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Abstract. We present some results concerning the problem{
−1u = λ

u

|x|2
+ uq , u > 0 in�,

u|∂� = 0,
(1)

where 0< q < (N + 2)/(N − 2), q 6= 1,λ ≥ 0 and� is a smooth bounded domain containing the
origin. In particular, bifurcation and uniqueness results are discussed.

1. Introduction

The paper is organized as follows. In Section 2 we summarize the results concerning ex-
istence and bifurcation, in the convex (q > 1) and concave (q < 1) cases. As we will see,
the required a priori estimates become easier in the concave case, due to some general
uniqueness results which are not true for the convex problem. Then in Section 3 we prove
a uniqueness result forq > 1, when the domain� is the unit ball. This theorem fol-
lows from a careful analysis of the intersections between solutions, and gives a complete
picture of the bifurcation diagram in this particular case.

2. Existence and bifurcation

A key tool in the study of this kind of problems is the following Hardy inequality:

Lemma 2.1. Assume that� is an open regular subset ofRN andu ∈ W
1,2
0 (�). Then

u

|x|
∈ L2(�) and λN

∫
�

|u|2

|x|2
dx ≤

∫
�

|∇u|2 dx

whereλN = (N − 2)2/4 is the optimal constant, which is not attained inW1,2
0 (�).
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The potential|x|−2 is too singular to apply directly the classical theorems about bifur-
cation. From results for problems without singular potential (see for instance [16]), one
would expect bifurcation from infinity in the sublinear case 0< q < 1, and bifurcation
from the trivial solution in the superlinear case 1< q < (N + 2)/(N − 2). However, as
shown in [9], this is not true, and bifurcation from infinity also occurs in the superlinear
case. In the next subsections we will sketch the main steps of the proof of this result.
A crucial role is played by the following nonexistence result:

Lemma 2.2. Letλ = λN . Then problem(1) has no solutionu ∈ W
1,2
0 (�), u > 0.

This result is true even in the sense of distributions whenλ > λN . It can be deduced from
the Baras–Goldstein [4] nonexistence result in the parabolic case.

Remark 2.3. In this paper we are mainly concerned with bifurcation results in the Sobo-
lev spaceW1,2

0 (�). Whenq > 1, a complete discussion about existence and nonexistence
of solutions in the sense of distributions, in the radial case, can be found in [6]. It is proved
that for eachλ ∈ (0, λN ) there exists an exponentp+(λ) > (N + 2)/(N − 2) such that if
1< q < p+(λ) then there exists a nontrivial solution in the sense of distributions, and if
q ≥ p+(λ) then the only positive distributional solution isu ≡ 0.

2.1. Truncation

The natural idea is to pass to the limit in the truncated problems

−1u = λWn(x)u+ uq , u ≥ 0, x ∈ �, u|∂� = 0, (2)

whereWn(x) = min{n, |x|−2
}. Since the potential is bounded, we can use general bifur-

cation results, getting the existence of branches of solutions0n which bifurcate from the
first eigenvalue of the corresponding linear problem, and satisfy some a priori bounds.
First, it is easy to see the following:

Lemma 2.4. Consider the first eigenvalueλ1(n) of the problem{
−1ψ1 = λWn(x)ψ1, x ∈ � ⊂ RN ,
ψ1(x) = 0, x ∈ ∂�,

(3)

Thenλ1(n) ≥ λN , andlimn→∞ λ1(n) = λN .

Next, to pass to the limit some kind of compactness is needed. Notice that if we consider
the energy functional associated to the truncated problem

Jn(u, λ) =
1

2

∫
�

|∇u|2 −
λ

2

∫
�

Wn(x)u
2 dx −

1

q + 1

∫
�

uq+1 dx,

it can be proved thatsequences of solutions of the truncated problems are Palais–Smale
sequences for the limit energy functional. Moreover, the limit energy functional satisfies
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the Palais–Smale condition ifλ < λN (some care is needed in the proof of this Palais-
Smale condition; details can be seen in [10] and [11]). So, it is in this region that we will
be able to pass to the limit.

If we look at the geometry of these energy functionals, the behaviour is completely
different if q < 1 orq > 1; so each case must be analyzed separately. Before performing
this analysis, we state an important common property to both cases, the following blow-up
result:

Lemma 2.5. Let{un}n∈N be a sequence of solutions of(2) for λ = λN . Then‖un‖W1,2
0 (�)

→ ∞ asn → ∞.

Proof. Just a comment about the proof of this lemma: the main ingredient is animproved
Hardy inequality(see (4.10) in [7]), which can be stated as follows. Given 1< p < 2∗,
there exists a constantαp > 0 such that for anyu ∈ W

1,2
0 (�), u 6= 0,∫

�
|∇u|2 − λN

∫
�

|x|−2u2

(
∫
�
up)2/p

≥ αp.

This inequality implies that the sequenceJn(un, λN ) does not converge to zero, and then
an easy contradiction argument concludes the proof. ut

2.2. Sublinear case,0< q < 1

This case becomes simpler thanks to the following powerful comparison result, which
says that in the sublinear case sub- and supersolutions are always ordered (for the proof,
see [2]):

Lemma 2.6. Assume thatf is a continuous function such thatf (u)/u is decreasing. Let
u, v ∈ W

1,2
0 (�) be such that

−1u− λWn(x)u ≥ f (u), u > 0 in �, u|∂� = 0,
−1v − λWn(x)v ≤ f (v), v > 0 in �, v|∂� = 0.

(4)

Thenu ≥ v in �. The same result holds forW∞(x) = |x|−2.

This comparison lemma implies a uniqueness result in the case 0< q < 1, which will be
often used in what follows.

For each truncated problem (2) we can apply the classical results about bifurcation
from infinity (see Ambrosetti–Hess [3] or Rabinowitz [17]), getting a global branch of
positive solutions0n ⊂ W

1,2
0 (�)×R that meets(∞, λ1(n)) from the left; moreover, this

is the unique point of bifurcation from infinity for problem (2). Since the problem with
λ = 0 has a unique positive solution,v0, all these branches pass through the point(v0,0).
To pass to the limit we use the following topological lemma (see [20]):
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Lemma 2.7. Let0n be a sequence of connected closed sets of a complete metric space
such thatlim inf 0n 6= ∅ and

⋃
n∈N 0n is relatively compact. Thenlim sup0n is a con-

nected nonempty set.

In our case, since the lim inf of the set of branches is not empty, because, by uniqueness,
all these branches cross the axisλ = 0 at the same point, and the Palais–Smale condition
provides the compactness, we get:

Theorem 2.8. Let 0 < q < 1. Then there exists an unbounded continuum of positive
solutions,0 ⊂ W

1,2
0 (�) × [0, λN ), which passes through the point(v0,0), v0 being the

unique positive solution to problem(1) for λ = 0, and blows up asλ ↗ λN .

Moreover, the limit branch is nondegenerate. The approximate branches do not collapse to
the vertical axis; this follows from the uniqueness result forλ = 0: let {un} be a sequence
of solutions of the truncated problems such thatλn → 0. Then the Palais–Smale condition
implies thatun → v0, wherev0 is the solution corresponding to the limit problem when
λ = 0.

On the other hand, the approximate branches are bounded away from the horizontal
axis, since by uniqueness solutions correspond to minima of the energy functional and so

Jn(un, λn) = minJ (u, λn) ≤ min

(
1

2

∫
�

|∇u|2 −
1

q + 1

∫
�

uq+1
)

= −Cq < 0.

Finally, an easy rescaling argument shows that the unique point of bifurcation from
infinity for the limit problem isλN .

2.3. Superlinear case1< q < (N + 2)/(N − 2)

In this situation we can apply the global bifurcation theorem by Rabinowitz for each trun-
cated problem, finding an unbounded branch,0n, bifurcating to the left from(λ1(n),0),
and crossing the axisλ = 0. It is well known that in general for problems with superlinear
growth nonuniqueness of positive solution is possible. This makes a great difference with
the sublinear case, since most of the a priori bounds that we use there are not valid now.
Anyway, passing to the limit through the set of branches of the truncated problems we get

Theorem 2.9. Let1< q < (N+2)/(N−2). Then there exists an unbounded continuum
of positive solutions,0 ⊂ W

1,2
0 (�)× [0, λ0), λ0 ≤ λN , passing through the point(v,0),

v being a solution to problem(1) for λ = 0.

Proof. Whenλ = 0, we have a uniform a priori bound for the solutions (see Gidas–
Spruck [13]); hence, as forλ = 0 the trivial solution is isolated, taking a subsequence
if necessary we can assume that all the branches,0n, corresponding to the approximate
problems contain the same point(v,0). Therefore, since the Palais–Smale condition holds
if 0 ≤ λ < λN , we can pass to the limit. Moreover it is easy to see that the continuum that
we found in the limit is nondegenerate, since the improved Hardy inequality implies that
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the branch is bounded away from the horizontal axis (see [10]). In fact, givenλ ∈ [0, λN ),
if we have a solutionuλ, multiplying by uλ in the equation and integrating by parts we
get ∫

u
q+1
λ dx =

∫ (
|∇uλ| −

λ

|x|2
u2
λ

)
dx ≥ αq

( ∫
u
q+1
λ dx

)2/(q+1)

.

Sinceq > 1, we have
∫
u
q+1
λ dx > C > 0 uniformly inλ ∈ [0, λN ). On the other hand,

it follows from Lemma 2.5 that the limit branch cannot remain bounded in the interval
(0, λN ). ut

Notice that the continuum that we found is unbounded, it cannot cross the vertical line
{λ = λN }, and whenλ = 0 the set of solutions is bounded. Then we can deduce the
existence of a point of bifurcation from infinity,λ0 ≤ λN . This bifurcation from infinity
result is a consequence of the singularity of the potential|x|−2: if we consider a potential
|x|−α with α < 2, the branch of solutions bifurcates from the trivial solution whenλ

equals the first eigenvalue of the corresponding problem. Then a natural question is to
ask ifλ0 = λN . It is not hard to see that this is the case if the geometry of the domain�

implies that we have a unique solution. In fact, if the solution is unique, then it comes from
the Mountain Pass Lemma of Ambrosetti–Rabinowitz, and then we can get some useful
a priori estimates. Suppose by contradiction that there existsλ0 < λN and sequences
λn → λ0 and{un} such that‖un‖ → ∞. Then

J (un, λn) = inf
γ

sup
t
J (γ (t), λn) ≤ inf

γ
sup
t
J (γ (t),0) ≡ Cq

where the infimum is taken over the set of continuous paths joining the origin to a fixed
z0 ∈ W

1,2
0 (�) such thatJ (z0,0) < 0. On the other hand,

Cq ≥ J (un, λn) = J (un, λn)−
1

q + 1
〈J ′(un, λn), un〉

≥

(
1

2
−

1

q + 1

)(
1 −

λn

λN

) ∫
�

|∇un|
2 dx.

And this is impossible sinceλ0 = lim λn < λN .
Finding general conditions on the domain� such that for 0< λ < λN uniqueness of

positive solution holds seems to be an interesting (and nontrivial) open problem. In the
next section we will prove uniqueness when� is a ball.

3. Uniqueness

The classical regularity theory for elliptic equations does not work in this kind of prob-
lems because of the singularity of the potential|x|−2. In fact, solutions to problem (1) are
unbounded at the origin:



234 Manuela Chaves, Jesús Garćıa Azorero

Lemma 3.1. Letu ∈ W
1,2
0 (B1(0)) be a positive solution to−1u =

λ

|x|2
u+ uq , x ∈ B1(0),

u|∂B1 = 0.
(5)

Thenu /∈ L∞(B1(0)).

Proof. Fix ε andδ in such a way that−1u− (λ/|x|2)u > ε if |x| < δ. Then the proof is
by a comparison argument, taking as a test functionφ(x) = cω(x/δ), wherec is a small
constant (which depends onε, δ, λ andN ) andω(x) = |x|−(N−2)/2+

√
λN−λ

− |x|2. ut

The existence of solutions forλ < λN follows from variational arguments. In fact, taking
into account that the Hardy inequality allows us to work in the usual Sobolev spaces, we
can see that the geometry of the energy functional satisfies the hypotheses of the classical
Mountain Pass Theorem, and the Palais–Smale condition holds forλ < λN . The unique-
ness seems to be delicate, because the usual techniques like Pohozaev type energy esti-
mates or shooting arguments fail since the solutions are unbounded. See for instance [15],
[22], [21], where uniqueness results for some elliptic problems with bounded solutions
are proved. The main theorem, whose proof will be developed in the next subsections, is
the following:

Theorem 3.2. LetN ≥ 3, 1 < q < (N + 2)/(N − 2), and0 < λ < λN ≡ (N − 2)2/4.
Then problem(5) has a unique positive solutionu ∈ W

1,2
0 (B1(0)).

As a consequence of this theorem, taking into account the bifurcation results in the previ-
ous section, we can deduce the following:

Theorem 3.3. There exists an unbounded continuum of positive solutions to problem(5),
0 ⊂ W

1,2
0 (B1(0))× [0, (N −2)2/4), passing through the point(u,0), u being the unique

solution to problem(5) for λ = 0.

3.1. Radial symmetry

The first step in the proof is a symmetry result. This theorem (which follows readily from
the arguments in [19]) holds true under very general hypotheses. In fact, if we give a
meaning to the equation in the distributional setting, namely if we assume thatu ∈ L1

loc
and (λ/|x|2)u + uq ∈ L1

loc, then the nonlinearity of the right hand side implies that
u ∈ L

q

loc with q > 1. But if we avoid a neighbourhood of the origin, it is also true that

(λ/|x|2)u ∈ L
q

loc(B1(0) \ {0}) and henceu ∈ W
1,2
loc (B1(0) \ {0}).

Theorem 3.4. Letu ∈ W
1,2
loc (B1(0) \ {0}) be a positive solution to problem(5). Thenu is

radially symmetric about the origin.
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Proof. This symmetry result follows from the well known moving planes method (see
[12], [18], [5]), as used by Terracini [19] in a similar problem inRN involving the critical
potential|x|−2. ut

In the radial setting,u = u(r), r = |x|, problem (5) takes the form

urr +
N − 1

r
ur + uq +

λ

r2
u = 0, u > 0 for 0< r < 1, u(1) = 0, (6)

with the additional conditionu ∈ W
1,2
0 (B1(0)). A first elementary estimate of the be-

haviour of solutions to (6) close to the origin is the following:

Lemma 3.5. Letu(r) ∈ W
1,2
0 (B1(0)) be a solution of(6). Then

lim
r→0

rαu(r) → 0 asr → 0, for everyα >
N − 2

2
. (7)

Proof. Notice that by elliptic regularity, energy solutionsu ∈ W
1,2
0 (B1(0)) to problem

(6) are regular away from the origin, and therefore, givenr > 0, we can write

u(r) = −

∫ 1

r

u′(s) ds = −

∫ 1

r

u′(s)s(N−1)/2s−(N−1)/2 ds

≤

(∫ 1

r

|u′(s)|2sN−1 ds

)1/2(∫ 1

r

s−(N−1) ds

)1/2

≤ Cr−(N−2)/2. ut

Moreover, since solutions to equation (6) are regular in(0,1), it is obvious that they
cannot have any interior local minima (recall thatλ > 0); therefore any positive solution
u(r) is unbounded and decreasing. Let us point out that the usual uniqueness proofs by
shooting type arguments do not work in this case, since the solutions are unbounded at
the origin. And, moreover, an alternative shooting proof starting fromr = 1 presents an
extra difficulty, since as we will see, for some values of the parametersλ andq, problem
(5) has multiple unbounded non-energy solutions. Instead of these approaches, our proof
is based on the study of the number of intersections between any two different solutions
of the problem.

3.2. First transformation: phase plane analysis

Taking into account the homogeneity of the equation, it is convenient to introduce, as in
[19], the new variables

ψ(s) = eαsu(es), α =
2

q − 1
, r = es, (8)

in such a way that (6) takes the autonomous form

ψss + hψs + ψq + kψ = 0, ψ > 0 for s < 0, ψ(0) = 0, (9)
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Fig. 1. First change of variables and trajectories in the phase plane.

with h = N − 2 − 2α andk = λ− hα − α2. On the other hand, in the new variables the
limit condition (7) obtained in Lemma 3.5 implies

lim
s→−∞

ψ(s) = 0. (10)

We note that in our range of parameters, the constanth is always negative, and more-
over, the dependence onλ is hidden in the parameterk. We have{

ψ ′
= w,

w′
= −hw − kψ − ψq .

(11)

We work in the regionψ ≥ 0, and we are looking for the orbits which connect the critical
point (0,0) and a point of the type(0, c) for some negative value ofc (see Fig. 1). To
study the local behaviour near the critical point(0,0), we linearize (11) around this point,
getting {

ψ ′
= w,

w′
= −hw − kψ.

(12)

The corresponding eigenvalues are given by

µ± = −h/2 ±

√
h2/4 − k = −h/2 ±

√
(N − 2)2/4 − λ

and the associated eigenvectors aree± = (1, µ±). In particular, taking into account the
change of variables, the eigenvalues give just the rate of the singularity that the function
u has at the origin; this point will be carefully analyzed below. Concerning the critical
points, we recall that the constanth is negative andh2/4 − k > 0. Hence, the critical
point (0,0) is a saddle point ifk < 0, while it is an unstable node ifk > 0, and a
degenerate unstable node ifk = 0. On the other hand, whenk < 0, there is a second
critical point(|k|1/(q−1),0). Linearization around this point shows that it is unstable, and
therefore the general theory of ODEs gives us the following result.

Proposition 3.6. Assume thatk < 0. Then there exists a unique unstable manifold which
leaves the origin along the directione+, as well as a unique stable manifold entering
along the vectore−.
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Hence, the desired uniqueness result follows in a straightforward way ifk is negative, or,
in terms of the original parameters,

λ <
2(N − 2)

q − 1
−

4

(q − 1)2
(< λN ).

Remark 3.7. Notice that the casek < 0, in the notation of [6], corresponds to the range
q ∈ (p−(λ), (N+2)/(N−2)) ⊂ (p−(λ), p+(λ)). In this range the authors of [6] exhibit
an explicit solutionu(r) = Ar−2/(q−1). This singular explicit solution is related to the
second critical point(|k|1/(q−1),0); see Lemma 3.11.

As mentioned above, this analysis does not give any information about uniqueness
of the orbits leaving the origin of the system fork ≥ 0 (in this case we should use,
for instance, some version of the Hartman–Grobman theorem, see [14], which requires
a nonresonance condition which fails for some values ofλ). This is the reason why we
introduce a different approach to the problem. We begin by obtaining a more precise
estimate for the singularity of our solutions.

Lemma 3.8. Supposek > 0. Letψ+ (respectivelyψ−) be an arbitrary solution of(9)
such that the corresponding orbit in the phase plane(ψ,w) leaves the origin along the
directione+ (respectivelye−). Then there exists a positive constantC± = C(ψ±) such
that

lim
s→−∞

e−µ±sψ±(s) = C±. (13)

Proof. We only deal with solutions of the typeψ+, since similar arguments apply to
solutions of the typeψ−, and we omit the subscript+ in what follows. We refer to [8] for
the complete details. On the one hand, it follows from the phase plane analysis above that

ψ(s) ≡ eµs+o(s) ass → −∞. (14)

DefineH(s) = µψ(s)− ψ ′(s). By using equation (9), we find thatψ andH satisfy{
ψ ′

= µψ −H,

H ′
= −(µ+ h)H + ψq .

(15)

After multiplying by appropriate factors in both equations and integrating we obtain

e−µsψ(s) =

∫ 0

s

e−(2µ+h)t

[
−ψ ′(0)−

∫ 0

t

e(µ+h)rψq(r) dr

]
dt. (16)

Next we prove that

G(s) ≡ −ψ ′(0)−

∫ 0

s

e(µ+h)rψq(r) dr → 0 ass → −∞. (17)

By (14) and the definitions ofµ andh the above limit exists and is finite. Denote it byl
and assume thatl 6= 0. Since−(2µ+ h) < 0, we have∫ 0

s

e−(2µ+h)t

[
−ψ ′(0)−

∫ 0

t

e(µ+h)rψq(r) dr

]
dt → ∞ ass → −∞, (18)
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Hence by using L’Hospital’s rule we have for everyε > 0 small enough,

eεs
∫ 0

s

e−(2µ+h)t

[
−ψ ′(0)−

∫ 0

t

e(µ+h)rψq(r) dr

]
dt → ∞ ass → −∞, (19)

a contradiction with (14), which proves (17). Finally, it is not difficult to check that the
functionF(s) = e−(2µ+h)sG(s) is integrable in the interval(−∞,0). In fact, from (14)
and L’Hospital’s rule we get

e−εsF(s) ≡ e−(2µ+h+ε)s

[
−ψ ′(0)−

∫ 0

s

e(µ+h)rψq(r) dr

]
→ 0 ass → −∞, (20)

for everyε > 0 small enough and hence the functionF is integrable in(−∞,0). We
also note thatG(s) is increasing. This implies, by using (17), thatG(s) is positive and the
same holds forF(s). The result follows sincee−µsψ(s) =

∫ 0
s
F(t) dt . ut

Remark 3.9. After translating the information to the original variablesu(r), we see that
the solutions to problem (6) are related to the orbits corresponding to the eigenvectorse±

andu(r)r−(N−2)/2±

√
h2/4−k

→ C asr → 0+.

This means that solutions associated to the eigenvalueµ+ belong to the Sobolev space
W

1,2
0 (B1(0)), while solutions associated to the eigenvalueµ− are too singular. Hence, we

will distinguish betweenenergy(or regular) solutions, andsingular solutions. We also
summarize the results concerning the analysis of the singularity for the other values of
the parameterk. The proofs can be found in [8].

Lemma 3.10. Supposek = 0. Then there exists a positive constantC such that

lim
s→−∞

e−µ+sψ+(s) = C and lim
s→−∞

|s|1/(q−1)ψ−(s) =

(
−h

q − 1

)1/(q−1)

. (21)

Lemma 3.11. Supposek < 0. Then there exists a positive constantC such that

lim
s→−∞

e−µ+sψ+(s) = C and lim
s→−∞

ψ−(s) = |k|1/(q−1). (22)

Remark 3.12. Notice that energy solutions always behave asr−(N−2)/2+
√
λN−λ. ut

3.3. Estimate of the number of intersections

Given two solutionsψ1(s) andψ2(s) of (9)–(10), we denote byI (ψ1, ψ2) the number
of intersections of these functions, that is, the number of sign-changes of the difference
ψ1(s)−ψ2(s). The next results are valid for any value ofk ∈ R and for any two solutions
to problem (9).

Proposition 3.13. Let ψ1(s) and ψ2(s) be solutions of(9), with N ≥ 3, 1 < q <

(N + 2)/(N − 2), and0< λ < (N − 2)2/4. ThenI (ψ1, ψ2) ≤ 1.
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�

6

�

6

ψ1

ψ2
ψ2

ψ1

Fig. 2. Admissible intersections

Proof. Consider the phase plane of equation (9) and the corresponding orbits satisfying
the associated system (11). Denote by6i = {(ψi(s), wi(s)) : s < 0}, i = 1,2, the orbits
corresponding to the solutionsψ1 andψ2 respectively and assume that

ψ ′

2(0) < ψ ′

1(0). (23)

(See the diagram in Fig. 1.) LetS be the closed connected domain in the half planeψ ≥ 0,
bounded by the orbit61 and the straight lineψ ≡ 0. Assume now thatI (ψ1, ψ2) > 1 and
denote bys∗i < 0, i = 1,2, two consecutive intersection points between these functions,
ψ1(s

∗

i ) = ψ2(s
∗

i ) = ψ∗

i > 0, i = 1,2. By construction and standard theory of ODEs,
the functionψ(s) = ψ1(s) − ψ2(s) does not change sign in the interval [s∗1, s

∗

2] and its
derivativeψ ′(s) has opposite signs ats∗1 ands∗2. Then it is clear that at least one of the
pointsP ∗

i = (ψ2(s
∗

i ), w2(s
∗

i )), i = 1,2, belongs to the setS. On the other hand, (23)
implies that the pointP2(0) = (0, w2(0)) ∈ 62 ∩ SC (whereSC means the complement
of S). Hence, it follows from the continuity of the orbit that62 intersects61, a contra-
diction. ut

Using the fact that the system is autonomous, and the monotonicity of the trajectories in
the phase plane, it can be easily proved that only the intersections represented in Fig. 2
are admissible. Moreover, a similar analysis gives a useful estimate of the intersections
between the solutions and their translations:

Proposition 3.14. Letψ1(s) andψ2(s) be solutions of(9). Then, for any positive con-
stantτ , if we definẽψ2(s) = ψ2(s + τ), thenI (ψ1, ψ̃2) ≤ 2.

3.4. Second transformation

The previous analysis suggests that a convenient transformation in order to disregard the
non-energy solutions would be to consider the new variables

φ(s) = eµ+sψ(s). (24)

After using equation (9) we see thatφ(s) satisfies

φss + 2
√
h2/4 − k φs + eµ+(q−1)sφq = 0, φ > 0 for s < 0, φ(0) = 0. (25)
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Remark 3.15. With this change of variables, energy solutions satisfy

lim
s→−∞

φ(s) = C > 0, (26)

while singular solutions satisfy lims→−∞ φ(s) = +∞.

If we restrict ourselves to the case of energy solutions, then we can improve the result
concerning the number of intersections. Precisely, we have:

Proposition 3.16. LetN ≥ 3, 1< q < (N + 2)/(N − 2), and0< λ < (N − 2)2/4. Let
ψ1 andψ2 be solutions of(9)–(10)satisfying(26)after the transformation(24). Then

I (ψ1, ψ2) = 0. (27)

Proof. Assume by contradiction that (27) is false and that there are solutionsψ1 and
ψ2 intersecting each other. From Proposition 3.13 it follows that at most one intersec-
tion between these functions is possible. Letφ1(s) andφ2(s) be obtained by applying
transformation (24) to the solutions of (9)–(10) given byψ1(s) andψ2(s), and setCi =

lims→−∞ φi(s), i = 1,2. Suppose thatC1 > C2. Next, definẽψ2(s) = ψ2(s+ τ), where
the constantτ = (1/µ+) log(C1/C2) is chosen in such a way that lims→−∞ φ1(s) =

lims→−∞ φ̃2(s) = C1 (in particular, ifC1 = C2 thenτ = 0).
It follows by Proposition 3.14 that there existss∗ such thatψ1 andψ̃2 do not intersect

for s < s∗. We assume that in this regionψ1 > ψ̃2, the other case being analogous. (See
Fig. 3, which shows the behaviour ofψ1, ψ2 andψ̃2.)

�

6

ψ2
ψ̃2

ψ1

s∗

Fig. 3. Solutions and translations of solutions.

Defineg(s) = φ1(s)− φ̃2(s). This function satisfies

gss + 2
√
h2/4 − k gs + eµ+(q−1)s(φ

q

1 − φ̃
q

2) = 0, (28)

and moreover

g > 0 for s < s∗, and lim
s→−∞

g(s) = lim
s→−∞

g′(s) = 0. (29)

Integrating equation (28) in the interval(−∞, s) for somes < s∗, using (29), we get

g′(s) < −

∫ s

−∞

eµ+(q−1)t
{φ
q

1(t)− φ̃
q

2(t)} dt < 0.

And this contradicts (29). ut
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The uniqueness result is now a consequence of Proposition 3.16:

Proof of Theorem 3.2.Let u1(r) andu2(r) be energy solutions to the problem (6). It
follows from Proposition 3.16 that they have to satisfyI (u1, u2) = 0, and hence, the
solutions are ordered in the interval(0,1). Without loss of generality, we may assume that
u2(r) > u1(r) > 0 for everyr ∈ (0,1). Multiplying by u2 the equation corresponding to
u1, and byu1 the equation corresponding tou2, and integrating by parts, we get∫

B1

u
q

1u2 dx =

∫
B1

u
q

2u1 dx,

which is impossible becauseu2(r) > u1(r) > 0. ut

3.5. Some remarks about the singular solutions

The previous analysis yields the existence of a unique energy solution, but in the case
k > 0 also the existence of infinitely many singular solutions. Looking at the phase plane,
and using some continuity arguments, it is not hard to prove the following properties of
singular solutions:

Proposition 3.17. Letv be a singular solution. Then:

• If u is the energy solution, thenI (u, v) = 1. Moreover,u′(1) < v′(1) < 0.
• There exists a singular solutionv1 such thatI (v, v1) = 0.
• There exists a singular solutionv2 such thatI (v, v2) = 1.
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