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Abstract. Two generalizations of the notion of principal eigenvalue for elliptic operators inRN
are examined in this paper. We prove several results comparing these two eigenvalues in various
settings: general operators in dimension one; self-adjoint operators; and “limit periodic” operators.
These results apply to questions of existence and uniqueness for some semilinear problems in the
whole space. We also indicate several outstanding open problems and formulate some conjectures.
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1. Introduction

The principal eigenvalue is a basic notion associated with an elliptic operator. For in-
stance, the study of semilinear elliptic problems in bounded domains often involves
the principal eigenvalue of the associated linear operator. To motivate the results of the
present paper, let us first recall some classical properties of a class of semilinear elliptic
problems in bounded domains.

Let −L be a linear elliptic operator acting on functions defined on a bounded and
smooth domain� ⊂ RN :

Lu = aij (x)∂iju+ bi(x)∂iu+ c(x)u

(here and throughout the paper, the summation convention on repeated indices is used).
Consider the Dirichlet problem{

− Lu = g(x, u), x ∈ �,

u = 0 on∂�.
(1.1)

We are interested in positive solutions of (1.1). Assume thatg is aC1 function such that

g(x, s) < g′
s(x,0)s, ∀s > 0, ∀x ∈ �
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I-00185 Roma, Italy; e-mail: rossi@mat.uniroma1.it

Mathematics Subject Classification (2000):Primary 35P15; Secondary 35B15, 35J60, 35J15



196 Henri Berestycki, Luca Rossi

and

∃M > 0 such that g(x, s)+ c(x)s ≤ 0, ∀s ≥ M.

Then existence of positive solutions of (1.1) is determined by the principal eigenvalueµ1
of the problem linearized aboutu = 0:{

−Lϕ − gs(x,0)ϕ = µ1ϕ in �,
ϕ = 0 on∂�.

(1.2)

Recall thatµ1 is characterized by the existence of an associated eigenfunctionϕ > 0
of (1.2). It is known indeed that (1.1) has a positive solution if and only ifµ1 < 0 (see
e.g. [3]). Under the additional assumption thats 7→ g(x, s)/s is decreasing, one further
obtains a uniqueness result [3].

Problems of the type (1.1) arise in several contexts, in particular in population dynam-
ics. In many of the applications, the problem is set in an unbounded domain, often inRN .
Clearly, extensions to unbounded domains of the previous result, as well as others of the
same type, require one to understand the generalizations and properties of the notion of
principal eigenvalue of elliptic operators in unbounded domains. In Section 2, we indicate
some new results about such a semilinear problem, extending the result for (1.1).

Another example of use of principal eigenvalue is the characterization of the existence
of the Green function for periodic linear operators (see Agmon [1]). We refer to [21] and
to its bibliography for details on the subject. In [18], Kuchment and Pinchover derived an
integral representation formula for the solutions of linear elliptic equations with periodic
coefficients in the whole space, provided that an associated generalized principal eigen-
value is positive. It can be seen that the generalized eigenvalue in [18] coincides with (1.6)
here. This result yields in particular a Liouville type theorem extending those of [2], [19]
for periodic self-adjoint operators. Moreover, the principal eigenvalue of an elliptic oper-
ator has been shown to play an important role in some questions in branching processes
(see Engl̈ander and Pinsky [10], Pinsky [22]). Very recently, the principal eigenvalue of
an elliptic operator inRN is being introduced in the context of economic models [12].

Some definitions of the notion of principal eigenvalue in unbounded domains have
emerged in the works of Agmon [1], Berestycki, Nirenberg and Varadhan [7], Pinsky
[21] and others. With a view to applications to semilinear equations, in particular two
definitions have been used in [4], [5], [6]. We will recall these definitions later in this
section. In this paper, we examine these definitions and further investigate their properties.
In particular, we are interested in understanding when the two definitions coincide or for
which classes of operators one or the other inequality holds. We also further explain the
choice of definition. This work grew out of our previous article with François Hamel [6]
which already addressed some of these issues. We review the relevant results from [6] in
Section 3.

Let us now recall the definitions. We define the class ofelliptic operators(in non-
divergence form) as the elliptic operators−L with

Lu = aij (x)∂iju+ bi(x)∂iu+ c(x)u in RN.
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Self-adjoint elliptic operators−L are defined by

Lu = ∂i(aij (x)∂ju)+ c(x)u in RN.

Throughout the paper,(aij )ij will denote anN ×N symmetric matrix field such that

∀x, ξ ∈ RN , a|ξ |2 ≤ aij (x)ξiξj ≤ a|ξ |2, (1.3)

wherea anda are two positive constants,(bi)i will denote anN -dimensional vector field
andc a real-valued function. We always assume that there exists 0< α ≤ 1 such that

aij , bi, c ∈ C
0,α
b (RN ), (1.4)

in the case of general operators, and

aij ∈ C
1,α
b (RN ), c ∈ C

0,α
b (RN ), (1.5)

in the self-adjoint case. ByCk,αb (RN ), we mean the class of functionsφ ∈ Ck(RN ) such
thatφ and the derivatives ofφ up to orderk are bounded and uniformly Ḧolder continuous
with exponentα. Notice that every self-adjoint operator satisfying (1.5) can be viewed as
a particular case of a general elliptic operator satisfying (1.4).

It is well known that any elliptic operator−L as defined above admits a unique prin-
cipal eigenvalue, both in bounded smooth domains associated with Dirichlet boundary
conditions, and inRN provided that its coefficients are periodic in each variable. This
principal eigenvalue is the bottom of the spectrum of−L in the appropriate function
space, and it admits an associated positive principal eigenfunction. This result follows
from the Krein–Rutman theory and from compactness arguments (see [15] and [14]).

In this paper, we examine some properties of two different generalizations of the
principal eigenvalue in unbounded domains. The first one, originally introduced in [7],
reads:

Definition 1.1. Let −L be a general elliptic operator defined in a domain� ⊆ RN . We
set

λ1(−L,�) := sup{λ | ∃φ ∈ C2(�) ∩ C1
loc(�), φ > 0 and(L+ λ)φ ≤ 0 in �}. (1.6)

Here,C1
loc(�) denotes the set of functionsφ ∈ C1(�) for which φ and∇φ can be ex-

tended by continuity on∂�, but which are not necessarily bounded. The generalized
principal eigenvalueλ1 given by (1.6) is the same as the one used in [18]. Indeed, in [18],
the eigenvalue is defined with equality in formula (1.6). Using the existence of a general-
ized principal eigenfunction (which follows from the same arguments as in Section 4 in
[6]) one sees that the two notions actually coincide. Berestycki, Nirenberg and Varadhan
showed that this is a natural generalization of the principal eigenvalue. Indeed, if� is
bounded and smooth, thenλ1(−L,�) coincides with the principal eigenvalue of−L in
� with Dirichlet boundary conditions. As we will see later, the eigenvalueλ1 does not
suffice to completely describe the properties of semilinear equations in the whole space,
in contrast to the Dirichlet principal eigenvalue in bounded domains for problem (1.1).
For this, we also require another generalization, whose definition is similar to that ofλ1.
This generalization has been introduced in [4], [6] and reads:
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Definition 1.2. Let −L be a general elliptic operator defined in a domain� ⊆ RN . We
set

λ′

1(−L,�) := inf{λ | ∃φ ∈ C2(�) ∩ C1
loc(�) ∩W2,∞(�),

φ > 0 and−(L+ λ)φ ≤ 0 in �, φ = 0 on ∂� if ∂� 6= ∅}. (1.7)

Several other generalizations are possible, starting from Definition 1.1 and playing on the
space of functions or the inf and sup inequalities. We will explain why Definition 1.2 is
relevant.

If L is periodic (in the sense that its coefficients are periodic in each variable, with
the same period) thenλ1(−L,RN ) ≥ λ′

1(−L,R
N ), as is shown by takingφ equal to a

positive periodic principal eigenfunction in (1.6) and (1.7). More generally, if there exists
a bounded positive eigenfunctionϕ, thenλ1 ≥ λ′

1. But in general, if the operatorL is
not self-adjoint, equality need not hold betweenλ1 andλ′

1, even ifL is periodic (see
Section 3). It is then natural to ask about the relations betweenλ1 andλ′

1 in the general
case. In Section 3, we review a list of statements, most of them given in [6], which answer
this question in some particular cases. In Section 4, we state our new main results as well
as some problems which are still open. In Section 5, we motivate our choice of taking
(1.6) and (1.7) as generalizations of the principal eigenvalue. The last three sections are
dedicated to the proofs of our main results.

2. Positive solutions of semilinear elliptic problems inRN

Let us precisely describe how the eigenvaluesλ1 andλ′

1 are involved in the study of the
following class of nonlinear problems:

−aij (x)∂iju(x)− bi(x)∂iu(x) = f (x, u(x)) in RN . (2.8)

This type of problem arises in particular in biology and in population dynamics. Here
and in what follows, the functionf (x, s) : RN × R → R is assumed to be inC0,α

b (RN )
with respect to the variablex, locally uniformly in s ∈ R, and to be locally Lipschitz-
continuous in the variables, uniformly in x ∈ RN . Furthermore, we always assume that

∀x ∈ RN , f (x,0) = 0,

∃δ > 0 such thats 7→ f (x, s) belongs toC1([0, δ]), uniformly in x ∈ RN ,
fs(x,0) ∈ C

0,α
b (RN ).

We will always denote byL0 the linearized operator around the solutionu ≡ 0 associated
to the equation (2.8), that is,

L0u = aij (x)∂iju+ bi(x)∂iu+ fs(x,0)u in RN.

In [4] it is proved that, under suitable assumptions onf , if L0 is self-adjoint and the func-
tionsaij andx 7→ f (s, x) are periodic (in each variable) with the same period, then (2.8)
admits a unique positive bounded solution if and only if the periodic principal eigenvalue
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of −L0 is negative (see Theorems 2.1 and 2.4 in [4]). This result has been extended in
[6] to nonperiodic, non-self-adjoint operators, by usingλ1(−L0,RN ) andλ′

1(−L0,RN )
instead of the periodic principal eigenvalue of−L0. The assumptions required are:

∃M > 0, ∀x ∈ RN , ∀s ≥ M, f (x, s) ≤ 0, (2.9)

∀x ∈ RN , ∀s ≥ 0, f (x, s) ≤ fs(x,0)s. (2.10)

The existence result of [6] is:

Theorem 2.1. LetL0 be the linearized operator around zero associated to equation(2.8).

(1) If (2.9)holds and eitherλ1(−L0,RN ) < 0 or λ′

1(−L0,RN ) < 0, then there exists at
least one positive bounded solution of(2.8).

(2) If (2.10)holds andλ′

1(−L0,RN ) > 0, then there is no nonnegative bounded solution
of (2.8)other than the trivial oneu ≡ 0.

Theorem 2.1 follows essentially from Definitions 1.1, 1.2 and a characterization ofλ1 (see
Theorem 5.1 and Propositions 6.1, 6.5 in [6] for details). In [10], Engländer and Pinsky
proved a similar existence result for a class of solutions of minimal growth (which they
define there) for nonlinearities of the typef (x, u) = b(x)u− a(x)u2 with inf a > 0 (see
also [9], [22]).

Since the theorem involves bothλ1 andλ′

1, one does not have a simple necessary and
sufficient condition. This is one of the motivations to investigate the properties of these
two generalized eigenvalues. In particular, it is useful to determine conditions which yield
equality between them or at least an ordering.

From the results we prove in this paper we can deal in particular with the case that the
operator is self-adjoint andlimit periodic. The notion of limit periodic operator is defined
precisely below in Section 4.2. Essentially, it means that the operator is the uniform limit
(in the sense of coefficients) of a sequence of periodic operators. In this case, we still have
a condition, extending that in Theorem 2.1, which is nearly necessary and sufficient.

Theorem 2.2. Let−L0 be a self-adjoint limit periodic operator.

(1) If (2.9)holds andλ1(−L0,RN ) < 0, then there exists at least one positive bounded
solution of (2.8). If, in addition,(2.11)below holds, then such a solution is unique.

(2) If (2.10)holds andλ1(−L0,RN ) > 0, then there is no nonnegative bounded solution
of (2.8)other than the trivial oneu ≡ 0.

The same result holds in dimensionN = 1 if L0 is an arbitrary self-adjoint operator.

The case of equality:λ1(−L0,RN ) = 0 is open.
For uniqueness, in unbounded domains, one needs to replace the classical assumption

thats 7→ f (x, s)/s is decreasing by the following one:

∀0< s1 < s2, inf
x∈RN

(
f (x, s1)

s1
−
f (x, s2)

s2

)
> 0. (2.11)

The uniqueness result of [6] is more delicate and involves the principal eigenvalue of
some limit operators defined there. It becomes simpler to state in case the coefficients in
(2.8) arealmost periodic, in the sense of the following definition:
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Definition 2.3. A functiong : RN → R is said to bealmost periodic (a.p.)if from any
sequence(xn)n∈N in RN one can extract a subsequence(xnk )k∈N such thatg(xnk + x)

converges uniformly inx ∈ RN .

Theorem 2.4 (Theorem 1.5 in [6]). Assume that the functionsaij , bi andfs(·,0) are
a.p. If (2.11)holds andλ1(−L0,RN ) < 0, then(2.8) admits at most one nonnegative
bounded solution besides the trivial oneu ≡ 0.

Theorems 2.1 and 2.4 essentially contain the results in the periodic self-adjoint framework
(which hold under the same assumptions (2.9), (2.10) and (2.11)). In that case, in fact,
λ1(−L0,RN ) andλ′

1(−L0,RN ) coincide with the periodic principal eigenvalue of−L0
(see Proposition 3.3 below) and then the only case which is not covered is when the
periodic principal eigenvalue is equal to zero.

3. Some properties of the generalized principal eigenvaluesλ1 and λ′

1 in RN

In this section, unless otherwise specified,−L denotes a general elliptic operator. When
we say thatL is periodic, we mean that there existN positive constantsl1, . . . , lN such
that

∀x ∈ RN , ∀k ∈ {1, . . . , N}, aij (x + lkek) = aij (x),

bi(x + lkek) = bi(x), c(x + lkek) = c(x),

where(e1, . . . , eN ) is the canonical basis ofRN . The following are some of the known
results concerningλ1 andλ′

1. Actually, in some statements of [6], the coefficients ofL

were inC0,α(RN )∩L∞(RN ) and the “test functions”φ in the definition ofλ′

1 were taken
in C2(RN ) ∩W1,∞(RN ) instead ofC2(RN ) ∩W2,∞(RN ). However, one can check that
the following results—as well as Theorem 2.1—can be proved arguing exactly as in the
proofs of the corresponding results in [6].

Proposition 3.1 ([7] and Proposition 4.2 in [6]). Let� be a general domain inRN and
(�n)n∈N be a sequence of nonempty open sets such that

�n ⊂ �n+1,
⋃
n∈N

�n = �.

Thenλ1(−L,�n) ↘ λ1(−L,�) asn → ∞.

Proposition 3.1 yieldsλ1(−L,RN ) < ∞. Furthermore, takingφ ≡ 1 as a test function in
(1.6), we see thatλ1(−L,RN ) ≥ −‖c‖∞. Thus,λ1 is always a well defined real number.

In the case ofL periodic, theperiodic principal eigenvalueof −L is defined as the
unique real numberλp such that there exists a positive periodicϕ ∈ C2(RN ) satisfying
(L+ λp)ϕ = 0 in RN . Its existence follows from the Krein–Rutman theory.

Proposition 3.2 (Proposition 6.3 in [6]). If L is periodic, then its periodic principal
eigenvalueλp coincides withλ′

1(−L,R
N ).
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It is known that, in the general non-self-adjoint case,λ1 6= λ′

1. Indeed, as an example,
consider the one-dimensional operator−Lu = −u′′

+u′, which is periodic with arbitrary
positive period. Then it is easily seen that

λ′

1(−L,R) = 0<
1

4
= λ1(−L,RN ).

In fact, sinceϕ ≡ 1 satisfies−Lϕ = 0, it follows that the periodic principal eigenvalue of
−L is 0 and then, by Proposition 3.2,λ′

1(−L,R) = 0. On the other hand, for anyR > 0,
the function

ϕR(x) := cos

(
π

2R
x

)
ex/2

satisfies−LϕR = (1/4 + π2/4R2)ϕR, which shows thatϕR is a principal eigenfunction
of −L in (−R,R), under Dirichlet boundary conditions. Therefore, by Proposition 3.1,

λ1(−L,R) = lim
R→∞

(
1

4
+
π2

4R2

)
=

1

4
> λ′

1(−L,R).

Proposition 3.3 (Proposition 6.6 in [6]). If the elliptic operator−L is self-adjoint and
periodic, thenλ1(−L,RN ) = λ′

1(−L,R
N ) = λp, whereλp is the periodic principal

eigenvalue of−L.

For the rest of this paper it is useful to recall the proof of the last statement.

Proof of Proposition 3.3.First, from Proposition 3.2 one knows thatλp = λ′

1(−L,R
N ).

Now, letϕp be a positive periodic principal eigenfunction of−L in RN . Takingφ = ϕp
in (1.6), it is straightforward to see thatλ1(−L,RN ) ≥ λp.

To show the reverse inequality, consider a family(χR)R≥1 of cutoff functions in
C2(RN ), uniformly bounded inW2,∞(RN ), such that 0≤ χR ≤ 1, suppχR ⊂ BR
andχR = 1 inBR−1.

Fix R > 1 and letλR be the principal eigenvalue of−L in BR. It is obtained by the
following variational formula:

λR = min

{∫
BR
(aij (x)∂iv∂jv − c(x)v2)∫

BR
v2

∣∣∣∣ v ∈ H 1
0 (BR), v 6= 0

}
. (3.12)

Takingv = ϕpχR as a test function in (3.12), and writingCR = BR \ BR−1, we find

λR ≤ −

∫
BR
(L(ϕpχR))ϕpχR∫

BR
ϕ2
pχ

2
R

=

λp
∫
BR−1

ϕ2
p −

∫
CR
(L(ϕpχR))ϕpχR∫

BR
ϕ2
pχ

2
R

= λp −
λp

∫
CR
ϕ2
pχ

2
R +

∫
CR
(L(ϕpχR))ϕpχR∫

BR
ϕ2
pχ

2
R

.

Since minϕp > 0, it follows that there existsK > 0, independent ofR, such that∫
BR

ϕ2
pχ

2
R ≥

∫
BR−1

ϕ2
p ≥ K(R − 1)N .



202 Henri Berestycki, Luca Rossi

Consequently,

λR ≤ λp +K ′
RN−1

(R − 1)N
,

whereK ′ is a positive constant independent ofR. Letting R go to infinity and using
Proposition 3.1, we getλ1(−L,RN ) ≤ λp, and thereforeλ1(−L,RN ) = λp. ut

The next result is an extension of the previous proposition. It is still about periodic oper-
ators, but which are not necessarily self-adjoint. A gradient type assumption on the first
order coefficients is required.

Theorem 3.4 (Theorem 6.8 in [6]). Consider the operator

Lu := ∂i(aij (x)∂ju)+ bi(x)∂iu+ c(x)u, x ∈ RN ,

whereaij , bi , c are periodic inx with the same period(l1, . . . , lN ), the matrix field
A(x) = (aij (x))1≤i,j≤N is in C1,α(RN ), elliptic and symmetric, the vector fieldb =

(b1, . . . , bN ) is in C1,α(RN ) and c ∈ C0,α(RN ). Assume that there is a functionB ∈

C2,α(RN ) such thataij∂jB = bi for all i = 1, . . . , N and the vector fieldA−1b has zero
average on the periodicity cellC = (0, l1) × · · · × (0, lN ). Thenλ1(−L,RN ) = λp =

λ′

1(−L,R
N ), whereλp is the periodic principal eigenvalue of−L in RN .

Next, the natural question is to ask what happens when we drop the periodicity assump-
tion. Up to now, the only available result has been obtained in [6] in the case of dimension
one. It states:

Proposition 3.5 (Proposition 6.11 in [6]). Let −L be a self-adjoint operator in dimen-
sion one. Thenλ1(−L,R) ≤ λ′

1(−L,R).

This type of result will be extended below.

4. Main results and open problems

The goal of this paper is to further explore these properties. We will examine three main
classes: self-adjoint operators in low dimension, limit periodic operators and general op-
erators in dimension one. We seek to identify classes of operators for which either equality
or an inequality betweenλ1 andλ′

1 holds.

4.1. Self-adjoint case

Our first result is an extension of the comparison result of Proposition 3.5 to dimensions
N = 2,3 in the self-adjoint framework.

Theorem 4.1. Let −L be a self-adjoint elliptic operator inRN , with N ≤ 3. Then
λ1(−L,RN ) ≤ λ′

1(−L,R
N ).

The assumptionN ≤ 3 in Theorem 4.1 seems to be only technical, as was the assumption
N = 1 in Proposition 3.5. That is why we believe that the above result holds in any
dimensionN . But the problem is open at the moment.
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4.2. Limit periodic operators

Next, we examine the class of limit periodic operators which extends that of periodic
operators. In a sense, this class is intermediate between periodic and a.p. Here is the
definition:

Definition 4.2. (1) We say that a general elliptic operator−L is general limit periodicif
there exists a sequence of general elliptic periodic operators

−Lnu := −anij∂iju− bni ∂iu− cnu

such thatanij → aij , b
n
i → bi andcn → c in C0,α

b (RN ) asn goes to infinity.
(2) We say that a self-adjoint elliptic operator−L is self-adjoint limit periodicif there

exists a sequence of self-adjoint elliptic periodic operators

−Lnu := −∂i(a
n
ij∂ju)− cnu

such thatanij → aij in C1,α
b (RN ) andcn → c in C0,α

b (RN ) asn goes to infinity.

Clearly, if all the coefficients of the operatorsLn in Definition 4.2 have the same period
(l1, . . . , lN ), thenL is periodic too. It is immediate to show that the coefficients of a limit
periodic operator are in particular a.p. in the sense of Definition 2.3. One of the results
we obtain is:

Theorem 4.3. Let −L be a general limit periodic operator. Thenλ′

1(−L,R
N ) ≤

λ1(−L,RN ).
Another result obtained concerns self-adjoint limit periodic operators. It extends Propo-
sition 3.3.

Theorem 4.4. Let −L be a self-adjoint limit periodic operator. Thenλ1(−L,RN ) =

λ′

1(−L,R
N ).

In the proofs of Theorems 4.3 and 4.4, we make use of the Schauder interior estimates
and the Harnack inequality. One can find a treatment of these results in [11], or consult
[16], [17] and [24] for the original proofs of the Harnack inequality.

Going back to the nonlinear problem, owing to Theorem 4.4, the existence and unique-
ness results in the limit periodic case can be expressed in terms ofλ1 (or, equivalently,
λ′

1) only, which is the statement of Theorem 2.2.

4.3. The case of dimensionN = 1

Our last result establishes a comparison betweenλ1 andλ′

1 for general elliptic operators
in dimension one:

Theorem 4.5. Let−L be a general elliptic operator in dimension one. Thenλ′

1(−L,R)
≤ λ1(−L,R).
Notice that, by Theorems 4.3 and 4.5, if−L0 is limit periodic orN = 1, then we can
state Theorem 2.1 without mentioningλ1. Hence, only the sign ofλ′

1 is involved in the
existence result.
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4.4. Open problems

The notions of generalized principal eigenvalue raise several questions which still need
an answer. Some of them are:

Open problem 4.6. Does (2.8) admit positive bounded solutions (even in the self-adjoint
case) ifλ′

1(−L0,RN ) = 0?

Open problem 4.7. Is it true thatλ′

1(−L,R
N ) ≤ λ1(−L,RN ) for any general elliptic

operator−L and any dimensionN?

Conjecture 4.8. If −L is a self-adjoint elliptic operator, thenλ1(−L,RN ) ≤

λ′

1(−L,R
N ) in any dimensionN .

Note that should the answers to both 4.7 and 4.8 be positive, then we would have
λ1 = λ′

1 in the self-adjoint case, in arbitrary dimension.

5. Different definitions of the generalized principal eigenvalue

In this section, we present various definitions which one could consider as generalizations
of the principal eigenvalue in the whole space. Then we explain the choice of (1.6) and
(1.7) as the most relevant extensions. Here,−L will always denote a general elliptic
operator (satisfying (1.3) and (1.4)).

The quantityλ1 given by (1.6) is often called the “generalized” principal eigenvalue.
It is considered the “natural” generalization of the principal eigenvalue because, as al-
ready mentioned, it coincides with the Dirichlet principal eigenvalue in bounded smooth
domains. Also, the sign ofλ1 determines the existence or nonexistence of a Green func-
tion for the operator (see Theorem 3.2 in [20]). The constantλ′

1 has been introduced, more
recently, in [4]. If� is bounded and smooth, thenλ′

1(−L,�) = λ1(−L,�). Moreover,
as we have seen in Proposition 3.2, in the periodic caseλ′

1 coincides with the periodic
principal eigenvalue.

The quantityλ1 is the largest constantλ for which −(L + λ) admits a positive sub-
solution. The definition ofλ′

1 is based on that ofλ1, with two changes: first, we take
subsolutions instead of supersolutions (and we replace the sup with inf); second, we take
test functions inW2,∞. If we introduce only one of these changes, we obtain the following
definitions:

µ1(−L,�) := sup{λ | ∃φ ∈ C2(�) ∩ C1(�) ∩W2,∞(�),

φ > 0 and(L+ λ)φ ≤ 0 in�, φ = 0 on∂�, if ∂� 6= ∅}, (5.13)

or

µ′

1(−L,�) := inf{λ | ∃φ ∈ C2(�)∩C1
loc(�), φ > 0 and−(L+λ)φ ≤ 0 in�}, (5.14)

The quantityµ1 is not interesting for us because, as is shown by Remark 6.2 in [6], if we
replaceλ′

1 with µ1, then the necessary condition given by Theorem 2.1(2) fails to hold.
For completeness, we include this observation here.
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Remark 5.1. Consider the equation−u′′
− b(x)u′

= 0 in R. We show that, forb op-
portunely chosen, there exists a positive functionφ ∈ C2(R) ∩ W2,∞(R) such that
(L0 + 1)φ ≤ 0 in R (L0u = u′′

+ b(x)u′ in this case). Therefore,µ1(−L0,R) ≥ 1,
but all the functionsu identically equal to a positive constant solve−u′′

− b(x)u′
= 0.

The functionφ is defined in [−1,1] by φ(x) = 2 − x2. For x ∈ (−1,1), we have
(L0 + 1)φ = −2 − 2b(x)x + φ ≤ −2b(x)x. Hence, it is sufficient to takeb(x) ≤ 0 for
x ≤ 0 andb(x) ≥ 0 for x ≥ 0 to obtain(L0 + 1)φ ≤ 0 in (−1,1). Then set

φ(x) :=

{
ex if x ≤ −2,
e−x if x ≥ 2.

For x < −2, (L0 + 1)φ = ex(2 + b(x)) and, forx > 2, (L0 + 1)φ = e−x(2 − b(x)).
Hence, ifb(x) ≤ −2 for x < −2 andb(x) ≥ 2 for x > 2, we find(L0 + 1)φ ≤ 0
in (−∞,−2) ∪ (2,∞). Clearly, it is possible to defineφ in (−2,−1) ∪ (1,2) in such a
way that inf[−2,−1] φ

′ > 0, sup[1,2] φ
′ < 0 andφ ∈ C2(R) ∩ W2,∞(R). Consequently,

taking b < −M in (−2,−1) andb > M in (1,2), with M > 0 large enough, we get
(L0 + 1)φ ≤ 0 in R.

Neither is the definition (5.14) much meaningful as, in general,µ′

1 = −∞. This is
seen next.

Remark 5.2. Consider the following family of functions:

∀k > 0, φk(x) := ekx·v, x ∈ RN ,

wherev is an arbitrary unit vector inRN . Straightforward computation yields

−Lφk = −aij (x)vivjk
2φk − (b(x) · v)kφk − c(x)φk ≤ (−ak2

+ ‖b‖∞k + ‖c‖∞)φk,

wherea is given by (1.3) andb(x) = (b1(x), . . . , bN (x)). Therefore, for everyλ ∈ R
there existsk > 0 large enough such that−(L + λ)φk ≤ 0 and then the quantity
µ′

1(−L,R) defined by (5.14) is equal to−∞.

By contrast, we have:

Remark 5.3. The quantityλ′

1(−L,R
N ) given by (1.7) satisfies−‖c‖∞ ≤ λ′

1(−L,R
N )

≤ ‖c‖∞. In fact, takingφ ≡ 1 in (1.7), we see thatλ′

1(−L,R
N ) ≤ ‖c‖∞. For the

other inequality, considerλ ∈ R andφ ∈ C2(RN ) ∩ W2,∞(RN ) such thatφ > 0 and
−(L + λ)φ ≤ 0. LetM be the supremum ofφ and(xn)n∈N be a maximizing sequence
for φ. Forn ∈ N, define

∀x ∈ RN , θn(x) := φ(x)− (M − φ(xn))|x − xn|
2.

Arguing similarly to the proof of Lemma 7.2 below, one can see that every functionθn has
a local maximum at a pointyn ∈ B1(xn). Furthermore, limn→∞ φ(yn) = limn→∞ φ(xn)

= M. We have

0 ≥ −(L+ λ)φ(yn)

≥ 2(φ(xn)−M)aii(yn)+ 2(φ(xn)−M)bi(yn)(yn − xn)i − (c(yn)+ λ)φ(yn).

It follows that λ ≥ − lim infn→∞ c(yn) ≥ −‖c‖∞. This shows thatλ′

1(−L,R
N ) ≥

−‖c‖∞.
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6. Self-adjoint operators in dimensionN ≤ 3

The proof of Theorem 4.1 consists in a not so immediate adaptation of the proof of Propo-
sition 3.3. It makes use of the following observation, which holds in any dimensionN .

Lemma 6.1. Letφ ∈ C2(RN ) be a nonnegative function. Let3(x) be the largest eigen-
value of the matrix(∂ijφ(x))ij and assume that3 := supx∈RN 3(x) < ∞. Then

∀x ∈ RN , |∇φ(x)|2 ≤ 23φ(x). (6.15)

Proof. First, if 3 ≤ 0 then∂iiφ ≤ 0 for every i = 1, . . . , N . This shows thatφ is
concave in every directionxi and hence, being nonnegative, it is constant. In particular,
(6.15) holds.

Consider the case3 > 0. The Taylor expansion ofφ at the pointx ∈ RN gives

∀y ∈ RN , φ(y) = φ(x)+ ∇φ(x)(y − x)+
1
2∂ijφ(z)(y − x)i(y − x)j ,

wherez is a point on the segment connectingx andy. Hence,

0 ≤ φ(y) ≤ φ(x)+ ∇φ(x)(y − x)+
1
23|y − x|2.

If we take in particulary = x − ∇φ(x)/3 we obtain

0 ≤ φ(x)−
|∇φ(x)|2

23
,

and the statement is proved. ut

Note that ifφ is a positive function inW2,∞(RN ), then Lemma 6.1 shows that its gradient
is controlled by the square root ofφ. Actually, this is the reason why in (1.7) we take test
functions inW2,∞(RN ).

Proof of Theorem 4.1.Let λ ∈ R be such that there exists a positive functionφ ∈

C2(RN ) ∩ W2,∞(RN ) satisfying−(L + λ)φ ≤ 0. We would like to proceed as in the
proof of Proposition 3.3, withϕp replaced byφ, and obtainλ1(−L,RN ) ≤ λ. This is not
possible because, in general,φ is not bounded from below away from zero. Lemma 6.1
allows us to overcome this difficulty. Consider in fact the same type of cutoff functions
(χR)R≥1 as in Proposition 3.3 and letλR be the principal eigenvalue of−L in BR with
Dirichlet boundary conditions. The representation formula (3.12) yields, forR ≥ 1,

λR ≤

∫
BR

[aij (x)∂i(φχR)∂j (φχR)− c(x)φ2χ2
R]∫

BR
φ2χ2

R

.

Hence, sinceχR = 1 onBR−1, we get

λR ≤ λ−

∫
CR

[2aij (x)(∂iφ)(∂jχR)φχR + ∂i(aij (x)∂jχR)φ
2χR]∫

BR
φ2χ2

R

.



Principal eigenvalue of elliptic operators 207

Our aim is to prove that by appropriately choosing the cutoff functions(χR)R≥1 we get

lim sup
R→∞

∫
CR

[2aij (x)(∂iφ)(∂jχR)φχR + ∂i(aij (x)∂jχR)φ
2χR]∫

BR
φ2χ2

R

≥ 0. (6.16)

ChooseχR so that

∀x ∈ BR \ BR−1/2, χR(x) = exp

(
1

|x| − R

)
,

∀x ∈ BR−1/2, χR(x) ≥ e−1/2.

By direct computation, we see that, forx ∈ BR \ BR−1/2,

∇χR(x) = −
x

|x|
(R − |x|)−2 exp

(
1

|x| − R

)
,

and

∂ijχR(x)=

[(
xixj

|x|3
−
δij

|x|

)
(|x|−R)2+2

xixj

|x|2
(|x|−R)+

xixj

|x|2

]
(|x|−R)−4 exp

(
1

|x| − R

)
.

Consequently, using the usual summation convention, we have

∀x ∈ BR \ BR−1/2, ∂i(aij (x)∂jχR) ≥ [a − C(|x| − R)](|x| − R)−4 exp

(
1

|x| − R

)
,

whereC is a positive constant depending only onN and theW1,∞ norm of theaij (and
not onR) anda is given by (1.3). Therefore, there existsh independent ofR with 0< h ≤

1/2 and such that∂i(aij (x)∂jχR) ≥ 0 inBR\BR−h. SinceχR > exp(−h−1) inBR−h, it is
possible to chooseC′ large enough, independent ofR, such that∂i(aij (x)∂jχR) ≥ −C′χR
in BR. On the other hand, owing to Lemma 6.1, we can find another constantC′′ > 0,
depending only onN, ‖aij‖L∞(RN ), ‖φ‖W2,∞(RN ) and‖χR‖W2,∞(RN ) (which does not
depend onR), such that

aij (x)(∂iφ)(∂jχR) ≥ −C′′φ1/2χ
1/2
R .

Assume, by way of contradiction, that (6.16) does not hold. Then there existε > 0 and
R0 ≥ 1 such that, forR ≥ R0,

−ε

∫
BR

φ2χ2
R ≥

∫
CR

[2aij (x)(∂iφ)(∂jχR)φχR + ∂i(aij (x)∂jχR)φ
2χR]

≥ −

∫
CR

(C′χ2
Rφ

2
+ 2C′′φ3/2χ

3/2
R ).

Sinceφ andχR are bounded, the above inequalities yield the existence of a positive
constantk such that, forR ≥ R0,

k

∫
BR

φ2χ2
R ≤

∫
CR

φ3/2χ
3/2
R .
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Notice that, sinceφ > 0, we can choosek > 0 in such a way that the above inequality
holds for anyR ≥ 1. Using the Ḧolder inequality withp = 4/3 andp′

= 4, we then
obtain

∀R ≥ 1,
∫
BR

φ2χ2
R ≤ k−1

(∫
CR

φ2χ2
R

)3/4

|CR|
1/4

≤ K−1R(N−1)/4
(∫

CR

φ2χ2
R

)3/4

,

whereK is another positive constant. Forn ∈ N setαn := (
∫
Cn
φ2χ2

n )
3/4. Since forn ∈ N

we have ∫
Bn

φ2χ2
n =

n−1∑
j=1

∫
Cj

φ2
+

∫
Cn

φ2χ2
n ≥

n∑
j=1

∫
Cj

φ2χ2
j ,

it follows that

αn ≥ Kn(1−N)/4
n∑
j=1

α
4/3
j . (6.17)

We claim that the sequence(αn)n∈N grows faster than any power ofn. This contradicts
the definition ofαn, because

αn =

(∫
Cn

φ2χ2
n

)3/4

≤ ‖φ‖
3/2
L∞(RN )|Cn|

3/4
≤ Hn3(N−1)/4

for some positive constantH . To prove our claim, we use (6.17) recursively. At the first
step we haveαn ≥ K0n

β0, whereK0 = Kα
4/3
1 andβ0 = (1 −N)/4. At the second

step we getαn ≥ KK
4/3
0 n(1−N)/4 ∑n

j=1 j
4β0/3. If β0 > −3/4 (i.e. if N < 4) then∑n

j=1 j
4β0/3 ∼ n4β0/3+1. Hence, in this case there existsK1 > 0 such thatαn ≥ K1n

β1,
whereβ1 = 4β0/3 + (5 −N)/4. Proceeding in the same way we find, afterm steps, that
αn ≥ Kmn

βm , whereKm is a positive constant andβm = 4βm−1/3+(5 −N)/4, provided
thatβ0, . . . , βm−1 > −3/4. If βm−1 > −3/4, we have

βm > βm−1 ⇔ βm−1 >
3

4
(N − 5).

Since

β0 >
3

4
(N − 5) ⇔ N < 4,

it follows that forN ≤ 3 the sequence(βm)m∈N is strictly increasing. Thus, limm→∞ βm
= +∞ if N ≤ 3, because if the sequence had a finite limit, it would have to be 3(N−5)/4,
which is less thanβ0. Therefore, asn → ∞,αn goes to infinity faster than any polynomial
in n. ut

7. Limit periodic operators

Throughout this section, we consider limit periodic elliptic operators−L. According to
Definition 4.2, we let either

Lnu = anij (x)∂iju+ bni (x)∂iu+ cn(x)u
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if −L is a general operator, or

Lnu = ∂i(a
n
ij (x)∂ju)+ cn(x)u

if −L is self-adjoint. We denote byλn andϕn respectively the periodic principal eigen-
value and a positive periodic principal eigenfunction of−Ln in RN .

Our results make use of the following lemma.

Lemma 7.1. The sequence(λn)n∈N is bounded and

lim
n→∞

∥∥∥∥ (L− Ln)ϕn

ϕn

∥∥∥∥
L∞(RN )

= 0.

Proof. We can assume, without loss of generality, that the operators−L,−Ln are general
elliptic. Since the operatorsLn are periodic, from Proposition 3.2 and Remark 5.3 it
follows that

−‖cn‖∞ ≤ λ′

1(−Ln,R
N ) = λn ≤ ‖cn‖∞.

Hence, the sequence(λn)n∈N is bounded becausecn → c in C0,α
b (RN ). For all n ∈ N,

the functionsϕn satisfy−(Ln + λn)ϕn = 0. Then, using interior Schauder estimates, we
can find a constantCn > 0 such that

∀x ∈ RN , ‖ϕn‖C2,α
b (B1(x))

≤ Cn‖ϕn‖L∞(B2(x)),

where theCn are controlled byλn and‖anij‖C0,α
b (RN ), ‖bni ‖C0,α

b (RN ), ‖cn‖
C

0,α
b (RN ). We

know that theλn are bounded inn ∈ N, and the same is true for theC0,α
b norms ofanij , b

n
i

andcn because they converge in theC0,α
b norm toaij , bi andc respectively. Thus, there

exists a positive constantC such thatC ≥ Cn for everyn ∈ N. Moreover, applying the
Harnack inequality for the operators−(Ln+λn), we can find another positive constantC′

which is again independent ofn (andx), such that

∀x ∈ RN , ‖ϕn‖L∞(B2(x)) ≤ C′ϕn(x).

Therefore,

sup
x∈RN

∣∣∣∣ (L− Ln)ϕn(x)

ϕn(x)

∣∣∣∣ ≤ sup
x∈RN

(‖aij−a
n
ij‖∞+‖bi−b

n
i ‖∞+‖c−cn‖∞)‖ϕn‖C2,α

b (B1(x))

ϕn(x)

≤ CC′(‖aij − anij‖∞ + ‖bi − bni ‖∞ + ‖c − cn‖∞),

which goes to zero asn goes to infinity.

Proof of Theorem 4.3.Forn ∈ N define

Hn :=

∥∥∥∥ (L− Ln)ϕn

ϕn

∥∥∥∥
L∞(RN )

. (7.18)
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By Lemma 7.1, we know that limn→∞Hn = 0. Since|(L + λn)ϕn| ≤ Hnϕn, it follows
that(L+λn−Hn)ϕn ≤ 0 and−(L+λn+Hn)ϕn ≤ 0. Hence, usingϕn as a test function
in (1.6) and (1.7), we infer thatλ1(−L,RN ) ≥ λn −Hn andλ′

1(−L,R
N ) ≤ λn +Hn for

everyn ∈ N. The proof is complete because, passing to the lim inf and lim sup asn goes
to infinity in the above inequalities, we get

λ′

1(−L,R
N ) ≤ lim inf

n→∞
λn ≤ lim sup

n→∞

λn ≤ λ1(−L,RN ). (7.19)

ut

The proof of Theorem 4.4 is divided into two parts, the first one being the next lemma.

Lemma 7.2. The sequence(λn)n∈N converges toλ′

1(−L,R
N ) asn goes to infinity.

Proof. Proceeding as in the proof of Theorem 4.3, we derive (7.19). So, we only need
to show that lim supn→∞ λn ≤ λ′

1(−L,R
N ). To this end, consider a constantλ ≥

λ′

1(−L,R
N ) such that there exists a positive functionφ ∈ C2(RN ) ∩ W2,∞(RN ) sat-

isfying −(L+ λ)φ ≤ 0. Fix n ∈ N and defineψn := knϕn − φ, wherekn is the positive
constant (depending onn) such that infψn = 0 (such a constant always exists—and it
is unique—becauseϕn is bounded from below away from zero andφ is bounded from
above). From the inequalities

−(L+ λ)ψn ≥ −kn(L+ λ)ϕn = kn(Ln − L)ϕn + kn(λn − λ)ϕn,

and definingHn as in (7.18), we find that

−(L+ λ)ψn ≥ kn(λn − λ−Hn)ϕn. (7.20)

Since infψn = 0, there exists a sequence(xm)m∈N in RN such that limm→∞ ψn(xm) = 0.
Form ∈ N, define the functions

θm(x) := ψn(x)+ ψn(xm)|x − xm|
2, x ∈ RN .

Sinceθm(xm) = ψn(xm) andθm(x) ≥ ψn(xm) for x ∈ ∂B1(xm), for anym ∈ N there
exists a pointym ∈ B1(xm) of local minimum ofθm. Hence,

0 = ∇θm(ym) = ∇ψn(ym)+ 2ψn(xm)(ym − xm)

and
0 ≤ (∂ij θ(ym))ij = (∂ijψn(ym))ij + 2ψn(xm)I,

whereI denotes theN ×N identity matrix. Thanks to the ellipticity of−L, we then get

− (L+ λ)ψn(ym) ≤ 2ψn(xm)aii(ym)+ 2ψn(xm)bi(ym)(ym − xm)i

− (c(ym)+ λ)ψn(ym). (7.21)

Furthermore, since

θm(ym) = ψn(ym)+ ψn(xm)|ym − xm|
2

≤ θm(xm) = ψn(xm),
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we see thatψn(ym) ≤ ψn(xm). Consequently, taking the limit asm goes to infinity in
(7.21), we derive lim supm→∞ −(L+ λ)ψn(ym) ≤ 0. Therefore, by (7.20),

lim sup
m→∞

kn(λn − λ−Hn)ϕn(ym) ≤ 0,

which implies thatλn−λ−Hn ≤ 0 because infRN ϕn > 0. Since by Lemma 7.1 we know
thatHn goes to zero asn goes to infinity, it follows that

λ ≥ lim sup
n→∞

(λn −Hn) = lim sup
n→∞

λn.

Taking the infimum overλ we finally getλ′

1(−L,R
N ) ≥ lim supn→∞ λn.

Proof of Theorem 4.4.Owing to Theorem 4.3, it only remains to show thatλ1(−L,RN )
≤ λ′

1(−L,R
N ). To do this, we fixR > 1 andn ∈ N and proceed as in the proof of

Proposition 3.3, replacing the test functionϕp by ϕn. We thus get

λ1(−L,BR) ≤ −

∫
BR
(L(ϕnχR))ϕnχR∫
BR
ϕ2
nχ

2
R

=

∫
BR−1

((λn + Ln − L)ϕn)ϕn −
∫
CR
(L(ϕnχR))ϕnχR∫

BR
ϕ2
nχ

2
R

= λn −

∫
BR−1

((L− Ln)ϕn)ϕn +
∫
CR
((L+ λn)ϕnχR)ϕnχR∫

BR
ϕ2
nχ

2
R

.

SettingHn as in (7.18), we get

λ1(−L,BR) ≤ λn +

Hn
∫
BR−1

ϕ2
n +Kn|CR|∫

BR
ϕ2
nχ

2
R

,

where|CR| denotes the measure of the setCR andKn is a positive constant (independent
ofR because theχR are uniformly bounded inW2,∞(RN )). Therefore, since minRN ϕn >
0, there exists another constantK̃n > 0 such that

λ1(−L,BR) ≤ λn +Hn +
K̃n

R
.

Letting R go to infinity in the above inequality and using Proposition 3.1 shows that
λ1(−L,RN ) ≤ λn + Hn. By Lemmas 7.1 and 7.2, we know thatHn → 0 andλn →

λ′

1(−L,R
N ) asn → ∞. Thus, we conclude thatλ1(−L,RN ) ≤ λ′

1(−L,R
N ). ut

8. The inequalityλ′

1 ≤ λ1 in dimensionN = 1

In this section, we are concerned with general elliptic operators in dimension one, that is,
operators of the type

−Lu = −a(x)u′′
− b(x)u′

− c(x)u, x ∈ R,
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with the usual regularity assumptions ona, b, c. The ellipticity condition becomesa ≤

a(x) ≤ a for some constants 0< a ≤ a.

Proof of Theorem 4.5.Fix R > 0 and denote byλR andϕR the principal eigenvalue
and eigenfunction respectively of−L in (−R,R), with the Dirichlet boundary condition.
Then define

ψR(x) :=
h

k
e−k(x−R), x ∈ R,

whereh, k are two positive constants that will be chosen later. The functionψR satisfies

−(L+ λR)ψR =

(
−a(x)k + b(x)− (c(x)+ λR)

1

k

)
he−k(x−R).

There existsk0 > 0 (independent ofh) such that−(L+ λR)ψR < 0 in R for any choice
of k ≥ k0. Our aim is to connect smoothly the functionsϕR andψR in order to obtain a
functionφR ∈ C2([0,∞)) ∩W2,∞([0,∞)) satisfying−(L + λR)φR ≤ 0. To this end,
we setgR(x) := η(x − R + δ)3, with η, δ > 0 to be chosen. Since

−(L+λR)gR = [−6a(x)− 3b(x)(x−R+ δ)− (c(x)+λR)(x−R+ δ)2]η(x−R+ δ),

we can find a constantδ0 > 0 such that−(L+ λR)gR ≤ 0 in (R − δ, R), for any choice
of 0< δ ≤ δ0. Then we define

φR(x) :=

ϕR(x) for 0 ≤ x ≤ R − δ,

ϕR(x)+ gR(x) for R − δ < x ≤ R,

ψR(x) for x > R.

(8.22)

It follows that if k ≥ k0 andδ ≤ δ0, then−(L+ λR)φR ≤ 0 in (0, R− δ)∪ (R− δ, R)∪

(R,+∞). In order to ensure theC2 regularity ofφR, we need to solve the following
system in the variablesh, k, η, δ:

ηδ3
= h/k,

ϕ′

R(R)+ 3ηδ2
= −h,

ϕ′′

R(R)+ 6ηδ = hk.

One can see that ifh < −ϕ′

R(R) (notice thatϕ′

R(R) < 0 by the Hopf lemma), the previous
system becomes, after some simple algebra,

γ (h) = ϕ′′

R(R)δ,

δk =
3h

−ϕ′

R(R)− h
,

η =
hk − ϕ′′

R(R)

6δ
,

(8.23)

where

γ (h) :=
3h2

−ϕ′

R(R)− h
+ 2(h+ ϕ′

R(R)).
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We want to show that there existsδ small enough such that the system (8.23) admits
positive solutionsδ, hδ, kδ, ηδ satisfying

δ ≤ δ0, hδ < −ϕ′

R(R), kδ ≥ k0. (8.24)

Let 0< δ1 ≤ δ0 be such that|ϕ′′

R(R)|δ1 < −ϕ′

R(R). Thus, ifδ ≤ δ1, the first equation of
(8.23) yields|γ (h)| < −ϕ′

R(R). Sinceγ (0) = 2ϕ′

R(R) and limh→−ϕ′
R(R)

− γ (h) = +∞,
there exists a constant 0< h1 < −ϕ′

R(R) such that, for any choice ofδ ∈ (0, δ1), the first
equation of (8.23) admits a solutionhδ ∈ [h1,−ϕ

′

R(R)). Forδ ∈ (0, δ1) andh = hδ, the
second equation of (8.23) gives

kδ =
3hδ

−ϕ′

R(R)− hδ
δ−1

≥
3h1

−ϕ′

R(R)− h1
δ−1. (8.25)

Hence, forδ small enough, we havekδ ≥ k0. Finally, by the last equation of (8.23), for
δ ∈ (0, δ1), we have

ηδ =
hδkδ − ϕ′′

R(R)

6δ
≥
h1kδ − ϕ′′

R(R)

6δ
,

and so, sincekδ satisfies (8.25),ηδ > 0 for δ small enough. Therefore, there exist four pos-
itive constantsh, k, η, δ solving (8.23) and satisfying (8.24). With this choice ofh, k, η, δ,
the functionφR is inC2([0,∞)) ∩W2,∞([0,∞)).

Proceeding as above, we can extendϕR(x) for x negative, and get a functionφR ∈

C2(R)∩W2,∞(R) such that−(L+λR)φR ≤ 0 in R. U singφR as a test function in (1.7),
we find thatλ′

1(−L,R) ≤ λR. Thus, passing to the limit asR → ∞, by Proposition 3.1,
we deriveλ′

1(−L,R) ≤ λ1(−L,R). The proof is thereby complete. ut

Remark 8.1. Using the same type of construction as in Theorem 4.5, one can prove that
the inequalityλ′

1(−L,R
N ) ≤ λ1(−L,RN ) holds for any elliptic operator−L which is

rotationally invariant. Consider in fact an elliptic operator of type

−Lu = −a(|x|)1u− b(|x|)
x

|x|
· ∇u− c(|x|)u in RN ,

with b(0) = 0 and with the usual ellipticity and regularity assumptions on the coefficients.
For R > 0, let λR and ϕR denote respectively its Dirichlet principal eigenvalue and
eigenfunction inBR. It is easy to see that, for any orthogonal matrixM, the function
ϕR(Mx) is again a Dirichlet positive eigenfunction of−L in BR. Hence, by uniqueness
of the principal eigenfunction up to a constant factor, it follows thatϕR(x) ≡ ϕR(Mx),
that is,ϕR is a radial function. Since for any radial functionu = u(|x|) the expression of
Lu reads

Lu = a(|x|)u′′
+

(
b(|x|)+

N − 1

|x|
a(|x|)

)
u′

+ c(|x|)u,

we can proceed as in the one-dimensional case and build a radial functionφR ∈ C2(RN )∩
W2,∞(RN ) such that−(L+λR)φR ≤ 0. Therefore,λ′

1(−L,R
N ) ≤ λR and then, passing

to the limit asR → ∞, we obtain the stated inequality betweenλ1 andλ′

1.
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