

Graziano Crasta

A symmetry problem in the calculus of variations

Received October 22, 2004 and in revised form March 29, 2005

Abstract. We consider the integral functional

$$
J(u) = \int_{\Omega} [f(|Du|) - u] dx, \quad u \in W_0^{1,1}(\Omega),
$$

where $\Omega \subset \mathbb{R}^n$, $n \ge 2$, is a nonempty bounded connected open subset of \mathbb{R}^n with smooth boundary, and $\mathbb{R} \ni s \mapsto f(|s|)$ is a convex, differentiable function. We prove that if J admits a minimizer in $W_0^{1,1}(\Omega)$ depending only on the distance from the boundary of Ω , then Ω must be a ball.

Keywords. Minimizers of integral functionals, distance function, Euler equation

1. Introduction

Let $\Omega \subset \mathbb{R}^n$, $n \ge 2$, be a smooth domain, and let J_2 be the integral functional defined in $H_0^1(\Omega)$ by

$$
J_2(u) = \int_{\Omega} \left(\frac{1}{2} |Du|^2 - u \right) dx, \quad u \in H_0^1(\Omega).
$$

It is well known that J_2 has a unique minimum point in $H_0^1(\Omega)$, which is the unique solution of the Dirichlet problem

$$
\begin{cases}\n-\Delta u = 1 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$
\n(1)

In recent papers [\[11,](#page-15-1) [10\]](#page-15-2), the following question arises in connection with the estimate of the minimum of J_2 : If the minimizer u_0 of J_2 depends only on the distance from the boundary of Ω , what can be said about the geometry of Ω ?

G. Crasta: Dipartimento di Matematica "G. Castelnuovo", Universita di Roma I, ` P.le A. Moro 2, 00185 Roma, Italy; e-mail: crasta@mat.uniroma1.it

Mathematics Subject Classification (2000): Primary 49K30; Secondary 49K20, 49K24, 53A07

In order to answer to this question, let us recall a celebrated result by J. Serrin (see [\[19\]](#page-15-3)) which states that if the overdetermined Dirichlet problem

$$
\begin{cases}\n-\Delta u = 1 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega, \\
\left|\frac{\partial u}{\partial \nu}\right| = c & \text{on } \partial \Omega,\n\end{cases}
$$
\n(2)

admits a solution, then Ω must be a ball. (Here $\partial u/\partial v$ denotes the derivative with respect to the outer normal to the boundary of Ω .)

Now, assume that the minimizer u_0 of J_2 depends only on the distance d_{Ω} from the boundary of Ω , that is, $u_0(x) = \phi(d_{\Omega}(x))$, $x \in \Omega$. Since the outer normal to $\partial \Omega$ is given by $v(y) = -Dd_{\Omega}(y)$ for every $y \in \partial \Omega$, we have

$$
\left|\frac{\partial u_0}{\partial v}(y)\right| = |\phi'(0)Dd_{\Omega}(y) \cdot v(y)| = |\phi'(0)|, \quad \forall y \in \partial \Omega,
$$

hence u_0 is a solution to the overdetermined problem [\(2\)](#page-1-0) with $c = |\phi'(0)|$. From Serrin's result, we conclude that Ω is a ball.

We remark that the above argument works also for the functional

$$
J_p(u) = \int_{\Omega} \left(\frac{1}{p} |Du|^p - u \right) dx, \quad u \in W_0^{1,p}(\Omega), \ 1 < p < \infty,
$$

using the analog of Serrin's result for the p -Laplace operator (see [\[3,](#page-14-0) [13,](#page-15-4) [12\]](#page-15-5)).

Our aim is to extend this kind of symmetry results to the general functional

$$
J(u) = \int_{\Omega} [f(|Du|) - u] dx, \quad u \in W_0^{1,1}(\Omega), \tag{3}
$$

where $\Omega \subset \mathbb{R}^n$ is a smooth domain and $\mathbb{R} \ni s \mapsto f(|s|)$ is a convex, differentiable function. Let us define the set of so-called *web functions* (or *radial functions*)

$$
W(\Omega) = \{ u \in W_0^{1,1}(\Omega) ; u \text{ depends only on the distance from } \partial \Omega \}. \tag{4}
$$

We prove that if the minimum problem

$$
\min\{J(u); \ u \in W_0^{1,1}(\Omega)\}\tag{5}
$$

admits a solution belonging to $W(\Omega)$, then Ω is a ball (see Theorem [1\)](#page-3-0). The converse is also true (see Remark [1\)](#page-3-1).

Our approach is not based on the analysis of an associated overdetermined problem. Indeed, the Euler equation associated to the functional J is, at least formally, the nonlinear Dirichlet problem

$$
\begin{cases}\n-\operatorname{div}\left(f'(|Du|)\frac{Du}{|Du|}\right) = 1 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.\n\end{cases}
$$
\n(6)

For such general equations there are no results concerning the overdetermined problem with

$$
\left|\frac{\partial u}{\partial \nu}\right| = c \quad \text{on } \partial \Omega,\tag{7}
$$

similar to Serrin's result for [\(2\)](#page-1-0).

On the other hand, the requirement that the integral functional J has a minimizer in $W(\Omega)$ is much stronger than the boundary condition [\(7\)](#page-2-0). We shall fully exploit this assumption in order to obtain the following results.

(a) An explicit representation formula for the solutions to the minimum problem

$$
\min\{J(u); u \in \mathcal{W}(\Omega)\}\
$$

(see Theorem [2](#page-4-0) below).

- (b) The validity in the sense of distributions of the Euler–Lagrange equation [\(6\)](#page-1-1) associ-ated to the minimum problem [\(5\)](#page-1-2), for minima belonging to $W(\Omega)$ (see Theorem [3](#page-10-0)) below).
- (c) Existence, uniqueness and explicit representation of the solution v of the equation

$$
-\operatorname{div}(v(x)Dd_{\Omega}(x)) = 1 \quad \text{in } \Omega,
$$

which is related to the Euler–Lagrange equation [\(6\)](#page-1-1) when $u \in \mathcal{W}(\Omega)$.

We remark that the results in (c) were obtained in [\[5,](#page-14-1) [6\]](#page-14-2) in the framework of mathematical models for sandpile growth.

Combining (a), (b) and (c) we shall prove that the mean curvature of $\partial \Omega$ is constant. This implies that Ω must be a ball, thanks to a fundamental result in differential geometry by A. D. Aleksandrov [\[1\]](#page-14-3).

The paper is organized as follows. In Section [2](#page-2-1) we state the main result of the paper (see Theorem [1](#page-3-0) below). The existence and characterization of minimizers of J in the space $W(\Omega)$ is established in Section [3,](#page-4-1) whereas the validity of the Euler–Lagrange equation for minimizers of J in $W_0^{1,1}(\Omega)$, belonging to $W(\Omega)$, is proven in Section [4.](#page-10-1) Finally, in Section [5](#page-12-0) we recall the result proven in [\[6\]](#page-14-2) and complete the proof of Theorem [1.](#page-3-0)

2. Notation and statement of the result

In what follows, Ω will denote a smooth domain in \mathbb{R}^n , that is, a nonempty bounded open connected subset of \mathbb{R}^n with C^2 boundary. We denote by $\partial \Omega$ the boundary of Ω , and by d_{Ω} : $\overline{\Omega} \to \mathbb{R}$ the distance function to $\partial \Omega$. The symbol r_{Ω} will denote the *inradius* of Ω , that is, the supremum of the radii of the balls contained in Ω . It is easily seen that $r_{\Omega} = \max\{d_{\Omega}(x); x \in \Omega\}.$

If $A \subset \mathbb{R}^n$, we denote by |A| and $\mathcal{H}^{n-1}(\partial A)$, respectively, the Lebesgue measure of A and the $(n - 1)$ -dimensional Hausdorff measure of ∂A .

Let J be the functional defined in [\(3\)](#page-1-3). Our assumptions on f are the following:

(F1) $f: [0, b) \to \mathbb{R}, b \in (0, \infty]$, is a convex, differentiable, nondecreasing function. (If $b < \infty$, for notational convenience we set $f(s) = \infty$ for every $s \ge b$.)

(F2) If $0 < b < \infty$,

$$
\lim_{s\to b^-} f(s) = \infty \, ;
$$

if $b = \infty$,

$$
\lim_{s \to \infty} \frac{f(s)}{s} = \lim_{s \to \infty} f'(s) > \frac{1}{n} \left(\frac{|\Omega|}{v_n} \right)^{1/n},
$$

where v_n is the volume of the unit ball in \mathbb{R}^n .

(F3)
$$
f'_{+}(0) := \lim_{s \to 0^{+}} \frac{f(s) - f(0)}{s} = 0.
$$

We remark that, in the case $b = \infty$, assumption (F2) is certainly satisfied if f is a superlinear function, that is, if

$$
\lim_{s \to \infty} \frac{f(s)}{s} = \infty.
$$

Assumption (F3) is equivalent to the differentiability of the map $s \mapsto f(|s|)$ at $s = 0$.

Our main result is the following.

Theorem 1. Let $\Omega \subset \mathbb{R}^n$ be a smooth domain, let *J* be the functional defined in ([3](#page-1-3)), and *assume that* f *satisfies assumptions* (F1)–(F3). If J admits a minimizer in $W_0^{1,1}(\Omega)$ that *depends only on the distance from the boundary of* Ω*, then* Ω *must be a ball.*

The proof of this theorem is postponed to Section [5.](#page-12-0)

Remark 1. Of course, the converse of Theorem [1](#page-3-0) also holds. Namely, if Ω is a ball and f satisfies assumptions (F1)–(F3), then the functional J admits a unique minimizer in $W_0^{1,1}(\Omega)$, which is radially symmetric (see for example [\[8\]](#page-14-4)).

Remark 2. In Theorem [1,](#page-3-0) the assumption that f be differentiable cannot be dropped. Namely, let $f(s) = \max\{0, s - \rho\}$, $s \ge 0$, where $\rho \ge 0$ is a fixed parameter. Then f is a convex nondecreasing function in [0, ∞), and, if $\rho > 0$, it is not differentiable at $s = \rho$. Let $\Omega \subset \mathbb{R}^n$ be a smooth domain. Assume in addition that Ω is a convex set, and that $|\Omega| \le v_n$, so that (F2) clearly holds. Under these assumptions, in [\[20\]](#page-15-6) it was proven that the function $u_0(x) = \rho d_{\Omega}(x)$ is a minimizer of J in $W_0^{1,1}(\Omega)$. (In [\[6\]](#page-14-2) the same result is proven also in the case of nonconvex domains.) This assertion also holds in the case $\rho = 0$. We remark that, in this case, f does not satisfy assumption (F3). This example shows that, for such f , the functional J admits minimizers depending only on the distance from $\partial \Omega$ even if Ω is not a ball.

3. Existence of minimizers in W(Ω)

The aim of this section is to prove, under the assumptions of Theorem [1,](#page-3-0) that the functional J has a minimizer in the space $W(\Omega)$ of web functions. Moreover, we give an explicit representation of the minimizers and we prove that they satisfy a suitable Euler– Lagrange inclusion.

Throughout this section, Ω will be a smooth domain of \mathbb{R}^n , although Theorem [2](#page-4-0) below still holds under a weaker regularity assumption on the boundary of Ω (see Remark [4](#page-7-0) below).

We recall that d_{Ω} is a Lipschitz continuous function, with gradient satisfying $|Dd_{\Omega}(x)| = 1$ for a.e. $x \in \Omega$. It is clear from the definition that $0 \leq d_{\Omega}(x) \leq r_{\Omega}$ for every $x \in \overline{\Omega}$, where r_{Ω} denotes the inradius of Ω . For every $i = 1, \ldots, n-1$, denote by $\kappa_i(y)$ the *i*-th principal curvature of $\partial \Omega$ at the point $y \in \partial \Omega$, corresponding to a principal direction $e_i(y)$ orthogonal to $Dd_{\Omega}(y)$, with the sign convention $\kappa_i(y) \geq 0$ if the normal section of Ω along the direction e_i is convex. Let Σ denote the singular set of d_{Ω} , that is, the set of points $x \in \Omega$ for which d_{Ω} is not differentiable. The set $\overline{\Sigma}$ is also known as *ridge* or *cut locus*. From Rademacher's theorem, Σ has vanishing ndimensional Lebesgue measure. Introducing the projection $\Pi(x)$ of $x \in \Omega$ on $\partial\Omega$, Σ is also the set of points x for which $\Pi(x)$ is not a singleton. We extend κ_i , $i = 1, \ldots, n-1$, to $\overline{\Omega} \setminus \overline{\Sigma}$ by setting $\kappa_i(x) = \kappa_i(\Pi(x))$ for every $x \in \Omega \setminus \overline{\Sigma}$. Define the *normal distance* to the cut locus of Ω by

$$
\tau(x) = \begin{cases} \min\{t \ge 0; \ x + t \ D d_{\Omega}(x) \in \overline{\Sigma}\} & \text{if } x \in \overline{\Omega} \setminus \overline{\Sigma}, \\ 0, & \text{if } x \in \overline{\Sigma}. \end{cases} \tag{8}
$$

It is known that if $\partial \Omega$ is of class $C^{2,1}$, then τ is Lipschitz continuous on $\partial \Omega$ (see [\[18,](#page-15-7) [17\]](#page-15-8)); for less regular domains the Lipschitz continuity may fail, but continuity is preserved if $\partial \Omega$ is of class C^2 (see [\[5,](#page-14-1) [6\]](#page-14-2)).

The function $f : [0, \infty) \to [0, \infty]$ appearing in the definition of J will be a lower semicontinuous, nondecreasing convex function. We remark that, for the results established in this section, f need not be differentiable, and can take the value ∞ . With some abuse of notation, we will denote by $f^* : \mathbb{R} \to \mathbb{R} \cup \{ \infty \}$ the conjugate function of the map $s \mapsto f(|s|), s \in \mathbb{R}$. As is customary, the symbol $\partial f(s)$ will denote the subgradient of f at s, in the sense of convex analysis.

In the following, a major role will be played by the function $\alpha : [0, r_{\Omega}] \to \mathbb{R}$ defined by

$$
\alpha(t) = \begin{cases} \frac{|\Omega_t|}{\mathcal{H}^{n-1}(\partial \Omega_t)} & \text{if } t \in [0, r_{\Omega}), \\ 0 & \text{if } t = r_{\Omega}, \end{cases}
$$
(9)

where $\Omega_t = \{x \in \Omega; d_{\Omega}(x) > t\}$. (We recall that r_{Ω} denotes the inradius of Ω .)

Theorem 2. Let Ω be a smooth domain in \mathbb{R}^n . Let J be the functional defined in ([3](#page-1-3)), *where* $f : [0, \infty) \to [0, \infty]$ *is a lower semicontinuous, nondecreasing convex function, satisfying*

$$
f(s) \ge Ms - a, \quad \forall s \ge 0,
$$
\n⁽¹⁰⁾

for some positive constants M *and* a*, with*

$$
M > \frac{1}{n} \left(\frac{|\Omega|}{v_n} \right)^{1/n}.
$$
 (11)

Then, for every measurable selection

$$
\gamma(t) \in \partial f^*(\alpha(t)), \quad t \in [0, r_{\Omega}], \tag{12}
$$

the function

$$
u_0(x) = \int_0^{d_{\Omega}(x)} \gamma(t) dt, \quad x \in \Omega,
$$

belongs to $W^{1,\infty}(\Omega)$ *and is a minimizer of J in the set* $W(\Omega)$ *defined in* ([4](#page-1-4))*. Conversely, if* $u_0 \in W(\Omega)$ *is a minimizer of J in* $W(\Omega)$ *, then* u_0 *belongs to* $W^{1,\infty}(\Omega)$ *and satisfies the Euler–Lagrange inclusion*

$$
|Du_0(x)| \in \partial f^*(\alpha(d_{\Omega}(x))), \quad a.e. \ x \in \Omega.
$$
 (13)

Remark 3. Under the additional assumption of convexity of Ω , Theorem [2](#page-4-0) was proved in [\[9\]](#page-14-5), without convexity assumptions on f .

The remaining part of this section will be devoted to the proof of Theorem [2.](#page-4-0) We start by proving a simple estimate on the function α defined in [\(9\)](#page-4-2).

Lemma 1. *For every* $t \in [0, r_{\Omega})$ *we have*

$$
0 < \alpha(t) \le \frac{1}{n} \left(\frac{|\Omega_t|}{v_n} \right)^{1/n} \le \frac{1}{n} \left(\frac{|\Omega|}{v_n} \right)^{1/n} . \tag{14}
$$

(Recall that v_n *is the volume of the unit ball in* \mathbb{R}^n *) As a consequence,* $\lim_{t\to r_{\Omega}} \alpha(t)$ $=\alpha(r_{\Omega}) = 0.$

Proof. The fact that α is a positive function on [0, r_{Ω}) follows from its very definition. Concerning the upper bound, we recall that the isoperimetric inequality

$$
\mathcal{H}^{n-1}(\partial A) \ge n v_n^{1/n} |A|^{(n-1)/n} \tag{15}
$$

holds for every bounded measurable set $A \subset \mathbb{R}^n$ (see [\[4,](#page-14-6) §14.3 and §14.6]). Applying [\(15\)](#page-5-0) to the bounded measurable set Ω_t we get

$$
0 < \alpha(t) = |\Omega_t|^{1/n} \frac{|\Omega_t|^{(n-1)/n}}{\mathcal{H}^{n-1}(\partial \Omega_t)} \leq \frac{1}{nv_n^{1/n}} |\Omega_t|^{1/n} \leq \frac{1}{n} \left(\frac{|\Omega|}{v_n}\right)^{1/n},
$$

and the proof is complete.

Let us define the set

$$
\mathcal{K} = \left\{ \phi \in AC_{\text{loc}}[0, r_{\Omega}) \middle| \begin{aligned} \phi(0) &= 0 \\ t &\mapsto \mathcal{H}^{n-1}(\partial \Omega_t) \phi(t) \in L^1(0, r_{\Omega}) \\ t &\mapsto \mathcal{H}^{n-1}(\partial \Omega_t) \phi'(t) \in L^1(0, r_{\Omega}) \end{aligned} \right\},\tag{16}
$$

where $AC_{loc}[0, r_Q)$ denotes the set of absolutely continuous functions in [0, r] for every $r \in (0, r_{\Omega}).$

Lemma 2. *A function u belongs to* $W(\Omega)$ *if and only if* $u = \phi \circ d_{\Omega}$ *for some* $\phi \in \mathcal{K}$ *.*

Proof. Let $u \in W(\Omega)$. By definition of $W(\Omega)$, there exists a measurable function ϕ : $[0, r_{\Omega}] \rightarrow \mathbb{R}$ such that $u(x) = \phi(d_{\Omega}(x))$ for every $x \in \Omega$.

The tricky part of the proof that $\phi \in \mathcal{K}$ consists in showing that ϕ belongs to $AC_{loc}[0, r_Q)$. We shall use a local coordinate system in Ω whose properties were proved in [\[16,](#page-15-9) p. 236]. More precisely, since Ω has C^2 boundary, we can choose a finite family $\mathcal{U}_1, \ldots, \mathcal{U}_N$ of bounded open sets in \mathbb{R}^n so that $\partial \Omega \subseteq \bigcup_{i=1}^N \mathcal{U}_i$, and such that, for each $i = 1, \ldots, N$, in a suitable coordinate system in \mathbb{R}^n we have

$$
\Omega \cap \mathcal{U}_i = \{(x', t); \ x' \in V_i, \ t > \Phi_i(x')\} \cap \mathcal{U}_i,\tag{17}
$$

where $V_i = \{x' \in \mathbb{R}^{n-1}; (x', t) \in \mathcal{U}_i \text{ for some } t \in \mathbb{R}\}\$ is an open set, and Φ_i is a C^2 function on \mathbb{R}^{n-1} . Define the maps $G_i: V_i \times \mathbb{R} \to \mathbb{R}^n$, $i = 1, ..., N$, by

$$
G_i(x', t) = y + t D d_{\Omega}^s(y), \quad \text{where } y = (x', \Phi_i(x')) \in \partial \Omega,
$$
 (18)

and d_{Ω}^{s} denotes the signed distance to $\partial \Omega$ defined by

$$
d_{\Omega}^{s}(x) = \begin{cases} \text{dist}(x, \partial \Omega) & \text{if } x \in \Omega, \\ -\text{dist}(x, \partial \Omega) & \text{if } x \in \mathbb{R}^{n} \setminus \Omega. \end{cases}
$$

We collect here the main properties of the maps G_i , $i = 1, ..., N$ (see [\[16,](#page-15-9) Lemmas 14]) and 15]):

- (a) G_i is Lipschitz continuous on bounded subsets of $V_i \times \mathbb{R}$.
- (b) The Jacobian JG_i is a locally bounded measurable function, and

$$
JG_i(x',t) = \sqrt{1 + |D\Phi_i(x')|^2} \prod_{j=1}^{n-1} (1 - \kappa_j t),
$$

where $\kappa_1, \ldots, \kappa_{n-1}$ are the principal curvatures of $\partial \Omega$ at $G_i(x', 0)$.

(c) G_i is one-to-one on the set

$$
U_i = \{(x', t); x' \in V_i, t \in (0, \tau(G_i(x', 0)))\} \subset \mathbb{R}^n
$$

.

(d) $\Omega \setminus \Sigma = \bigcup_{i=1}^N G_i(U_i).$

From properties (a), (b) and (c) we deduce that, for every $i = 1, ..., N$ and every $\epsilon > 0$, G_i is a bi-Lipschitz map on the set

$$
U_i^{\epsilon} = \{(x', t); x' \in V_i, t \in (0, \max\{0, \tau(G_i(x', 0)) - \epsilon\})\}.
$$

Since the restriction of u to the set $A_i^{\epsilon} = G_i(U_i^{\epsilon})$ belongs to $W^{1,1}(A_i^{\epsilon})$, from Theo-rem 2.2.2 in [\[21\]](#page-15-10) we see that the restriction of the composite map $v = u \circ G_i$ to U_i^{ϵ} belongs to $W^{1,1}(U_i^{\epsilon})$.

Finally, let us prove that, for every fixed $\epsilon \in (0, r_{\Omega})$, the map ϕ belongs to $AC[0,$ $r_{\Omega} - \epsilon$]. From property (d) and the fact that the *n*-dimensional Lebesgue measure of Σ is zero, there exists an index $i \in \{1, \ldots, N\}$ such that

$$
\max\{\tau(G_i(x', 0)); x' \in V_i\} = r_{\Omega}.
$$

From Theorem 2.1.4 in [\[21\]](#page-15-10) we can assume that the function $v = u \circ G_i$ is absolutely continuous on the line segment

$$
\Lambda(x') = \{(x', t); t \in [0, \max\{0, \tau(G_i(x', 0)) - \epsilon/2\}]\}
$$

for almost every $x' \in V_i$. Since τ is a continuous map, there exists $x' \in V_i$ such that $T = \tau(G_i(x', 0)) > r_{\Omega} - \epsilon$ and the restriction of v to $\Lambda(x')$ is absolutely continuous. By the very definitions of the functions G_i and v we conclude that the map $t \mapsto u(y +$ $tDd_{\Omega}(y) = \phi(t)$, with $y = (x', \Phi_i(x'))$, is absolutely continuous in [0, T]; in particular, $\phi \in AC[0, r_{\Omega} - \epsilon]$. Furthermore, the boundary condition on u implies that $\phi(0) = 0$.

Let us conclude the proof of the lemma. From the change of variables formula (see [\[14,](#page-15-11) §3.4.3]) it follows that

$$
\int_{\Omega} |u(x)| dx = \int_0^{r_{\Omega}} \mathcal{H}^{n-1}(\partial \Omega_t) |\phi(t)| dt,
$$

$$
\int_{\Omega} |Du(x)| dx = \int_0^{r_{\Omega}} \mathcal{H}^{n-1}(\partial \Omega_t) |\phi'(t)| dt,
$$

hence $\phi \in \mathcal{K}$. Conversely, from the above formulas it is easily seen that if $\phi \in \mathcal{K}$, then $u = \phi \circ d_{\Omega}$ belongs to $W_0^{1,1}(\Omega)$.

Remark 4. Following [\[16,](#page-15-9) Section 3], it can be easily proved that the conclusion of Lemma [2](#page-6-0) holds (with minor modifications in the proof) under a weaker assumption on the regularity of the boundary of Ω . More precisely, it is enough that the bounded open set $\Omega \subset \mathbb{R}^n$ is *of positive reach* (see [\[15\]](#page-15-12)), that is, there exists $r > 0$ with the following property: for every $y \in \partial \Omega$ there exists a closed ball $B \subset \mathbb{R}^n \setminus \Omega$, of radius r, such that $B \cap \overline{\Omega} = \{y\}.$

As a consequence of Lemma [2,](#page-6-0) a function $u_0 = \phi_0 \circ d_{\Omega}$ is a minimizer of J in $W(\Omega)$ if and only if ϕ_0 is a minimizer of the functional

$$
F(\phi) = \int_0^{r_\Omega} \mathcal{H}^{n-1}(\partial \Omega_t)[f(|\phi'(t)|) - \phi(t)]dt \tag{19}
$$

in K. In order to simplify the subsequent analysis, it is convenient to rewrite the term in ϕ using the following integration-by-parts formula.

Lemma 3. *If* $\phi \in \mathcal{K}$, then the map $t \mapsto |\Omega_t| \phi'(t)$ belongs to $L^1(0, r_{\Omega})$ and

$$
\int_0^{r_\Omega} |\Omega_t| \phi'(t) dt = \int_0^{r_\Omega} \mathcal{H}^{n-1}(\partial \Omega_t) \phi(t) dt.
$$
 (20)

Proof. From the isoperimetric inequality [\(15\)](#page-5-0) we have

$$
|\Omega_t| = |\Omega_t|^{1/n} |\Omega_t|^{(n-1)/n} \leq |\Omega|^{1/n} \frac{1}{n v_n^{1/n}} \mathcal{H}^{n-1}(\partial \Omega_t),
$$

hence

$$
|\Omega_t| |\phi'(t)| \leq \frac{1}{n} \left(\frac{|\Omega|}{v_n}\right)^{1/n} \mathcal{H}^{n-1}(\partial \Omega_t) |\phi'(t)|, \quad \text{ a.e. } t \in [0, r_{\Omega}].
$$

Since $t \mapsto \mathcal{H}^{n-1}(\partial \Omega_t) \phi'(t)$ belongs to $L^1(0, r_{\Omega})$, so does $t \mapsto |\Omega_t| \phi'(t)$. If we recall that $t \mapsto |\Omega_t|$ is absolutely continuous in $[0, r_{\Omega}]$ and $\frac{d}{dt} |\Omega_t| = -\mathcal{H}^{n-1}(\partial \Omega_t)$ for a.e. t, formula [\(20\)](#page-8-0) now follows from a standard integration by parts.

In view of Lemma [3,](#page-7-1) the functional F can be rewritten as

$$
F(\phi) = \int_0^{r_\Omega} g(t, \phi'(t)) dt, \quad \phi \in \mathcal{K}, \tag{21}
$$

where $g: [0, r_{\Omega}] \times \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ is defined by

$$
g(t,\xi) = \mathcal{H}^{n-1}(\partial \Omega_t) f(|\xi|) - |\Omega_t| \xi. \tag{22}
$$

The advantage of rewriting F in this way lies in the fact that the lagrangean g does not depend on ϕ . We remark that $g(t, \cdot)$ is a convex function for every $t \in [0, r_{\Omega}]$. From assumption [\(10\)](#page-4-3) and estimate [\(14\)](#page-5-1) we have

$$
g(t,\xi) \geq \mathcal{H}^{n-1}(\partial \Omega_t)[M - \alpha(t)]|\xi| - \mathcal{H}^{n-1}(\partial \Omega_t)a
$$

$$
\geq \mathcal{H}^{n-1}(\partial \Omega_t)\bigg[M - \frac{1}{n}\bigg(\frac{|\Omega|}{v_n}\bigg)^{1/n}\bigg]|\xi| - \mathcal{H}^{n-1}(\partial \Omega_t)a,
$$

hence from the assumption [\(11\)](#page-5-2),

$$
\lim_{|\xi| \to \infty} g(t, \xi) = \infty
$$

for every $t \in [0, r_{\Omega})$. This implies that, for every such t, the convex function $g(t, \cdot)$ has a nonempty compact set of minimizers. Recalling that ξ is a minimizer of $g(t, \cdot)$ if and only if $0 \in \partial g(t, \xi)$, that is, if and only if $\xi \in \partial g^*(t, 0)$, we conclude that the convex set $\partial g^*(t, 0)$ is nonempty and compact for every $t \in [0, r_\Omega)$. Moreover, a simple computation shows that

$$
\partial g^*(t,0) = \partial f^*(\alpha(t)), \quad \forall t \in [0, r_{\Omega}).
$$

The following lemma will be used in order to prove the Lipschitz regularity of the minimizers of J in $W(\Omega)$.

Lemma 4. *Let* $g: [0, r_{\Omega}] \times \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ *be the function defined in* ([22](#page-8-1))*, where* f *satisfies the assumptions of Theorem [2.](#page-4-0) Then there exists a positive constant* C *with the following property. If* ξ : [0, r_{Ω}] $\rightarrow \mathbb{R}$ *is a measurable selection of the multifunction* $t \mapsto \partial g^*(t, 0)$ *, then* $|\xi(t)| \leq C$ *for a.e.* $t \in [0, r_{\Omega}]$ *.*

Proof. Denote by

$$
M_n = \frac{1}{n} \left(\frac{|\Omega|}{v_n} \right)^{1/n}
$$

the constant appearing in [\(11\)](#page-5-2). From [\(10\)](#page-4-3) we deduce that the open interval $(-M, M)$ is contained in the essential domain of f^* (that is, f^* is finite in that interval). Since $M > M_n$ by assumption [\(11\)](#page-5-2), and $0 < \alpha(t) \leq M_n$ by [\(14\)](#page-5-1), from the monotonicity of the subgradient we know that $|\xi| \le (f^*)'_{+}(M_n) < \infty$ for every $\xi \in \partial f^*(\alpha(t))$. The conclusion now follows by choosing $C = (f^*)'_{+}(M_n)$.

Now we are in a position to prove Theorem [2.](#page-4-0)

Proof of Theorem [2.](#page-4-0) Let $g : [0, r_{\Omega}] \times \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ be the function defined in [\(22\)](#page-8-1), and let K be the set defined in [\(16\)](#page-6-1). From the discussion above, it is enough to prove that the functional

$$
F(\phi) = \int_0^{r_{\Omega}} g(t, \phi'(t)) dt, \quad \phi \in \mathcal{K},
$$

admits minimizers, and $\phi_0 \in \mathcal{K}$ is a minimizer of F if and only if

$$
\phi'(t) \in \partial g^*(t, 0), \quad \text{ a.e. } t \in [0, r_{\Omega}].
$$
 (23)

We have already shown that the multifunction

$$
t \mapsto \partial g^*(t, 0) = \partial f^*(\alpha(t)), \quad t \in [0, r_{\Omega}], \tag{24}
$$

has nonempty, compact convex values for every $t \in [0, r_{\Omega})$. Moreover, from Lemma [4,](#page-8-2) if $\xi(t)$ is a measurable selection of that multifunction, then $\xi \in L^{\infty}(0, r_{\Omega})$. Hence, the function

$$
\phi_0(t) := \int_0^t \xi(s) \, ds
$$

belongs to $K \cap W^{1,\infty}(0, r_{\Omega})$. Let us show that ϕ_0 is a minimizer of F in K. Since $\phi'_0(t) =$ $\xi(t) \in \partial g^*(t, 0)$, we deduce that $0 \in \partial g(t, \phi'_0(t))$ for a.e. $t \in [0, r_{\Omega}]$, so that

$$
F(\phi) - F(\phi_0) = \int_0^{r_{\Omega}} [g(t, \phi'(t)) - g(t, \phi'_0(t))] dt \ge 0
$$

for every $\phi \in \mathcal{K}$.

Conversely, let $\phi_0 \in \mathcal{K}$ be a minimizer of F in K. Let $\xi(t)$ be a measurable selection of the multifunction [\(24\)](#page-9-0), and define $\phi(t) = \int_0^t \xi(s) ds$, $t \in [0, r_{\Omega}]$. From the first part of the proof, ϕ is a minimizer of F, so that $F(\phi) = F(\phi_0)$. Moreover, $\phi'(t)$ is a minimum point of $g(t, \cdot)$ for a.e. $t \in [0, r_{\Omega}]$, so that

$$
g(t, \phi'(t)) - g(t, \phi'_0(t)) \le 0
$$
, a.e. $t \in [0, r_{\Omega}].$

Since $F(\phi) = F(\phi_0)$, we must have

$$
g(t, \phi'(t)) = g(t, \phi'_0(t)),
$$
 a.e. $t \in [0, r_{\Omega}].$

Hence $\phi_0'(t)$ must be a minimum point of $g(t, \cdot)$ for a.e. t, that is, [\(23\)](#page-9-1) holds.

Remark 5. From the proof of Theorem [2](#page-4-0) it is clear that a function $u_0(x) = \phi_0(d_{\Omega}(x))$, $\phi_0 \in \mathcal{K}$, is a minimizer of J in $\mathcal{W}(\Omega)$ if and only if ϕ_0 satisfies the Euler–Lagrange inclusion

$$
\phi_0'(t) \in \partial f^*(\alpha(t)), \quad \text{ a.e. } t \in [0, r_{\Omega}], \tag{25}
$$

where α is the function defined in [\(9\)](#page-4-2). Since α is strictly positive in [0, r_{Ω}), and $\partial f^*(p) \subset$ [0, ∞) for every $p > 0$, the differential inclusion [\(25\)](#page-10-2) implies that $\phi'_0 \ge 0$ almost everywhere.

The last inequality can also be deduced directly from the fact that ϕ_0 is a minimizer of the functional F defined in [\(19\)](#page-7-2). Namely, consider the function

$$
\phi_1(t) = \int_0^t |\phi_0'(s)| ds, \quad t \in [0, r_{\Omega}].
$$

Since $\phi_0 \in \mathcal{K}$, it is easy to check that also $\phi_1 \in \mathcal{K}$, and $0 \leq \phi'_1(t) = |\phi'_0(t)|$ for a.e. $t \in [0, r_{\Omega}]$. Then $\phi_1(t) \ge \phi_0(t)$ for every $t \in [0, r_{\Omega}]$. Assume by contradiction that the set $E = \{t \in [0, r_{\Omega}]$; $\phi'_0(t) < 0\}$ has positive Lebesgue measure. In this case, $\phi_1 > \phi_0$ on some interval. Hence $F(\phi_1) < F(\phi_0)$, in contradiction with the fact that ϕ_0 is a minimizer of F.

Remark 6. Assume that f satisfies (F1)–(F3), and extend f over all \mathbb{R} by setting $f(s)$ = $f(|s|)$ when $s < 0$. We remark that (F3) is equivalent to the differentiability of this extension at $s = 0$ (where we have $f'(0) = 0$). Hence f is differentiable everywhere in $(-b, b)$. Under this differentiability assumption, the inclusion [\(25\)](#page-10-2) can be written in the equivalent form

$$
\alpha(t) = f'(\phi'_0(t)), \quad \text{ a.e. } t \in [0, r_{\Omega}].
$$

4. Validity of the Euler–Lagrange equation

The aim of this section is to establish a result concerning the validity of the Euler– Lagrange equation associated to the minimum problem [\(5\)](#page-1-2), for minimizers belonging to the space $W(\Omega)$.

Theorem 3. Let Ω be a smooth domain in \mathbb{R}^n , let f satisfy (F1)–(F3), and let $u_0 \in$ $\mathcal{W}(\Omega)$ be a minimizer of J in $W_0^{1,1}(\Omega)$. Then u_0 satisfies the Euler–Lagrange equation

$$
\int_{\Omega} [f'(|Du_0(x)|)\langle Dd_{\Omega}(x), D\varphi(x)\rangle - \varphi(x)] dx = 0, \quad \forall \varphi \in C_0^{\infty}(\Omega). \tag{26}
$$

Proof. As a first step, let us prove that

$$
\lim_{\epsilon \to 0} \int_{\Omega} \frac{f(|Du_0 + \epsilon D\varphi|) - f(|Du_0|)}{\epsilon} dx = \int_{\Omega} f'(|Du_0|) \langle Dd_{\Omega}, D\varphi \rangle dx \tag{27}
$$

for every $\varphi \in C_0^{\infty}(\Omega)$. Since u_0 is also a minimizer of J in $\mathcal{W}(\Omega)$, from Theorem [2](#page-4-0) we know that $u_0 \in W^{1,\infty}(\Omega)$, hence there exists a positive constant C_0 such that

$$
|Du_0(x)| \le C_0 < b, \quad \text{a.e. } x \in \Omega.
$$
 (28)

Now, let φ be a fixed function in $C_0^{\infty}(\Omega)$. From [\(28\)](#page-11-0) there exists $\epsilon_0 > 0$ such that

$$
|Du_0(x) + \epsilon D\varphi(x)| \le C < b, \quad \text{a.e. } x \in \Omega,
$$
 (29)

for every $|\epsilon| \leq \epsilon_0$. From the mean value theorem, for every such ϵ there exists a function θ_{ϵ} such that

$$
\frac{f(|Du_0 + \epsilon D\varphi|) - f(|Du_0|)}{\epsilon} = f'(|Du_0| + \theta_{\epsilon})\langle Dd_{\Omega}, D\varphi \rangle
$$

and $|\theta_{\epsilon}(x)| \leq \epsilon |D\varphi(x)|$ for every $x \in \Omega$. This last estimate, together with [\(29\)](#page-11-1), implies that

$$
\left|\frac{f(|Du_0+\epsilon D\varphi|)-f(|Du_0|)}{\epsilon}\right|\leq f'(C)\|D\varphi\|_{\infty}, \quad \forall |\epsilon|\leq \epsilon_0.
$$

On the other hand, since f is a convex differentiable function, its derivative is continuous, hence

$$
\lim_{\epsilon \to 0} \frac{f(|Du_0 + \epsilon D\varphi|) - f(|Du_0|)}{\epsilon} = f'(|Du_0|) \langle Dd_{\Omega}, D\varphi \rangle.
$$

The equality [\(27\)](#page-11-2) now follows from the Lebesgue dominated convergence theorem.

Let us prove [\(26\)](#page-10-3). For every $\varphi \in C_0^{\infty}(\Omega)$ and every $\epsilon > 0$, since u_0 is a minimizer of J we have

$$
0 \le \frac{J(u_0 + \epsilon \varphi) - J(u_0)}{\epsilon} = \int_{\Omega} \frac{f(|Du_0 + \epsilon D\varphi|) - f(|Du_0|) - \epsilon \varphi}{\epsilon} dx.
$$

Passing to the limit as $\epsilon \to 0^+$, from [\(27\)](#page-11-2) we deduce that

$$
\int_{\Omega} [f'(|Du_0|)\langle Dd_{\Omega}, D\varphi\rangle - \varphi] dx \ge 0.
$$

Since this inequality also holds if we replace φ with $-\varphi$, [\(26\)](#page-10-3) follows.

Remark 7. Without the assumption that u_0 depends only on the distance from $\partial \Omega$, the validity of the Euler–Lagrange equation can be established provided that f satisfies suitable growth conditions. See [\[7\]](#page-14-7) for details.

5. Proof of Theorem [1](#page-3-0)

We will use the following result.

Theorem 4 (see [\[6\]](#page-14-2)). *Let* Ω *be a smooth domain. Then the function* $v: \overline{\Omega} \to \mathbb{R}$ *defined by* $v(x) = 0$ *for every* $x \in \overline{\Sigma}$ *and*

$$
v(x) = \int_0^{\tau(x)} \prod_{i=1}^{n-1} \frac{1 - (d_{\Omega}(x) + s)\kappa_i(x)}{1 - d_{\Omega}(x)\kappa_i(x)} ds, \quad \forall x \in \overline{\Omega} \setminus \overline{\Sigma},
$$
 (30)

is continuous in $\overline{\Omega}$ *and it is the unique solution to*

$$
\int_{\Omega} \left[v(x) \langle Dd_{\Omega}(x), D\varphi(x) \rangle - \varphi(x) \right] dx = 0, \quad \forall \varphi \in C_0^{\infty}(\Omega). \tag{31}
$$

We recall that, for every $x \in \Omega \setminus \overline{\Sigma}$, $\kappa_i(x)$, $i = 1, \ldots, n-1$, denotes the *i*-th principal curvature of $\partial \Omega$ at $\Pi(x)$, and τ is the normal distance to the cut locus defined in [\(8\)](#page-4-4).

Remark 8. In the case $n = 2$, Theorem [4](#page-12-1) was proven in [\[5\]](#page-14-1).

Let us denote by $H_1(y)$ the mean curvature of $\partial \Omega$ at a point y, that is,

$$
H_1(y) = \frac{1}{n-1} \sum_{i=1}^{n-1} \kappa_i(y), \quad y \in \partial \Omega.
$$
 (32)

Under the assumptions of Theorem [1,](#page-3-0) we shall show that H_1 is constant on $\partial\Omega$, that is, every connected component S of $\partial\Omega$ is a compact embedded hypersurface without boundary with constant mean curvature H_1 . From a celebrated result of Aleksandrov [\[1\]](#page-14-3), it follows that S is a hypersphere of radius $R = 1/H_1$. Since Ω is connected, we conclude that Ω must be a ball of radius R .

Proof of Theorem [1.](#page-3-0) Let $u_0 = \phi_0 \circ d_{\Omega}$ be a minimizer of *J*, depending only on the distance from $\partial\Omega$. Under the assumptions of Theorem [1,](#page-3-0) from Theorem [2](#page-4-0) we find that ϕ_0 is Lipschitz continuous on [0, r_{Ω}]. Furthermore, the Euler–Lagrange equation

$$
\alpha(t) = f'(|\phi'_0(t)|), \quad \text{a.e. } t \in [0, r_{\Omega}],
$$
 (33)

holds, where $\alpha : [0, r_{\Omega}] \rightarrow \mathbb{R}$ is the function defined in [\(9\)](#page-4-2) (see Remark [6\)](#page-10-4).

From Theorem [3](#page-10-0) we know that u_0 satisfies the Euler–Lagrange equation [\(26\)](#page-10-3). On the other hand, from Theorem [4](#page-12-1) we deduce that $v(x) = f'(|Du_0(x)|)$. From [\(33\)](#page-12-2), we then have

$$
v(x) = \alpha(d_{\Omega}(x)), \quad \text{a.e. } x \in \Omega.
$$

More precisely, from the continuity of v it follows that v is constant on the level sets $\partial\Omega_t$ of the distance d_{Ω} , for every $t \in [0, r_{\Omega}]$.

Let $x \in \overline{\Sigma}$, that is, $v(x) = 0$, and let $t = d_{\Omega}(x)$. From the discussion above we have $v(y) = 0$ for every $y \in \partial \Omega_t$, that is, $\partial \Omega_t \subseteq \overline{\Sigma}$.

We claim that $t = r_{\Omega}$. Assume by contradiction that there exists a point $z \in \Omega$ with $d_{\Omega}(z) > t$, and let $y \in \Pi(z)$. The function d_{Ω} is differentiable at any point of the line segment (y, z) (see [\[2\]](#page-14-8)), which is in contradiction with the fact that (y, z) must intersect $\partial \Omega_t$, that is, (y, z) must contain at least one singular point of d_{Ω} .

We have thus proven that

$$
x \in \overline{\Sigma} \Leftrightarrow d_{\Omega}(x) = r_{\Omega}.
$$

As a consequence, d_{Ω} is regular on the set { $x \in \Omega$; 0 < $d_{\Omega}(x) < r_{\Omega}$ }, and then the distance to the cut locus is $\tau(y) = r_{\Omega}$ for every $y \in \partial \Omega$. From the explicit representation [\(30\)](#page-12-3) of v, for every $t \in [0, r_{\Omega})$ we have

$$
v(y) = \alpha(t) = \int_t^{r_{\Omega}} \prod_{i=1}^{n-1} \frac{1 - s\kappa_i(y)}{1 - t\kappa_i(y)} ds, \quad \forall y \in \partial \Omega_t.
$$

From this formula we deduce that the function α is of class C^{∞} on $[0, r_{\Omega})$. By a direct computation we get

$$
\alpha'(t) = -1 + \sum_{j=1}^{n-1} \int_t^{r_{\Omega}} \left(\prod_{i=1}^{n-1} \frac{1 - s\kappa_i(y)}{1 - t\kappa_i(y)} \right) \cdot \frac{\kappa_j(y)}{1 - t\kappa_j(y)} ds \tag{34}
$$

for every $t \in [0, r_{\Omega})$ and $y \in \partial \Omega_t$. Evaluating this derivative at $t = 0$ we obtain

$$
\alpha'(0) = -1 + \alpha(0) \sum_{j=1}^{n-1} \kappa_j(y) = -1 + (n-1)\alpha(0)H_1(y), \quad \forall y \in \partial\Omega,
$$

so that H_1 is constant on $\partial\Omega$. From a result of Aleksandrov [\[1\]](#page-14-3) we conclude that the connected set Ω is a ball.

Remark 9. The term $\kappa_i(y)/(1 - t\kappa_i(y))$, appearing in the integral in [\(34\)](#page-13-0), is the *j*-th principal curvature of the set $\partial \Omega_t$ at y (see [\[16\]](#page-15-9)).

Remark 10. The fact that d_{Ω} is regular on $\{x \in \Omega; 0 < d_{\Omega}(x) < r_{\Omega}\}\$ alone is not enough to conclude that Ω is a ball. For example, the set $\Omega = B_R(0) \setminus \overline{B}_r(0)$, $0 < r < R$, is a connected set with C^{∞} boundary, with inradius $r_{\Omega} = (R - r)/2$, and the singular set Σ coincides with $\partial B_{(r+R)/2}(0) = \{x \in \Omega; d_{\Omega}(x) = r_{\Omega}\}.$

Among convex sets, if we relax the assumption on the regularity of the boundary, an example can be constructed in the following way. Let $\Sigma \subset \mathbb{R}^n$ be a nonempty compact convex set without interior points (in the language of convex geometry, its dimension must be at most $n-1$). Let $r > 0$, and define $\Omega = \bigcup_{x \in \Sigma} B_r(x)$. Then Ω is an open convex set with inradius $r_{\Omega} = r$, and the singular set of d_{Ω} coincides with $\{x \in \Omega; d_{\Omega}(x) = r_{\Omega}\}\$ $= \Sigma$.

Remark 11. Let us define the *i*-th order mean curvature H_i of $\partial\Omega$ to be the elementary symmetric polynomial of degree i in the principal curvatures $\kappa_1, \ldots, \kappa_{n-1}$ normalized by the following identity:

$$
\prod_{i=1}^{n-1} (1 + \kappa_i t) = \sum_{i=0}^{n-1} {n-1 \choose i} H_i t^i.
$$

It is easily seen that $H_0 \equiv 1$ and H_1 is the mean curvature, defined in [\(32\)](#page-12-4). Computing the first $n - 1$ derivatives of α at $t = 0$ we can prove that H_1, \ldots, H_{n-1} are constant on ∂Ω (it is clear that, *a posteriori*, this is a consequence of the fact that Ω is a ball). For example, if $n \geq 3$, the second derivative of α is given by

$$
\alpha''(t) = -\sum_{j=1}^{n-1} \frac{\kappa_j(y)}{1 - t\kappa_j(y)} + \sum_{j,h=1}^{n-1} \int_t^{r_{\Omega}} \left(\prod_{i=1}^{n-1} \frac{1 - s\kappa_i(y)}{1 - t\kappa_i(y)} \right) \cdot \frac{\kappa_j(y)\kappa_h(y)}{(1 - t\kappa_j(y))(1 - t\kappa_h(y))} ds
$$

for every $t \in [0, r_{\Omega})$ and $y \in \partial \Omega_t$, hence

$$
\alpha''(0) = -(n-1)H_1(y) + (n-1)(n-2)H_2(y)\alpha(0), \quad \forall y \in \partial \Omega.
$$

Since H_1 is constant on $\partial\Omega$, we deduce that also H_2 is constant on $\partial\Omega$.

References

- [1] Aleksandrov, A. D.: Uniqueness theorems for surfaces in the large. I, II. Amer. Math. Soc. Transl. **21**, 341–388 (1962)
- [2] Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton– Jacobi–Bellman Equations. Birkhauser, Boston (1997) [Zbl 0890.49011](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0890.49011&format=complete) [MR 1484411](http://www.ams.org/mathscinet-getitem?mr=1484411) ¨
- [3] Brock, F., Prajapat, J.: Some new symmetry results for elliptic problems on the sphere and in Euclidean space. Rend. Circ. Mat. Palermo **49**, 445–462 (2000) [Zbl 1008.35002](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1008.35002&format=complete) [MR 1809087](http://www.ams.org/mathscinet-getitem?mr=1809087)
- [4] Burago, Yu. D., Zalgaller, V. A.: Geometric Inequalities. Springer, Berlin (1988) [Zbl 0633.53002](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0633.53002&format=complete) [MR 0936419](http://www.ams.org/mathscinet-getitem?mr=0936419)
- [5] Cannarsa, P., Cardaliaguet, P.: Representation of equilibrium solutions to the table problem for growing sandpiles. J. Eur. Math. Soc. **6**, 435–464 (2004) [Zbl pre02139679](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=pre02139679&format=complete) [MR 2094399](http://www.ams.org/mathscinet-getitem?mr=2094399)
- [6] Cannarsa, P., Cardaliaguet, P., Crasta, G., Giorgieri, E.: A boundary value problem for PDE. Mathematical models of mass transfer: representation of solutions and applications. Calc. Var. Partial Differential Equations, to appear
- [7] Cellina, A.: On the validity of the Euler–Lagrange equation. J. Differential Equations **171**, 430–442 (2001) [Zbl 1015.49018](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1015.49018&format=complete) [MR 1818657](http://www.ams.org/mathscinet-getitem?mr=1818657)
- [8] Crasta, G.: Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems. Math. Z. **235**, 569–589 (2000) [Zbl 0965.49003](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0965.49003&format=complete) [MR 1800213](http://www.ams.org/mathscinet-getitem?mr=1800213)
- [9] Crasta, G.: Variational problems for a class of functionals on convex domains. J. Differential Equations **178**, 608–629 (2002) [Zbl 1019.49020](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1019.49020&format=complete) [MR 1879839](http://www.ams.org/mathscinet-getitem?mr=1879839)
- [10] Crasta, G.: Estimates for the energy of the solutions to elliptic Dirichlet problems on convex domains. Proc. Roy. Soc. Edinburgh Sect. A **134**, 89–107 (2004) [Zbl pre02114666](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=pre02114666&format=complete) [MR 2039904](http://www.ams.org/mathscinet-getitem?mr=2039904)
- [11] Crasta, G., Fragalà, I., Gazzola, F.: A sharp upper bound for the torsional rigidity of rods by means of web functions. Arch. Rat. Mech. Anal. **164**, 189–211 (2002) [Zbl 1021.74020](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1021.74020&format=complete) [MR 1930391](http://www.ams.org/mathscinet-getitem?mr=1930391)
- [12] Crasta, G., Fragala, I., Gazzola, F.: On the role of energy convexity in the web function approx- ` imation. NoDEA Nonlinear Differential Equations Appl. **12**, 93–109 (2005) [MR 2138936](http://www.ams.org/mathscinet-getitem?mr=2138936)
- [13] Damascelli, L., Pacella, F.: Monotonicity and symmetry results for p-Laplace equations and applications. Adv. Differential Equations **5**, 1179–1200 (2000) [Zbl 1002.35045](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1002.35045&format=complete) [MR 1776351](http://www.ams.org/mathscinet-getitem?mr=1776351)
- [14] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992) [Zbl 0804.28001](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0804.28001&format=complete) [MR 1158660](http://www.ams.org/mathscinet-getitem?mr=1158660)
- [15] Federer, H.: Curvature measures. Trans. Amer. Math. Soc. **93**, 418–491 (1959) [Zbl 0089.38402](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0089.38402&format=complete) [MR 0110078](http://www.ams.org/mathscinet-getitem?mr=0110078)
- [16] Feldman, M.: Variational evolution problems and nonlocal geometric motion. Arch. Rat. Mech. Anal. **146**, 221–274 (1999) [Zbl 0955.49025](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0955.49025&format=complete) [MR 1720391](http://www.ams.org/mathscinet-getitem?mr=1720391)
- [17] Itoh, J., Tanaka, M.: The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. **353**, 21–40 (2001) [Zbl 0971.53031](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0971.53031&format=complete) [MR 1695025](http://www.ams.org/mathscinet-getitem?mr=1695025)
- [18] Li, Y.Y., Nirenberg, L.: The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton–Jacobi equations. Comm. Pure Appl. Math. **58**, 85–146 (2005) [Zbl pre02126519](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=pre02126519&format=complete) [MR 2094267](http://www.ams.org/mathscinet-getitem?mr=2094267)
- [19] Serrin, J.: A symmetry problem in potential theory. Arch. Rat. Mech. Anal. **43**, 304–318 (1971) [Zbl 0222.31007](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0222.31007&format=complete) [MR 0333220](http://www.ams.org/mathscinet-getitem?mr=0333220)
- [20] Vornicescu, M.: A variational problem on subsets of \mathbb{R}^n . Proc. Roy. Soc. Edinburgh Sect. A **127**, 1089–1101 (1997) [Zbl 0920.49002](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0920.49002&format=complete) [MR 1475648](http://www.ams.org/mathscinet-getitem?mr=1475648)
- [21] Ziemer, W. P.: Weakly Differentiable Functions. Springer, New York (1989) [Zbl 0692.46022](http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0692.46022&format=complete) [MR 1014685](http://www.ams.org/mathscinet-getitem?mr=1014685)