd_,(Q) forallg < N/(N - 1), (25)
Ti(w) € Dyly_p, 2(Q),  log(l+w) e Dyoy_2) 12().

Setv = log(w + 1). Thenv satisfies

fx) in D'(Q),

e —(N=2) _ 2. 1—(N=2) S
div(|x| Vo) = |Vo|%|x] +A|x|</vfz<y+l>)/2 (26)

12
v € Dy'ty_z2()-

Moreoveru(x) = |x|~N~=20+1)/2y pelongs toH, and is a weak solution t@L3).
Proof. The existence ofv and the fact that = log(w + 1) € Dé:zN_z) /Z(Q) are an
application of Theorern 3.7. In order to prove thatatisfies[(26), de%ine a sequergg}

of positive bounded functions such thigt, |1 < ¢ andg,, — u, in the sense of measures.

Let w, be the unique solution to

—div(jx] V2 Vw,) = AT, (fIx|~N20+D)2(y + 1)) + g,(x) In R,
1.2 (27)
wy, € DO,(N—Z)/Z(Q)'

It is easy to check thab, — w in D(l)’;{,_z(sz) forallg < N/(N — 1) (see 2] and[]4]

for details). We set,, = log(1+ w,). Then by a direct computation one obtains

|V, |? N AT,a,(f(x)|x|*<N*2<V+1>>/2(w +1) e 28)
|x| V-2 w, +1 w, +1

—div(lx| N "2vy,) =

in D'(€2). Notice that the result follows if we prove that the right hand sid¢ of (28) con-
verges tg Vo 2x|~ V=2 4 i f|x|~N-20+D)/2jn D/(2). We have

Tn(f|x|_(N_2(V+1))/2(w +1))
w, +1

— f)lx|"N20F2 iy L),

We claim thatg,, /(w, + 1) — 0in D’(2). To prove this, considet C  with cap/A)=0
andu concentrated oA. Then, by a direct computation, for all> 0 there exists an open
setU, such thatA C U, and cagU;) < ¢. Thus, for alle > O there exist® € C3°(2)
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suchthat > 0,¢ = 1in U, and [, [V¢|?|x|~™~2 dx < 2e. Using the Picone inequal-
ity as in [2], we get

—di —(N-2)
/ VoI2x|-N-D gy Z/ div(|x| V(w, +1)) #2dx Zf gn
Q Q wy +1 v, wy +1

&

Hence we conclude that

f 8n_4x <2¢  foreveryn.
U. Wy + 1

&

Let¢ € C3°(S2). We prove that

P 8n
lim dx =0.
n— 00 /;2 ¢wn +1 .

Since
8n

8n &n
——dx = —dx—i—/ —dx
/S.2¢wn+1 /Ug¢wn+1 Q\Ug¢wn+1

we have

&n
< dx —i—/ dx
||¢||OO/US p—— b, 18

< 2e||¢||oo+/g 16| gn dx.

\Ue

8n
dx
/;2¢wn +1

As g, — u, inthe sense of measures gnés concentrated o4 C U,, we conclude that
fQ\UF |¢| gn dx — 0 asn — oo and the claim follows. To finish the proof, let us show

that|Vu,|?|x|~ V=2 — |Vv|?|x|~N=2 strongly inL1(Q), that is,

Vw,|? Vuw|? .
Vel 5lx|~V=2 _Vwi® slx|"™=2 strongly inL}(Q).

A+ wy) 14+ w)
Since the sequence converges a.&€,iby Vitali's theorem we only have to show that it is
equi-integrable. LeE C 2 be a measurable set. For evérg (0, 1) andk > 0, defining
Enr = EN{v, <k}, we obtain

IVw,|2  dx [Vw,|2  dx [Vw,|2  dx
/E At wn? W2 /En,k At w22 /E\E,,,k A+ wn)? x|V 2
dx 1 |Vw, |2 dx
J;

< VT, 2 ’
—/E' ol = 0T Jy @ w700 a2

The last integral is uniformly bounded with respectidherefore the corresponding term
can be made small by choosikdarge enough. Moreover, for eveky> 0, Ty (w,) —
Ti.(w) strongly in Dé;fN_z) 12(%) (see [L1]), so the integrgl, [V Tk (w,)[2|x|~ V=2 dx
is uniformly small if the measure of is small enough. The equi-integrability of the
sequenceéVu, |2[x|~ V=2 follows immediately. Hence solves [26) and then € H,

solves[(1B). O
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