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Abstract. We consider the integral functional

J (u) =

∫
Ω

[f (|Du|) − u] dx, u ∈ W
1,1
0 (Ω),

whereΩ ⊂ Rn, n ≥ 2, is a nonempty bounded connected open subset ofRn with smooth boundary,
andR 3 s 7→ f (|s|) is a convex, differentiable function. We prove that ifJ admits a minimizer in
W

1,1
0 (Ω) depending only on the distance from the boundary ofΩ, thenΩ must be a ball.

Keywords. Minimizers of integral functionals, distance function, Euler equation

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a smooth domain, and letJ2 be the integral functional defined in
H 1

0 (Ω) by

J2(u) =

∫
Ω

(
1

2
|Du|

2
− u

)
dx, u ∈ H 1

0 (Ω).

It is well known thatJ2 has a unique minimum point inH 1
0 (Ω), which is the unique

solution of the Dirichlet problem{
−∆u = 1 in Ω,

u = 0 on∂Ω.
(1)

In recent papers [11, 10], the following question arises in connection with the estimate
of the minimum ofJ2: If the minimizeru0 of J2 depends only on the distance from the
boundary ofΩ, what can be said about the geometry ofΩ?
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In order to answer to this question, let us recall a celebrated result by J. Serrin (see
[19]) which states that if the overdetermined Dirichlet problem

−∆u = 1 in Ω,

u = 0 on∂Ω,∣∣∣∣∂u

∂ν

∣∣∣∣ = c on ∂Ω,

(2)

admits a solution, thenΩ must be a ball. (Here∂u/∂ν denotes the derivative with respect
to the outer normal to the boundary ofΩ.)

Now, assume that the minimizeru0 of J2 depends only on the distancedΩ from the
boundary ofΩ, that is,u0(x) = φ(dΩ(x)), x ∈ Ω. Since the outer normal to∂Ω is given
by ν(y) = −DdΩ(y) for everyy ∈ ∂Ω, we have∣∣∣∣∂u0

∂ν
(y)

∣∣∣∣ = |φ′(0)DdΩ(y) · ν(y)| = |φ′(0)|, ∀y ∈ ∂Ω,

henceu0 is a solution to the overdetermined problem (2) withc = |φ′(0)|. From Serrin’s
result, we conclude thatΩ is a ball.

We remark that the above argument works also for the functional

Jp(u) =

∫
Ω

(
1

p
|Du|

p
− u

)
dx, u ∈ W

1,p

0 (Ω), 1 < p < ∞,

using the analog of Serrin’s result for thep-Laplace operator (see [3, 13, 12]).

Our aim is to extend this kind of symmetry results to the general functional

J (u) =

∫
Ω

[f (|Du|) − u] dx, u ∈ W
1,1
0 (Ω), (3)

whereΩ ⊂ Rn is a smooth domain andR 3 s 7→ f (|s|) is a convex, differentiable
function. Let us define the set of so-calledweb functions(or radial functions)

W(Ω) = {u ∈ W
1,1
0 (Ω); u depends only on the distance from∂Ω}. (4)

We prove that if the minimum problem

min{J (u); u ∈ W
1,1
0 (Ω)} (5)

admits a solution belonging toW(Ω), thenΩ is a ball (see Theorem 1). The converse is
also true (see Remark 1).

Our approach is not based on the analysis of an associated overdetermined problem.
Indeed, the Euler equation associated to the functionalJ is, at least formally, the nonlinear
Dirichlet problem − div

(
f ′(|Du|)

Du

|Du|

)
= 1 in Ω,

u = 0 on∂Ω.
(6)
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For such general equations there are no results concerning the overdetermined problem
with ∣∣∣∣∂u

∂ν

∣∣∣∣ = c on ∂Ω, (7)

similar to Serrin’s result for (2).
On the other hand, the requirement that the integral functionalJ has a minimizer

in W(Ω) is much stronger than the boundary condition (7). We shall fully exploit this
assumption in order to obtain the following results.

(a) An explicit representation formula for the solutions to the minimum problem

min{J (u); u ∈W(Ω)}

(see Theorem 2 below).
(b) The validity in the sense of distributions of the Euler–Lagrange equation (6) associ-

ated to the minimum problem (5), for minima belonging toW(Ω) (see Theorem 3
below).

(c) Existence, uniqueness and explicit representation of the solutionv of the equation

− div(v(x)DdΩ(x)) = 1 in Ω,

which is related to the Euler–Lagrange equation (6) whenu ∈W(Ω).

We remark that the results in (c) were obtained in [5, 6] in the framework of mathematical
models for sandpile growth.

Combining (a), (b) and (c) we shall prove that the mean curvature of∂Ω is constant.
This implies thatΩ must be a ball, thanks to a fundamental result in differential geometry
by A. D. Aleksandrov [1].

The paper is organized as follows. In Section 2 we state the main result of the pa-
per (see Theorem 1 below). The existence and characterization of minimizers ofJ in the
spaceW(Ω) is established in Section 3, whereas the validity of the Euler–Lagrange equa-
tion for minimizers ofJ in W

1,1
0 (Ω), belonging toW(Ω), is proven in Section 4. Finally,

in Section 5 we recall the result proven in [6] and complete the proof of Theorem 1.

2. Notation and statement of the result

In what follows,Ω will denote a smooth domain inRn, that is, a nonempty bounded
open connected subset ofRn with C2 boundary. We denote by∂Ω the boundary ofΩ,
and bydΩ : Ω → R the distance function to∂Ω. The symbolrΩ will denote theinradius
of Ω, that is, the supremum of the radii of the balls contained inΩ. It is easily seen that
rΩ = max{dΩ(x); x ∈ Ω}.

If A ⊂ Rn, we denote by|A| andHn−1(∂A), respectively, the Lebesgue measure of
A and the(n − 1)-dimensional Hausdorff measure of∂A.

Let J be the functional defined in (3). Our assumptions onf are the following:
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(F1) f : [0, b) → R, b ∈ (0, ∞], is a convex, differentiable, nondecreasing function. (If
b < ∞, for notational convenience we setf (s) = ∞ for everys ≥ b.)

(F2) If 0 < b < ∞,

lim
s→b−

f (s) = ∞;

if b = ∞,

lim
s→∞

f (s)

s
= lim

s→∞
f ′(s) >

1

n

(
|Ω|

vn

)1/n

,

wherevn is the volume of the unit ball inRn.

(F3) f ′
+(0) := lim

s→0+

f (s) − f (0)

s
= 0.

We remark that, in the caseb = ∞, assumption (F2) is certainly satisfied iff is a super-
linear function, that is, if

lim
s→∞

f (s)

s
= ∞.

Assumption (F3) is equivalent to the differentiability of the maps 7→ f (|s|) at s = 0.

Our main result is the following.

Theorem 1. LetΩ ⊂ Rn be a smooth domain, letJ be the functional defined in(3), and
assume thatf satisfies assumptions(F1)–(F3). If J admits a minimizer inW1,1

0 (Ω) that
depends only on the distance from the boundary ofΩ, thenΩ must be a ball.

The proof of this theorem is postponed to Section 5.

Remark 1. Of course, the converse of Theorem 1 also holds. Namely, ifΩ is a ball and
f satisfies assumptions (F1)–(F3), then the functionalJ admits a unique minimizer in
W

1,1
0 (Ω), which is radially symmetric (see for example [8]).

Remark 2. In Theorem 1, the assumption thatf be differentiable cannot be dropped.
Namely, letf (s) = max{0, s − ρ}, s ≥ 0, whereρ ≥ 0 is a fixed parameter. Thenf
is a convex nondecreasing function in [0, ∞), and, if ρ > 0, it is not differentiable at
s = ρ. Let Ω ⊂ Rn be a smooth domain. Assume in addition thatΩ is a convex set,
and that|Ω| ≤ vn, so that (F2) clearly holds. Under these assumptions, in [20] it was
proven that the functionu0(x) = ρ dΩ(x) is a minimizer ofJ in W

1,1
0 (Ω). (In [6] the

same result is proven also in the case of nonconvex domains.) This assertion also holds
in the caseρ = 0. We remark that, in this case,f does not satisfy assumption (F3). This
example shows that, for suchf , the functionalJ admits minimizers depending only on
the distance from∂Ω even ifΩ is not a ball.
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3. Existence of minimizers inW(Ω)

The aim of this section is to prove, under the assumptions of Theorem 1, that the func-
tional J has a minimizer in the spaceW(Ω) of web functions. Moreover, we give an
explicit representation of the minimizers and we prove that they satisfy a suitable Euler–
Lagrange inclusion.

Throughout this section,Ω will be a smooth domain ofRn, although Theorem 2 be-
low still holds under a weaker regularity assumption on the boundary ofΩ (see Remark 4
below).

We recall thatdΩ is a Lipschitz continuous function, with gradient satisfying
|DdΩ(x)| = 1 for a.e.x ∈ Ω. It is clear from the definition that 0≤ dΩ(x) ≤ rΩ
for everyx ∈ Ω, whererΩ denotes the inradius ofΩ. For everyi = 1, . . . , n − 1, de-
note byκi(y) the i-th principal curvature of∂Ω at the pointy ∈ ∂Ω, corresponding to
a principal directionei(y) orthogonal toDdΩ(y), with the sign conventionκi(y) ≥ 0
if the normal section ofΩ along the directionei is convex. LetΣ denote the singular
set ofdΩ , that is, the set of pointsx ∈ Ω for which dΩ is not differentiable. The setΣ
is also known asridge or cut locus. From Rademacher’s theorem,Σ has vanishingn-
dimensional Lebesgue measure. Introducing the projectionΠ(x) of x ∈ Ω on ∂Ω, Σ is
also the set of pointsx for whichΠ(x) is not a singleton. We extendκi , i = 1, . . . , n−1,
to Ω \ Σ by settingκi(x) = κi(Π(x)) for everyx ∈ Ω \ Σ . Define thenormal distance
to the cut locus ofΩ by

τ(x) =

{
min{t ≥ 0; x + t DdΩ(x) ∈ Σ} if x ∈ Ω \ Σ,

0, if x ∈ Σ.
(8)

It is known that if∂Ω is of classC2,1, thenτ is Lipschitz continuous on∂Ω (see [18, 17]);
for less regular domains the Lipschitz continuity may fail, but continuity is preserved if
∂Ω is of classC2 (see [5, 6]).

The functionf : [0, ∞) → [0, ∞] appearing in the definition ofJ will be a lower
semicontinuous, nondecreasing convex function. We remark that, for the results estab-
lished in this section,f need not be differentiable, and can take the value∞. With some
abuse of notation, we will denote byf ∗ : R → R ∪ {∞} the conjugate function of the
maps 7→ f (|s|), s ∈ R. As is customary, the symbol∂f (s) will denote the subgradient
of f at s, in the sense of convex analysis.

In the following, a major role will be played by the functionα : [0, rΩ ] → R defined
by

α(t) =


|Ωt |

Hn−1(∂Ωt )
if t ∈ [0, rΩ),

0 if t = rΩ ,

(9)

whereΩt = {x ∈ Ω; dΩ(x) > t}. (We recall thatrΩ denotes the inradius ofΩ.)

Theorem 2. Let Ω be a smooth domain inRn. Let J be the functional defined in(3),
wheref : [0, ∞) → [0, ∞] is a lower semicontinuous, nondecreasing convex function,
satisfying

f (s) ≥ Ms − a, ∀s ≥ 0, (10)
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for some positive constantsM anda, with

M >
1

n

(
|Ω|

vn

)1/n

. (11)

Then, for every measurable selection

γ (t) ∈ ∂f ∗(α(t)), t ∈ [0, rΩ ], (12)

the function

u0(x) =

∫ dΩ (x)

0
γ (t) dt, x ∈ Ω,

belongs toW1,∞(Ω) and is a minimizer ofJ in the setW(Ω) defined in(4). Conversely,
if u0 ∈ W(Ω) is a minimizer ofJ in W(Ω), thenu0 belongs toW1,∞(Ω) and satisfies
the Euler–Lagrange inclusion

|Du0(x)| ∈ ∂f ∗(α(dΩ(x))), a.e.x ∈ Ω. (13)

Remark 3. Under the additional assumption of convexity ofΩ, Theorem 2 was proved
in [9], without convexity assumptions onf .

The remaining part of this section will be devoted to the proof of Theorem 2. We start
by proving a simple estimate on the functionα defined in (9).

Lemma 1. For everyt ∈ [0, rΩ) we have

0 < α(t) ≤
1

n

(
|Ωt |

vn

)1/n

≤
1

n

(
|Ω|

vn

)1/n

. (14)

(Recall thatvn is the volume of the unit ball inRn.) As a consequence,limt→rΩ α(t)

= α(rΩ) = 0.

Proof. The fact thatα is a positive function on [0, rΩ) follows from its very definition.
Concerning the upper bound, we recall that the isoperimetric inequality

Hn−1(∂A) ≥ nv
1/n
n |A|

(n−1)/n (15)

holds for every bounded measurable setA ⊂ Rn (see [4, §14.3 and §14.6]). Applying
(15) to the bounded measurable setΩt we get

0 < α(t) = |Ωt |
1/n |Ωt |

(n−1)/n

Hn−1(∂Ωt )
≤

1

nv
1/n
n

|Ωt |
1/n

≤
1

n

(
|Ω|

vn

)1/n

,

and the proof is complete.
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Let us define the set

K =

φ ∈ ACloc[0, rΩ)

∣∣∣∣∣∣
φ(0) = 0
t 7→ Hn−1(∂Ωt )φ(t) ∈ L1(0, rΩ)

t 7→ Hn−1(∂Ωt )φ
′(t) ∈ L1(0, rΩ)

 , (16)

whereACloc[0, rΩ) denotes the set of absolutely continuous functions in [0, r] for every
r ∈ (0, rΩ).

Lemma 2. A functionu belongs toW(Ω) if and only ifu = φ ◦ dΩ for someφ ∈ K.

Proof. Let u ∈ W(Ω). By definition ofW(Ω), there exists a measurable function
φ : [0, rΩ ] → R such thatu(x) = φ(dΩ(x)) for everyx ∈ Ω.

The tricky part of the proof thatφ ∈ K consists in showing thatφ belongs to
ACloc[0, rΩ). We shall use a local coordinate system inΩ whose properties were proved
in [16, p. 236]. More precisely, sinceΩ hasC2 boundary, we can choose a finite family
U1, . . . ,UN of bounded open sets inRn so that∂Ω ⊆

⋃N
i=1Ui , and such that, for each

i = 1, . . . , N , in a suitable coordinate system inRn we have

Ω ∩ Ui = {(x′, t); x′
∈ Vi, t > 8i(x

′)} ∩ Ui, (17)

whereVi = {x′
∈ Rn−1

; (x′, t) ∈ Ui for somet ∈ R} is an open set, and8i is a C2

function onRn−1. Define the mapsGi : Vi × R → Rn, i = 1, . . . , N , by

Gi(x
′, t) = y + t Dds

Ω(y), wherey = (x′, 8i(x
′)) ∈ ∂Ω, (18)

andds
Ω denotes the signed distance to∂Ω defined by

ds
Ω(x) =

{
dist(x, ∂Ω) if x ∈ Ω,

−dist(x, ∂Ω) if x ∈ Rn
\ Ω.

We collect here the main properties of the mapsGi , i = 1, . . . , N (see [16, Lemmas 14
and 15]):

(a) Gi is Lipschitz continuous on bounded subsets ofVi × R.
(b) The JacobianJGi is a locally bounded measurable function, and

JGi(x
′, t) =

√
1 + |D8i(x′)|2

n−1∏
j=1

(1 − κj t),

whereκ1, . . . , κn−1 are the principal curvatures of∂Ω atGi(x
′, 0).

(c) Gi is one-to-one on the set

Ui = {(x′, t); x′
∈ Vi, t ∈ (0, τ (Gi(x

′, 0)))} ⊂ Rn.

(d) Ω \ Σ =
⋃N

i=1 Gi(Ui).



146 Graziano Crasta

From properties (a), (b) and (c) we deduce that, for everyi = 1, . . . , N and everyε > 0,
Gi is a bi-Lipschitz map on the set

U ε
i = {(x′, t); x′

∈ Vi, t ∈ (0, max{0, τ (Gi(x
′, 0)) − ε})}.

Since the restriction ofu to the setAε
i = Gi(U

ε
i ) belongs toW1,1(Aε

i ), from Theo-
rem 2.2.2 in [21] we see that the restriction of the composite mapv = u ◦ Gi to U ε

i

belongs toW1,1(U ε
i ).

Finally, let us prove that, for every fixedε ∈ (0, rΩ), the mapφ belongs toAC[0,

rΩ − ε]. From property (d) and the fact that then-dimensional Lebesgue measure ofΣ is
zero, there exists an indexi ∈ {1, . . . , N} such that

max{τ(Gi(x
′, 0)); x′

∈ Vi} = rΩ .

From Theorem 2.1.4 in [21] we can assume that the functionv = u ◦ Gi is absolutely
continuous on the line segment

3(x′) = {(x′, t); t ∈ [0, max{0, τ (Gi(x
′, 0)) − ε/2}]}

for almost everyx′
∈ Vi . Sinceτ is a continuous map, there existsx′

∈ Vi such that
T = τ(Gi(x

′, 0)) > rΩ − ε and the restriction ofv to 3(x′) is absolutely continuous.
By the very definitions of the functionsGi andv we conclude that the mapt 7→ u(y +

tDdΩ(y)) = φ(t), with y = (x′, 8i(x
′)), is absolutely continuous in [0, T ]; in particular,

φ ∈ AC[0, rΩ − ε]. Furthermore, the boundary condition onu implies thatφ(0) = 0.
Let us conclude the proof of the lemma. From the change of variables formula (see

[14, §3.4.3]) it follows that∫
Ω

|u(x)| dx =

∫ rΩ

0
Hn−1(∂Ωt )|φ(t)| dt,∫

Ω

|Du(x)| dx =

∫ rΩ

0
Hn−1(∂Ωt )|φ

′(t)| dt,

henceφ ∈ K. Conversely, from the above formulas it is easily seen that ifφ ∈ K, then
u = φ ◦ dΩ belongs toW1,1

0 (Ω).

Remark 4. Following [16, Section 3], it can be easily proved that the conclusion of
Lemma 2 holds (with minor modifications in the proof) under a weaker assumption on
the regularity of the boundary ofΩ. More precisely, it is enough that the bounded open
setΩ ⊂ Rn is of positive reach(see [15]), that is, there existsr > 0 with the following
property: for everyy ∈ ∂Ω there exists a closed ballB ⊂ Rn

\ Ω, of radiusr, such that
B ∩ Ω = {y}.

As a consequence of Lemma 2, a functionu0 = φ0 ◦dΩ is a minimizer ofJ inW(Ω)

if and only if φ0 is a minimizer of the functional

F(φ) =

∫ rΩ

0
Hn−1(∂Ωt )[f (|φ′(t)|) − φ(t)] dt (19)

in K. In order to simplify the subsequent analysis, it is convenient to rewrite the term inφ

using the following integration-by-parts formula.
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Lemma 3. If φ ∈ K, then the mapt 7→ |Ωt |φ
′(t) belongs toL1(0, rΩ) and∫ rΩ

0
|Ωt |φ

′(t) dt =

∫ rΩ

0
Hn−1(∂Ωt )φ(t) dt. (20)

Proof. From the isoperimetric inequality (15) we have

|Ωt | = |Ωt |
1/n

|Ωt |
(n−1)/n

≤ |Ω|
1/n 1

nv
1/n
n

Hn−1(∂Ωt ),

hence

|Ωt | |φ
′(t)| ≤

1

n

(
|Ω|

vn

)1/n

Hn−1(∂Ωt )|φ
′(t)|, a.e.t ∈ [0, rΩ ].

Sincet 7→ Hn−1(∂Ωt )φ
′(t) belongs toL1(0, rΩ), so doest 7→ |Ωt |φ

′(t). If we recall
that t 7→ |Ωt | is absolutely continuous in [0, rΩ ] and d

dt
|Ωt | = −Hn−1(∂Ωt ) for a.e.t ,

formula (20) now follows from a standard integration by parts.

In view of Lemma 3, the functionalF can be rewritten as

F(φ) =

∫ rΩ

0
g(t, φ′(t)) dt, φ ∈ K, (21)

whereg : [0, rΩ ] × R → R ∪ {∞} is defined by

g(t, ξ) = Hn−1(∂Ωt )f (|ξ |) − |Ωt | ξ . (22)

The advantage of rewritingF in this way lies in the fact that the lagrangeang does not
depend onφ. We remark thatg(t, ·) is a convex function for everyt ∈ [0, rΩ ]. From
assumption (10) and estimate (14) we have

g(t, ξ) ≥ Hn−1(∂Ωt )[M − α(t)] |ξ | −Hn−1(∂Ωt )a

≥ Hn−1(∂Ωt )

[
M −

1

n

(
|Ω|

vn

)1/n]
|ξ | −Hn−1(∂Ωt )a,

hence from the assumption (11),

lim
|ξ |→∞

g(t, ξ) = ∞

for everyt ∈ [0, rΩ). This implies that, for every sucht , the convex functiong(t, ·) has
a nonempty compact set of minimizers. Recalling thatξ is a minimizer ofg(t, ·) if and
only if 0 ∈ ∂g(t, ξ), that is, if and only ifξ ∈ ∂g∗(t, 0), we conclude that the convex set
∂g∗(t, 0) is nonempty and compact for everyt ∈ [0, rΩ). Moreover, a simple computation
shows that

∂g∗(t, 0) = ∂f ∗(α(t)), ∀t ∈ [0, rΩ).

The following lemma will be used in order to prove the Lipschitz regularity of the
minimizers ofJ inW(Ω).
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Lemma 4. Let g : [0, rΩ ] × R → R ∪ {∞} be the function defined in(22), wheref

satisfies the assumptions of Theorem 2. Then there exists a positive constantC with the
following property. Ifξ : [0, rΩ ] → R is a measurable selection of the multifunction
t 7→ ∂g∗(t, 0), then|ξ(t)| ≤ C for a.e.t ∈ [0, rΩ ].

Proof. Denote by

Mn =
1

n

(
|Ω|

vn

)1/n

the constant appearing in (11). From (10) we deduce that the open interval(−M, M)

is contained in the essential domain off ∗ (that is,f ∗ is finite in that interval). Since
M > Mn by assumption (11), and 0< α(t) ≤ Mn by (14), from the monotonicity of
the subgradient we know that|ξ | ≤ (f ∗)′+(Mn) < ∞ for every ξ ∈ ∂f ∗(α(t)). The
conclusion now follows by choosingC = (f ∗)′+(Mn).

Now we are in a position to prove Theorem 2.

Proof of Theorem 2.Let g : [0, rΩ ] × R → R ∪ {∞} be the function defined in (22), and
letK be the set defined in (16). From the discussion above, it is enough to prove that the
functional

F(φ) =

∫ rΩ

0
g(t, φ′(t)) dt, φ ∈ K,

admits minimizers, andφ0 ∈ K is a minimizer ofF if and only if

φ′(t) ∈ ∂g∗(t, 0), a.e.t ∈ [0, rΩ ]. (23)

We have already shown that the multifunction

t 7→ ∂g∗(t, 0) = ∂f ∗(α(t)), t ∈ [0, rΩ ], (24)

has nonempty, compact convex values for everyt ∈ [0, rΩ). Moreover, from Lemma 4,
if ξ(t) is a measurable selection of that multifunction, thenξ ∈ L∞(0, rΩ). Hence, the
function

φ0(t) :=
∫ t

0
ξ(s) ds

belongs toK∩W1,∞(0, rΩ). Let us show thatφ0 is a minimizer ofF inK. Sinceφ′

0(t) =

ξ(t) ∈ ∂g∗(t, 0), we deduce that 0∈ ∂g(t, φ′

0(t)) for a.e.t ∈ [0, rΩ ], so that

F(φ) − F(φ0) =

∫ rΩ

0
[g(t, φ′(t)) − g(t, φ′

0(t))] dt ≥ 0

for everyφ ∈ K.
Conversely, letφ0 ∈ K be a minimizer ofF in K. Let ξ(t) be a measurable selection

of the multifunction (24), and defineφ(t) =
∫ t

0 ξ(s) ds, t ∈ [0, rΩ ]. From the first part of
the proof,φ is a minimizer ofF , so thatF(φ) = F(φ0). Moreover,φ′(t) is a minimum
point ofg(t, ·) for a.e.t ∈ [0, rΩ ], so that

g(t, φ′(t)) − g(t, φ′

0(t)) ≤ 0, a.e.t ∈ [0, rΩ ].
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SinceF(φ) = F(φ0), we must have

g(t, φ′(t)) = g(t, φ′

0(t)), a.e.t ∈ [0, rΩ ].

Henceφ′

0(t) must be a minimum point ofg(t, ·) for a.e.t , that is, (23) holds.

Remark 5. From the proof of Theorem 2 it is clear that a functionu0(x) = φ0(dΩ(x)),
φ0 ∈ K, is a minimizer ofJ in W(Ω) if and only if φ0 satisfies the Euler–Lagrange
inclusion

φ′

0(t) ∈ ∂f ∗(α(t)), a.e.t ∈ [0, rΩ ], (25)

whereα is the function defined in (9). Sinceα is strictly positive in [0, rΩ), and∂f ∗(p) ⊂

[0, ∞) for everyp > 0, the differential inclusion (25) implies thatφ′

0 ≥ 0 almost every-
where.

The last inequality can also be deduced directly from the fact thatφ0 is a minimizer
of the functionalF defined in (19). Namely, consider the function

φ1(t) =

∫ t

0
|φ′

0(s)| ds, t ∈ [0, rΩ ].

Sinceφ0 ∈ K, it is easy to check that alsoφ1 ∈ K, and 0≤ φ′

1(t) = |φ′

0(t)| for a.e.
t ∈ [0, rΩ ]. Thenφ1(t) ≥ φ0(t) for everyt ∈ [0, rΩ ]. Assume by contradiction that the
setE = {t ∈ [0, rΩ ]; φ′

0(t) < 0} has positive Lebesgue measure. In this case,φ1 > φ0 on
some interval. HenceF(φ1) < F(φ0), in contradiction with the fact thatφ0 is a minimizer
of F .

Remark 6. Assume thatf satisfies (F1)–(F3), and extendf over allR by settingf (s) =

f (|s|) when s < 0. We remark that (F3) is equivalent to the differentiability of this
extension ats = 0 (where we havef ′(0) = 0). Hencef is differentiable everywhere in
(−b, b). Under this differentiability assumption, the inclusion (25) can be written in the
equivalent form

α(t) = f ′(φ′

0(t)), a.e.t ∈ [0, rΩ ].

4. Validity of the Euler–Lagrange equation

The aim of this section is to establish a result concerning the validity of the Euler–
Lagrange equation associated to the minimum problem (5), for minimizers belonging
to the spaceW(Ω).

Theorem 3. Let Ω be a smooth domain inRn, let f satisfy(F1)–(F3), and letu0 ∈

W(Ω) be a minimizer ofJ in W
1,1
0 (Ω). Thenu0 satisfies the Euler–Lagrange equation∫

Ω

[f ′(|Du0(x)|)〈DdΩ(x), Dϕ(x)〉 − ϕ(x)] dx = 0, ∀ϕ ∈ C∞

0 (Ω). (26)
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Proof. As a first step, let us prove that

lim
ε→0

∫
Ω

f (|Du0 + εDϕ|) − f (|Du0|)

ε
dx =

∫
Ω

f ′(|Du0|)〈DdΩ , Dϕ〉 dx (27)

for everyϕ ∈ C∞

0 (Ω). Sinceu0 is also a minimizer ofJ inW(Ω), from Theorem 2 we
know thatu0 ∈ W1,∞(Ω), hence there exists a positive constantC0 such that

|Du0(x)| ≤ C0 < b, a.e. x ∈ Ω. (28)

Now, letϕ be a fixed function inC∞

0 (Ω). From (28) there existsε0 > 0 such that

|Du0(x) + εDϕ(x)| ≤ C < b, a.e. x ∈ Ω, (29)

for every|ε| ≤ ε0. From the mean value theorem, for every suchε there exists a function
θε such that

f (|Du0 + εDϕ|) − f (|Du0|)

ε
= f ′(|Du0| + θε)〈DdΩ , Dϕ〉

and|θε(x)| ≤ ε|Dϕ(x)| for everyx ∈ Ω. This last estimate, together with (29), implies
that ∣∣∣∣f (|Du0 + εDϕ|) − f (|Du0|)

ε

∣∣∣∣ ≤ f ′(C)‖Dϕ‖∞, ∀|ε| ≤ ε0.

On the other hand, sincef is a convex differentiable function, its derivative is continuous,
hence

lim
ε→0

f (|Du0 + εDϕ|) − f (|Du0|)

ε
= f ′(|Du0|)〈DdΩ , Dϕ〉.

The equality (27) now follows from the Lebesgue dominated convergence theorem.

Let us prove (26). For everyϕ ∈ C∞

0 (Ω) and everyε > 0, sinceu0 is a minimizer of
J we have

0 ≤
J (u0 + εϕ) − J (u0)

ε
=

∫
Ω

f (|Du0 + εDϕ|) − f (|Du0|) − εϕ

ε
dx.

Passing to the limit asε → 0+, from (27) we deduce that∫
Ω

[f ′(|Du0|)〈DdΩ , Dϕ〉 − ϕ] dx ≥ 0.

Since this inequality also holds if we replaceϕ with −ϕ, (26) follows.

Remark 7. Without the assumption thatu0 depends only on the distance from∂Ω, the
validity of the Euler–Lagrange equation can be established provided thatf satisfies suit-
able growth conditions. See [7] for details.
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5. Proof of Theorem 1

We will use the following result.

Theorem 4 (see [6]). Let Ω be a smooth domain. Then the functionv : Ω → R defined
byv(x) = 0 for everyx ∈ Σ and

v(x) =

∫ τ(x)

0

n−1∏
i=1

1 − (dΩ(x) + s)κi(x)

1 − dΩ(x)κi(x)
ds, ∀x ∈ Ω \ Σ, (30)

is continuous inΩ and it is the unique solution to∫
Ω

[v(x)〈DdΩ(x), Dϕ(x)〉 − ϕ(x)] dx = 0, ∀ϕ ∈ C∞

0 (Ω). (31)

We recall that, for everyx ∈ Ω \ Σ , κi(x), i = 1, . . . , n − 1, denotes thei-th principal
curvature of∂Ω atΠ(x), andτ is the normal distance to the cut locus defined in (8).

Remark 8. In the casen = 2, Theorem 4 was proven in [5].

Let us denote byH1(y) the mean curvature of∂Ω at a pointy, that is,

H1(y) =
1

n − 1

n−1∑
i=1

κi(y), y ∈ ∂Ω . (32)

Under the assumptions of Theorem 1, we shall show thatH1 is constant on∂Ω, that
is, every connected componentS of ∂Ω is a compact embedded hypersurface without
boundary with constant mean curvatureH1. From a celebrated result of Aleksandrov [1],
it follows thatS is a hypersphere of radiusR = 1/H1. SinceΩ is connected, we conclude
thatΩ must be a ball of radiusR.

Proof of Theorem 1.Let u0 = φ0 ◦ dΩ be a minimizer ofJ , depending only on the
distance from∂Ω. Under the assumptions of Theorem 1, from Theorem 2 we find thatφ0
is Lipschitz continuous on [0, rΩ ]. Furthermore, the Euler–Lagrange equation

α(t) = f ′(|φ′

0(t)|), a.e. t ∈ [0, rΩ ], (33)

holds, whereα : [0, rΩ ] → R is the function defined in (9) (see Remark 6).
From Theorem 3 we know thatu0 satisfies the Euler–Lagrange equation (26). On the

other hand, from Theorem 4 we deduce thatv(x) = f ′(|Du0(x)|). From (33), we then
have

v(x) = α(dΩ(x)), a.e.x ∈ Ω.

More precisely, from the continuity ofv it follows thatv is constant on the level sets∂Ωt

of the distancedΩ , for everyt ∈ [0, rΩ ].
Let x ∈ Σ , that is,v(x) = 0, and lett = dΩ(x). From the discussion above we have

v(y) = 0 for everyy ∈ ∂Ωt , that is,∂Ωt ⊆ Σ .
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We claim thatt = rΩ . Assume by contradiction that there exists a pointz ∈ Ω with
dΩ(z) > t , and lety ∈ Π(z). The functiondΩ is differentiable at any point of the line
segment(y, z) (see [2]), which is in contradiction with the fact that(y, z) must intersect
∂Ωt , that is,(y, z) must contain at least one singular point ofdΩ .

We have thus proven that

x ∈ Σ ⇔ dΩ(x) = rΩ .

As a consequence,dΩ is regular on the set{x ∈ Ω; 0 < dΩ(x) < rΩ}, and then the
distance to the cut locus isτ(y) = rΩ for everyy ∈ ∂Ω. From the explicit representation
(30) ofv, for everyt ∈ [0, rΩ) we have

v(y) = α(t) =

∫ rΩ

t

n−1∏
i=1

1 − sκi(y)

1 − tκi(y)
ds, ∀y ∈ ∂Ωt .

From this formula we deduce that the functionα is of classC∞ on [0, rΩ). By a direct
computation we get

α′(t) = −1 +

n−1∑
j=1

∫ rΩ

t

(n−1∏
i=1

1 − sκi(y)

1 − tκi(y)

)
·

κj (y)

1 − tκj (y)
ds (34)

for everyt ∈ [0, rΩ) andy ∈ ∂Ωt . Evaluating this derivative att = 0 we obtain

α′(0) = −1 + α(0)

n−1∑
j=1

κj (y) = −1 + (n − 1)α(0)H1(y), ∀y ∈ ∂Ω,

so thatH1 is constant on∂Ω. From a result of Aleksandrov [1] we conclude that the
connected setΩ is a ball.

Remark 9. The termκj (y)/(1 − tκj (y)), appearing in the integral in (34), is thej -th
principal curvature of the set∂Ωt aty (see [16]).

Remark 10. The fact thatdΩ is regular on{x ∈ Ω; 0 < dΩ(x) < rΩ} alone is not
enough to conclude thatΩ is a ball. For example, the setΩ = BR(0)\Br(0), 0 < r < R,
is a connected set withC∞ boundary, with inradiusrΩ = (R − r)/2, and the singular set
Σ coincides with∂B(r+R)/2(0) = {x ∈ Ω; dΩ(x) = rΩ}.

Among convex sets, if we relax the assumption on the regularity of the boundary, an
example can be constructed in the following way. LetΣ ⊂ Rn be a nonempty compact
convex set without interior points (in the language of convex geometry, its dimension must
be at mostn−1). Letr > 0, and defineΩ =

⋃
x∈Σ Br(x). ThenΩ is an open convex set

with inradiusrΩ = r, and the singular set ofdΩ coincides with{x ∈ Ω; dΩ(x) = rΩ}

= Σ .
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Remark 11. Let us define thei-th order mean curvatureHi of ∂Ω to be the elementary
symmetric polynomial of degreei in the principal curvaturesκ1, . . . , κn−1 normalized by
the following identity:

n−1∏
i=1

(1 + κi t) =

n−1∑
i=0

(
n − 1

i

)
Hi t i .

It is easily seen thatH0 ≡ 1 andH1 is the mean curvature, defined in (32). Computing
the firstn − 1 derivatives ofα at t = 0 we can prove thatH1, . . . , Hn−1 are constant on
∂Ω (it is clear that,a posteriori, this is a consequence of the fact thatΩ is a ball). For
example, ifn ≥ 3, the second derivative ofα is given by

α′′(t) = −

n−1∑
j=1

κj (y)

1 − tκj (y)

+

n−1∑
j,h=1

∫ rΩ

t

(n−1∏
i=1

1 − sκi(y)

1 − tκi(y)

)
·

κj (y)κh(y)

(1 − tκj (y))(1 − tκh(y))
ds

for everyt ∈ [0, rΩ) andy ∈ ∂Ωt , hence

α′′(0) = −(n − 1)H1(y) + (n − 1)(n − 2)H2(y)α(0), ∀y ∈ ∂Ω.

SinceH1 is constant on∂Ω, we deduce that alsoH2 is constant on∂Ω.
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