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Abstract. Two generalizations of the notion of principal eigenvalue for elliptic operatof&™n

are examined in this paper. We prove several results comparing these two eigenvalues in various
settings: general operators in dimension one; self-adjoint operators; and “limit periodic” operators.
These results apply to questions of existence and uniqueness for some semilinear problems in the
whole space. We also indicate several outstanding open problems and formulate some conjectures.
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1. Introduction

The principal eigenvalue is a basic notion associated with an elliptic operator. For in-
stance, the study of semilinear elliptic problems in bounded domains often involves
the principal eigenvalue of the associated linear operator. To motivate the results of the
present paper, let us first recall some classical properties of a class of semilinear elliptic
problems in bounded domains.

Let —L be a linear elliptic operator acting on functions defined on a bounded and
smooth domair2 ¢ RV:

Lu = a;j(x)0;ju + b; (x)d;u + c(x)u

(here and throughout the paper, the summation convention on repeated indices is used).
Consider the Dirichlet problem

{—Lu:g(x,u), x e, (1.1)

u=0 o0now.

We are interested in positive solutions 1.1). AssumeghataC?! function such that

g(x,s) < gi(x,0s, Vs>0,VxeQ
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and
AM > 0 suchthat g(x,s) +c(x)s <0, Vs> M.

Then existence of positive solutions pf (1.1) is determined by the principal eigenvalue
of the problem linearized about= O:

—Ly —g;(x,00¢0 = u1p inQ,
{(p:() onog. (1.2)

Recall thatu1 is characterized by the existence of an associated eigenfurctio
of (L.9). It is known indeed thaft (1.1) has a positive solution if and onjy,if< O (see
e.g. [3]). Under the additional assumption that> g(x, s)/s is decreasing, one further
obtains a uniqueness result [3].

Problems of the typ¢ (1].1) arise in several contexts, in particular in population dynam-
ics. In many of the applications, the problem is set in an unbounded domain, oién in
Clearly, extensions to unbounded domains of the previous result, as well as others of the
same type, require one to understand the generalizations and properties of the notion of
principal eigenvalue of elliptic operators in unbounded domains. In Sédtion 2, we indicate
some new results about such a semilinear problem, extending the respltfor (1.1).

Another example of use of principal eigenvalue is the characterization of the existence
of the Green function for periodic linear operators (see Agmon [1]). We refer to [21] and
to its bibliography for details on the subject. In[18], Kuchment and Pinchover derived an
integral representation formula for the solutions of linear elliptic equations with periodic
coefficients in the whole space, provided that an associated generalized principal eigen-
value is positive. It can be seen that the generalized eigenvalu€ in [18] coincid€s With (1.6)
here. This result yields in particular a Liouville type theorem extending those of [2], [19]
for periodic self-adjoint operators. Moreover, the principal eigenvalue of an elliptic oper-
ator has been shown to play an important role in some questions in branching processes
(see Enginder and Pinsky [10], Pinsky [22]). Very recently, the principal eigenvalue of
an elliptic operator irR" is being introduced in the context of economic models [12].

Some definitions of the notion of principal eigenvalue in unbounded domains have
emerged in the works of Agmonl[1], Berestycki, Nirenberg and Varadhan [7], Pinsky
[21] and others. With a view to applications to semilinear equations, in particular two
definitions have been used inl [4]l, [5].] [6]. We will recall these definitions later in this
section. In this paper, we examine these definitions and further investigate their properties.
In particular, we are interested in understanding when the two definitions coincide or for
which classes of operators one or the other inequality holds. We also further explain the
choice of definition. This work grew out of our previous article with Francois Hamel [6]
which already addressed some of these issues. We review the relevant results from [6] in
Sectior 3.

Let us now recall the definitions. We define the clas®ltptic operators(in non-
divergence form) as the elliptic operatetg. with

Lu = a;j(x)d;ju + b; (x)d;u + c(x)u in RN,
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Self-adjoint elliptic operators-L are defined by
Lu = 3 (a;j(x)du) + c(x)u inRN.
Throughout the papefg;;);; will denote an¥ x N symmetric matrix field such that
vx, £ e RN, gl < a;j(0)&E <algl?, (1.3)

wherea anda are two positive constantg; ); will denote anV-dimensional vector field
andc a real-valued function. We always assume that there exist&O< 1 such that

aij. bi,c € Cp* RY), (1.4)
in the case of general operators, and
aij € Cy*RY), ce CPU®RY), (1.5)

in the self-adjoint case. Bg‘,’j’“(RN), we mean the class of functiogse C¥(R") such
that¢ and the derivatives af up to ordetk are bounded and uniformlydtder continuous
with exponentr. Notice that every self-adjoint operator satisfying [1.5) can be viewed as
a particular case of a general elliptic operator satisfyfing (1.4).

It is well known that any elliptic operator L as defined above admits a unique prin-
cipal eigenvalue, both in bounded smooth domains associated with Dirichlet boundary
conditions, and iRY provided that its coefficients are periodic in each variable. This
principal eigenvalue is the bottom of the spectrum—df in the appropriate function
space, and it admits an associated positive principal eigenfunction. This result follows
from the Krein—Rutman theory and from compactness arguments (see [15] and [14]).

In this paper, we examine some properties of two different generalizations of the
principal eigenvalue in unbounded domains. The first one, originally introduceéd in [7],
reads:

Definition 1.1. Let —L be a general elliptic operator defined in a doma&nc RY. We
set

AM(—L, Q) :=supr | 3¢ € C3AQ) N CL(Q), ¢ > 0and(L 4+ 1)¢ < 0in Q). (1.6)

Here, CL () denotes the set of functiogs € C1(Q) for which ¢ and V¢ can be ex-
tended by continuity ord€2, but which are not necessarily bounded. The generalized
principal eigenvalue.1 given by (1.6) is the same as the one used in [18]. Indeed, in [18],
the eigenvalue is defined with equality in formula (1.6). Using the existence of a general-
ized principal eigenfunction (which follows from the same arguments as in Section 4 in
[6]) one sees that the two notions actually coincide. Berestycki, Nirenberg and Varadhan
showed that this is a natural generalization of the principal eigenvalue. Inde@dsif
bounded and smooth, then(—L, ) coincides with the principal eigenvalue ofL in

© with Dirichlet boundary conditions. As we will see later, the eigenvalyeloes not
suffice to completely describe the properties of semilinear equations in the whole space,
in contrast to the Dirichlet principal eigenvalue in bounded domains for profjlemn (1.1).
For this, we also require another generalization, whose definition is similar to that of
This generalization has been introduced_in [4], [6] and reads:
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Definition 1.2. Let —L be a general elliptic operator defined in a domainc RY. We
set

M(=L, Q) :=inf(x | 3p € CA(Q) N CL(Q) N W22 (RQ),
¢ >0and—(L+1)¢p <0inQ, ¢ =00naQif a2 £40}. (1.7)

Several other generalizations are possible, starting from Defifiitipn 1.1 and playing on the
space of functions or the inf and sup inequalities. We will explain why Definition 1.2 is
relevant.

If L is periodic (in the sense that its coefficients are periodic in each variable, with
the same period) theiy (—L, RY) > M (=L, RY), as is shown by taking equal to a
positive periodic principal eigenfunction in (1.6) apd {1.7). More generally, if there exists
a bounded positive eigenfunctign theni; > A}. But in general, if the operatdt is
not self-adjoint, equality need not hold betweenand A}, even if L is periodic (see
Sectiorﬂs). It is then natural to ask about the relations betwgemd ] in the general
case. In Sectign| 3, we review a list of statements, most of them giveh in [6], which answer
this question in some particular cases. In Segtjon 4, we state our new main results as well
as some problems which are still open. In Secfipn 5, we motivate our choice of taking
(1.8) and[(1.J7) as generalizations of the principal eigenvalue. The last three sections are
dedicated to the proofs of our main results.

2. Positive solutions of semilinear elliptic problems irRY

Let us precisely describe how the eigenvaligsnd] are involved in the study of the
following class of nonlinear problems:

—a;j (x)0;ju(x) — b (x)du(x) = f(x,u(x)) in RV (2.8)

This type of problem arises in particular in biology and in population dynamics. Here
and in what follows, the functiorf (x, s) : RN x R — R is assumed to be io‘g""(RN)

with respect to the variable, locally uniformly ins € R, and to be locally Lipschitz-
continuous in the variablg uniformly inx € RY. Furthermore, we always assume that

vy eRY,  f(x,00 =0,
35 > 0 such thas > f(x, s) belongs toc*([0, §]), uniformlyinx € RV,
fi(x,0) € CX*RY).

We will always denote by.q the linearized operator around the solutios 0 associated
to the equatior{ (2]8), that is,

Lou = a;j(x)d;ju + b; (x)du + fi(x,0u inRN.

In [4] itis proved that, under suitable assumptionsfgiif Lg is self-adjoint and the func-
tionsa;; andx — f (s, x) are periodic (in each variable) with the same period, then (2.8)
admits a unique positive bounded solution if and only if the periodic principal eigenvalue
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of —Lg is negative (see Theorems 2.1 and 2.4.in [4]). This result has been extended in
[6] to nonperiodic, non-self-adjoint operators, by using— Lo, RY) andiy(—Lo, RM)
instead of the periodic principal eigenvalue-ef.g. The assumptions required are:

IM >0, Vx eRN, Vs> M, f(x,5) <0, (2.9)
Vx eRY, Vs >0, f(x,5) < fs(x,0)s. (2.10)

The existence result df[[6] is:

Theorem 2.1. LetLq be the linearized operator around zero associated to equgAd).

(1) If (2.9)holds and either.y(—Lo, RY) < 00r 3 (~Lo, RY) < 0, then there exists at
least one positive bounded solution@g).

) If )holds and\y (—Lo, RY) > 0, then there is no nonnegative bounded solution
of (2.9) other than the trivial one = 0.

Theorenj 2.]1 follows essentially from Definitidns|1.1]1.2 and a characterization(sée
Theorem 5.1 and Propositions 6.1, 6.5[ih [6] for details)! Ir [10], Bndér and Pinsky
proved a similar existence result for a class of solutions of minimal growth (which they
define there) for nonlinearities of the tygiéx, u) = b(x)u — a(x)u? with infa > 0 (see

also [9], [22]).

Since the theorem involves bath and)Jl, one does not have a simple necessary and
sufficient condition. This is one of the motivations to investigate the properties of these
two generalized eigenvalues. In particular, it is useful to determine conditions which yield
equality between them or at least an ordering.

From the results we prove in this paper we can deal in particular with the case that the
operator is self-adjoint anldnit periodic. The notion of limit periodic operator is defined
precisely below in Sectidn 4.2. Essentially, it means that the operator is the uniform limit
(in the sense of coefficients) of a sequence of periodic operators. In this case, we still have
a condition, extending that in Theor¢m|2.1, which is nearly necessary and sufficient.

Theorem 2.2. Let —Lg be a self-adjoint limit periodic operator.

Q) If ) holds andry(—Lo, RY) < 0, then there exists at least one positive bounded
solution of (2.8). If, in addition, (2.13)below holds, then such a solution is unique.

(2) If (2.10)holds andr1(—Lo, RY) > 0, then there is no nonnegative bounded solution
of (2.8) other than the trivial oner = 0.

The same result holds in dimensityn= 1if Lg is an arbitrary self-adjoint operator.

The case of equalityt1(—Lo, RY) = 0 is open.
For uniqueness, in unbounded domains, one needs to replace the classical assumption
thats — f(x, s)/s is decreasing by the following one:

forsy) f(mz)) o

S1 §2

(2.11)

V0 < 51 < 592, inf <
xeRN
The uniqueness result 6f/[6] is more delicate and involves the principal eigenvalue of
some limit operators defined there. It becomes simpler to state in case the coefficients in
(2.8) arealmost periodi¢in the sense of the following definition:
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Definition 2.3. A functiong : RY — R is said to bealmost periodic (a.p.)f from any
sequenceéx,),cy in RY one can extract a subsequenog, )xey such thatg(x,, + x)
converges uniformly in € RV,

Theorem 2.4 (Theorem 1.5 in[[6]) Assume that the functionrs;, b; and f,(-, 0) are
a.p. If (2.14)holds andi;(—Lo, RY) < 0, then(2.§) admits at most one nonnegative
bounded solution besides the trivial ome= 0.

Theorem§ 2]1 arjd 3.4 essentially contain the results in the periodic self-adjoint framework
(which hold under the same assumptidns](2[9), {2.10) [and](2.11)). In that case, in fact,
A1(—Lo, RY) and)(—Lo, R") coincide with the periodic principal eigenvalue-efq

(see Propositiofi 3.3 below) and then the only case which is not covered is when the
periodic principal eigenvalue is equal to zero.

3. Some properties of the generalized principal eigenvalueg and A} in RN

In this section, unless otherwise specified, denotes a general elliptic operator. When
we say thatL is periodic, we mean that there exigtpositive constants, ..., [y such
that

Vx e RN, Vk e (1,..., N}, aij(x +ler) = a;j(x),
bi(x +lker) = bi(x), c(x+ler) =c(x),

where(ey, ..., ey) is the canonical basis &". The following are some of the known
results concerningy and}. Actually, in some statements of| [6], the coefficientslof
were inC%*(RY) N L>(RY) and the “test functions} in the definition ofr, were taken

in C2(RY) N wL°(RN) instead ofC2(RV) N W2 (R"). However, one can check that

the following results—as well as Theor¢m]2.1—can be proved arguing exactly as in the
proofs of the corresponding results fin [6].

Proposition 3.1 ([7] and Proposition 4.2 ir [6]) Let 2 be a general domain ii®" and
(2),en be a sequence of nonempty open sets such that

wC U1 (JW=2
neN

Theni(—L, ;) \  A1(—L, Q) asn — oo.

Propositio yields1(—L, RY) < oco. Furthermore, taking = 1 as a test function in
), we see that; (—L, RY) > —||c||oo. Thus,r1 is always a well defined real number.

In the case of. periodic, theperiodic principal eigenvaluef —L is defined as the
unique real numbex,, such that there exists a positive periogicc C?(RV) satisfying
(L +Ap)p = 0inRM. Its existence follows from the Krein—Rutman theory.

Proposition 3.2 (Proposition 6.3 in[[6]) If L is periodic, then its periodic principal
eigenvalue., coincides withh (—L, RM).
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It is known that, in the general non-self-adjoint casg,# A7. Indeed, as an example,
consider the one-dimensional operatdtu = —u” 4+ u’, which is periodic with arbitrary
positive period. Then it is easily seen that

1
M(~L,R)=0< 1= A1(—=L,RM).

In fact, sincep = 1 satisfies-L¢ = 0, it follows that the periodic principal eigenvalue of
—L is 0 and then, by Propositi¢n 3.2,(—L, R) = 0. On the other hand, for any > 0,

the function
pr(x) = COS(%x)ex/z

satisfies—Log = (1/4+ 72/4R?)¢g, which shows thapy is a principal eigenfunction
of —L in (=R, R), under Dirichlet boundary conditions. Therefore, by Proposjtioh 3.1,

. (1 n? 1
Al(_L’R)ZRlinoo —+m Zz>)\1(—L,R)

Proposition 3.3 (Proposition 6.6 in[[6]) If the elliptic operator—L is self-adjoint and
periodic, theniy(—L, RV) = A (=L, RNy = Ap, Wherea,, is the periodic principal
eigenvalue of-L.

For the rest of this paper it is useful to recall the proof of the last statement.

Proof of Propositior 3J3.First, from Propositiofi 3|2 one knows thigf = A} (—L, R).
Now, lety, be a positive periodic principal eigenfunction-ef in RN. Taking¢ = @p
in ), it is straightforward to see that(—L, RV) > 1,,.

To show the reverse inequality, consider a fantijk)z>1 of cutoff functions in
C2(RN), uniformly bounded inW2%°(R"V), such that 0< xz < 1, suppxg C Br
andyg = 1in Bg_1.

Fix R > 1 and letAg be the principal eigenvalue efL in Bg. It is obtained by the
following variational formula:

s, (@ij ()3 w00 — c(x)v?)
fBR 'U2

Takingv = ¢, xx as a test function ir@Z), and writidg = Bg \ Bg_1, we find

AR = min{ v e HJ(BRr), v # o}. (3.12)

Joe L@pxrD0pxr  Mp [p,y 9 = Jo L@pXR)EpXR
fBR ‘p[%XI% - fBR 90121)(12%
o Jep PoXE + Jo, (L@pxR)IPp AR
B o O31R ‘

Since minp, > 0, it follows that there exist& > 0, independent oR, such that

/ PoXR 2/ 93> K(R-DV.
Br Br-1

AR < —

Z)Lp
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Consequently,
RN—l
AR <Ap+ K ——,
F=mT 2 R=—DWN
where K’ is a positive constant independent Bf Letting R go to infinity and using
Propositior} 3JL, we get;(—L, R") < 4, and therefore.; (L, RY) = &,,. O

The next result is an extension of the previous proposition. It is still about periodic oper-
ators, but which are not necessarily self-adjoint. A gradient type assumption on the first
order coefficients is required.

Theorem 3.4 (Theorem 6.8 in([6]) Consider the operator
Lu = 8;(a;j(x)dju) + b (x)du + c(x)u, x eRY,

wheregq;;, b;, ¢ are periodic inx with the same periodly, ..., /y), the matrix field
Alx) = (aij(x))ls,»,{s,v is in CL¥(RN), elliptic and symmetric, the vector field =

(b1, ...,by) isin CL¥@®RN) andc € C%¥(RY). Assume that there is a functidh

C22(RV) such that;;0;B = b; foralli =1,..., N and the vector fieldt—15 has zero
average on the periodicity cell = (0,11) x --- x (0,Iy). Theniy(—L,RY) = Ap =

M (=L, RM), wherex,, is the periodic principal eigenvalue efL in RV,

Next, the natural question is to ask what happens when we drop the periodicity assump-
tion. Up to now, the only available result has been obtained in [6] in the case of dimension
one. It states:

Proposition 3.5 (Proposition 6.11 in([6]) Let —L be a self-adjoint operator in dimen-
sion one. Then1(—L,R) < Aj(—L,R).

This type of result will be extended below.

4. Main results and open problems

The goal of this paper is to further explore these properties. We will examine three main
classes: self-adjoint operators in low dimension, limit periodic operators and general op-
erators in dimension one. We seek to identify classes of operators for which either equality
or an inequality betweely and} holds.

4.1. Self-adjoint case

Our first result is an extension of the comparison result of Propogitign 3.5 to dimensions
N = 2, 3 in the self-adjoint framework.

Theorem 4.1. Let —L be a self-adjoint elliptic operator iRY, with N < 3. Then
A(—L,RY) < A[(—L,RM).

The assumptiov < 3in Theorenfi 4]1 seems to be only technical, as was the assumption
N = 1 in Propositiorf 3)5. That is why we believe that the above result holds in any
dimensionN. But the problem is open at the moment.
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4.2. Limit periodic operators

Next, we examine the class of limit periodic operators which extends that of periodic
operators. In a sense, this class is intermediate between periodic and a.p. Here is the
definition:

Definition 4.2. (1) We say that a general elliptic operaterL is general limit periodidf
there exists a sequence of general elliptic periodic operators

—L,u = —a;’ja,-,-u — b} oju — c"u

such that!; — a;;, b} — b; andc" — cin Cf’“(RN) asn goes to infinity.
(2) We say that a self-adjoint elliptic operaterL is self-adjoint limit periodicif there
exists a sequence of self-adjoint elliptic periodic operators

—L,u = —9; (a;’ja/u) —c"u
such thata};, — a;; in C;’“(RN) andc” — cin CE’“(RN) asn goes to infinity.

Clearly, if all the coefficients of the operataks in Definition[4.2 have the same period
(I1,...,1y), thenL is periodic too. It is immediate to show that the coefficients of a limit
periodic operator are in particular a.p. in the sense of Definjtion 2.3. One of the results
we obtain is:

Theorem 4.3. Let —L be a general limit periodic operator. Ther{l(—L,IRN) <
r(=L,RM).

Another result obtained concerns self-adjoint limit periodic operators. It extends Propo-
sition[3.3.

Theorem 4.4. Let —L be a self-adjoint limit periodic operator. Then (—L,RY) =
A (—L,RV).
In the proofs of Theoren]s 4.3 apd 4.4, we make use of the Schauder interior estimates
and the Harnack inequality. One can find a treatment of these results in [11], or consult
[16], [17] and [24] for the original proofs of the Harnack inequality.

Going back to the nonlinear problem, owing to Theofer 4.4, the existence and unique-
ness results in the limit periodic case can be expressed in terms(of, equivalently,
A1) only, which is the statement of Theor2.2.

4.3. The case of dimensiogn= 1

Our last result establishes a comparison betwaesnd ) for general elliptic operators
in dimension one:

Theorem 4.5. Let—L be a general elliptic operator in dimension one. Thgii—L, R)

Notice that, by Theorenjs 4.3 and4.54f is limit periodic orN = 1, then we can
state Theore.l without mentioning. Hence, only the sign of] is involved in the
existence result.
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4.4. Open problems

The notions of generalized principal eigenvalue raise several questions which still need
an answer. Some of them are:

Open problem 4.6. Does|[(2.8) admit positive bounded solutions (even in the self-adjoint
case) ifA}(—Lo, RY) = 0?

Open problem 4.7. Is it true thatA; (—L, RN) < r1(—L,RY) for any general elliptic
operator—L and any dimensiotV ?

Conjecture 4.8. If —L is a self-adjoint elliptic operator, themi(—L,RY) <
A7 (=L, RY) in any dimension\.

Note that should the answers to bpth|4.7 pnd 4.8 be positive, then we would have
A1 = A in the self-adjoint case, in arbitrary dimension.

5. Different definitions of the generalized principal eigenvalue

In this section, we present various definitions which one could consider as generalizations
of the principal eigenvalue in the whole space. Then we explain the choife pf (1.6) and
(L.7) as the most relevant extensions. Herd, will always denote a general elliptic
operator (satisfyind (113) and (1.4)).

The quantityr1 given by [1.6) is often called the “generalized” principal eigenvalue.

It is considered the “natural” generalization of the principal eigenvalue because, as al-
ready mentioned, it coincides with the Dirichlet principal eigenvalue in bounded smooth
domains. Also, the sign df; determines the existence or nonexistence of a Green func-
tion for the operator (see Theorem 3.2in|[20]). The constahias been introduced, more
recently, in[4]. If&2 is bounded and smooth, thefQ(—L, Q) = A1(—L, ). Moreover,

as we have seen in Propositi3.2, in the periodic easeoincides with the periodic
principal eigenvalue.

The quantityrq is the largest constantfor which —(L + 1) admits a positive sub-
solution. The definition of/ is based on that of;, with two changes: first, we take
subsolutions instead of supersolutions (and we replace the sup with inf); second, we take
test functions ir2°. If we introduce only one of these changes, we obtain the following
definitions:

p1(—=L, Q) :=supx | 3¢ € C3(Q) N CHQ) N WX (Q),
¢ >0and(L+1)¢ <0inQ, ¢ =00n0Q, if 0Q A0}, (5.13)
or
py(—L, Q) :=inf{x | 3¢ € CAQNCLL(Q), ¢ > 0and—(L+1)p < 0inQ}, (5.14)

The quantityu is not interesting for us because, as is shown by Remark 6.2 in [6], if we
replacei; with w1, then the necessary condition given by Theo@ 2.1(2) fails to hold.
For completeness, we include this observation here.



Principal eigenvalue of elliptic operators 205

Remark 5.1. Consider the equatioru” — b(x)u’ = 0 in R. We show that, fob op-

portunely chosen, there exists a positive functibne C2(R) N W2°°(R) such that
(Lo+1¢ < 0inR (Lou = u” + b(x)u’ in this case). Thereforgy1(—Lo, R) > 1,

but all the functions: identically equal to a positive constant solva” — b(x)u’ = 0.

The function¢ is defined in f1,1] by ¢(x) = 2 — x2. Forx € (-1, 1), we have
(Lo+ D¢ = —2—2b(x)x + ¢ < —2b(x)x. Hence, it is sufficient to take(x) < 0 for

x <0andb(x) > 0forx > 0to obtain(Lg+ 1)¢ < 0in(—1,1). Then set

e if x < =2,
000 = {e—x it x > 2.

Forx < —2,(Lo+ D¢ = ¢*(2+ b(x)) and, forx > 2, (Lo + 1)¢ = e *(2 — b(x)).
Hence, ifb(x) < —2forx < —2 andb(x) > 2 forx > 2, we find(Lo+ D¢ < 0
in (—oo, —2) U (2, 00). Clearly, it is possible to defing in (-2, —1) U (1, 2) in such a
way that inf_> _17¢" > O, SURy 2] ¢ < 0andg € C2(R) N W2 (R). Consequently,
takingb < —M in (-2, —1) andb > M in (1, 2), with M > 0 large enough, we get
(Lo+1)¢ <0inR.

Neither is the definition4) much meaningful as, in general= —oo. This is
seen next.

Remark 5.2. Consider the following family of functions:
Vk >0, ¢p(x)i=e*Y xeRV,
wherev is an arbitrary unit vector ilR" . Straightforward computation yields
— Lo = —aij (x)vvjk?dy — (b(x) - Ik — c(X)x < (—ak®+ [1bllock + llclloo) B
wherega is given by [1.B) and(x) = (b1(x), ..., bn(x)). Therefore, for every. € R
there existsk > 0 large enough such that(L + A)¢r < 0 and then the quantity
ny (=L, R) defined by|(5.14) is equal tecc.
By contrast, we have:

Remark 5.3. The quantityr; (—L, R") given by ) satisfies |c[loo < A(—L,RY)
< liclloo- In fact, takingg = 1 in (1.9), we see that)(—L.RY) < |ic|o. For the
other inequality, considex € R and¢ € C2(RN) N W2°°(R¥) such thatp > 0 and
—(L 4+ A)¢ < 0. Let M be the supremum af and(x,),cn be a maximizing sequence

for ¢. Forn € N, define
Vx e RN, 0,(x) == ¢ (x) — (M — ¢ (xa))|x — x,[*.
Arguing similarly to the proof of Lemmnia 7.2 below, one can see that every furgtibas

a local maximum at a point, € B1(x,). Furthermore, lim_ cc ¢ () = liM,— o0 ¢ (x,)
= M. We have

0> —(L+1M)d(yn)
> 2(¢(xn) — M)aii(yn) + 2(¢ (xn) — M)bi (yn)(Yn — Xn)i — (c(Yn) + A)P (Yn)-
It follows thatx > —Iliminf,_ o c(y,) > —lcllo- This shows thaﬁ’l(—L,}RN) >

—llelioo-
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6. Self-adjoint operators in dimensionN < 3

The proof of Theorern 4] 1 consists in a not so immediate adaptation of the proof of Propo-
sition[3.3. It makes use of the following observation, which holds in any dimemgion

Lemma 6.1. Let¢ € C2(RM) be a nonnegative function. Lat(x) be the largest eigen-
value of the matrixd;;¢ (x));; and assume thak := sup..gv A(x) < co. Then

vx e RY,  |Vo(x)|? < 2A¢(x). (6.15)

Proof. First, if A < 0 thend;;¢ < O for everyi = 1,..., N. This shows thap is
concave in every direction; and hence, being nonnegative, it is constant. In particular,

(6-13) holds.

Consider the casa > 0. The Taylor expansion @f at the pointx € RY gives

Vy e RN, ¢(y) = () + Vo) (y — x) + 300 (@) (y — x)i (y — x);,
wherez is a point on the segment connectingndy. Hence,

0<¢() < () + Vo) (y —x) + 5Aly — x/|%.

If we take in particulay = x — V¢ (x)/A we obtain

\V4 2
0< () — %,

and the statement is proved. O

Note that if¢ is a positive function iftW%°°(RV), then Lemm@l shows that its gradient
is controlled by the square root ¢f Actually, this is the reason why ifi (1.7) we take test
functions inW2>°(RN).

Proof of Theorenj 4]1Let 2 € R be such that there exists a positive functipne
C2(RN) N W2 (RN) satisfying—(L + A)¢ < 0. We would like to proceed as in the
proof of Propositio3, witkp,, replaced byp, and obtairk1(—L, RM) < A. Thisis not
possible because, in generaljs not bounded from below away from zero. Lemjmg 6.1
allows us to overcome this difficulty. Consider in fact the same type of cutoff functions
(xr)r=1 as in Propositiof 3]3 and let be the principal eigenvalue efL in Br with
Dirichlet boundary conditions. The representation formula (3.12) yields? fer1,

_ S5, )3 @100, (@ xR) — (009 '

AR
2
fBR %Xk

Hence, sincecg = 1 onBr_1, we get

B e, [2aij () (3i) (0 xR)D xR + 9 (aij (x)8) XR)H? XR]
fBR ¢2X123 .

AR <A



Principal eigenvalue of elliptic operators 207

Our aim is to prove that by appropriately choosing the cutoff functigme z>1 we get

. fcR [2a;; (x)(3;8) (3 xR) xR + i (aij(x)d; xR)D*XR]
limsup >

R—o0 fBR ¢2X12e

0. (6.16)

Chooseyy so that

1
Vx € BR\ Br-1/2, xr(x) = €xp| ,
|x| — R

Vx € Bro1j2,  xr(x) = e Y2,

By direct computation, we see that, fore Bg \ Br_1/2,

Vyr(x) = —— (R )‘Zex< 1 )
XRX——| — |x] pIxI—R’

x|
and
xixj (Sij

ai,-xR(x>=[(—3——)<|x|—R)2+2ﬂ<|x|—R>+@}(|x|—R>—4exp< . )
x| - R

|x| x| |x|2

Consequently, using the usual summation convention, we have

1
Vx € Br \ Br-1/2, 9;i(aij(x)djxr) > [a — C(|x| — R)](|x| — R)_4€'XD<|X| — R)’

whereC is a positive constant depending only dnand thew > norm of thea;; (and
not onR) anda is given by [(1.B). Therefore, there exigtsdependent ok with0 < i <
1/2 and such thad; (a;; (x)9; xg) > 0in Bg\ Br_;. Sincexp > exp(—h~1yin Bg_p, itis
possible to choos€’ large enough, independent®f such thab; (a;; (x)d; xg) > —C"xr
in Bg. On the other hand, owing to Lemrha6.1, we can find another constant 0,
depending only oV, |la;;ll oy, @llwzeowmyy @Nd || xR Iw20o @y, (Which does not
depend orR), such that

aij (¥) 0:0)(3) xr) = —C" 925z
Assume, by way of contradiction, that (6]16) does not hold. Then theresexisd and
Ro > 1 such that, foR > Rg,
—e | k= /C (241 (x) @) @) xR)P xR + i (aij ()9 xR)$” Xr]
R R
2 = | (Cxg?+2¢"97 200,
R

Since¢ and xg are bounded, the above inequalities yield the existence of a positive
constant such that, forR > Ry,

3/2
ef o= [ o
Bgr Cr
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Notice that, since > 0, we can choosk > 0 in such a way that the above inequality
holds for anyR > 1. Using the Hlder inequality withp = 4/3 andp’ = 4, we then

obtain

3/4 3/4

VR =1 22 Sk—l(/ ¢2X1%> CrlV4 < K—lR(N—l)/4</ ¢2X12e> ’
Br Cgr C

whereK is another positive constant. Fek N seta, := ([, #*x2)¥*. Since fom € N

we have
n—1 n
¢ x5 = /¢2+/ o /d)zx-z,
/l;n ! ; Cj Ca ! ng G !

n
_ 4/3
a, > Kn® N)/4Zotj/ . (6.17)
j=1
We claim that the sequence,), <N grows faster than any power af This contradicts
the definition ofw,,, because

3/4
3/2 B
oy = <\/C ¢2X3> < ||¢||L/°°(RN)|Cn|3/4 < H}'lg(N 1)/4

for some positive constarif. To prove our claim, we usg (6]17) recursively. At the first
step we haver, > Konf°, whereKg = K“‘f/a andBp = (1— N)/4. At the second
step we getr, > KK§/3n(1*N)/4 YU jRf Bo > —3/4 (ie. if N < 4) then
Yy j4Po/3 ~ pAPo/3+1 Hence, in this case there exiks > 0 such thaty, > K1n#1,
wherep1 = 480/3+ (5 — N)/4. Proceeding in the same way we find, aftesteps, that
a, > K,,nPr wherek,, is a positive constant arg}, = 48,,—1/3+ (5 — N)/4, provided
thatfo, ..., Bm—1 > —3/4.If B,—1 > —3/4, we have

R

it follows that

3
Bm > Bn-1 < PBm—1> Z(N —5).
Since 3
ﬁo>Z(N—5) & N < 4,

it follows that for N < 3 the sequencés,,)..en is strictly increasing. Thus, ligL, oo B
= +ooif N < 3, because if the sequence had a finite limit, it would have tq Ne-%) /4,
which is less thaBy. Therefore, as — oo, o, goes to infinity faster than any polynomial
inn. m]

7. Limit periodic operators

Throughout this section, we consider limit periodic elliptic operatefs According to
Definition[4.2, we let either

Lau = a?j (x)0;ju + b (x)d;u + " (x)u
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if —L is a general operator, or
Lyu = 9;(a; (x)dju) + " (x)u

if —L is self-adjoint. We denote by, andg, respectively the periodic principal eigen-
value and a positive periodic principal eigenfunction-df,, in RV.
Our results make use of the following lemma.

Lemma 7.1. The sequencé.,),cx is bounded and

(L — Lp)gn
@n

=0.

lim H
Loo(RN)

n—o00

Proof. We can assume, without loss of generality, that the operatbts-L,, are general
elliptic. Since the operators, are periodic, from Proposition 3.2 and Remfrk| 5.3 it
follows that

—llenlloo < A (=Lns RY) = 2 < llca oo

Hence, the sequencg, ),y is bounded becausé — ¢ in Cf""(RN). Foralln € N,
the functionsy, satisfy—(L, + 1,)¢, = 0. Then, using interior Schauder estimates, we
can find a constar,, > 0 such that

V}C [S RN, ”(pn”Cbz’a(Bl(X)) S Cn||(pn||L°°(Bz(X))’

where theC,, are controlled by, and|a} We

l'j”CbO’a(RN)’ ”b?”CE’a(RN)’ ”Cn”Cg-a(RN)'
know that the\,, are bounded in € N, and the same is true fortm;?’“ norms ofal."j, b’

L
andc” because they converge in tﬁé’“ norm toa;;, b; andc respectively. Thus, there
exists a positive constaxt such thatC > C, for everyn € N. Moreover, applying the
Harnack inequality for the operators L, +,), we can find another positive constarit
which is again independent af(andx), such that

Vx e R, lgnllzosym) < C'on(x).

Therefore,
qup| L= Lo | _ (i = oo+ 116 =B} oo+ lle = lloo) @ ll 26 g,
xeRN Yn (x) - xeRN $n (x)

< CC'(|laij — afilloo + 1bi — b lloo + llc — " [loc),
which goes to zero asgoes to infinity.
Proof of Theorerp 4|3Forn € N define

’ (L — Lp)on
Dn

H, = ’ (7.18)

LW(RN).
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By Lemmd 7.1, we know that lip, oo H, = 0. Since|(L + A,)¢n| < H,¢y, it follows
that(L + A, — H,)p, < 0and—(L + A, + H,)@, < 0. Hence, using, as a test function
in (1.6) and[(1.]7), we infer thaty (—L, RY) > &, — H, andAy(—L, RV) < &, + H, for
everyn € N. The proof is complete because, passing to the liminf and lim supyags
to infinity in the above inequalities, we get

A (=L, RY) < liminf &, < limsupi, < A1(—L,RM). (7.19)
n—oo n—00

O

The proof of Theorerp 4]4 is divided into two parts, the first one being the next lemma.
Lemma 7.2. The sequencé.,),cn converges ta (—L, RY) asn goes to infinity.

Proof. Proceeding as in the proof of Theorgm|4.3, we defive {7.19). So, we only need
to show that limsup, A, < )Jl(—L,IR{N). To this end, consider a constaht >

Ay (—L,RN) such that there exists a positive functigne C2(RY) N W2>°(RN) sat-
isfying —(L + 1)¢ < 0. Fixn € N and definey,, := k,¢, — ¢, wherek, is the positive
constant (depending o) such that infy,, = 0 (such a constant always exists—and it

is unigue—becausg, is bounded from below away from zero apds bounded from
above). From the inequalities

_(L + A)¢n = _kn (L + )‘)Qon = kn(Ln - L)§0n + kn (An - )‘)(pn»
and definingH, as in [7.1B), we find that
_(L + )L)wn = kn()hn —A— Hn)(prr (720)

Since infy,, = 0, there exists a sequenos, )<y iN RY such that lim, _, o0 ¥, (x,,) = 0.
Form € N, define the functions

O (%) := Y (X) + Yn (X)X — xm]?,  x € RV,

Sinceb,, (xn) = Yy (xp) andoy, (x) > ¥, (x,) for x € 9B1(x,,), for anym € N there
exists a pointy,, € B1(x,,) of local minimum of9,,. Hence,

0= VO (Ym) = VY (ym) + zwn(xm)(Ym — Xm)

and
0 =< (8ij0(ym))ij = Bij¥n(Ym))ij + 2¥n(xm)1,
wherel denotes the&v x N identity matrix. Thanks to the ellipticity of L, we then get

— (L +M)Vu(Ym) < 290 m)aii (Ym) + 29 m)bi Ym) Ym — Xm)i
—(cQm) + MY (m)- (721)

Furthermore, since

O (Ym) = V) + Y o) [¥m — X |* < O im) = Y (),



Principal eigenvalue of elliptic operators 211

we see that),, (y,) < ¥, (x,). Consequently, taking the limit as goes to infinity in
(7.27), we derive limsup._, ., —(L + A)¥, (ym) < 0. Therefore, by{(7.20),

lim supky, (A — 2 — Hp)@n(ym) <0,

m—0oQ0

which implies thai,, — » — H,, < 0 because infv ¢, > 0. Since by Lemma 7|1 we know
that H,, goes to zero as goes to infinity, it follows that

A > limsup(r, — H,) = limsupa,,.

n—oo n— oo
Taking the infimum ovek we finally geti; (—L, RY) > limsup,_, o An.

Proof of Theorerh 4]40wing to Theorerf 413, it only remains to show that—L, RY)
< M (—~L,RM). To do this, we fixR > 1 andn € N and proceed as in the proof of
Propositiorj 3.8, replacing the test functipp by ¢,,. We thus get

S, (L(PnXR)@n XR
fBR (pr%XIZQ
e O+ Lo = D)9)on = [, (L(9n XR))Pn XR
- oo 9215
Jop (L = L)e)pn + [, (L + X))@ XR)Pn XR
- fBR ‘P3X12e '

A(=L,Bg) = —

— *n

SettingH, as in [7.18), we get
H, fBR—l (,03 + Ky |CRrl
fBR 9"3)(1%

where|Cr| denotes the measure of the gt and K, is a positive constant (independent
of R because thg are uniformly bounded i2°°(RN)). Therefore, since migy ¢, >
0, there exists another constdfit > 0 such that

A(=L,Br) < in +

’

K,
AM(—L, BR) < Ay + H, + ="

Letting R go to infinity in the above inequality and using Proposition 3.1 shows that
AM(—L,RV) < A, + H,. By Lemmag 7./l and 7.2, we know th&f, — 0 andx, —
M (—L,R"Y) asn — oo. Thus, we conclude that (—L, RY) < Aj(—L, RV). o

8. The inequality A7 < A1 indimension N =1

In this section, we are concerned with general elliptic operators in dimension one, that is,
operators of the type

—Lu=—ax)u” —bx)u' —c(x)u, xeR,
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with the usual regularity assumptions anb, c. The ellipticity condition becomesg <
a(x) < a for some constants & a < a.

Proof of Theorenj 4]5Fix R > 0 and denote by.z and¢r the principal eigenvalue
and eigenfunction respectively efL in (—R, R), with the Dirichlet boundary condition.

Then define

h -

Vr(x) = e x €R,

whereh, k are two positive constants that will be chosen later. The funatigisatisfies
1
—(L 4+ AR)Yg = <—a(x)k + b(x) — (c(x) + )\R)§>he’<<xR>.

There exist%o > 0 (independent of) such that-(L + Ag)¥g < 0inR for any choice
of k > ko. Our aim is to connect smoothly the functiopg and g in order to obtain a
functiongr € C2([0, o0)) N W22 ([0, 00)) satisfying—(L + Ag)¢r < 0. To this end,
we setgr(x) := n(x — R + 8)3, with n, § > 0 to be chosen. Since

—(L+Ap)gr = [—6a(x) —3b(x)(x — R+8) — (c(x) + Ag)(x — R+8)?]n(x — R +9),

we can find a constaidy > 0 such that-(L + Ag)gr < 0in (R — §, R), for any choice
of 0 < § < 8p. Then we define

YRr(x) forO<x <R -3,
dr(x) = { 9r(x) + gr(x) forR -8 <x <R, (8.22)
Yr(x) forx > R.

It follows that if k > kg ands < 8o, then—(L + Ag)pr <0iNn(0O,R—38)U(R—-48,R)U
(R, +00). In order to ensure th€? regularity of pz, we need to solve the following
system in the variablés, k, 7, §:

n83 = h/k,
@h(R) + 3n8% = —h,
@R (R) + 608 = hk.

One can see thatf < —¢/, (R) (notice thatp, (R) < 0 by the Hopflemma), the previous
system becomes, after some simple algebra,

y (h) = @(R)S,

Sk = _ g
—@h(R) — 1’ (8.23)
hk — @R (R)
n= 65

where
2

—— +2(h H(R)).
R 2+ )

y(h) =
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We want to show that there exisissmall enough such that the systgm (8.23) admits
positive solutions, hs, ks, ns satisfying

8§ <80, hs<—gg(R), ks= ko. (8.24)

Let 0 < 81 < 8o be such thalp} (R)|81 < —¢R(R). Thus, if§ < 81, the first equation of
) yieldsly (h)| < =@y (R). Sincey (0) = 2¢(R) and lim,_, _yr (g)- v (h) = +00,
there exists a constant 1 < —¢}% (R) such that, for any choice éfe (0, 81), the first
equation of[(8.28) admits a solutidn < [h1, —¢}(R)). Fors € (0, §1) andh = hs, the
second equation df (8.23) gives

3h 3h
ks = ——0  §5ls S 51 (8.25)
—@r(R) — hs —¢r(R) — h1
Hence, fors small enough, we havie, > ko. Finally, by the last equation of (8.23), for
§ € (0, 81), we have

_ hsks — op(R) _ hiks — 9 (R)

N 65 - 66 ’

and so, since; satisfies[(8.25);s > 0 for § small enough. Therefore, there exist four pos-
itive constants, , n, § solving [8.23) and satisfyinfy (8.24). With this choiceiok, 1, 3,

the functiongy, is in C2([0, o0)) N W22([0, 00)).

Proceeding as above, we can extendx) for x negative, and get a functiapr €
C2(R)NWZ(R) such that-(L +Ag)¢r < 0inR. U singgr as a test function i.7),
we find thatr (—L, R) < Ag. Thus, passing to the limit @& — oo, by Propositiol,
we deriver) (—L, R) < 21(—L, R). The proof is thereby complete. O

ns

Remark 8.1. Using the same type of construction as in Thedrerh 4.5, one can prove that
the inequalityr’ (—L, RY) < r1(—L,RY) holds for any elliptic operatoL which is
rotationally invariant. Consider in fact an elliptic operator of type

—Lu = —a(|x]|)Au — b(|x|)|i—| -Vu —c(xDu in RV,
with (0) = 0 and with the usual ellipticity and regularity assumptions on the coefficients.
For R > O, let .g and¢r denote respectively its Dirichlet principal eigenvalue and
eigenfunction inBg. It is easy to see that, for any orthogonal mat#ix the function
or(Mx) is again a Dirichlet positive eigenfunction efL in Bg. Hence, by uniqueness
of the principal eigenfunction up to a constant factor, it follows thatx) = ¢r(Mx),
that is,pp is a radial function. Since for any radial functian= u(|x|) the expression of
Lu reads
N-1

|x|

Lu = a(|x)u" + (b(IXI) + a(lxl)>u’ + c(|xDu,

we can proceed as in the one-dimensional case and build a radial fupgtior?(RV)N
W2 (RN) such that-(L +Ag)¢r < 0. Thereforer;(—L, RY) < ig and then, passing
to the limit asR — oo, we obtain the stated inequality betwegnand2’ .
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