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1. Introduction

Let� be a bounded domain ofR4 and letuk be solutions to the equation

12uk = Vke
4uk in �, (1)

where
Vk → 1 uniformly in�, (2)

ask → ∞. Throughout the paper we denote as1 = −
∑
i(∂/∂x

i)2 the Laplacian with
the geometers’ sign convention. Continuing the analysis of [19], here we study the com-
pactness properties of equation (1).

Equation (1) is the fourth order analogue of Liouville’s equation. Thus, for prob-
lem (1), (2) we may expect similar results to those obtained by Brézis–Merle [3] in the
two-dimensional case. Recall the following result from [3] and its improvement by Li–
Shafrir [11].

Theorem 1.1. Let6 be a bounded domain ofR2 and let(uk)k∈N be a sequence of solu-
tions to the equation

1uk = Vke
2uk in 6, (3)

whereVk → 1 uniformly in6 ask → ∞, and satisfying the uniform bound∫
6

Vke
2uk dx ≤ 3 (4)

for some3 > 0. Then either

(i) (uk)k∈N is locally bounded inC1,α on6 for everyα < 1, or
(ii) there exists a subsequenceK ⊂ N such thatuk → −∞ locally uniformly in� as

k → ∞, k ∈ K, or
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(iii) there exist a subsequenceK⊂N and at most finitely many pointsx(i)∈�, 1≤ i≤I ,
with corresponding numbersβi ∈ 4πN such thatVke2uk dx ⇀

∑I
i=1 βiδx(i) weakly

in the sense of measures whileuk → −∞ locally uniformly in� \ {x(i); 1 ≤ i ≤ I }

whenk → ∞, k ∈ K.

Moreover, near any concentration pointx(i), after rescaling

vk(x) = uk(xk + rkx)+ logrk, Wk(x) = Vk(xk + rkx) (5)

with suitable sequencesxk → x(i) and rk → 0 as k → ∞, a subsequence satisfies
vk → v locally uniformly inC1,α onR2, wherev is a solution of Liouville’s equation

1u = e2u onR2 with
∫

R2
e2u dx < ∞. (6)

Geometrically speaking, the solutionsuk to equation (3) correspond to conformal metrics
gk = e2ukgR2 on6 with Gauss curvatureVk. The fact that all solutionsu of equation
(6) by a result of Chen-Li [5] are induced by conformal metricse2ugR2 on R2 that are
obtained by stereographic projection of the standard sphere then gives rise to the observed
quantization. Multiple blow-up at a point is possible, as shown by X. Chen [6].

Similarly, the solutionsuk to (1) induce conformal metricsgk = e2ukgR4 on� having
Q-curvature proportional toVk. In contrast to the two-dimensional case, however, there
is a much greater abundance of solutions to the corresponding limit equation

12u = e4u onR4. (7)

In fact, by a result of Chang–Chen [4] for anyα ∈ ]0,16π2] there exists a solutionuα of
(7) of total volume

∫
R4 e

4uα dx = α which forα < 16π2 fundamentally differs from the
solutionu(x) = log(

√
96/(

√
96+ |x|2)) corresponding to the metric obtained by pull-

back of the spherical metric onS4 under stereographic projection. Only the latter solution
(and any solution obtained fromu by rescaling as in (5)) achieves the maximal value∫
R4 e

4u dx = 16π2. If we then consider a suitable sequenceuk = uαk with αk → 0 as
k → ∞, normalized as in (5) so thatuk ≤ uk(0) = k, we can even achieve that(uk)k∈N
blows up atx(1) = 0 in the sense thatuk(0) → ∞ while uk(x) → −∞ for anyx 6= 0 as
k → ∞.

As shown in Example 3.1, solutions to equation (1) with a similar concentration be-
havior exist even in the radially symmetric case.

There is a further complication in the four-dimensional case, illustrated by the fol-
lowing simple example. Consider the sequence(vk) on R4, defined by lettingvk(x) =

wk(|x
1
|), where fork ∈ N we letwk solve the initial value problem for the ordinary

differential equationw′′′′

k = e4wk on 0 < s < ∞ with initial datawk(0) = w′

k(0) =

w′′′

k (0) = 0, w′′

k (0) = −k. Given3 > 0, we can then find a sequence of radiiRk > 0
such that

∫
BRk (0)

e4vk dx = 3. Observe thatRk → ∞ ask → ∞. Scaling as in (5), we

then obtain a sequence of solutionsuk(x) = vk(Rkx)+ logRk to (7) on� = B1(0) such
thatuk(x) → ∞ for all x ∈ S0 = {x ∈ �; x1

= 0} anduk → −∞ away fromS0 as
k → ∞. Scaling back as in (5), from(uk) we recover the normalized functionsvk which
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fail to converge to a solution of the limit problem (7) and develop an interior layer on the
hypersurface{x ∈ R4

; x1
= 0} instead.

These comments illustrate that conclusions (i), (ii) and (iii) of Theorem 1.1 do not
exhaustively describe all the possible concentration phenomena for (1). In fact, the fol-
lowing concentration-compactness result seems best possible.

Theorem 1.2. Let� be a bounded domain ofR4 and let(uk)k∈N be a sequence of solu-
tions to(1), (2) above. Assume that there exists3 > 0 such that∫

�

Vke
4uk dx ≤ 3 (8)

for all k. Then either

(i) a subsequence(uk) is relatively compact inC3,α
loc (�), or

(ii) there exist a subsequence(uk) and a closed nowhere dense setS0 of vanishing mea-
sure and at most finitely many pointsx(i) ∈ �, 1 ≤ i ≤ I ≤ C3, such that, letting

S = S0 ∪ {x(i); 1 ≤ i ≤ I },

we haveuk → −∞ locally uniformly away fromS ask → ∞.

Moreover, there is a sequence of numbersβk → ∞ such that

uk/βk → ϕ in C3,α
loc (� \ S),

whereϕ ∈ C4(� \ {x(i); 1 ≤ i ≤ I }) is such that

12ϕ = 0, ϕ ≤ 0, ϕ 6= 0,

and

S0 = {x ∈ � \ {x(i); 1 ≤ i ≤ I }; ϕ(x) = 0}.

Finally, near any pointx0 ∈ S wheresupBr (x0)
uk → ∞ for everyr > 0 as k → ∞,

in particular, near any concentration pointx(i), there exist pointsxk → x0, numbers
Lk → ∞, and suitable radiirk → 0 such that after normalizing we have

vk(x) = uk(xk + rkx)+ logrk ≤ 0 ≤ log 2+ vk(0) for |x| ≤ Lk. (9)

Ask → ∞ then either a subsequencevk → v in C3,α
loc (R

4), wherev solves the limit equa-
tion (7), or vk → −∞ almost everywhere and there is a sequence of numbersγk → ∞

such that a subsequence satisfies

vk/γk → ψ in C3,α
loc (R

4),

whereψ ≤ 0 is a non-constant quadratic polynomial.
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We regard Theorem 1.2 as a first step towards a more complete description of the possible
concentration behavior of sequences of solutions to problem (1), (2).

Considering (1) as a system of second order equations foruk and1uk, respectively,
it is possible to obtain some partial results in this regard from the observation that (1), (2)
provide uniform integral bounds for1uk up to a remainder given by a harmonic function.
The latter component may be controlled if one imposes, for instance, the Navier boundary
conditionsuk = 1uk = 0 on∂�. In fact, in this case, assuming that eachVk is a constant
λk > 0 that tends to 0 ask → ∞, J. Wei [21] has shown (in the notation of Theorem 1.2)
that S0 = ∅ and that at any concentration pointx(i) suitably rescaled functions satisfy
vk → v in C3,α

loc (R
4), wherev is the profile induced by stereographic projection.

As shown by Robert [18], the same result holds if for some open subset∅ 6= ω ⊂ �

we have the a priori bounds

‖(1uk)
−
‖L1(�) ≤ C, ‖(1uk)

+
‖L1(ω) ≤ C,

for all k ∈ N, wheres± = ± max{0,±s}. Also in the radially symmetric case there is a
complete description of the possible concentration patterns; see [18].

In the geometric context similar results hold for the related problem of describing the
possible concentration behavior of solutions to the equation of prescribedQ-curvature
on a closed 4-manifoldM. Here the bi-Laplacian in equation (1) is replaced by the
Paneitz–Branson operator andVk may again be interpreted as being proportional to the
Q-curvature of the metricgk = e2ukgM . In the case whenM = S4, Malchiodi–Struwe
[14] have shown that any such sequence(gk) of metrics whenVk → 1 uniformly either
is relatively compact or blows up at a single concentration point where a round spherical
metric forms after rescaling. Further compactness results and references can be found in
the papers of Druet–Robert [8] and Malchiodi [13].

Related results on compactness issues for fourth order equations can be found in
Hebey–Robert–Wen [10], C. S. Lin [12] and Robert [17]; concentration-compactness is-
sues for problems with exponential nonlinearities in two dimensions have been treated in
Adimurthi–Druet [1], Adimurthi–Struwe [2] and Druet [7].

In the following the letterC denotes a generic constant independent ofk which may
change from line to line and even within the same line.

2. Proof of Theorem 1.2

Recall the following result, obtained independently by C. S. Lin [12, Lemma 2.3] and
J. Wei [21, Lemma 2.3], which generalizes Theorem 1 from [3] to higher dimensions.

Theorem 2.1. Letv be a solution to the equation

12v = f in BR(x0) ⊂ R4 (10)

with
v = 1v = 0 on ∂BR(x0), (11)
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wheref ∈ L1(BR(x0)) satisfies

‖f ‖L1 = α < 8π2.

Then for anyp < 8π2/α we havee4p|v|
∈ L1(BR(x0)) with∫

BR(x0)

e4p|v| dx ≤ C(p)R4.

The following characterization of biharmonic functions, due to Pizzetti [16], can be found
in [15]. Denote by

∫
BR(y)

h dx the average ofh overBR(y), etc.

Lemma 2.2. For anyn ∈ N, any solutionh of

12h = 0 in BR(y) ⊂ Rn (12)

satisfies

h(y)−

∫
BR(y)

h(z) dz =
R2

2(n+ 2)
1h(y). (13)

Proof. For convenience, we indicate a short proof. We may assume thatBR(y) = BR(0)
= BR. For 0 < r < R let Gr be the fundamental solution of the operator12 on Br
satisfyingGr = 1Gr = 0 on ∂Br . Note thatGr(x) = r4−nG1(x/r). (If n = 4, we

haveGr(x) = c0(log r
|x|

−
r2

−|x|2

4r2 ).) Applying the mean value formula to the harmonic
function1h, for some constantsc1, c2 we have

0 =

∫
Br

Gr1
2h dx = h(0)+

∫
∂Br

(
∂

∂n
Gr1h+

∂

∂n
1Grh

)
do

= h(0)−

∫
∂Br

(c1r
21h+ c2h) do = h(0)− c1r

21h(0)− c2

∫
∂Br

h do;

that is, for some constantsc3, c4,

nrn−1h(0) = c3r
n+11h(0)+ c4

∫
∂Br

h do.

Integrating over 0< r < R and dividing byRn, we obtain the identity

h(0) = c5R
21h(0)+ c6

∫
BR

h dx

with uniform constantsc5, c6 for all biharmonic functionsh onBR. Inserting a harmonic
function h, we obtain the valuec6 = 1, whereas the choiceh(x) = |x|2 yields c5 =

1/2(n+ 2). ut

Lemma 2.2 gives rise to a Liouville property for biharmonic functions onRn. To see this
first recall the following result for harmonic functions.
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Theorem 2.3. Suppose that the functionH is harmonic onRn withH(x) ≤ C(1 + |x|l)

for somel ∈ N. Thend l+1H ≡ 0; that is,H is a polynomial of degree at mostl.

Proof. From the mean value property of the harmonic functiond l+1H , wheredk now
denotes any partial derivative of orderk, for anyx andR > 0 we have

|d l+1H(x)| ≤ CR−(l+1)
∫
BR(x)

|H(y)| dy; (14)

see for instance Evans [9, Theorem 2.2.7, p. 29]. But if we assumeH(x) ≤ C(1 + |x|l),
the right hand side by the mean value poperty ofH up to an error of orderR−1 and up
to a multiplicative constant equalsR−(l+1)H(x), and the latter tends to 0 asR → ∞ for
any fixedx. ut

Together with Lemma 2.2 we now obtain the following result.

Theorem 2.4. Suppose that the functionh is biharmonic onRn with h(x) ≤ C(1 + |x|)

for someC ∈ R. Then1h ≡ const≥ 0 andh is a polynomial of degree≤ 2.

Proof. From Lemma 2.2 and the assumptionh(y) ≤ C(1 + |y|) we obtain the equation

1h(x) = 2(n+ 2) lim
R→∞

R−2
∫
BR(x)

|h(y)| dy

= 2(n+ 2) lim
R→∞

R−2
∫
BR(0)

|h(y)| dy = 1h(0) =: 2na (15)

for everyx ∈ Rn, wherea ≥ 0. The functionH(x) = h(x)+a|x|2 is then harmonic with
H(x) ≤ C(1 + |x|2) and the claim follows from Theorem 2.3. ut

Proof of Theorem 1.2.Choose a subsequencek → ∞ and a maximal number of points
x(i) ∈ �, 1 ≤ i ≤ I , such that for eachi and anyR > 0,

lim inf
k→∞

∫
BR(x

(i))

Vke
4uk dx ≥ 8π2.

By (8) we then haveI ≤ C3. Moreover, givenx0 ∈ � \ {x(i); 1 ≤ i ≤ I }), we can
choose a radiusR > 0 such that

lim sup
k→∞

∫
BR(x0)

Vke
4uk dx < 8π2. (16)

For suchx0 andR > 0 decompose

uk = vk + hk onBR(x0),

wherevk satisfies

12vk = Vke
4uk in BR(x0), vk = 1vk = 0 on∂BR(x0),

and with12hk = 0 inBR(x0).
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By (8) and Theorem 2.1 we then have

‖h+

k ‖L1(BR(x0))
≤ ‖u+

k ‖L1(BR(x0))
+ ‖vk‖L1(BR(x0))

≤ C, (17)

uniformly in k.
We now distinguish the following cases.

Case 1: Suppose that‖hk‖L1(BR/2(x0))
≤ C, uniformly in k. Then Lemma 2.2 shows that

for all x ∈ BR/8(x0) we can bound

|1hk(x)| =

∣∣∣∣ ∫
BR/8(x)

1hk(y) dy

∣∣∣∣ ≤ CR−2
∫
BR/2(x0)

|h(z)| dz ≤ C,

uniformly in k andx, and (hk) is locally bounded inC4 on BR/8(x0). But then from
Lemma 2.2 and (17) we also obtain∫

BR(x0)

|h(x)| dx ≤ C −

∫
BR(x0)

h(x) dx = C +
1

12
R21hk(x0)− hk(x0) ≤ C.

By repeating the first step of the argument on any ball contained inBR(x0) we then infer
that(hk) is locally bounded inC4 onBR(x0).

But then by Theorem 2.1 and (16) we see that

12vk = Vke
4uk = (Vke

4hk )e4vk

is locally bounded inLp onBR(x0) for some uniform numberp > 1. Since Theorem 2.1
also yields uniformL1-bounds forvk, we may conclude that(vk) is locally bounded in
C3,α onBR(x0) for anyα < 1, and hence so is(uk).

Case 2: Now assume thatβk := ‖hk‖L1(BR/2(x0))
→ ∞ ask → ∞. Normalize

ϕk =
hk

‖hk‖L1(BR/2(x0))

,

so that‖ϕk‖L1(BR/2(x0))
= 1 for all k. By arguing as in Case 1, we then find that(ϕk)

is locally bounded inC4 on BR(x0). A subsequence ask → ∞ therefore converges
in C

3,α
loc (BR(x0)) to a limit ϕ satisfying the equation12ϕ = 0 in BR(x0) and with

‖ϕ‖L1(BR/2(x0))
= 1. Clearly, the functionϕ then cannot vanish identically. By (17), more-

over, we have‖ϕ+
‖L1(BR(x0))

= 0, and thereforeϕ ≤ 0. It then follows from Lemma 2.2
that1ϕ(x) 6= 0 at any pointx whereϕ(x) = 0. The setS0 = {x ∈ BR(x0);ϕ(x) = 0}

is hence of codimension≥ 1 and therefore also has vanishing measure; moreover,S0 is
closed and nowhere dense. Thus, we conclude thatϕ < 0 almost everywhere and hence
hk = βkϕk → −∞ almost everywhere and locally uniformly away fromS0 ask → ∞.
Again observing that

12vk = Vke
4uk = (Vke

4hk )e4vk

is locally bounded inLp onBR(x0) \ S0 for some uniform numberp > 1, as before we
conclude that(vk) is locally bounded inC3,α for anyα < 1 onBR(x0) \ S0. It follows
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thatuk = vk + hk → −∞ almost everywhere and locally uniformly away fromS0 as
k → ∞ anduk/βk → ϕ.

Since Cases 1 and 2 are mutually exclusive and since the region�\ {x(i); 1 ≤ i ≤ I }

is connected, upon covering this region with ballsBR(x0) as above we see that either a
subsequence(uk) is locally bounded inC3,α away from{x(i); 1 ≤ i ≤ I } for anyα < 1,
and hence(uk) is relatively compact inC3,α on this domain for anyα < 1, oruk → −∞

almost everywhere and locally uniformly away fromS = S0 ∪ {x(i); 1 ≤ i ≤ I }), with
(uk/βk) converging to a nontrivial biharmonic limitϕ ≤ 0.

Finally, we show that whenever there is concentration only the second case can occur,
that is,uk → −∞ almost everywhere ask → ∞ if {x(i); 1 ≤ i ≤ I }) 6= ∅. Indeed,
suppose by contradiction that there is at least one concentration point and thatuk → u in
C

3,α
loc (� \ {x(i); 1 ≤ i ≤ I }) ask → ∞. By Robert’s result [18], or by the reasoning of

Wei [21] we then have the convergence

Vke
4ukdx ⇁ e4udx +

I∑
i=1

miδx(i)

weakly in the sense of measures, wheremi ≥ 16π2, 1 ≤ i ≤ I . But near eachx(i) the
leading term in the Green functionG for the bi-Laplacian is given by

G(x) =
1

8π2
log

(
1

|x − x(i)|

)
.

By arguing as in Bŕezis–Merle [3, p. 1242 f.], we then conclude that

u(x) ≥ 2 log

(
1

|x − x(i)|

)
− C

nearx(i), and with a constantc0 > 0 we find

e4u(x)
≥ c0|x − x(i)|−8 /∈ L1(�),

thus contradicting the hypothesis (8). This completes the proof of the asserted macro-
scopic concentration behavior of(uk).

In order to analyze the asymptotic behavior of(uk) near concentration points we adapt
an argument of Schoen to our setting; see [20, proof of Theorem 2.2]. Letx0 ∈ S with
supBr (x0)

uk → ∞ for every r > 0 ask → ∞. For r ≥ 0 denote asKr(x0) = {x;

|x − x0| ≤ r} the closedr-ball centered atx0. ForR < dist(x0, ∂�) choose 0≤ rk < R

andxk ∈ Krk (x0) such that

(R − rk)e
uk(xk) = (R − rk) sup

Krk (x0)

euk = max
0≤r<R

(
(R − r) sup

Kr (x0)

euk
)

=: Lk. (18)

Note thatLk → ∞ ask → ∞. Definesk = (R − rk)/2Lk and similar to (5) let

vk(x) = uk(xk + skx)+ logsk,
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satisfying

sup
KLk (0)

evk = sk sup
K(R−rk )/2(xk)

euk ≤ sk sup
K(R+rk )/2(x0)

euk = L−1
k

(
R −

R + rk

2

)
sup

K(R+rk )/2(x0)

euk

≤ L−1
k (R − rk)e

uk(xk) = 1 = 2evk(0)

in view of (18), which is equivalent to the assertion (9).
Observe thatvk solves the equation

12vk = Wke
4vk

in BLk (0), where the sequence of ballsBLk (0) exhausts all ofR4 and

Wk(x) = Vk(xk + skx) → 1 locally uniformly inR4
;

moreover, ∫
BLk (0)

Wke
4vk dx ≤ 3

for all k. By applying the previous result to the sequence of blown-up functionsvk, we
then obtain the microscopic description of blow-up asserted in Theorem 1.2. The charac-
terization of the limit functionψ follows from Theorem 2.4. ut

3. An example

We demonstrate the absence of quantization also in the radially symmetric case by means
of the following example.

Example 3.1. Consider the radially symmetric functionϕ with

12ϕ = e−|x|2/2 in R4, ϕ(0) = 1ϕ(0) = 0.

This function can be computed explicitly. In fact, for anyx ∈ R4 we have

ϕ(x) =

∫
|x|

0
s−3

{∫ s

0
t3

[∫ t

0
σ−3

(∫ σ

0
τ3e−τ

2/2 dτ

)
dσ

]
dt

}
ds.

Fork ∈ N andx ∈ R4 let

uk(x) = ln k −
k6

|x|2

8
+ k−8ϕ(k3x).

Then(uk) satisfies equation (1), that is,

12uk = Vke
4uk ,

where
Vk(x) = e−4k−8ϕ(k3x)

→ 1 inC0
loc(R

4) ask → ∞.

Thus, also (2) is satisfied. Finally, we compute thatVke
4uk ⇁ 0 in the sense of measures

whenk → ∞.
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