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Abstract. We present some results concerning the problem

u
—Au=x1—+u4, u>0 inQ,
Ix]2 (1)

ulpe =0,

where O< g < (N +2)/(N —2),q # 1,1 > 0 and<2 is a smooth bounded domain containing the
origin. In particular, bifurcation and uniqueness results are discussed.

1. Introduction

The paper is organized as follows. In Secfipn 2 we summarize the results concerning ex-
istence and bifurcation, in the convex ¢ 1) and concavey( < 1) cases. As we will see,

the required a priori estimates become easier in the concave case, due to some general
uniqueness results which are not true for the convex problem. Then in Jection 3 we prove
a uniqueness result fgr > 1, when the domai is the unit ball. This theorem fol-

lows from a careful analysis of the intersections between solutions, and gives a complete
picture of the bifurcation diagram in this particular case.

2. Existence and bifurcation

A key tool in the study of this kind of problems is the following Hardy inequality:

Lemma 2.1. Assume tha® is an open regular subset B andu e W&’Z(Q). Then

u 2 |“|2 2
— e LA(Q) and iy 5 dx 5/ |Vu|dx
x| Q x| Q

wherexy = (N — 2)2/4 s the optimal constant, which is not attainedwg’z(sz).
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The potentiallx|~2 is too singular to apply directly the classical theorems about bifur-
cation. From results for problems without singular potential (see for instance [16]), one
would expect bifurcation from infinity in the sublinear case<Q; < 1, and bifurcation

from the trivial solution in the superlinear case<lg < (N + 2)/(N — 2). However, as
shown in [9], this is not true, and bifurcation from infinity also occurs in the superlinear
case. In the next subsections we will sketch the main steps of the proof of this result.
A crucial role is played by the following nonexistence result:

Lemma 2.2. LetA = Ay. Then problenfd)) has no solution: € Wol’z(fz), u > 0.

This result is true even in the sense of distributions whena y. It can be deduced from
the Baras—Goldstein[4] nonexistence result in the parabolic case.

Remark 2.3. In this paper we are mainly concerned with bifurcation results in the Sobo-
lev spaceW&’z(Q). Wheng > 1, a complete discussion about existence and nonexistence
of solutions in the sense of distributions, in the radial case, can be found in [6]. It is proved
that for each. € (0, Ay) there exists an exponept (1) > (N +2)/(N — 2) such that if

1 < g < pT (1) then there exists a nontrivial solution in the sense of distributions, and if
g > pT () then the only positive distributional solutionis= 0.

2.1. Truncation

The natural idea is to pass to the limit in the truncated problems
—Au=2W,(xu+u?, u>0 xe€, ulpa=0, (2)

whereW, (x) = min{n, |x|~2}. Since the potential is bounded, we can use general bifur-
cation results, getting the existence of branches of solutignshich bifurcate from the

first eigenvalue of the corresponding linear problem, and satisfy some a priori bounds.
First, it is easy to see the following:

Lemma 2.4. Consider the first eigenvalug (n) of the problem

—AY1 =AW, ()Y, x € QCRY, 3)
1//‘1(X)=0, xGaQ,

Theni1(n) > Ay, andlim, o A1(n) = Ay.

Next, to pass to the limit some kind of compactness is needed. Notice that if we consider
the energy functional associated to the truncated problem

1 A 1
Ja(u, 1) = E/Q|W|2—E/QWn(x)uzdx—q—JrlfQuq“dx,

it can be proved thagequences of solutions of the truncated problems are Palais—Smale
sequences for the limit energy functionisloreover, the limit energy functional satisfies
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the Palais—Smale conditionif < Ay (some care is needed in the proof of this Palais-
Smale condition; details can be seenin [10] and [11]). So, it is in this region that we will
be able to pass to the limit.

If we look at the geometry of these energy functionals, the behaviour is completely
differentifg < 1 org > 1; so each case must be analyzed separately. Before performing
this analysis, we state an important common property to both cases, the following blow-up
result:

Lemma 2.5. Let{u,},cn be a sequence of solutions@) for » = Ax. Then||u, ||W1.z(9)
0

— 00 asn — Q.

Proof. Just a comment about the proof of this lemma: the main ingredientils@oved
Hardy inequality(see (4.10) in[[[7]), which can be stated as follows. Givea p < 2%,
there exists a constaaf, > 0 such that for any W&’Z(Q), u #0,

fQ |Vu|2 — AN fQ |x|_2u2
(JquP)?/p =%

This inequality implies that the sequen&gu,,, Ax) does not converge to zero, and then
an easy contradiction argument concludes the proof. O

2.2. Sublinear casé) < g < 1

This case becomes simpler thanks to the following powerful comparison result, which
says that in the sublinear case sub- and supersolutions are always ordered (for the proof,
seel[2]):

Lemma 2.6. Assume thaf is a continuous function such th#{u)/u is decreasing. Let
u,v e Wol'Z(Q) be such that

—Au—AW,()u > fw), u>0 InQ, ulyg=0, (@)
—Av— AW, (x)v < f(v), v>0 iInQ, vlpe=0.

Thenu > v in Q. The same result holds fo¥., (x) = |x| 2.

This comparison lemma implies a uniqueness result in the case & 1, which will be
often used in what follows.

For each truncated problefn] (2) we can apply the classical results about bifurcation
from infinity (see Ambrosetti-Hes51[3] or Rabinowitz [17]), getting a global branch of
positive solutiond™,, C Wg’z(Q) x R that meetgoo, A1(n)) from the left; moreover, this
is the unique point of bifurcation from infinity for problern] (2). Since the problem with
A = 0 has a unique positive solutiom, all these branches pass through the pigt0).

To pass to the limit we use the following topological lemma (seé [20]):
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Lemma 2.7. LetT", be a sequence of connected closed sets of a complete metric space
such thatiminf I", # ¢ and|J, .y I, is relatively compact. Thelim supI’, is a con-
nected nonempty set.

In our case, since the liminf of the set of branches is not empty, because, by uniqueness,
all these branches cross the axis- 0 at the same point, and the Palais—Smale condition
provides the compactness, we get:

Theorem 2.8. Let0 < g < 1. Then there exists an unbounded continuum of positive
solutions,I" C Wol’z(sz) x [0, Ax), which passes through the poiql, 0), vg being the
unique positive solution to problef]) for » = 0, and blows up ag /" Ay.

Moreover, the limit branch is nondegenerate. The approximate branches do not collapse to
the vertical axis; this follows from the uniqueness resultifes O: let{u,} be a sequence
of solutions of the truncated problems such that-> 0. Then the Palais—Smale condition
implies thatu,, — vo, whereuy is the solution corresponding to the limit problem when
A=0.

On the other hand, the approximate branches are bounded away from the horizontal
axis, since by uniqueness solutions correspond to minima of the energy functional and so

1 1
T, Ap) = MinJ u, Ay) <min( = | |Vul? — —— a+l) — _c ~0.
n(Un, An) (u, 1) < (2/Q| u| 4 +l/9u ) g <

Finally, an easy rescaling argument shows that the unique point of bifurcation from
infinity for the limit problem isi .

2.3. Superlinearcask < g < (N +2)/(N — 2)

In this situation we can apply the global bifurcation theorem by Rabinowitz for each trun-
cated problem, finding an unbounded brarich, bifurcating to the left from(i1(n), 0),

and crossing the axis= 0. It is well known that in general for problems with superlinear
growth nonuniqueness of positive solution is possible. This makes a great difference with
the sublinear case, since most of the a priori bounds that we use there are not valid now.
Anyway, passing to the limit through the set of branches of the truncated problems we get

Theorem 2.9. Letl < g < (N +2)/(N —2). Then there exists an unbounded continuum
of positive solutions] C Wol'Z(Q) x [0, X0), Ao < Ay, passing through the poirit, 0),
v being a solution to problerf) for 2 = 0.

Proof. WhenA = 0, we have a uniform a priori bound for the solutions (see Gidas—
Spruck [13]); hence, as for = 0 the trivial solution is isolated, taking a subsequence
if necessary we can assume that all the brandigsgorresponding to the approximate
problems contain the same point 0). Therefore, since the Palais—Smale condition holds
if 0 < A < Ay, We can pass to the limit. Moreover it is easy to see that the continuum that
we found in the limit is nondegenerate, since the improved Hardy inequality implies that
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the branch is bounded away from the horizontal axis (s€e [10]). In fact, gieei®, Ay ),
if we have a solutiont,, multiplying by u; in the equation and integrating by parts we

get
2/(g+1)
A
/uz+1dx = /<|Vukl — Wui) dx > aq</uz+ldx> .

Sinceq > 1, we have/ uz+1dx > C > O uniformly in € [0, Ax). On the other hand,

it follows from Lemma(2.b that the limit branch cannot remain bounded in the interval
(0, An). O

Notice that the continuum that we found is unbounded, it cannot cross the vertical line
{A = Ay}, and whenh = 0 the set of solutions is bounded. Then we can deduce the
existence of a point of bifurcation from infinityy < Ay. This bifurcation from infinity

result is a consequence of the singularity of the poteftial: if we consider a potential

|x]~* with « < 2, the branch of solutions bifurcates from the trivial solution when
equals the first eigenvalue of the corresponding problem. Then a natural question is to
ask if .o = Ay. Itis not hard to see that this is the case if the geometry of the doghain
implies that we have a unique solution. In fact, if the solution is unique, then it comes from
the Mountain Pass Lemma of Ambrosetti—-Rabinowitz, and then we can get some useful
a priori estimates. Suppose by contradiction that there ekists Ay and sequences

An — Ao and{u,} such thaf|u, | — oco. Then

J(uy, Ay) = igf supJ(y (), Ap) < ir;f supJ(y(),0) = C,
t t

where the infimum is taken over the set of continuous paths joining the origin to a fixed
Z0 € Wol’Z(Q) such that/ (zg, 0) < 0. On the other hand,

+1

1 1 A
> (— - —) (1 — —") |Vun|?dx.
2 gq+1 AN/ Ja

And this is impossible sincky = lim x,, < Ay.

Finding general conditions on the domasuch that for O< A < Ay uniqueness of
positive solution holds seems to be an interesting (and nontrivial) open problem. In the
next section we will prove uniqueness wheris a ball.

1
Cq > J(un, An) = J(up, Ay) — q_<-]/(un» An), Un)

3. Uniqueness

The classical regularity theory for elliptic equations does not work in this kind of prob-
lems because of the singularity of the potenitiat 2. In fact, solutions to problerﬁkl) are
unbounded at the origin:



234 Manuela Chaves, Jas Garta Azorero

Lemma 3.1. Letu € Wol’z(Bl(O)) be a positive solution to

A
—Au=——u+u4, x e B1(0),
|x|2

u|331 =0.

(5)

Thenu ¢ L>®(B1(0)).

Proof. Fix € ands in such a way that-Au — (A/|x|®)u > € if |x| < 8. Then the proof is
by a comparison argument, taking as a test funaion = cw(x/8), wherec is a small
constant (which depends @ns, » andN) andw (x) = |x|~(N=2/2-VAiv—2 _1x12. 1

The existence of solutions far < Ay follows from variational arguments. In fact, taking

into account that the Hardy inequality allows us to work in the usual Sobolev spaces, we
can see that the geometry of the energy functional satisfies the hypotheses of the classical
Mountain Pass Theorem, and the Palais—Smale condition holds<ak . The unique-

ness seems to be delicate, because the usual techniques like Pohozaev type energy esti-
mates or shooting arguments fail since the solutions are unbounded. See for instance [15],
[22], [21], where uniqueness results for some elliptic problems with bounded solutions
are proved. The main theorem, whose proof will be developed in the next subsections, is
the following:

Theorem 3.2. LetN > 3,1 < g < (N +2)/(N —2),and0 < A < Ay = (N — 2)2/4.
Then problen@ has a unique positive solutiane W(}’Z(Bl(O)).

As a consequence of this theorem, taking into account the bifurcation results in the previ-
ous section, we can deduce the following:

Theorem 3.3. There exists an unbounded continuum of positive solutions to prgBjem
rc W&’Z(Bl(O)) x [0, (N —2)2/4), passing through the poirit, 0), x being the unique
solution to probleng3)) for A = 0.

3.1. Radial symmetry

The first step in the proof is a symmetry result. This theorem (which follows readily from
the arguments in_[19]) holds true under very general hypotheses. In fact, if we give a

meaning to the equation in the distributional setting, namely if we assume tdaaftlloc

and (A/|x|Pu + u? € Lﬁ)c, then the nonlinearity of the right hand side implies that

u € quoc with ¢ > 1. But if we avoid a neighbourhood of the origin, it is also true that

O /1xPu € LL (B1(0) \ {0}) and hencer € W2(B1(0) \ {O}).

loc

Theorem 3.4. Letu € W,é’cz(Bl(O) \ {0}) be a positive solution to proble@). Thenu is
radially symmetric about the origin.
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Proof. This symmetry result follows from the well known moving planes method (see
[12], [18], [5]), as used by Terraciri[19] in a similar problemRA involving the critical
potential|x| 2. o

In the radial settingy = u(r), r = |x|, problem[(}) takes the form

urr +

A
u,—}—uq—}——zu:O, u>0 forO<r<1 u(l)=0, (6)
r

with the additional condition: € W&’Z(Bl(O)). A first elementary estimate of the be-
haviour of solutions td (6) close to the origin is the following:

Lemma 3.5. Letu(r) € W&’Z(Bl(O)) be a solution o@. Then
N-2

lim r*u(r) - 0 asr — 0, foreverya > (7)
r—0

Proof. Notice that by elliptic regularity, energy solutionse Wg’z(Bl(O)) to problem
(©) are regular away from the origin, and therefore, given 0, we can write

1 1
u(r) = —/ u'(s)ds = _/ i (5)s N—D/24=(N=D/2 g
r

r

1 Y2, p1 1/2
= <f |u/(s)|2s1v—1 ds) <f g~ (N=1) ds) < Ccr—N-2/2, O
r r

Moreover, since solutions to equatiqr] (6) are regulacOnl), it is obvious that they
cannot have any interior local minima (recall that- 0); therefore any positive solution

u(r) is unbounded and decreasing. Let us point out that the usual uniqueness proofs by
shooting type arguments do not work in this case, since the solutions are unbounded at
the origin. And, moreover, an alternative shooting proof starting from 1 presents an

extra difficulty, since as we will see, for some values of the paramgtenslg, problem

(B has multiple unbounded non-energy solutions. Instead of these approaches, our proof
is based on the study of the number of intersections between any two different solutions
of the problem.

3.2. First transformation: phase plane analysis

Taking into account the homogeneity of the equation, it is convenient to introduce, as in
[19], the new variables

v(s) =e*ule’®), a= — —— ®)

in such a way thaf (6) takes the autonomous form

Vs FhYs + 99 +kyp =0, ¢ >0 fors <0, ¥(0) =0, 9)
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Fig. 1. First change of variables and trajectories in the phase plane.

with h = N — 2 — 2o andk = A — ha — 2. On the other hand, in the new variables the
limit condition () obtained in Lemn{a 3.5 implies

lim_y(s) =0. (10)

We note that in our range of parameters, the congtamtailways negative, and more-
over, the dependence aris hidden in the parametér We have

v =w,
{w/ = —hw — ky — 9. (11)
We work in the regiony > 0, and we are looking for the orbits which connect the critical
point (0, 0) and a point of the typ€0, ¢) for some negative value ef (see Fig. 1). To
study the local behaviour near the critical pai@t0), we linearize[(I]l) around this point,

getting
v =w,
{ w = —hw — k. (12)

The corresponding eigenvalues are given by

e =—h/2+/h2/4—k =—h/2+ /(N —2)?2/4— %

and the associated eigenvectorsere= (1, u4). In particular, taking into account the
change of variables, the eigenvalues give just the rate of the singularity that the function
u has at the origin; this point will be carefully analyzed below. Concerning the critical
points, we recall that the constantis negative andi?/4 — k > 0. Hence, the critical
point (0, 0) is a saddle point ik < 0, while it is an unstable node ¥ > 0, and a
degenerate unstable nodekif= 0. On the other hand, when < 0, there is a second
critical point(|k|¥@—1 0). Linearization around this point shows that it is unstable, and
therefore the general theory of ODEs gives us the following result.

Proposition 3.6. Assume that < 0. Then there exists a unique unstable manifold which
leaves the origin along the directios,, as well as a unique stable manifold entering
along the vectoe_.
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Hence, the desired uniqueness result follows in a straightforward vkag ifiegative, or,
in terms of the original parameters,

2(N —2) 4
g-1 (¢—-1?

Remark 3.7. Notice that the cask < 0, in the notation of/[6], corresponds to the range

ge(p~ (L), (N+2)/(N—2) C (p~ (), pT(1). In this range the authors of [6] exhibit

an explicit solutionu(r) = Ar—2@=D_ This singular explicit solution is related to the
second critical point|k|Y/@—D, 0): see Lemm 1.

A<

(< AN).

As mentioned above, this analysis does not give any information about uniqueness
of the orbits leaving the origin of the system fbr> 0 (in this case we should use,
for instance, some version of the Hartman—Grobman theorem|,_see [14], which requires
a nonresonance condition which fails for some values)ofThis is the reason why we
introduce a different approach to the problem. We begin by obtaining a more precise
estimate for the singularity of our solutions.

Lemma 3.8. Suppos& > 0. Lety (respectivelyy_) be an arbitrary solution of9)
such that the corresponding orbit in the phase platte w) leaves the origin along the
directione, (respectivelye_). Then there exists a positive constéht = C(y+) such
that

lim e "y (s) = Cy. (13)

§—>—00

Proof. We only deal with solutions of the typ¢.., since similar arguments apply to
solutions of the typgr_, and we omit the subscript in what follows. We refer ta [8] for
the complete details. On the one hand, it follows from the phase plane analysis above that

U(s) = M0 ass > —oco. (14)
Define H (s) = uy(s) — ¥’(s). By using equatior] {9), we find thgt and H satisfy
V' =uy —H,
{H’:—(M+h)H+t/fq. (15)

After multiplying by appropriate factors in both equations and integrating we obtain

0 0
Y (s) = / e_(2“+h)t|:—1ﬂ/(0)— / e“‘*“ﬁ/ﬂ(r)dr] dr. (16)
s t
Next we prove that

0
G(s)=—¢'(0) — / WMy d(rydr — 0 ass — —oo. (17)
By (14) and the definitions gf andh the above limit exists and is finite. Denote it by
and assume that~ 0. Since—(2u + h) < 0, we have

0 0
/ e—(2u+h)t|:_1//(0) _/ WAy () dr] dt - oo ass — —oo, (18)

t
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Hence by using L'Hospital’s rule we have for every- 0 small enough,

0 0
e”/ e(zl“rh)tl:—w/(O) — / Wy a () dr:| dt — oo ass — —oo, (19)
N 13

a contradiction with[(T4), which provels (17). Finally, it is not difficult to check that the
function F(s) = e~@*+M3Gs) is integrable in the interval—oo, 0). In fact, from [14)
and L'Hospital’s rule we get

0
e S F(s) = e—<zﬂ+h+€>f[—¢’(0) — / Ty a (1) dri| —~ 0 ass— —oo, (20)
for everye > 0 small enough and hence the functignis integrable in(—oo, 0). We
also note thaG (s) is increasing. This implies, by usirlg {17), th@s) is positive and the
same holds fo#'(s). The result follows since "5y (s) = fso F(t)d:. O

Remark 3.9. After translating the information to the original variableg), we see that
the solutions to problenmi(6) are related to the orbits corresponding to the eigeneactors

andu(r)r—WV-2/2%y W/4—k _, C asr — OF.

This means that solutions associated to the eigenyalugelong to the Sobolev space
W&’Z(Bl(O)), while solutions associated to the eigenvalueare too singular. Hence, we
will distinguish betweerenergy(or regular) solutions andsingular solutionsWe also
summarize the results concerning the analysis of the singularity for the other values of
the parametek. The proofs can be found inl[8].

Lemma 3.10. Supposé& = 0. Then there exists a positive constahsuch that

—h 1/(g-D
lim e "y, (s)=C and lim |s|¥Y 9 Vy_(s) = (—) . (21)
§—>—00 §—>—00 qg—1
Lemma 3.11. Supposé& < 0. Then there exists a positive constahsuch that
lim e "y (s)=C and lim y_(s)= kYD, (22)
§—>—00 §—>—00
Remark 3.12. Notice that energy solutions always behave ag' —2/2+viv =4, O

3.3. Estimate of the number of intersections

Given two solutionsy1(s) andy2(s) of (9—-(109), we denote by (y1, ¥2) the number

of intersections of these functions, that is, the number of sign-changes of the difference
Y1(s) — ¥2(s). The next results are valid for any valueko€& R and for any two solutions

to problem|(9).

Proposition 3.13. Let ¥1(s) and y2(s) be solutions ofg), with N > 3,1 < ¢ <
(N +2)/(N —2),and0 < 1 < (N — 2)2/4. Thenl (Y1, ¥2) < 1.
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¥
V2 :

Y1

- -

Fig. 2. Admissible intersections

Proof. Consider the phase plane of equatioh (9) and the corresponding orbits satisfying
the associated systef [11). Denotedy= {(yi (s), wi(s)) : s < 0}, i = 1, 2, the orbits
corresponding to the solutions; andyr, respectively and assume that

¥5(0) < 91 (0). (23)

(See the diagram in Fig. 1.) L&tbe the closed connected domain in the half plane 0,
bounded by the orbiE and the straight ling: = 0. Assume now that(y1, ¥2) > 1 and
denote by < 0,i = 1, 2, two consecutive intersection points between these functions,
Va(sf) = Ya(sf) = ¢ > 0,i = 1, 2. By construction and standard theory of ODEs,
the functiony (s) = ¥1(s) — ¥2(s) does not change sign in the intervaj [s5] and its
derivativey’(s) has opposite signs af ands3. Then it is clear that at least one of the
points P* = (Y2(s’), wa(sf)), i = 1,2, belongs to the set. On the other hand[,:qz3)
implies that the poinP2(0) = (0, w2(0)) € £ N S¢ (whereS¢ means the complement

of §). Hence, it follows from the continuity of the orbit thak intersectsx:, a contra-
diction. O

Using the fact that the system is autonomous, and the monotonicity of the trajectories in

the phase plane, it can be easily proved that only the intersections represented in Fig. 2
are admissible. Moreover, a similar analysis gives a useful estimate of the intersections
between the solutions and their translations:

Proposition 3.14. Let y1(s) and yr2(s) be solutions of9). Then, for any positive con-
stantz, if we definglo(s) = yo(s + 1), thenl (Y, y2) < 2.
3.4. Second transformation

The previous analysis suggests that a convenient transformation in order to disregard the
non-energy solutions would be to consider the new variables

P(s) = €Y (s). (24)

After using equatior] (9) we see thags) satisfies

bss + 2/h2 /4 — ks + e+ @V =0, $>0 fors <0, ¢(0) =0. (25
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Remark 3.15. With this change of variables, energy solutions satisfy
lim ¢(s)=C >0, (26)
§—>—00

while singular solutions satisfy lim, _« ¢ (s) = +o0.

If we restrict ourselves to the case of energy solutions, then we can improve the result
concerning the number of intersections. Precisely, we have:

Proposition 3.16. LetN >3, 1< g < (N +2)/(N —2),and0 < A < (N — 2)2/4. Let
¥1 and 2 be solutions o{9)—(10)satisfying(26) after the transformatioi24). Then

I(Y1, ¥2) = 0. (27)

Proof. Assume by contradiction thdt (27) is false and that there are solufierend
¥ intersecting each other. From Propositjon 8.13 it follows that at most one intersec-
tion between these functions is possible. bets) and ¢2(s) be obtained by applying
transformation[(24) to the solutions ¢f (§)10) givenyay(s) andz(s), and setC; =
liM;— oo @i (s),i = 1, 2. Suppose that; > Co. Next, definey2(s) = y2(s + 1), where
the constant = (1/u4)log(C1/C>) is chosen in such a way that lim_ ¢1(s) =
lim;_ o 52(5) = (1 (in particular, ifC; = C» thent = 0). ~

It follows by Proposition 3.14 that there existssuch thaty; andy» do not intersect
fors < s,.. We assume that in this regiahn, > v, the other case being analogous. (See
Fig. 3, which shows the behaviour ¢f, y» andyr.)

Sx

Fig. 3. Solutions and translations of solutions.

Defineg(s) = ¢1(s) — pa(s). This function satisfies

g5 + 2V/h2/8 —k gy + i+ D3 (I — Gy = 0, (28)
and moreover
g>0 fors <s,, and lim g(s) = lim g'(s) =0. (29)
§—>—00 §—>—00

Integrating equatior (28) in the intervat oo, s) for somes < s, using [29), we get
g6 <~ [ e aigl — Fandr <o
—00

And this contradictd (39). O
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The uniqueness result is now a consequence of Propdsitioh 3.16:

Proof of Theorenj 3]2Let u1(r) anduz(r) be energy solutions to the problefd (6). It
follows from Propositiorj 3.6 that they have to satigfy:1, u2) = O, and hence, the
solutions are ordered in the intery@l 1). Without loss of generality, we may assume that
uz(r) > u1(r) > 0 for everyr € (0, 1). Multiplying by u» the equation corresponding to
u1, and byus the equation corresponding 49, and integrating by parts, we get

/ uC{uz dx:f uguldx,
By By

which is impossible because(r) > u1(r) > 0. O

3.5. Some remarks about the singular solutions

The previous analysis yields the existence of a unique energy solution, but in the case
k > 0 also the existence of infinitely many singular solutions. Looking at the phase plane,
and using some continuity arguments, it is not hard to prove the following properties of
singular solutions:

Proposition 3.17. Letv be a singular solution. Then:

o If u is the energy solution, theh(u, v) = 1. Moreoveru’(1) < v'(1) < 0.
e There exists a singular solutian such that/ (v, v1) = 0.
e There exists a singular solutian such that/ (v, v2) = 1.
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