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1. Introduction

Let ©2 be a bounded domain &* and letu; be solutions to the equation
A%up = Ve inQ, 1)

where
Vi — 1 uniformly inQ, (2)

ask — oo. Throughout the paper we denote&s= — ), (8/0x")? the Laplacian with
the geometers’ sign convention. Continuing the analysis of [19], here we study the com-
pactness properties of equatiph (1).

Equation [(1) is the fourth order analogue of Liouville’s equation. Thus, for prob-
lem (7). [2) we may expect similar results to those obtained lgziB+Merle[[8] in the
two-dimensional case. Recall the following result from [3] and its improvement by Li—
Shafrir [11].

Theorem 1.1. Let ¥ be a bounded domain &? and let(u;)cy be a sequence of solu-
tions to the equation
Aug = Vie?  in 3, (3)

whereV, — 1 uniformly inX ask — oo, and satisfying the uniform bound
/ Ve dx < A (4)
b

for someA > 0. Then either

() (ur)ren is locally bounded irc1¢ on ¥ for everya < 1, or
(i) there exists a subsequenkec N such thatuy — —oo locally uniformly inQ as
k— o0, ke K,or
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(i) there exist a subsequen&ec N and at most finitely many poinis) e Q, 1<i <1,
with corresponding numbes; € 47N such thatV; e dx — Zle Bid,.o» weakly
in the sense of measures while— —oo locally uniformly inQ\ {(x: 1 <i < I}
whenk — oo,k € K.

Moreover, near any concentration point’, after rescaling
Uk () = ug(xx +rex) +logre,  Wi(x) = Vi(xg + riex) (5)

with suitable sequencesg — x andry, — 0ask — oo, a subsequence satisfies
vr — v locally uniformly inC1® onR2, wherev is a solution of Liouville’s equation

Au =e® onR? with / e dx < . (6)
RZ

Geometrically speaking, the solutiomgto equation[(B) correspond to conformal metrics
gk = e gpo on T with Gauss curvatur&y. The fact that all solutions of equation
by a result of Chen-Li[5] are induced by conformal met@éégg. on R? that are
obtained by stereographic projection of the standard sphere then gives rise to the observed
guantization. Multiple blow-up at a point is possible, as shown by X. Chen [6].

Similarly, the solutions to (@) induce conformal metrigg, = e?“* gga 0N having
Q-curvature proportional t&. In contrast to the two-dimensional case, however, there
is a much greater abundance of solutions to the corresponding limit equation

A%u =%  onRA @)

In fact, by a result of Chang—Chel [4] for amye 10, 167?] there exists a solution,, of

(@ of total volume /s e**« dx = a which fore < 1672 fundamentally differs from the
solutionu(x) = log(+/96/(+/96 + |x|2)) corresponding to the metric obtained by pull-
back of the spherical metric a§f under stereographic projection. Only the latter solution
(and any solution obtained from by rescaling as in{5)) achieves the maximal value
[R4 e dx = 1672, If we then consider a suitable sequenge= Uy, With oy — 0 as

k — oo, normalized as ir{ {5) so thaf < uz(0) = k, we can even achieve thai;),cn
blows up atr™® = 0 in the sense that, (0) — oo while uy (x) — —oo for anyx # 0 as

k — oo.

As shown in Examplg 3]1, solutions to equatiph (1) with a similar concentration be-
havior exist even in the radially symmetric case.

There is a further complication in the four-dimensional case, illustrated by the fol-
lowing simple example. Consider the sequengg on R*, defined by lettingy (x) =
wi(|x1]), where fork € N we let w; solve the initial value problem for the ordinary
differential equationy;” = ek on 0 < s < oo with initial dataw(0) = w; (0) =
w'(0) = 0, w/(0) = —k. GivenA > 0, we can then find a sequence of ragi > 0
such thathRk (0 ¢ dx = A. Observe thaR, — oo ask — oo. Scaling as in[(5), we

then obtain a sequence of solutiangx) = vk (Rix) + log R to (7]) onQ2 = B1(0) such
thatuy (x) — oo forallx € So = {x € @;x! = 0} anduy — —oo away fromSg as
k — oo. Scaling back as i [5), froru;) we recover the normalized functiong which
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fail to converge to a solution of the limit problein (7) and develop an interior layer on the
hypersurfacdx € R*; x! = 0} instead.

These comments illustrate that conclusions (i), (ii) and (iii) of Thedrer 1.1 do not
exhaustively describe all the possible concentration phenomerfg for (1). In fact, the fol-
lowing concentration-compactness result seems best possible.

Theorem 1.2. Let2 be a bounded domain &* and let(u; )y be a sequence of solu-
tions to(D), (2) above. Assume that there exigts> 0 such that

/ Vet dx < A (8)
Q

for all k. Then either

(i) asubsequence:,) is relatively compact irC%g‘(Q), or

(ii) there exist a subsequen@e) and a closed nowhere dense Sgiof vanishing mea-
sure and at most finitely many point) € , 1 <i < I < CA, such that, letting

S=Su{xD; 1<i<I1},

we haveu; — —oo locally uniformly away fron$ ask — oo.

Moreover, there is a sequence of numbgrs— oo such that
/B — ¢ iNChe 2\ S),
wherep € CH(Q\ {x¥; 1 <i < I})is such that
A’ =0, ¢<0, ¢#0,

and
So={xeQ\{x?; 1<i<I}; px) =0}

Finally, near any pointcg € S wheresupg (,,, ux — oo for everyr > 0ask — oo,

in particular, near any concentration point), there exist points; — xp, numbers
Ly — oo, and suitable radiir; — 0 such that after normalizing we have

ve(x) = ug(xx + rgx) +logr <0 <log2+ v (0) for x| < Ly. 9)

3

Ask — oo then either a subsequencg— v in Cy;. (R%), wherev solves the limit equa-

tion (7), or vy — —oo almost everywhere and there is a sequence of numhers oo
such that a subsequence satisfies

w/vk = ¥ in CEERY,

whereyr < 0is a non-constant quadratic polynomial.
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We regard Theorefn 1.2 as a first step towards a more complete description of the possible
concentration behavior of sequences of solutions to proljleni {1), (2).

Considering[(]l) as a system of second order equations,fand Auy, respectively,
it is possible to obtain some partial results in this regard from the observatiop]thaf (1), (2)
provide uniform integral bounds faxu; up to a remainder given by a harmonic function.
The latter component may be controlled if one imposes, for instance, the Navier boundary
conditionsu; = Auy = 0 0naQ. Infact, in this case, assuming that ea¢hs a constant
Ax > 0 that tends to 0 @ — oo, J. Wei [21] has shown (in the notation of Theoren] 1.2)
that Sp = ¢ and that at any concentration poirff) suitably rescaled functions satisfy
vy — vin Ci)g‘ (R%), wherev is the profile induced by stereographic projection.

As shown by Robert [18], the same result holds if for some open sdbget C Q
we have the a priori bounds

I(Au) "Ny < €. 1Al 1) < C,

for all k € N, wheres* = +max0, +s}. Also in the radially symmetric case there is a
complete description of the possible concentration patterns; see [18].

In the geometric context similar results hold for the related problem of describing the
possible concentration behavior of solutions to the equation of presc@beadrvature
on a closed 4-manifold/. Here the bi-Laplacian in equatiof] (1) is replaced by the
Paneitz—Branson operator alg may again be interpreted as being proportional to the
Q-curvature of the metrig, = ¢2%g,,. In the case whetM = $*, Malchiodi-Struwe
[14] have shown that any such sequenge of metrics whenV;, — 1 uniformly either
is relatively compact or blows up at a single concentration point where a round spherical
metric forms after rescaling. Further compactness results and references can be found in
the papers of Druet—Robert [8] and Malchiddil[13].

Related results on compactness issues for fourth order equations can be found in
Hebey—Robert—-Wemn [10], C. S. Lin[12] and Robeértl[17]; concentration-compactness is-
sues for problems with exponential nonlinearities in two dimensions have been treated in
Adimurthi-Druet [1], Adimurthi—Struwe 2] and Druet![7].

In the following the letteiC denotes a generic constant independerit which may
change from line to line and even within the same line.

2. Proof of Theorem[1.2

Recall the following result, obtained independently by C. S. Lin [12, Lemma 2.3] and
J. Wei [21, Lemma 2.3], which generalizes Theorem 1 froim [3] to higher dimensions.

Theorem 2.1. Letv be a solution to the equation
A% = f inBgr(xg) CR* (10)

with
v=Av =0 o0ndBg(xp), (12)
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wheref € LY(Bg(xo)) satisfies
Il 2 =a < 812

Then for anyp < 872/a we havee*”’l € L1(Bg(xq)) with
/ P dx < C(p)RA.
Br(x0)

The following characterization of biharmonic functions, due to PizZetti [16], can be found
in [15]. Denote byyﬁBR(y) h dx the average of over Bg(y), etc.

Lemma 2.2. For anyn € N, any solutior: of

A%h =0 inBg(y) CR" (12)
satisfies
RZ
h — h(z2)dz = ———Ah(y). 13
o) ][Bm) (z)dz 212 ) (13)

Proof. For convenience, we indicate a short proof. We may assuma@al) = B (0)
= Bg. For 0 < r < R let G, be the fundamental solution of the operato? on B,
satisfyingG, = AG, = 0 ondB,. Note thatG,(x) = r*"G1(x/r). (If n = 4, we
2 2
haveG, (x) = co(logﬁ B ).) Applying the mean value formula to the harmonic

X 452
function Ak, for some constants;, c; we have

3 3
oz[ G,Azhdxzh(0)+/ —G,Ah+ —AG,h |do
B, B, on on

= h(0) — ][ (c1r’Ah + coh) do = h(0) — c1r’Ah(0) — CZJ[ hdo;
3B, 3B,

that is, for some constants, c4,
nr" " h(0) = car" T AR(0) 4 ¢4 fa ) h do.
Integrating over O< r < R and dividing byR", we obtain the identity
h(0) = c5sR2Ah(0) + CG][B hdx
R

with uniform constantss, cg for all biharmonic functiong on Bg. Inserting a harmonic
function 4, we obtain the valueg = 1, whereas the choice(x) = |x|? yieldscs =
1/2(n + 2). O

Lemmd 2. gives rise to a Liouville property for biharmonic function®8nTo see this
first recall the following result for harmonic functions.
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Theorem 2.3. Suppose that the functid is harmonic oriR” with H (x) < C(1+ |x|")
for some e N. Thend't1H = 0; that is, H is a polynomial of degree at mast

Proof. From the mean value property of the harmonic func@bh'H, whered* now
denotes any partial derivative of orderfor anyx andR > 0 we have

A H @) < CR*““)][ \H(y)| dy: (14)
Br(x)

see for instance Evaris|[9, Theorem 2.2.7, p. 29]. But if we asgiitme < C(1 + |x|),
the right hand side by the mean value popertyHofip to an error of ordeR~ and up
to a multiplicative constant equaks‘+D H (x), and the latter tends to 0 & — oo for
any fixedx. O

Together with Lemmp 2}2 we now obtain the following resuilt.

Theorem 2.4. Suppose that the functidnis biharmonic onR” with 2(x) < C(1+ |x|)
for someC € R. ThenAh = const> 0 and# is a polynomial of degree 2.

Proof. From Lemma 22 and the assumptiofy) < C(1+ |y|) we obtain the equation

Ah(x) = 2(n +2) lim R—Z][ o lh(y)ldy
g Br(x

=2(n+2) RILmoo R—Z][B o lh(y)|dy = Ah(0) =: 2na (15)

for everyx € R", wherea > 0. The functionH (x) = h(x) +a|x|? is then harmonic with
H(x) < C(1+ |x[%) and the claim follows from Theoren 2.3. O

Proof of Theorerp I]2Choose a subsequente- oo and a maximal number of points
x@D e Q,1<i < 1I,suchthat for eachand anyR > 0,

lim inf Ve dx > 8r2.
k— 00 Br(x®)

By (8) we then havd < CA. Moreover, givenrg € Q \ {(x?; 1 <i < I}), we can
choose aradiug > 0 such that

lim sup Vie* " dx < 872 (16)

k—o0 J Br(xg)

For suchxg andR > 0 decompose
ugp = v +hr  onBgr(xog),
wherevy, satisfies
A%vp = Ve in Br(xo), vi=Avu =0 o0ndBg(xo),

and withA2h; = 0in Bg (x).
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By () and Theorerp 2|1 we then have

N LaBp oy < 16 1 L3Brexn + 10kl L2 (BR (o)) = C (17)

uniformly in k.
We now distinguish the following cases.

Case 1: Suppose thathknLl(BR/z(xo)) < C, uniformly ink. Then Lemmgz shows that
for all x € Br/g(xp) we can bound

][ Ahi(y) dy
Bpryg(x)

uniformly in k andx, and (i) is locally bounded inC* on Bpr/g(xo). But then from
Lemmd 2.2 and (17) we also obtain

| Ak (x)| =

< CR—Z][ lh(z)|dz < C,
Bpj2(x0)

1
][ lh(x)|dx < C —][ h(x)dx =C + —RZAhk(xo) — hix(xg) < C.
Br(xo) Br(xo) 12
By repeating the first step of the argument on any ball containdg {tvg) we then infer
that (/) is locally bounded irC* on Bg (xo).
But then by Theorefn 2.1 and (16) we see that

szk — Vke4le — (Vke4hk)€4vk

is locally bounded irL? on B (xo) for some uniform numbep > 1. Since Theorein 2.1
also yields uniformZ-bounds forv;, we may conclude thaty) is locally bounded in
C3® on By (xo) for anya < 1, and hence so ii).

Case 2: Now assume that; := ”hk”Ll(BR/z(xo)) — 00 ask — oo. Normalize

hi

o=,
172kl 2B o(x0))

SO that||gok||L1(BR/2(x0)) = 1 for all k. By arguing as in Case 1, we then find ttat)

is locally bounded inC# on Bg(xo). A subsequence ds — oo therefore converges
in C%?(BR(xo)) to a limit ¢ satisfying the equatiol?p = 0 in Bg(xg) and with
||<p||L1(BR/2(XO)) = 1. Clearly, the functio then cannot vanish identically. By (17), more-
over, we havélp™ || 115, +,) = 0, and therefore < 0. It then follows from Lemma 2|2
that Ap(x) # 0 at any pointt whereg(x) = 0. The setSg = {x € Br(xp); ¢(x) = O}
is hence of codimensior 1 and therefore also has vanishing measure; moreSyés,
closed and nowhere dense. Thus, we concludegthatO almost everywhere and hence
hy = Bryx — —oo almost everywhere and locally uniformly away frafpask — oo.
Again observing that

A2y = Vie¥ = (V™)™

is locally bounded in.” on Bg(xg) \ So for some uniform numbep > 1, as before we
conclude thatvy) is locally bounded inrC3¢ for anya < 1 on Bg(xo) \ So. It follows
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thatuy = vy + hy — —oo almost everywhere and locally uniformly away frap as
k — ooanduk/ﬂk — Q.

Since Cases 1 and 2 are mutually exclusive and since the régi¢n®; 1 <i < I}
is connected, upon covering this region with ballg(xp) as above we see that either a
subsequencey) is locally bounded irC®* away from{x®; 1 <i < I} foranya < 1,
and henceguy) is relatively compact ifC3¢ on this domain for any < 1, oru; — —oo
almost everywhere and locally uniformly away frdin= So U {x®; 1 < i < I}), with
(ux/Br) converging to a nontrivial biharmonic limit < O.

Finally, we show that whenever there is concentration only the second case can occur,
that is,uy — —oo almost everywhere as — oo if {x); 1 < i < I}) # #. Indeed,
suppose by contradiction that there is at least one concentration point ang that: in
c3e@\ {x®; 1<i < 1I})ask — oo. By Robert's result[18], or by the reasoning of

loc
Wei [21] we then have the convergence

I
Ve dx — eMdx + Zm,»sx@-)
i=1

weakly in the sense of measures, where> 1672, 1 < i < I. But near each® the
leading term in the Green functian for the bi-Laplacian is given by

Gx) = 1 lo 1
YT Br2 ¢ lx —x®] )

By arguing as in Bezis—Merle([8, p. 1242 f.], we then conclude that

1

nearx®, and with a constanty > 0 we find
M0 = colx —xV7 ¢ LN(Q),

thus contradicting the hypothes|g (8). This completes the proof of the asserted macro-
scopic concentration behavior @fy).
In order to analyze the asymptotic behaviotwf) near concentration points we adapt
an argument of Schoen to our setting; see [20, proof of Theorem 2.2koLetS with
SUPg, (xo) Uk —> OO for everyr > 0 ask — oo. Forr > 0 denote a, (xg) = {x;
|x — xo| < r} the closed--ball centered atg. For R < dist(xg, dR2) choose O< ry < R
andx; € K,, (xo) such that

(R — rp)e* ™) = (R — ry) sup ¢“* = max ((R —r) sup e”k) = L;. (18)
K, (x0) O=r<R K, (x0)

Note thatL; — oo ask — oo. Definesy = (R — r) /2L and similar to[(b) let

vk (x) = ug(xg + sgx) + log s,
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satisfying
v u u -1 R+ u
sup e’ = s sup  e'F < s sup %=L \R——5— sup e
K1, (O K(Rergy20) K (Rary)/2(x0) 2 ) Kinp2o)
< L;l(R — 1)) = 1 = 209

in view of (18), which is equivalent to the assertiph (9).
Observe thaty solves the equation

szk = Wke4vk
in Bz, (0), where the sequence of baBs, (0) exhausts all oR* and

Wi (x) = Vi(xi + six) — 1 locally uniformly inR#;

/ Wie™ dx < A
BLk (0)

for all k. By applying the previous result to the sequence of blown-up functipnee
then obtain the microscopic description of blow-up asserted in Theorém 1.2. The charac-
terization of the limit functiony follows from Theorenh 2}4. o

moreover,

3. An example
We demonstrate the absence of quantization also in the radially symmetric case by means
of the following example.
Example 3.1. Consider the radially symmetric functignwith
A2p = W2 in R4, 4(0) = Ap(0) = 0.

This function can be computed explicitly. In fact, for ang R* we have

x| s t o
p(x) = / s_3{/ t3|:/ o_3<f 13712 dt) do] dt} ds.
0 0 0 0

Fork € Nandx € R* let
k6 2
up(x) = Ink — '—;” + k8o (k3x).
Then(uy) satisfies equatiofi)(1), that is,
Azuk = Vke4uk,
where e s
Vi(x) = e %790 1 in 2 (R*) ask — oo.
Thus, also[(R) is satisfied. Finally, we compute thgt** — 0 in the sense of measures
whenk — oo.
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