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Abstract. We study the Ambrosetti—-Prodi and Ambrosetti—-Rabinowitz problems. We prove for the
first one the existence of a continuum of solutions with shape of a reflectedsBigpe). Next, we
show that there is a relationship between these two problems.
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1. Introduction

In the early seventies, Antonio Ambrosetti wrote in collaboration with Giovanni Prodi
[3] and Paul H. Rabinowitz [4] two of the most seminal papers in the theory of nonlinear
functional analysis. Both of them have become key-stones in the study of the existence
and multiplicity of solutions for nonlinear P.D.E.

The problem considered inl[3] is

—Au=fu)+h, xeQ, (1)
u=>0, x € 0192,

wheref is, roughly speaking, a nonlinearity whose derivativesseghe first eigenvalue
associated with the Laplacian operator with zero Dirichlet boundary condition. By using
their abstract result, they are able to describe the exact number of solutions in térms of

On the other hand, in_[4], using the Mountain Pass Theorem, the authors prove the
existence of a positive (nontrivial and nonnegative) solution for the problem

_Auzf(_x,l,{), XEQ,
u=20, x € 092, @)

where, roughly speaking is a superlinear nonlinearity (lim, 1o f(x, u)/u = 400)
with f(x,0) = 0 for a.ex € Q and with zero derivative with respecticat zero.
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These problems are known in the literature respectively as “Ambrosetti—Prodi” and
“Ambrosetti-Rabinowitz” problems. Given the large amount of papers written on this
subject, it is an almost impossible task to come up with an original view of them. Our
wish here is to convince the reader that these “Ambrosetti problems” are not so different
as they seem.

The ideas rely on the study of some quasilinear extensions of the resllis in [5] (see
also [6]). In [5] we study the case of a nonvariational differential operator, while in [6] the
p-laplacian operatory{ > 1) is considered. The intrinsic difficulties of those quasilinear
equations are the reason for developing a new bifurcation approach to the Ambrosetti—
Prodi problem. Moreover, we deduce from it the quasilinear Ambrosetti—-Rabinowitz re-
sult, unifying in this way those two classical results. As a tribute to the pioneering works
by Ambrosettiet al.we devote this note to a survey of these results in the simpler semilin-
ear case. We remark explicitly that, in this case, the interest is to give a new perspective to
applications of the Leray—Schauder topological degree, in conjunction with the remark-
able a priori bound of B. Gidas and J. Spruckl[16], instead of variational methods. The
interested reader can seé [5] for the more complicated nonvariational quasilinear case.

2. Continua of solutions for Ambrosetti—Prodi type problems

In [3] (see alsol[R2]), A. Ambrosetti and G. Prodi, using some results on the global inver-
sion of differentiable mappings between Banach spaces, proved the following existence
result for [1). In order to state it, we denote Py} the sequence of eigenvalues for the
Laplacian operator with zero Dirichlet boundary condition.

Theorem 2.1 (Ambrosetti—Prodi, 1972)Let 2 ¢ R" be a bounded domain wiii%“-
boundary 0 < « < 1) and letf € C2(R) satisfy:

(i) f(O) =0,
(i) f”(s) > Oforeverys € R,

(i) lim f'(s) = f'(=00) < A1 < f'(+00) = lim_f'(s) < e

Then there exists a connected and clogéemanifold, M, of codimensiod in %% ()
such thatC%2 (Q)\ M has exactly two connected componewts, Ao, with the following
properties:

(a) if h € Ay, then problen(l) has no solution irC%* (),
(b) if h € Ay, it has exactly two solutions i6%% (),
(c) if h € M, it admits a unique solution iB'%*($).

Thus, a precise description of the number of solutionElof (1) is given. This result has been
the motivation of a very large amount of work on the number of solutions of b.v.p. with
nonlinearitiesf (x, u) whose derivativgumpsthe first eigenvalue or higher eigenval-

ues. It would be impossible to give here a complete list of references, but, at least, we wish
to cite some of the most classical ones and we refer the reader to the surveys by D. G. de
Figueiredol[11, 12] for a more extensive list. [l [8], M. S. Berger and E. Podolak write the
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function/ ash = r¢ +h, wherer € R, ¢ is a positive function and is orthogonal ta in
L?(2). Existence and multiplicity of solutions are described in terms of the values of
Fixed point theory is applied by H. Amann and P. Hess In [1] and also by &k FLd]
who introduces the term gfimpingnonlinearity. In particular, inJ1]f : @ x R — R is
a continuous function such that there exist positive functifing € L°°(2) satisfying
fim L5
N

s—+00

= fio(x) uniformlyinx € Q. 3

The result in[[1] states:

Theorem 2.2. Suppose thap € C%%(Q) with ¢ > 0in Q. Assume als@3) and that
there exists a positive constansuch that for a.ex € Q,

floo@) <Aii—e <hrite < flo(x) <ix—e. 4)
Then there exists' € R with the following properties:

(a) ift > t*, the problem

—Au = f(x,u) +to, x e Q,

u=0, x € 092, (F1)

has no solution,
(b) if t = ¢*, it has at least one solution,
(c) ift < r*, it admits at least two solutions.

A different approach based on Morse theory was given by H. Berestycki [7]. We must
also mention the papers by D. G. de Figueiredo and S. Solimini [13] and K. C. Chang
[10] where the case of subcritical superlinear nonlinearities jumping all eigenvalugs
considered, i.e. for some> 0,

flo(x) <ii—e < fio(x)=+00, aexceQ. (5)

The main tool in [[13] is the Mountain Pass Theorem, developed for the Ambrosetti—
Rabinowitz problem. Indeed, they prove that one solutiori®j can be obtained by

the sub-super-solution method. As clarified by HeBs and L. Nirenberd [9], such a
solution is a local minimum of the associated Euler functional with respect tH&I@Q)—
topology. Then the second one is obtained by application of the cited Mountain Pass
Theorem (provided that, in addition, the nonlineaiftgatisfies the technical Ambrosetti—
Rabinowitz condition[[4] for the standard Palais—Smale condition). We also remark that
the case of a critical superlinear nonlinearity is studied_|n [9] by using this variational
technique.

The motivation of our results lies in the study of some quasilinear elliptic equations
([8,18]). Other works on quasilinear Ambrosetti—Prodi problemsl|arg [17, 18]. The partic-
ular difficulties of these do not allow one to extend the previous ideas and, consequently,
we have developed a new approach based on proving the existence of a continuum of so-
lutions with >-shape (see Remalk®.7). We consider two classes of nonlinearities: those
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where the asymptotically linear nonlinearifysatisfies3) and (4), and the superlinear
case of nonlinearities satisfyirlg (3) afdl (5). In addition, in the latter case, we suppose that
there existi € L°°(2) and 1< p < 2* — 1 such that

fx,s)

lim ~—— =h(x) >c >0 uniformlyinx € Q. (6)
s——400 sP

Here 2 stands for the critical Sobolev exponent, i.&.2 2N /(N — 2) if N > 3, while
2* = 4oofor N = 2.
The proof of our result applies the sub-super-solution method and the Leray—Schauder
degree in conjunction with the following a priori bound on th&(2)-norm of the solu-
tions.

Lemma 2.3. Letp € L*>(2) be a positive function. Suppose that either

(i) conditions(@) and @) hold, or

(i) f satisfies@), (B and ®).

Then the solutions ofP;) are uniformly bounded on compact setszpf.e., for every
compact interval’ C R, there existg € R such that every solutiom of (P;) witht € T’

satisfies
lu(x)| <c, VxeQ.

Remark 2.4. In the case of superlinear nonlinearities satisfying assumptions (ii), the
above a priori bound is an easy extension of the result by B. Gidas and J. Spruck in [16].

Proof of Lemma 2]3In the case of assumptions (i), the proof is standard [2]. We prove
the lemma if (i) holds. First we show that, given a compact real intdryshere exists a
positive constant such that

u(x) > —c, xe, (7

for every solution: of (P;) with r € T. In order to prove this a priori bound, we observe
that takingu~ = min{u, 0} as test function in the equation satisfied:qyand by using
hypothesis(@), we get a uniform bound af~ in the Hol(sz)-norm. Consider now, for
eachk € R, the functionGy given by

s+k ifs < —k,
Gr(s)=1{0 if —k<s <k,
s—k ifk<s.

Thus, takingy = G (u™) as test function in the equation satisfiedibye obtain
|96 = [ () + 1006100,
Q Qp

whereQ; = {x € Q : u(x) < —k}. From [B), there exists a positive constahsuch that
fx,s)+tp>Cs, Vs<—k, VteTl.

We deduce from the above that

/WGk(u—)Fsc/ ] 1G],
Q Qp
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Using now the Sobolev andditer inequalities, we get for some new consté@nand
r>2N/(N +2),

IG5 < Cllu™ |l |Gr(u7) |2+ (measy) 1Y/ —1/2",

(Forr > 1, we denote by - || the usual norm of the Lebesgue sp@¢€2).) Notice now
that for everyl > k, |Gy (u™)| > [ — k in &, which implies that

(I — ky(meas) Y < Cllu~ ||, (measy) Y Y2,
or equivalently that

Cllu~||? (measy)? —1-2'/

measy; <
= -k

Using ideas of Stampacchia [19], we deduce the existence of a positive canstarit
that|lu~ || < c for every solutioru of (P;) with t € I". Thus,(7) has been proved.

On the other hand, define=u +c¢ >0 andf(x, s) = f(x,s — ¢). Thenv satisfies

—Av = f(x,v)+t<p, x € Q,
v =c, x € 092.

We observe that the result in |16] remains true for solutions of the equation with bounded
Dirichlet data instead of zero Dirichlet data. This gives the existenée=aR™ such that
v(x) < ¢ for everyx € Q, i.e.u is bounded from above. O

We also need the following abstract theorem about the existence>edteped contin-
uum. The proof can be found inl[5].

Lemma 2.5. Let E be a Banach space arfd: R x E — E a compact operator. Denote
by X the set of pairgs, u) € R x E such thatu is a solution of

u—T(,u)=0. (8)

Let U be a bounded subset ifi such that(8) has no solution o®U while s € [a, b].
Assume also that, far = b, B has no solution inU. Let U1 c U be such that, for
t = a, (8 has no solution 0®U; anddeg ! — T (a, -), U1, 0) # 0. Then there exists a
continuumcC in ¥ such that

CN({a} x Uy #0, CN({a} x (U \Ur) # 9.
Now, we prove the main result of this section.

Theorem 2.6. Let ¢ € L>(Q) be a positive function and lef : @ x R — R be a
C-function satisfying either

(i) conditions(@) and (@), or

(i) conditions@), (8 and (©).
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Then* = supt € R : (P;) admits a solutiohis finite and for everyp < ¢* there exists
acontinuunCin X = {(¢t,u) e R x C&(Q) > u is a solution of (P;)} satisfying

1. [to, t*] C Projr C, _
2. for everyt € [1g, t*), Projcé@[c N ({t} x C%(Q))] contains two distinct solutions
of (P,).

Remark 2.7. Roughly speaking, the continuuéof solutions inR x Cé(ﬁ) emanates
from {7} x Cé(ﬁ), reacheg:*} x Cé(ﬁ) and then it turns left to meet a different solution
in {ro} x Ccl,(ﬁ) (>-shaped continuum). As a consequence,

1. (P,) has at least two solutions for< r*,
2. (P,) has at least one solution for< r*,
3. (P;) has no solution for > ¢*.

Proof of Theorer 2|6SetS = {r € R : (P;) admits a solutioh First we show thas is
not empty. This relies upon two facis [12]:

e (P;) has a supersolution for some R,
e given a supersolutions, of (P,) for somer € R, there exists a subsolutienof it such
thatu < uin .

Indeed, by means of the sub-super-solution method, this implies ika closed interval
unbounded from below. Moreover, the usual trick of multiplying by one positive eigen-
function associated tb; leads to the nonexistence of a solution fag> 0 large enough
and thusS is bounded from above. This means that the supremum of the closed interval
S is attained. Define

t* = supS = maxs.

We now prove the existence of a continuum of solutions. First we observe that, from
LemmdZ.3B jointly with some regularity resultssif < t* < 1, there existR > 0 such
that |lu||-1 < R for each solutiorw of (P,) with ¢ € [fo, t1]. Denote by®, the map
®; () = u — (—A)"(f(x, u) + tp). Using the homotopy invariance of Leray—Schauder
degree and the fact that proble€®,) has no solution, we get

deg®;, Br(0), 0) = deg®;,, Bg(0),0) =0, Vt €[, 1],

whereBg (0) denotes the open ball é(ﬁ) of radiusR centered at zero.

Letu™ be a solution of ;). Observe that™ is a supersolution of ;) for every:
[0, t*) and it is not a solution. Moreover, as mentioned above, there exists a subsolution
ug, < u* of (Py) which is not a solution. Clearly,, is also a subsolution and no solution
for (Py) if t € [to, t*). Consider the set

*
Uy = {u € Cé(ﬁ) Tl < U< u*in Q, BL < 3_14 < %OnaQ} N Bg(0).
on on on
The strong maximum principle implies the nonexistence of solutionggfon aU; if
t < t* (seel[15]). Hence, the degree®f is well defined inU;. In addition, by using the
results in[[11],
deg®,, U1,0) =1, V€[t t%).
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Applying LemmdZb WithE = C3(), [a, b] = [to, 1] andU = Bg(0), we deduce
the existence of a continuuéhin £ such that

CN(to} x U #9, CN({to} x [Br(0) \ U1]) # 2.

In particular, the continuurd crossegt} x dU1 for somer € (1, t*]. It has been observed
that this is possible if and only if = #*. This concludes the proof.

3. Ambrosetti-Rabinowitz via Ambrosetti—-Prodi
Consider aC1-function f : @ x RT — R* such thatf (x, 0) = 0 (x € Q), satisfying[6)

and
lim supM <y <1 uniformlyx e Q. 9
s—0t S

We are interested in the existence of positive solutions for the b.v.p.

—Au = f(x,u), x e Q,

u=20, x € 092. (10)

As usual, we can assume thatis extended to all of2 x R by settingf (x, s) = 0 for
s < 0. Notice that by the maximum principle, every nontrivial solution[ofl (10) with the
extended nonlinearity is positive.

Since f satisfies condition$ 13)1(5) and] (6), probldml(10) fits into the “superlinear”
Ambrosetti—Prodi framework (problet®,) with r = 0 and anyp). As an easy application
of Theoreni 2B, we deduce

Theorem 3.1. Let f € CL(Q x RY) satisfy(@) and (3. Then problen{I0) has at least
one positive solution.

Proof. To apply the framework of the previous sections we em{dl into the one-
parameter family
—Au = f(x,u) +te1, x € Q,
u=0, x € 092. (Q0)

Observe that this problem ig?) with ¢ = ¢;. From Theoreni 216, let* denote the
supremum of alt € R such that Q,) has a solution. The proof is concluded if we prove
thatz* > 0. Indeed, if this is done, that theorem (see also item 1 of Remark 2.7 with
t = 0) shows the existence of at least two solutioné@®@g), or equivalently, the existence
of two nonnegative solutions @fLl0). Taking into account that zero is a solution of this
problem, we deduce that there exists at least one positive solutif@of

In order to prove that* > 0, we use the sub-super-solution method. First, we note
thatu = 0 is a subsolution ofQ;) for everyt > 0. Thus, we only have to find a positive
supersolution of Q,) for somer > 0. This is easily deduced as follows. From (9), we
takes small enough such that(x, §¢1)/8¢1 < A1 — & for everyx € Q. Then

—AGp1) = Mbg1 > f(x, 8p1) + 8201.

This means thaty; is a supersolution ofQ;) with r = §2 > 0, concluding the proof.
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