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Abstract. We study the Ambrosetti–Prodi and Ambrosetti–Rabinowitz problems. We prove for the
first one the existence of a continuum of solutions with shape of a reflected C (⊃-shape). Next, we
show that there is a relationship between these two problems.
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1. Introduction

In the early seventies, Antonio Ambrosetti wrote in collaboration with Giovanni Prodi
[3] and Paul H. Rabinowitz [4] two of the most seminal papers in the theory of nonlinear
functional analysis. Both of them have become key-stones in the study of the existence
and multiplicity of solutions for nonlinear P.D.E.

The problem considered in [3] is

−1u = f (u) + h, x ∈ �,

u = 0, x ∈ ∂�,
(1)

wheref is, roughly speaking, a nonlinearity whose derivativecrossesthe first eigenvalue
associated with the Laplacian operator with zero Dirichlet boundary condition. By using
their abstract result, they are able to describe the exact number of solutions in terms ofh.

On the other hand, in [4], using the Mountain Pass Theorem, the authors prove the
existence of a positive (nontrivial and nonnegative) solution for the problem

−1u = f (x, u), x ∈ �,

u = 0, x ∈ ∂�,
(2)

where, roughly speaking,f is a superlinear nonlinearity (limu→+∞ f (x, u)/u = +∞)
with f (x, 0) = 0 for a.e.x ∈ � and with zero derivative with respect tou at zero.
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These problems are known in the literature respectively as “Ambrosetti–Prodi” and
“Ambrosetti–Rabinowitz” problems. Given the large amount of papers written on this
subject, it is an almost impossible task to come up with an original view of them. Our
wish here is to convince the reader that these “Ambrosetti problems” are not so different
as they seem.

The ideas rely on the study of some quasilinear extensions of the results in [5] (see
also [6]). In [5] we study the case of a nonvariational differential operator, while in [6] the
p-laplacian operator (p > 1) is considered. The intrinsic difficulties of those quasilinear
equations are the reason for developing a new bifurcation approach to the Ambrosetti–
Prodi problem. Moreover, we deduce from it the quasilinear Ambrosetti–Rabinowitz re-
sult, unifying in this way those two classical results. As a tribute to the pioneering works
by Ambrosettiet al.we devote this note to a survey of these results in the simpler semilin-
ear case. We remark explicitly that, in this case, the interest is to give a new perspective to
applications of the Leray–Schauder topological degree, in conjunction with the remark-
able a priori bound of B. Gidas and J. Spruck [16], instead of variational methods. The
interested reader can see [5] for the more complicated nonvariational quasilinear case.

2. Continua of solutions for Ambrosetti–Prodi type problems

In [3] (see also [2]), A. Ambrosetti and G. Prodi, using some results on the global inver-
sion of differentiable mappings between Banach spaces, proved the following existence
result for (1). In order to state it, we denote by{λk} the sequence of eigenvalues for the
Laplacian operator with zero Dirichlet boundary condition.

Theorem 2.1 (Ambrosetti–Prodi, 1972). Let� ⊂ RN be a bounded domain withC2,α-
boundary (0 < α < 1) and letf ∈ C2(R) satisfy:

(i) f (0) = 0,
(ii) f ′′(s) > 0 for everys ∈ R,

(iii) lim
s→−∞

f ′(s) = f ′(−∞) < λ1 < f ′(+∞) = lim
s→+∞

f ′(s) < λ2.

Then there exists a connected and closedC1-manifold,M, of codimension1 in C0,α(�)

such thatC0,α(�)\M has exactly two connected components,A1, A2, with the following
properties:

(a) if h ∈ A1, then problem(1) has no solution inC2,α(�),
(b) if h ∈ A2, it has exactly two solutions inC2,α(�),
(c) if h ∈M, it admits a unique solution inC2,α(�).

Thus, a precise description of the number of solutions of (1) is given. This result has been
the motivation of a very large amount of work on the number of solutions of b.v.p. with
nonlinearitiesf (x, u) whose derivativejumpsthe first eigenvalueλ1 or higher eigenval-
ues. It would be impossible to give here a complete list of references, but, at least, we wish
to cite some of the most classical ones and we refer the reader to the surveys by D. G. de
Figueiredo [11, 12] for a more extensive list. In [8], M. S. Berger and E. Podolak write the
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functionh ash = tϕ+ h̃, wheret ∈ R, ϕ is a positive function and̃h is orthogonal toϕ in
L2(�). Existence and multiplicity of solutions are described in terms of the values oft .
Fixed point theory is applied by H. Amann and P. Hess in [1] and also by S. Fučik [14]
who introduces the term ofjumpingnonlinearity. In particular, in [1],f : � × R → R is
a continuous function such that there exist positive functionsf ′

±∞ ∈ L∞(�) satisfying

lim
s→±∞

f (x, s)

s
= f ′

±∞(x) uniformly in x ∈ �. (3)

The result in [1] states:

Theorem 2.2. Suppose thatϕ ∈ C0,α(�) with ϕ > 0 in �. Assume also(3) and that
there exists a positive constantε such that for a.e.x ∈ �,

f ′
−∞(x) < λ1 − ε < λ1 + ε < f ′

+∞(x) < λ2 − ε. (4)

Then there existst∗ ∈ R with the following properties:

(a) if t > t∗, the problem

−1u = f (x, u) + tϕ, x ∈ �,

u = 0, x ∈ ∂�,
(Pt )

has no solution,
(b) if t = t∗, it has at least one solution,
(c) if t < t∗, it admits at least two solutions.

A different approach based on Morse theory was given by H. Berestycki [7]. We must
also mention the papers by D. G. de Figueiredo and S. Solimini [13] and K. C. Chang
[10] where the case of subcritical superlinear nonlinearities jumping all eigenvaluesλk is
considered, i.e. for someε > 0,

f ′
−∞(x) < λ1 − ε < f ′

+∞(x) ≡ +∞, a.e.x ∈ �. (5)

The main tool in [13] is the Mountain Pass Theorem, developed for the Ambrosetti–
Rabinowitz problem. Indeed, they prove that one solution of(Pt ) can be obtained by
the sub-super-solution method. As clarified by H. Brézis and L. Nirenberg [9], such a
solution is a local minimum of the associated Euler functional with respect to theH 1

0 (�)-
topology. Then the second one is obtained by application of the cited Mountain Pass
Theorem (provided that, in addition, the nonlinearityf satisfies the technical Ambrosetti–
Rabinowitz condition [4] for the standard Palais–Smale condition). We also remark that
the case of a critical superlinear nonlinearity is studied in [9] by using this variational
technique.

The motivation of our results lies in the study of some quasilinear elliptic equations
([5, 6]). Other works on quasilinear Ambrosetti–Prodi problems are [17, 18]. The partic-
ular difficulties of these do not allow one to extend the previous ideas and, consequently,
we have developed a new approach based on proving the existence of a continuum of so-
lutions with⊃-shape (see Remark 2.7). We consider two classes of nonlinearities: those
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where the asymptotically linear nonlinearityf satisfies(3) and(4), and the superlinear
case of nonlinearities satisfying (3) and (5). In addition, in the latter case, we suppose that
there existh ∈ L∞(�) and 1< p < 2∗

− 1 such that

lim
s→+∞

f (x, s)

sp
= h(x) > c > 0 uniformly inx ∈ �. (6)

Here 2∗ stands for the critical Sobolev exponent, i.e. 2∗
= 2N/(N − 2) if N ≥ 3, while

2∗
= +∞ for N = 2.
The proof of our result applies the sub-super-solution method and the Leray–Schauder

degree in conjunction with the following a priori bound on theC0(�)-norm of the solu-
tions.

Lemma 2.3. Letϕ ∈ L∞(�) be a positive function. Suppose that either

(i) conditions(3) and(4) hold, or
(ii) f satisfies(3), (5) and(6).

Then the solutions of(Pt ) are uniformly bounded on compact sets oft , i.e., for every
compact interval0 ⊂ R, there existsc ∈ R such that every solutionu of (Pt ) with t ∈ 0

satisfies
|u(x)| ≤ c, ∀x ∈ �.

Remark 2.4. In the case of superlinear nonlinearities satisfying assumptions (ii), the
above a priori bound is an easy extension of the result by B. Gidas and J. Spruck in [16].

Proof of Lemma 2.3.In the case of assumptions (i), the proof is standard [2]. We prove
the lemma if (ii) holds. First we show that, given a compact real interval0, there exists a
positive constantc such that

u(x) > −c, x ∈ �, (7)

for every solutionu of (Pt ) with t ∈ 0. In order to prove this a priori bound, we observe
that takingu−

≡ min{u, 0} as test function in the equation satisfied byu, and by using
hypothesis(5), we get a uniform bound ofu− in the H 1

0 (�)-norm. Consider now, for
eachk ∈ R, the functionGk given by

Gk(s) =

 s + k if s ≤ −k,

0 if − k < s ≤ k,

s − k if k < s.

Thus, takingv = Gk(u
−) as test function in the equation satisfied byu we obtain∫

�

|∇Gk(u
−)|2 =

∫
�k

(f (x, u−) + tϕ)Gk(u
−),

where�k ≡ {x ∈ � : u(x) < −k}. From (5), there exists a positive constantC such that

f (x, s) + tϕ ≥ Cs, ∀s ≤ −k, ∀t ∈ 0.

We deduce from the above that∫
�

|∇Gk(u
−)|2 ≤ C

∫
�k

|u−
| |Gk(u

−)|.
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Using now the Sobolev and Ḧolder inequalities, we get for some new constantC and
r > 2N/(N + 2),

‖Gk(u
−)‖2

2∗ ≤ C‖u−
‖r‖Gk(u

−)‖2∗(meas�k)
1−1/r−1/2∗

.

(Forr ≥ 1, we denote by‖ ·‖r the usual norm of the Lebesgue spaceLr(�).) Notice now
that for everyl ≥ k, |Gk(u

−)| ≥ l − k in �l , which implies that

(l − k)(meas�l)
1/2∗

≤ C‖u−
‖r(meas�k)

1−1/r−1/2∗

,

or equivalently that

meas�l ≤
C‖u−

‖
2∗

r (meas�k)
2∗

−1−2∗/r

(l − k)2∗ .

Using ideas of Stampacchia [19], we deduce the existence of a positive constantc such
that‖u−

‖∞ ≤ c for every solutionu of (Pt ) with t ∈ 0. Thus,(7) has been proved.
On the other hand, definev = u + c ≥ 0 andf̃ (x, s) = f (x, s − c). Thenv satisfies

−1v = f̃ (x, v) + tϕ, x ∈ �,

v = c, x ∈ ∂�.

We observe that the result in [16] remains true for solutions of the equation with bounded
Dirichlet data instead of zero Dirichlet data. This gives the existence ofc̃ ∈ R+ such that
v(x) ≤ c̃ for everyx ∈ �, i.e.u is bounded from above. ut

We also need the following abstract theorem about the existence of a⊃-shaped contin-
uum. The proof can be found in [5].

Lemma 2.5. LetE be a Banach space andT : R × E → E a compact operator. Denote
by6 the set of pairs(t, u) ∈ R × E such thatu is a solution of

u − T (t, u) = 0. (8)

Let U be a bounded subset inE such that(8) has no solution on∂U while t ∈ [a, b].
Assume also that, fort = b, (8) has no solution inU . Let U1 ⊂ U be such that, for
t = a, (8) has no solution on∂U1 anddeg(I − T (a, ·), U1, 0) 6= 0. Then there exists a
continuumC in 6 such that

C ∩ ({a} × U1) 6= ∅, C ∩ ({a} × (U \ U1)) 6= ∅.

Now, we prove the main result of this section.

Theorem 2.6. Let ϕ ∈ L∞(�) be a positive function and letf : � × R → R be a
C1-function satisfying either

(i) conditions(3) and(4), or
(ii) conditions(3), (5) and(6).
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Thent∗ ≡ sup{t ∈ R : (Pt ) admits a solution} is finite and for everyt0 < t∗ there exists
a continuumC in 6 ≡ {(t, u) ∈ R × C1

0(�) : u is a solution of(Pt )} satisfying

1. [t0, t∗] ⊂ ProjR C,
2. for everyt ∈ [t0, t∗), ProjC1

0(�)[C ∩ ({t} × C1
0(�))] contains two distinct solutions

of (Pt ).

Remark 2.7. Roughly speaking, the continuumC of solutions inR × C1
0(�) emanates

from {t0}×C1
0(�), reaches{t∗}×C1

0(�) and then it turns left to meet a different solution
in {t0} × C1

0(�) (⊃-shaped continuum). As a consequence,

1. (Pt ) has at least two solutions fort < t∗,
2. (Pt ) has at least one solution fort ≤ t∗,
3. (Pt ) has no solution fort > t∗.

Proof of Theorem 2.6.SetS ≡ {t ∈ R : (Pt ) admits a solution}. First we show thatS is
not empty. This relies upon two facts [12]:

• (Pt ) has a supersolution for somet ∈ R,
• given a supersolution,u, of (Pt ) for somet ∈ R, there exists a subsolutionu of it such

thatu < u in �.

Indeed, by means of the sub-super-solution method, this implies thatS is a closed interval
unbounded from below. Moreover, the usual trick of multiplying by one positive eigen-
function associated toλ1 leads to the nonexistence of a solution fort � 0 large enough
and thusS is bounded from above. This means that the supremum of the closed interval
S is attained. Define

t∗ ≡ supS = maxS.

We now prove the existence of a continuum of solutions. First we observe that, from
Lemma 2.3 jointly with some regularity results, ift0 < t∗ < t1, there existsR > 0 such
that ‖u‖C1 < R for each solutionu of (Pt ) with t ∈ [t0, t1]. Denote by8t the map
8t (u) ≡ u − (−1)−1(f (x, u) + tϕ). Using the homotopy invariance of Leray–Schauder
degree and the fact that problem(Pt1) has no solution, we get

deg(8t , BR(0), 0) = deg(8t1, BR(0), 0) = 0, ∀t ∈ [t0, t1],

whereBR(0) denotes the open ball inC1
0(�) of radiusR centered at zero.

Let u∗ be a solution of(Pt∗). Observe thatu∗ is a supersolution of(Pt ) for everyt ∈

[t0, t∗) and it is not a solution. Moreover, as mentioned above, there exists a subsolution
ut0 < u∗ of (Pt0) which is not a solution. Clearlyut0 is also a subsolution and no solution
for (Pt ) if t ∈ [t0, t∗). Consider the set

U1 =

{
u ∈ C1

0(�) : ut0 < u < u∗ in �,
∂u∗

∂n
<

∂u

∂n
<

∂ut0

∂n
on ∂�

}
∩ BR(0).

The strong maximum principle implies the nonexistence of solutions of(Pt ) on ∂U1 if
t < t∗ (see [15]). Hence, the degree of8t is well defined inU1. In addition, by using the
results in [11],

deg(8t , U1, 0) = 1, ∀t ∈ [t0, t
∗).
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Applying Lemma 2.5 withE = C1
0(�), [a, b] = [t0, t1] andU = BR(0), we deduce

the existence of a continuumC in 6 such that

C ∩ ({t0} × U1) 6= ∅, C ∩ ({t0} × [BR(0) \ U1]) 6= ∅.

In particular, the continuumC crosses{t}×∂U1 for somet ∈ (t0, t
∗]. It has been observed

that this is possible if and only ift = t∗. This concludes the proof.

3. Ambrosetti–Rabinowitz via Ambrosetti–Prodi

Consider aC1-functionf : �× R+
→ R+ such thatf (x, 0) = 0 (x ∈ �), satisfying (6)

and

lim sup
s→0+

f (x, s)

s
≤ γ < λ1 uniformly x ∈ �. (9)

We are interested in the existence of positive solutions for the b.v.p.

−1u = f (x, u), x ∈ �,

u = 0, x ∈ ∂�.
(10)

As usual, we can assume thatf is extended to all of� × R by settingf (x, s) = 0 for
s < 0. Notice that by the maximum principle, every nontrivial solution of (10) with the
extended nonlinearity is positive.

Sincef satisfies conditions (3), (5) and (6), problem (10) fits into the “superlinear”
Ambrosetti–Prodi framework (problem(Pt ) with t = 0 and anyϕ). As an easy application
of Theorem 2.6, we deduce

Theorem 3.1. Letf ∈ C1(� × R+) satisfy(6) and(9). Then problem(10) has at least
one positive solution.

Proof. To apply the framework of the previous sections we embed(10) into the one-
parameter family

−1u = f (x, u) + tϕ1, x ∈ �,

u = 0, x ∈ ∂�.
(Qt )

Observe that this problem is(Pt ) with ϕ = ϕ1. From Theorem 2.6, lett∗ denote the
supremum of allt ∈ R such that(Qt ) has a solution. The proof is concluded if we prove
that t∗ > 0. Indeed, if this is done, that theorem (see also item 1 of Remark 2.7 with
t = 0) shows the existence of at least two solutions of(Q0), or equivalently, the existence
of two nonnegative solutions of(10). Taking into account that zero is a solution of this
problem, we deduce that there exists at least one positive solution of(10).

In order to prove thatt∗ > 0, we use the sub-super-solution method. First, we note
thatu = 0 is a subsolution of(Qt ) for everyt > 0. Thus, we only have to find a positive
supersolution of(Qt ) for somet > 0. This is easily deduced as follows. From (9), we
takeδ small enough such thatf (x, δϕ1)/δϕ1 ≤ λ1 − δ for everyx ∈ �. Then

−1(δϕ1) = λ1δϕ1 ≥ f (x, δϕ1) + δ2ϕ1.

This means thatδϕ1 is a supersolution of(Qt ) with t = δ2 > 0, concluding the proof.
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coefficients discontinus. Ann. Inst. Fourier (Grenoble)15, 189–258 (1965) Zbl 0151.15401
MR 0192177

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0416.35029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0549877
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0818.47059&format=complete
http://www.ams.org/mathscinet-getitem?mr=1336591
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0288.35020&format=complete
http://www.ams.org/mathscinet-getitem?mr=0320844
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0273.49063&format=complete
http://www.ams.org/mathscinet-getitem?mr=0370183
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1013.35022&format=complete
http://www.ams.org/mathscinet-getitem?mr=1951509
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0452.35038&format=complete
http://www.ams.org/mathscinet-getitem?mr=0607588
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0329.35026&format=complete
http://www.ams.org/mathscinet-getitem?mr=0377274
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0803.35029&format=complete
http://www.ams.org/mathscinet-getitem?mr=1239032
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0544.35045&format=complete
http://www.ams.org/mathscinet-getitem?mr=0745797
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0688.49011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1019559
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0552.35030&format=complete
http://www.ams.org/mathscinet-getitem?mr=0745022
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0303.35037&format=complete
http://www.ams.org/mathscinet-getitem?mr=0382849
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0865.35015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1420381
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0462.35041&format=complete
http://www.ams.org/mathscinet-getitem?mr=0619749
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0786.35056&format=complete
http://www.ams.org/mathscinet-getitem?mr=1201100
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0151.15401&format=complete
http://www.ams.org/mathscinet-getitem?mr=0192177

	Introduction
	Continua of solutions for Ambrosetti--Prodi type problems
	Ambrosetti--Rabinowitz via Ambrosetti--Prodi

