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Abstract. We consider the integral functional
T = /Q[f(lDul) —uldr, wewtk@),

where2 c R", n > 2, is anonempty bounded connected open subdt efith smooth boundary,
andR > s — f(|s]) is a convex, differentiable function. We prove thatiidmits a minimizer in

Wé’l(g) depending only on the distance from the boundarg2othens2 must be a ball.
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1. Introduction

Let 2 Cc R", n > 2, be a smooth domain, and &t be the integral functional defined in
H}(£2) by

1 2 1
Jo(u) = / (— |Du|c — u) dx, ue€ Hy(£2).
o\2

It is well known thatJ> has a unique minimum point iH&(Q), which is the unique
solution of the Dirichlet problem

—Au=1 in$,
{ (1)
u=20 onos2.

In recent papers [11, 10], the following question arises in connection with the estimate
of the minimum ofJz: If the minimizerug of J> depends only on the distance from the
boundary off2, what can be said about the geometry2?
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In order to answer to this question, let us recall a celebrated result by J. Serrin (see
[19]) which states that if the overdetermined Dirichlet problem

—Au=1 in$2,
u=20 onos2,
(2)
u
—|=c o0nas2,
av

admits a solution, thef? must be a ball. (Heréu/dv denotes the derivative with respect
to the outer normal to the boundary @f)

Now, assume that the minimizep of J, depends only on the distande from the
boundary of2, thatis,ug(x) = ¢ (de (x)), x € £2. Since the outer normal &2 is given
by v(y) = —Ddg (y) for everyy € 952, we have

dup
av

(y)’ = 1¢/(0)Ddo(y) - v()| = ¢'Q)], Vy € a2,

henceug is a solution to the overdetermined probleﬁ’p (2) witk |¢’(0)|. From Serrin’s
result, we conclude tha® is a ball.
We remark that the above argument works also for the functional

1
Jp(u) = / (; |Du|? — u> dx, ue Wé’p(.Q), l1<p<oo,
2

using the analog of Serrin’s result for thelaplace operator (segl![3,113,112]).
Our aim is to extend this kind of symmetry results to the general functional

J(w) =/[f(|Du|)—u] dv, uewtie), 3)
2

where2 c R" is a smooth domain an® > s — f(|s|) is a convex, differentiable
function. Let us define the set of so-calledb functiongor radial functiong

W(2)={u e Wg’l(Q); u depends only on the distance frae}. (4)
We prove that if the minimum problem
min{J (u); u € Wyt (£2)) (5)

admits a solution belonging /(£2), thens2 is a ball (see Theoreft} 1). The converse is
also true (see Remdrk 1).

Our approach is not based on the analysis of an associated overdetermined problem.
Indeed, the Euler equation associated to the functidimlat least formally, the nonlinear
Dirichlet problem

div( 7(pup 24 ) =1 ine
- (f(| M|)m>— )

u=20 onos2.

(6)
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For such general equations there are no results concerning the overdetermined problem
with

ad
'—u‘zc onas, @)
av

similar to Serrin’s result fo {2).

On the other hand, the requirement that the integral functidnahs a minimizer
in W(£2) is much stronger than the boundary conditiph (7). We shall fully exploit this
assumption in order to obtain the following results.

(a) An explicit representation formula for the solutions to the minimum problem
min{J (u); u € W(82)}

(see Theorein]2 below).

(b) The validity in the sense of distributions of the Euler-Lagrange equéfjon (6) associ-
ated to the minimum probler|(5), for minima belongingt&(s2) (see Theorer|3
below).

(c) Existence, uniqueness and explicit representation of the solutdbthe equation

—divw(x)Ddo(x)) =1 ing,

which is related to the Euler-Lagrange equatjgn (6) whenV(£2).

We remark that the results in (c) were obtained in [5, 6] in the framework of mathematical
models for sandpile growth.

Combining (a), (b) and (c) we shall prove that the mean curvatubeois constant.

This implies that2 must be a ball, thanks to a fundamental result in differential geometry
by A. D. Aleksandrov/[1].

The paper is organized as follows. In Sectidn 2 we state the main result of the pa-
per (see Theorefr] 1 below). The existence and characterization of minimizeis tie
space/V(£2) is established in Secti¢n 3, whereas the validity of the Euler-Lagrange equa-
tion for minimizers of/ in W&’l([z), belonging toV(£2), is proven in SectioE|4. Finally,
in Sectior] b we recall the result provenin [6] and complete the proof of Thedrem 1.

2. Notation and statement of the result

In what follows, £2 will denote a smooth domain iR", that is, a honempty bounded
open connected subset Bf with C2 boundary. We denote bys2 the boundary of2,
and byd, : 2 — R the distance function tds2. The symbok, will denote thenradius
of £2, that is, the supremum of the radii of the balls containegirt is easily seen that
ro = maX{do (x); x € 2}.

If A c R", we denote byA| andH"~1(dA), respectively, the Lebesgue measure of
A and the(n — 1)-dimensional Hausdorff measurea.

Let J be the functional defined ift](3). Our assumptionsfoare the following:
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(F1) f:[0,b) — R, b € (0, 00], is a convex, differentiable, nondecreasing function. (If
b < oo, for notational convenience we sgts) = oo for everys > b.)
(F2) If0 < b < o0,

lim f(s) = o0;
s—b~

if b = o0,

1/n
i F©) :Yimoof'“”% (|9|) |

s—>00 5 vy,
wherev, is the volume of the unit ball iiR".

(F3) f1(0) = “nc]+ f& =10 _

N

0.

We remark that, in the cage= oo, assumption (F2) is certainly satisfiedsifis a super-
linear function, that is, if

im 79— oo

s—>00 §
Assumption (F3) is equivalent to the differentiability of the map> f(|s|) ats = 0.

Our main result is the following.

Theorem 1. Let$2 C R” be a smooth domain, letbe the functional defined i8), and
assume thay satisfies assumptiorfg1)—(F3) If J admits a minimizer irW()l’l(.Q) that
depends only on the distance from the boundars pthens2 must be a ball.

The proof of this theorem is postponed to Secfipn 5.

Remark 1. Of course, the converse of TheorEin 1 also holds. Namefy,ig a ball and
f satisfies assumptions (F1)—(F3), then the functighaldmits a unique minimizer in
W&’l({z), which is radially symmetric (see for example [8]).

Remark 2. In Theoren{ L, the assumption thétbe differentiable cannot be dropped.
Namely, letf(s) = max0,s — p}, s > 0, wherep > 0 is a fixed parameter. Thefi

is a convex nondecreasing function in &), and, if p > 0, it is not differentiable at

s = p. Let 2 c R" be a smooth domain. Assume in addition tkiats a convex set,

and that|2| < v,, so that (F2) clearly holds. Under these assumptions, in [20] it was
proven that the functiong(x) = p dg(x) is a minimizer ofJ in Wol’l(.Q). (In [6] the

same result is proven also in the case of nonconvex domains.) This assertion also holds
in the casep = 0. We remark that, in this cas¢,does not satisfy assumption (F3). This
example shows that, for such the functional/ admits minimizers depending only on

the distance frond 2 even if 2 is not a ball.
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3. Existence of minimizers inV(£2)

The aim of this section is to prove, under the assumptions of Thedrem 1, that the func-
tional J has a minimizer in the spaod&/(£2) of web functions. Moreover, we give an
explicit representation of the minimizers and we prove that they satisfy a suitable Euler—
Lagrange inclusion.

Throughout this sectior? will be a smooth domain dk”, although Theorein|2 be-
low still holds under a weaker regularity assumption on the boundaf see Remarf]|4
below).

We recall thatdg is a Lipschitz continuous function, with gradient satisfying
|Ddg(x)] = 1 fora.e.x € £2. Itis clear from the definition that G do(x) < re
for everyx e 2, whererg denotes the inradius a®. For everyi = 1,...,n — 1, de-
note byx; (y) thei-th principal curvature 062 at the pointy € 952, corresponding to
a principal directiore; (y) orthogonal toDdg (y), with the sign conventior;(y) > 0
if the normal section of2 along the directiore; is convex. LetX denote the singular
set ofdg,, that is, the set of points € £2 for which dg; is not differentiable. The sef’
is also known asidge or cut locus From Rademacher’s theorer®, has vanishing:-
dimensional Lebesgue measure. Introducing the projecfion) of x € 2 onds2, X is
also the set of points for which IT(x) is not a singleton. We extend,i = 1,...,n—1,
to 2 \ X by settingk; (x) = «; (IT(x)) for everyx € £2 \ . Define thenormal distance
to the cut locus of2 by

(8)

min{t >0; x +tDdo(x) e X} ifxe2\Z,
T(x) = . —
0, if x e X.

Itis known that ifd §2 is of classC?1, thenr is Lipschitz continuous obs2 (seel[18, 17]);
for less regular domains the Lipschitz continuity may fail, but continuity is preserved if
952 is of classC? (see[[5[6]).

The functionf: [0, c0) — [0, oco] appearing in the definition af will be a lower
semicontinuous, nondecreasing convex function. We remark that, for the results estab-
lished in this sectionf need not be differentiable, and can take the valudnNith some
abuse of notation, we will denote by*: R — R U {oo} the conjugate function of the
maps — f(|s|), s € R. As is customary, the symb@lf (s) will denote the subgradient
of f ats, in the sense of convex analysis.

In the following, a major role will be played by the function [0, ro] — R defined

by

2
o) = | 7o tagzy) €02 9)

0 ift =rg,
wheref2; = {x € £2; dp(x) > t}. (We recall that, denotes the inradius a2.)

Theorem 2. Let £2 be a smooth domain iRR". Let J be the functional defined i),
where f: [0, c0) — [0, o0] is a lower semicontinuous, nondecreasing convex function,
satisfying

f(@s)=Ms—a, Vs=>0, (20)
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for some positive constantg anda, with

w22 o

Un

Then, for every measurable selection
y(® € df* (@), te[0,rel, (12)
the function

dgo(x)
uo(x) :/ y()dt, xe€ 2,
0

belongs toW 1> (£2) and is a minimizer of in the sefV(£2) defined in@). Conversely,
if ug € W(£2) is a minimizer of/ in W(£2), thenug belongs tow 1> (£2) and satisfies
the Euler-Lagrange inclusion

|Duo(x)| € af*(a(da(x))), a.e.x e . (13)

Remark 3. Under the additional assumption of convexitys@f Theorenj P was proved
in [9], without convexity assumptions ofi.

The remaining part of this section will be devoted to the proof of Theffem 2. We start
by proving a simple estimate on the functiemefined in[().

Lemma 1. For everyr € [0, re) we have

1/n 1/n
O<a(t)§}<@> §}<|Q|) . (14)
n n

Un Un

(Recall thatv, is the volume of the unit ball ilR".) As a consequencém;_,,, a(t)
=a(rgo) =0.

Proof. The fact thatx is a positive function on [Q-;) follows from its very definition.
Concerning the upper bound, we recall that the isoperimetric inequality

H'LDA) = nvy" A0/ (15)

holds for every bounded measurable getz R” (see([4, §14.3 and §14.6]). Applying
(15) to the bounded measurable sktwe get

|2 |(n—1)/n 1 1/182| 1/n
0<a() =2/ = =l =o(==)
H"=2(3821) ~ no, n\ Un

and the proof is complete.
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Let us define the set

90 =0
t > H13R2)p(1) € LY, ro) V, (16)

K =1¢ € ACix[0, re)
t— H"102)¢' (1) € LY(O, ro)

whereACo[0, re) denotes the set of absolutely continuous functions jn][@r every
re@,rg).

Lemma 2. A functionu belongs toV(£2) if and only ifu = ¢ o dg,; for somep € K.

Proof. Let u € W(£2). By definition of W(£2), there exists a measurable function
¢: [0,re] — Rsuch that(x) = ¢(dg (x)) for everyx € £2.

The tricky part of the proof tha$p € K consists in showing thap belongs to
ACioc[0, ro). We shall use a local coordinate systenyarwhose properties were proved
in [16, p. 236]. More precisely, sinc@ hasC? boundary, we can choose a finite family
U1, ...,Uy of bounded open sets IR"” so thatd2 < vazlu,-, and such that, for each
i =1,..., N,inasuitable coordinate systemif we have

NU; = {(x/,t); X' eV, t> CD,'()C/)} NY;, )

whereV; = {x’ € R*"1; (x',1) € U; for somer € R} is an open set, and, is a C2
function onR” 1. Define the map§&,: V; x R - R",i =1,..., N, by

Gi(x',t)=y+1tDd,(y), wherey= (x',®;(x")) €952, (18)

anddy, denotes the signed distancesi@ defined by

; dist(x, 9£2) if x € £2,
d_Q (x) = . .
—dist(x, 02) if x e R"\ £2.
We collect here the main properties of the méhsi = 1, ..., N (see[16, Lemmas 14

and 15]):

(a) G; is Lipschitz continuous on bounded subset¥ ok R.
(b) The Jacobiad G; is a locally bounded measurable function, and

n—1
JGi(x',1) = /14 |D®;(x")|2 ]"[(1 — K1),
j=1

wherexs, .. ., k,_1 are the principal curvatures 6%2 atG; (x’, 0).
(c) G; is one-to-one on the set

U ={',t); x eV;, t € (0,7(G;(x',0))} C R".

d) 2\ 2 =Y, GiUy.
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From properties (a), (b) and (c) we deduce that, for evegyl, ..., N and every > 0,
G; is a bi-Lipschitz map on the set

Uf = {(x',1); x' € Vi, t € (0,max{0, t(G;(x, 0)) — €})}.

Since the restriction ok to the setA! = G;(U]) belongs toWl*l(Af), from Theo-
rem 2.2.2 in[[21] we see that the restriction of the composite map u o G; to Uf
belongs tow 1(U¥).

Finally, let us prove that, for every fixed € (0, r), the mapy belongs toAC|O,
ro — €]. From property (d) and the fact that thedimensional Lebesgue measureofs
zero, there exists an indéx {1, ..., N} such that

max(z(G;(x’,0)); x' € Vi} =rg.

From Theorem 2.1.4 in_[21] we can assume that the funatien u o G; is absolutely
continuous on the line segment

A) = {(x',0); 1 € [0, max0, 7(G; (x', 0)) — €/2}]}

for almost everyx’ € V;. Sincer is a continuous map, there exists € V; such that
T = 1(G;(x',0)) > ro — € and the restriction of to A(x") is absolutely continuous.
By the very definitions of the functions; andv we conclude that the mapr— u(y +
tDdgo(y)) = ¢ (1), with y = (x/, ®;(x")), is absolutely continuous in [T']; in particular,
¢ € ACIO, ro — €]. Furthermore, the boundary condition @implies thaty (0) = 0.

Let us conclude the proof of the lemma. From the change of variables formula (see
[14], 83.4.3]) it follows that

re
/IM(X)IdX=f HH 02010 (1] dt,
Q 0

/ |Du(x)|dx = / T a2l ()] dr,
2 0

hencep € K. Conversely, from the above formulas it is easily seen thatéf /C, then
u = ¢ o dg belongs toWOLl(Q).

Remark 4. Following [16, Section 3], it can be easily proved that the conclusion of
Lemma[2 holds (with minor modifications in the proof) under a weaker assumption on
the regularity of the boundary a®. More precisely, it is enough that the bounded open
setf2 c R” is of positive reach{see [15]), that is, there exists> 0 with the following
property: for everyy € 952 there exists a closed bal ¢ R" \ £2, of radiusr, such that

BN ={y}

As a consequence of Leminja 2, a functi@n= ¢oody is a minimizer of/ in W(£2)
if and only if ¢g is a minimizer of the functional

F(¢)=/0 H' L @R20LF ¢/ 0D — ¢ ()] dt 19)

in /C. In order to simplify the subsequent analysis, it is convenient to rewrite the tesm in
using the following integration-by-parts formula.
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Lemma 3. If ¢ € K, then the map — |§2;|¢/(¢) belongs taL.1(0, rp) and

re re
/ 2,19’ (1) dt :/ H' Y0209 1) dr. (20)
0 0
Proof. From the isoperimetric inequality (JL5) we have
1
|2 = |22, "V < | @M ),
nvy

hence
[$2]

n

1 1/n
12:11¢"(1)] < ;( ) H 0216’ (1], aere(0,rgl.

Sincer — H"1(8£2,)¢’(t) belongs toL1(0, ro), so does — |§2;|¢’(¢). If we recall
thatt +— |§2| is absolutely continuous in [@] and% 12, = —H""1(82,) fora.e.r,
formula [20) now follows from a standard integration by parts.

In view of Lemmd 3B, the functional’ can be rewritten as

re
F(¢) = /0 gt, ¢’ () dt, ¢ ek, (21)
whereg: [0, rg] x R — R U {00} is defined by

g(t, &) =H""20R2) FED — 192/ £ . (22)

The advantage of rewriting' in this way lies in the fact that the lagrangearloes not
depend onp. We remark thag(z, -) is a convex function for every € [0, re]. From
assumption(J0) and estimafe|14) we have

g(t, ) = H' 1 02)[M — a(n] 1§ — H' T (082)a

1/n
> H"_l(aﬂt)[M - %(|IS}2|> }I%‘I - H"H0%2))a,

n

hence from the assumptidn {11),
lim g(1,§) = o0
§]—>00

for everyr € [0, re). This implies that, for every such the convex functiorg (¢, -) has
a nonempty compact set of minimizers. Recalling th& a minimizer ofg(¢, -) if and
only if 0 € dg(¢, &), that is, if and only if§ € dg*(z, 0), we conclude that the convex set
ag*(z, 0) is nonempty and compact for every [0, r;). Moreover, a simple computation
shows that

9g*(t,0) = af*(a(t)), Vrel0,rg).

The following lemma will be used in order to prove the Lipschitz regularity of the
minimizers ofJ in W(£2).
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Lemmad4. Letg: [0,re] x R — R U {oo} be the function defined if22), where f
satisfies the assumptions of Theofgm 2. Then there exists a positive c@hstihtthe
following property. If¢&: [0, re] — R is a measurable selection of the multifunction
t — 3g*(t,0), then|é(r)| < C fora.e.t € [0, re].

1<|52|)1/”
M, = —
n\ vy,

the constant appearing i {11). From](10) we deduce that the open inter¥al M)
is contained in the essential domain 6f (that is, f* is finite in that interval). Since
M > M, by assumption[(11), and & «(r) < M, by (I4), from the monotonicity of
the subgradient we know th@| < (f*)’ (M,) < oo for every& e oaf*(a(r)). The
conclusion now follows by choosing = (f*), (M,).

Proof. Denote by

Now we are in a position to prove Theor¢in 2.

Proof of Theorerp]2Letg: [0, ro] x R — R U {oo} be the function defined ifi (22), and
let IC be the set defined ifi (IL6). From the discussion above, it is enough to prove that the
functional

F(¢) = /Om gt,p'(n)dr, ek,
admits minimizers, ang € K is a minimizer ofF if and only if
¢'(t) € 0g*(t,0), a.erecl0,re]. (23)
We have already shown that the multifunction
t> 0g"(t,0) =af " (x(r), tel0,rg], (24)

has nonempty, compact convex values for evegy[0, re). Moreover, from Lemmf]4,
if £(r) is a measurable selection of that multifunction, tifea L°°(0, ri;). Hence, the
function

t
$o(r) ::/0 £(s)ds

belongs taC N W1>(0, re). Let us show thapg is a minimizer ofF in K. Sincegy(t) =
(1) € 9g*(t, 0), we deduce that @ dg(z, ¢ (1)) for a.e.r € [0, re], so that

re
F(¢) — F(¢o) = /(; [g(t, ¢' (1)) — g(t, ¢p(1)]dt = 0

for everyg € K.

Conversely, letyg € K be a minimizer ofF in IC. Let&(¢) be a measurable selection
of the multifunction ), and defing(t) = fé &(s)ds,t € [0, re]. From the first part of
the proof,¢ is a minimizer of F, so thatF (¢) = F(¢o). Moreover,¢’(¢) is a minimum
point of g(z, -) for a.e.t € [0, re], so that

g, ¢’ (1) — g(t, po(1)) <0, a.ere[0,rgl.
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SinceF (¢) = F(¢o), we must have

g(t, 9" (1) = g(t, ¢p(1)), aerel0,rgl.
Henceg (1) must be a minimum point of(z, ) for a.e.z, that is, ) holds.

Remark 5. From the proof of Theoreir| 2 it is clear that a functiagix) = ¢o(de (x)),
¢o € K, is a minimizer ofJ in W(£2) if and only if ¢o satisfies the Euler-Lagrange
inclusion

¢o(1) € af*((2)), a.erel[0,rel, (25)

wherex is the function defined i {9). Sinceis strictly positive in [Q ), anddf*(p) C
[0, o0) for everyp > 0, the differential inclusioS) implies thaf, > 0 almost every-
where.

The last inequality can also be deduced directly from the factdtiéd a minimizer
of the functionalF defined in[(IP). Namely, consider the function

t
$1(1) =/0 lgo(s)lds, t€[0,re].

Since¢p € K, itis easy to check that alspy € I, and 0< ¢} (1) = |¢;(1)| for a.e.

t € [0, re]. Thenga(r) > ¢o(t) for everyr € [0, ri]. Assume by contradiction that the
setk = {r € [0, re]; ¢4(1) < 0} has positive Lebesgue measure. In this case; ¢o on
some interval. Henc€(¢1) < F(¢o), in contradiction with the fact thaty is a minimizer
of F.

Remark 6. Assume thaff satisfies (F1)—(F3), and exterfdover allR by settingf (s) =
f(s]) whens < 0. We remark that (F3) is equivalent to the differentiability of this
extension at = 0 (where we havg”’(0) = 0). Hencef is differentiable everywhere in
(—b, b). Under this differentiability assumption, the inclusipn](25) can be written in the
equivalent form

a(t) = f(go()), a.erel0,rg].
4. Validity of the Euler-Lagrange equation
The aim of this section is to establish a result concerning the validity of the Euler—
Lagrange equation associated to the minimum prob[gm (5), for minimizers belonging
to the spacéV(£2).

Theorem 3. Let 2 be a smooth domain iR", let f satisfy(F1)—(F3) and letug €
W(£2) be a minimizer of/ in W&’l(sz). Thenug satisfies the Euler—Lagrange equation

/Q[f’(lDuo(X)l)(Dd:z(X), Do(x)) —¢(0)]dx =0, V¢ e Cg(2). (26)
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Proof. As a first step, let us prove that

/ J(IDuo + €Dg|) — f(|Duol) d
2

€

lim

e—0

x =/Qf/(|Duol)(Dd9,D§0>dx (27)

for everyp € C3°(£2). Sinceug is also a minimizer o/ in W($2), from Theoren’[]z we
know thatug € W1-°°(£2), hence there exists a positive const@ptsuch that

|Dug(x)| < Co < b, aexceSf. (28)
Now, lety be a fixed function irCg°(£2). From ) there existg > 0 such that
|Dug(x) + eDo(x)| <C <b, ae xecS2, (29)

for every|e| < €p. From the mean value theorem, for every sadhere exists a function
6. such that

J(IDug + € Dg|) — f(|Duol)
€

= f'(IDuol| + 6)(Ddg, Do)

and|6 (x)| < €|Dyp(x)| for everyx € £2. This last estimate, together wifh {29), implies
that
f(Dug + eDgl|) — f(|Duol)

€

< f/(OlIDglloo, Vil < €o.

On the other hand, singeis a convex differentiable function, its derivative is continuous,
hence
im £ (Puo +€Del) — f(|Duo))

e—0 €

= f'(IDuol)(Ddg, Dg).

The equality[(2]7) now follows from the Lebesgue dominated convergence theorem.
Letus prove). For every € C;°(£2) and every > 0, sinceug is a minimizer of
J we have

_ Juo+ep) — J(uo) =/ J(IDug + €Dg|) — f(|Dug|) — €p
- € o €

0 dx.

Passing to the limit as — 0%, from (27) we deduce that

/Q[f’(lDuoI)(Ddrz, Dg) —¢]dx = 0.

Since this inequality also holds if we replagavith —¢, (26) follows.

Remark 7. Without the assumption that depends only on the distance fran®, the
validity of the Euler—Lagrange equation can be established provided thatisfies suit-
able growth conditions. Seel [7] for details.
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5. Proof of Theorem[1

We will use the following result.

Theorem 4 (see[6]) Let £2 be a smooth domain. Then the function2 — R defined
by v(x) = 0for everyx € ¥ and

ds, VxeR\X, (30)

v(x) = /T(X)n_l 1—(da(x) +s)ki(x)
CJo 1 l-der()

is continuous in2 and it is the unique solution to
[ D). Do) — gl dx =0, g < CF @) (31)

We recall that, for every € 2 \ X, «;(x),i = 1,...,n — 1, denotes thé-th principal
curvature ofd$2 at 7 (x), andr is the normal distance to the cut locus defined]n (8).

Remark 8. In the case: = 2, Theorenfi 4 was proven inl[5].
Let us denote by (y) the mean curvature éf2 at a pointy, that is,

1 n—1
Hi(y) = —= ) Kki(y), yedR. (32)
i=1

-1
Under the assumptions of Theorém 1, we shall show Hiats constant oros2, that
is, every connected componefitof 352 is a compact embedded hypersurface without
boundary with constant mean curvatufg. From a celebrated result of Aleksandrov [1],
it follows thats is a hypersphere of radius = 1/ H;. Sinces2 is connected, we conclude
that£2 must be a ball of radiuR.

Proof of Theoren|1Let ug = ¢o o dp be a minimizer of/, depending only on the
distance fron9 2. Under the assumptions of Theorgn 1, from Thedrem 2 we findsthat
is Lipschitz continuous on [0 ]. Furthermore, the Euler-Lagrange equation

a@t) = f'(lgo)), aetel0,re], (33)

holds, wherex: [0, ro] — R is the function defined inf {9) (see Rempik 6).

From Theorem |3 we know thap satisfies the Euler—Lagrange equatijon (26). On the
other hand, from Theorep] 4 we deduce that) = f’(|Duo(x)|). From [33), we then
have

v(x) = a(do(x)), aexcesl.

More precisely, from the continuity af it follows thatv is constant on the level seis2,
of the distancel,, for everyr € [0, re].

Letx € X, thatis,v(x) = 0, and lett = dgo (x). From the discussion above we have
v(y) = 0 for everyy € 92, thatis,982; € X.
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We claim thatt = r. Assume by contradiction that there exists a poimt £2 with
do(z) > t, and lety € I1(z). The functiondy, is differentiable at any point of the line
segment(y, z) (seel[2]), which is in contradiction with the fact that, z) must intersect
952, thatis,(y, z) must contain at least one singular pointgf.

We have thus proven that

xeX & dok) =ro.
As a consequencdy, is regular on the seftx € £2; 0 < dp(x) < rg}, and then the

distance to the cut locus igy) = r; for everyy € 952. From the explicit representation
(30) of v, for everyr € [0, rp) we have

n 14 )
v(y)—oz(t)—/Q 1_??2;; ds, Vye .

From this formula we deduce that the functiens of classC* on [0, r;). By a direct
computation we get

, £ re (e l1—sxl(y) K ()
a(t)z_“—]Zf ( —th(y)> 1—1ki(y) ds (34)

for everyr € [0, ro) andy € 92;. Evaluating this derivative at= 0 we obtain

n—1
a’'(0) = -1+ «(0) ZKj(y) =-14+m—-Da(0H1(y), Vyedf,
=1

so thatH7 is constant ord 2. From a result of AleksandroV[[1] we conclude that the
connected se® is a ball.

Remark 9. The term;(y)/(1 — t«;(y)), appearing in the integral ifi (B4), is theth
principal curvature of the sét2; aty (see[16]).

Remark 10. The fact thatdg; is regular on{x € £2; 0 < do(x) < ro} alone is not
enough to conclude tha? is a ball. For example, the sé&t = Bz (0)\ B,(0),0 < r < R,

is a connected set witfi®® boundary, with inradius, = (R — r)/2, and the singular set
X coincides withd B, g),2(0) = {x € £2; do(x) =rg).

Among convex sets, if we relax the assumption on the regularity of the boundary, an
example can be constructed in the following way. Betc R” be a nonempty compact
convex set without interior points (in the language of convex geometry, its dimension must
be at most — 1). Letr > 0, and defing2 = (.5 B, (x). Thens2 is an open convex set
with inradiusrg, = r, and the singular set af, coincides with{x € £2; do(x) = rp}
=X,
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Remark 11. Let us define the-th order mean curvaturd; of 952 to be the elementary
symmetric polynomial of degredn the principal curvatureg, . .., x,—1 normalized by
the following identity:

n—1 n—1 n—1 )

l_[(1+Kil) = Z( ; )H,'tl.

i=1 i=0
It is easily seen thatlp = 1 andH; is the mean curvature, defined jn[32). Computing
the firstn — 1 derivatives ofx atr = 0 we can prove thakl1, ..., H,_1 are constant on
2% (it is clear thata posteriorj this is a consequence of the fact tlsatis a ball). For
example, ifs > 3, the second derivative ofis given by

n—1
1 _ Kj(y)
o) = ; 1—1tki(y)
N i /9 ("l 1- sm(y)) _ K5 (")en ()
e g l-ma()/) Q=i ()L = tkn(y)

for everyr € [0, rp) andy € 9£2;, hence
a"(0) = —(m—DH1(y) + (n — D)(n — 2)H2(y)x(0), Vy € 982.

SinceH; is constant ord §2, we deduce that alsH> is constant o $2.
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