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Abstract. For singularly perturbed Sabdinger equations with decaying potentials at infinity we
construct semiclassical states of a critical frequency concentrating on spheres near zeroes of the
potentials. The results generalize some recent work of Ambrosetti-Malchiodi-Ni [3] which gives
solutions concentrating on spheres where the potential is positive. The solutions we obtain exhibit
different behaviors from the ones givenliin [3].
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1. Introduction

This paper is concerned with semiclassical states of nonlinead@olger equations with
potentials
—?Av+ V(x)v =P, xeR",
u e Wl’Z(R”), u > 0.

HereV € C(R", R) is a radially symmetric nonnegative potential gnd- 1. In recent
years intensive work has been done to construct semiclassical bound states. In particular,
following the seminal work by Floer—Weinsteln |13], numerous papers have been devoted
to constructing various types of spike solutions which concentrate at poiiis. af/ith

no intent to survey those results we just refer to the latest monodraph [2] for references.
Our interest in this paper lies in solutions concentrating on higher dimensional sets, in
particular on spheres. In a recent papeér [3] Ambrosetti-Malchiodi—Ni constructed solu-
tions concentrating on spheres for equat[dn (1) with positive potentials. The locations of
the concentrations are determined by the critical points of a weighted potential. More
precisely, if the weighted potentidlf (r) = r"“ Vi), ¢ = (p+1)/(p — 1) — 1/2,

has a minimum or maximum at somé& > 0, then [[1) has a radial solutian which
concentrates on the sphere of raditisThe result was generalized in [5] to the case of
decaying potentials. On the other hand, wherirf (x) = 0 (this will be referred as
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acritical frequency, spike solutions have been constructed_iri [9, 10] which concentrate
on the zeroes of the potential as— 0. These solutions are different from the spike
solutions and the spherical solutions which concentrate at points and spheres where the
potential is positive. In fact the solutions given in [9] 10] are small solutions as O:

the L* norm tends to 0, while the spike and spherical solutions concentrating on points
and spheres where the potential is positive havd.tReorm staying bounded away from

zero. We also comment on the recent work'in [1.]4, 5] treating potentials which decay to
zero at infinity, for which both spike solutions and spherical concentration solutions are
constructed, but the concentrations are at positive values of the potentials.

The purpose of the present paper is twofold. First we show that for the critical fre-
guency case we can also construct ‘small’ solutions concentrating on spheres near zeroes
of the potentials. Second, our work covers a general class of decaying potentials for which
we construct solutions concentrating near zeroes of the potentials. All of this will be done
by further developing and modifying the local minimization techniqueslof [9]. Set

Z={xeR"| V() =0}
We assume from now on th#t satisfies
(V) Ve CR* R)isradially symmetric, and liminfj— |x[2V (x) = 41 > 0.
Note that(V) implies thatZ is bounded. Our main existence result is the following.

Theorem 1. Suppose thatV) holds. Letd C Z be an isolated component 8fsuch that
0 ¢ A. Then fore sufficiently small(@) has a radially symmetric solution. € W2(R")
such that

lim velloo =0 and liminfe=%?=D|v, | > O. 2)
e—0 e—0
Moreover, for eacld > 0, there are constant§’, ¢ > 0 such that
ve(x) < C exp(—c/e)(dist(x, A%) /&)™, (3)
where

_ -2+ (n—2)2 +4x/g?

we =

A% = {x e R" | dist(x, A) < §}.

Remark 2. The behavior of the solution, found above depends on the fact that the
concentration point is a zero of, and is different from that of solutions constructed
in [3]. In [3] if the weighted potentiab/(r) = " V() ¢ = (p+1)/(p—1) —

1/2, has a minimum or maximum at somé > 0 then fore small a radial solutior,
concentrates on the sphere of raditindv, ~ U ((r — r*)/e), whereU is the positive,
radial solution of~U" 4+ U = UP? such that/’(0) = 0. On the other hand, the solutions
we give here have different behavior by propefty (2). More precise information on the
asymptotics may depend upon the local behavior ofearA like for the spike solutions

in [9]. More precise results will be given in a separate work.
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Remark 3. We point out that, with the decay of the potentials at infinity, the variational
problem associated with the equation is not well posed #7(R"). In fact, it is not even

well posed in the weighted spaces associated naturally to the problenil(see [1]). More
precisely, the spacg, defined in SectioE]Z is not embedded ifitd* 1. Nevertheless, we

still manage to construct solutions by a variational method. To overcome the difficulty
of dealing with decaying potentials, we devise a new localized approach generalizing the
methods of{[9].

Remark 4. In [3}/4,/5], a Lyapunov—Schmidt reduction method was used, which requires
certain smoothness propertiesiof In fact, they assume that and|VV| are bounded.
Our approach in this paper is purely variational requiring only the continui¥y. of

The proof of Theorerfi]1 is given in Sectiph 2. We finish with a few remarks about
further extensions of the results and methods.

2. Proof of Theorem1

The proof of Theorerp|1 is based on a minimization process with two constraints which
was used in[[9] to construct spike solutions concentrating near zeroes of the potential.
Here we construct solutions concentrating on spheres near zerges of
By a scaling«(x) = v(ex) we consider the following equivalent problem:
—Au+ V(ex)u =uP, xeR", 4
ue W@, u>0. @)

Now, let A C Z be the isolated component as assumed in the theorem. We choose
8 > Osuchthat ¢ A% andA® N (2 \ 4%) = ¢, whered® = {x e R" | d(x, A) < §}.
We setA? = {x € R" | ex € A%}. Let C§5,4(R") be the class of radially symmetric
functions inC3°(R"). Let E. the completion oC(gﬁad(R”) with respect to the norm

1/2
lulle = (/<|W|2 + v<ex>u2>> .

We might sometimes usié. for V (ex).
We first consider the subcritical case, i.e., we assumed < (n + 2)/(n — 2). We
will indicate later how to modify the proof to handle the case@of (n + 2)/(n — 2).
Fix a constany with y (p — 1)/(p + 1) > 2. We define a functiory, by

e~ =D=8(+D/(p=D if |x| < Ro/e, x ¢ Aﬁ"s,

xe(x) = § (Ix|/&)Y if |x| = Ro/e,
0 if x € A%,

HereRg > 1 s fixed such thaV (x) > 0 for |x| > Rg and 28 < B(0, Ro).
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We consider the following minimization problem:

M, = inf {||u||§

/ lulPTldx =1, / xelulPtdx <1, u e Eg}. (5)
Rn Rn

We note thatfRn xe|lu|?T1dx may not be well defined off,, and may not be differen-
tiable even if [, xo|u|P*1dx < oo is defined. We will overcome this deficiency via a
certain approximation procedure.

In the following, C denotes a generic constant which may be different on different
lines but independent of the limits concerned.

Lemma 5. lim,_,ge®De=D/+Dpr. = Q.

Proof. Letxg € A. For alla > 0 there exist$ > 0 such thatV (x) < « for all |x — x|
< b. Without loss of generality, we can assumg| = 1 so thats? ¢ A%, wheres is the
unit sphere irR”. Then

M. < [1IVul? + V (ex)u?] dx - i [1IVu|? 4+ au?] dx
T ueCEag(5H (Jpu |PTLd)Z DAY T ez sty (fpu lulPHLdx)2/ D

8/¢ 12 2
< Comm=DO-D/P+D g SO0l 2 + au?) dr

UECE (—8/8,8/¢) (ﬁ{sjs |1 dr)2/(p+D)

If we lete — 0, the last infimum is bounded by a constant which tends to zerc-a<0.
Sinceaq is arbitrary, the lemma follows. O

Lemma 6. For ¢ small, M, is achieved at:;, which satisfies for some, > 0 > 3,
—Aug + V(ex)ug, = as(us)p + ﬂsXs(“s)p’ ug > 0. (6)

Proof. In order to show thad/, is achieved we use approximations. For a fixed 0,
we chooseR,, > 0 such thatRp/e < R1 < Ry < --- and lim, .« R, = o0o. Define
El'=E.N Wg’Z(B(O, R,»)). Then we consider a restricted minimization problem

M =inf{||u||§

/ lulPtldx =1, f xelul? tdx <1, u e E;"}. 7)
Rn R~

It is standard to show that there exists a nonnegative minimjzef M, thatM* > M,
andM!" — M, asm — oo. Thus,{u!'},, is a minimizing sequence fd,, and for some
al', B € R, ul' satisfies

FoRR)

—Aul + V(ex)uy =af )P + B xeui)?,  ul > 0in B0, Ry). (8)

&

Taking a subsequence if necessary, we can assume that fougome,, u?' converges
weakly tou, in E; asm — oc. Since [, xelu P+ dx < 1, itfollows that for any fixed
largeR > O,

f lu™PTldx < (¢/R)”.
R"\B(0,R)
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Forl< p < (n+2)/(n — 2), the embedding ofE}" into LP+1(B(0, R,,)) is compact.
Thus it follows that fp, (u)?*1dx = 1, and that [0 1) xelug|PT1dx < 1 for each
T > 0. Note that|u.|. < liminf,,_ o lu'|lc. This implies thatu, is a minimizer of
M, > 0.

In equation|(B), we can show as ini [9] theft > 0> B},

Next we showu, satisfies equatiori {6). We claim that for® ¢ < 1/2, {a"},, is
bounded. In fact, arguing by contradiction, assume that limsup o' = oo for some
0 < ¢ < 1/2. Without loss of generality, we may assume that,lime o) = oco. For
anyo > 0, we choosep, € Cg"(int(A;”)) satisfying 0< ¢, < 1, ¢5(x) = 1 for
dist(x, 8A§3) > o, and|Ve,| < 2/0. From @), we deduce that

fR (V" Py + Vil - Vo u™ + Ve (™2gy) dx = /R b (u")P L dx.

Since inf esupp|ve, ) Ve(x) > 0, it follows that for someC > 0, independent of:,
[ A2 R Vo Vel o) dx < Cla? i

Since {||ul' ||}, is bounded and lim_» o = oo, we see that for each > 0,
iMoo fgn b u™P*1dx = 0. By the constraints on” we have folr > 0,

lim inf @™P tdx > 0. (9)

m—00 /{xeR" | dist(x,0A%) <o}

Since My o fpn @6 @™)P1 dx = 0 for eachs > 0, there existx,, € A® such that
lim,,_ oo dist(x,,, aA;“‘) = 0 andu,, (x,) = 1. Taking a subsequence if necessary, we
may assume that lign, « |x;,| = ro and for eaclyr > 0,

lim inf W™)Pldx > 0.

Mm=00 Jix | ro—o <|x|<ro+o}

We defineD}, = {x | ro — o < |x| < ro+o}. Bythe Poincag inequality, there exists
someC > 0, independent of, such that for sufficiently large: > 0,

s — 13 dx < Co? v — D P+ Vel —D3)dx.  (10)
0 0

Note that

(V" = Dy P+ Vo — D3)dx < / (VU™ + Ve (u™)?) dx. (11)
D? Do
0 0
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Then, by [ID),[(T)1), the élder inequality and Sobolev inequality, we see that for some
s € (0,1) andC > 0,

m p+1 m 2 et
(wy =L 7dx <C (uy — D% dx
Dg Dz,

(1-s)(p+D)/2
< (/ (V@ = D)4 2+ Vol — 1)i>dx>
D?
"o

< Cas([?-‘rl) ”ulgl ”g-i-l‘

This contradicts{]]9) sincllul'|l¢}m is bounded. Thus we see tHat"'},, is bounded.
Finally, for any radially symmetric functiop € C3°(B(0, R/e) \ A%), we have

/R (Vul' Vo + Vaul'p)dx = a;"/ﬂé (ugH)odx.

Sinceu' converges weakly ta, in E; asm — oo, it follows thate' converges to some
ae > 0 asm — oo. Then, since for any € Cg5, ((R™),

A (Vul' - Vo + Veul'p)dx = a;”[l;{ wPedx + B A XeHPodx,

we see that lim_« B = B, for someg, < 0. Now, it follows that for some, > 0 and

Be <0,
—Aug + V(ex)ug = agul + Bexeu?, ue > 0. (12)

O

We will show that fore small

/R xelue|PTdx < 1. (13)

If this is the case, for any < CS,Orad(R")» we define
-1/(p+D)
o5 = (e + sw)(/ (e + s@)P dX>
]Rn

Then we see thapy = ue, [p.(ps)? dx = 1 and thatfg, x-(¢,)P 1dx < 1 for
small|s|. Thus we deduce that

o_ dlesl?
ds

— [ (Vue - Vo + Veuep) dx — fuz]? / (ue)Pp dx.
S=O ]Rn Rn

This implies that

_Aué‘ + Vsus = Mg(us)p, Ug > 0 in Rn.
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Thenw, = (M,)Y?~1u, is a solution of
—Awg + Viex)w, = (we)?, we >0 inR", (14)
anduve (x) = we (e 1x) = (M)Y?~Yu, (¢~ 1x) solves[().

To showfR,, xelus|Ptdx < 1, we need some asymptotic propertiesopfand i,
given in Lemma§]7 ar{d 8.

Lemma 7. In the previous notations, one hb,_,g "~ DP-D/(+Dy = Q.

Proof. To the contrary, assume, taking a subsequence if necessary,
limg_ e Dw=D/P+Dy, = o e (0,0]. In the previous notation one has
Cgo(int(AfP)) satisfying 0< ¢, < 1, ¢po(x) = 1 for dist(x, 8A§3) > o, and|V¢,| <
2/o. From equatior|(6), we deduce that

/ (Vue2po + Vite - Vooite + Vel(ue) o) dx = a / b0 ()P dx.
Rn Rn

Since infypp vy, ) Ve(x) > 0, it follows that for someC > 0, independent of,
A (IVuePpo + Viug - Vooue + Ve(ue) o) dx < Cllugl|?.

Since lim._, g e~ VP=D/(r+D 112 = 0 and lim._, oo e #~DP=D/(P+D g, > 0, for each
o > 0, iMoo [gn o ()P dx = 0. Since [, xe(ue)P ™ dx < 1, it follows that for
anyo > 0 we have

lim

/ (u)P1dx = 0.
e=>0 JixeRr | dist(x,04%)>0}

Thus, there exist some) € aA;“S andw > 0 such that for any > 0,
liminf (ue)?dx > 20.
£>0 J{xeRn | |xol/e—0 <|x|<[|x0l/e+0)
We fix o > 0 and choose a radially symmetilg € C3° such that

0 if [Ix] — |xol/¢| = 20,
1 ifflx| — |xol/el = o,

Yo (x) = {
0 < ¥, < land|Vy,| < 3/o. Then liminf_q fpu (Vous)’ 1 dx > o.
On the other hand, we claim that

|imoe<"*1>P*1/P+1||w(,u8||§ =0. (15)

E—>

This follows from Lemmap and the fact that for soie- 0, independent of > 0,
IVouel? < Clluell? = CMe;

here we used the fact thad := infgypgy,) Ve > 0.

that
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Finally, settingD(¢e) = {x € R" | |xo|/e — 20 < |x| < |x0l/¢ + 20}, we deduce

liminf e @~ D@=D/(p+D) Vot ”g

e—0
i L (i=D(p—1)/(p+1) 2 flu]|?
> lim e IWouelpra | 5
6=0 ueCh (D) Nl g
> 2P lim inf (Jxol - 260)" " Y(|xo| + 260) " DA HD
E—>
where

2
L= it J208OP a6 ds
seCh-2020)) (%5 g(s)P*+1ds)2/(P+D)

This implies that

liminf 8(”—1)(P—1)/(P+1)||¢dus”3 > wz/(”H)|xo|(”_1)(”_1)/(”+1)J5 >0,

e—0

which contradicts[(115). This completes the proof. |
Lemma 8. If u, anda, are as above, then

lim [I(@e)Y P~ Vug|l oo gy = O.
¢—0

Proof. We note that
—A)Y P Pug) + V(ex) (ee,) Y P Vug) < (@)Y P Yu )P onR".
Suppose that liminf. o fB(y/g’z)((ozg)l/(f”*l)ug)erl dx > 0 for somey € R" \ {0}. This

implies that

lim inf (s/|y|)”*1(a8)<1’+1>/<1’*1>/ (u)Ptdx > 0.
e—0 {(xeR" | |yl/e—2<|x|<|yl/e+2)

This formula contradicts Lemnja 7. Thus, we see that

lim sup ()Y P Dy )P+l gx = 0.
=0 B(y/e,2)

Then, by the Sobolev embedding and a Moser iteration argument, we deduce that

lim 1) P Vuell oo uern | Iyl/e—1<lx|<yl/e+1}) = O.
¢—0

Since 0¢ A% and [, xe(us)?™tdx < 1, there exists a constan > 0 such that for
smalle > 0,

/ ()Pl dx < s0-DH3P/(p-D)
B(0,2rg/¢)
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This implies that for smalt > 0,
/ ((()le)l/(p_l)ug)p+ldx < 83([7+1)/(p—1).
B(0,2r0/¢)

Then, again by standard results, we deduce that

lim (@)Y P~ Pug |l 1o (B(0.10/e)) = O. =
e—0

Proof of the main theoremDefinew, = («;)Y?~Du,. Then
—Aw, + Vew,e < (we)?  onR"™.
By Lemmd, we see thdlw, | .~ — 0 ase — 0. We let

2c = inf V(x).
x€B(0,3Rp)\ 28

Then, by a comparison principle, we deduce (5ée [9]) that for smalD,
we < exp(—cdist(x, d(B(0, 3Ro/¢) \ Z2))).

Thus, we see that Max; z2s we (x) < exp(—cd/e) for smalle > 0.

For a connected componeft of int(Z% \ A%), we consider the first eigenvalue
problem onk,

AP +211P=0, xek,

d(x)=0, xeodkK. (16)

Define®,(x) = ®(ex). We may assume that max,zss ©(x) > 1. By elliptic esti-
mates[[14, Theorem 9.20] and from the fact tffiat x. (we)? "t dx < (o) PHD/P=D it
follows that | we || 0o (z3m a3 < Ce¥ (=D for someC > 0. Then, for sufficiently small
e >0, -

—AD, + V., ®, > (w,)"1®, inK,.

By the comparison principle, we see that
we (x) < exp(—cd/e)Pe(x) forx e K, NZ3.
Thus, we conclude that for sondg ¢ > 0,
lwe ()Nl oo (B(0,3Re/e)\a%) = € EXP(—CS/€). (7)

From the inequality/g, x=(ws)?*1dx < (ap)P+D/P=D it follows that there exists
C > O such that for any € R" \ B(0, 2R/¢),
e \7
< c<—> |
[¥]

n—1 y
f (IUg)P"rldx < C(i) (ag)(p+l)/(p—1)(i>
B(y,2) - Ro Iyl
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Thus, [14, Theorem 9.20] shows that for so@e- 0 independent of we havew, (x) <
C(e/|x)7/P+D for anyx € B(y, 1). We define

_ -2+ (n —2)2 4 41 /g2

e =

Then, settingy. (r) = r®¢, we deduce from conditiocV) that for smalle > 0,
2\ A
—AYe + Ve > (—2 —w?—(n— 2)wg)r“f—2 > Sr%72 r > Ro/e.
& &
Thus, it follows that for smali > 0,

—AYe 4+ Vere > (we)? Yy inR"\ B(O, 2Ro/e).

Note that maxesp(0,2rq/e) We (x) < C exp(—c/e) for someC, ¢ > 0. Then, by the max-
imum principle, we find that for somé, ¢ > 0,

we(x) < Cexp(—c/e)Ps(x) forx e R"\ B(O, 2Rp/¢). (18)

By (17) and[(1B), we see thi, x.(ue)?*dx < 1 for sufficiently smalk > 0.

The first property of[(R) is proven in Lemnjéa 8. The second propertj]of (2) can be
proved in the same way with the arguments[of [9]. The decaying progérty (3) follows
from ) and). FronﬂS), we see that the solutipre E, belongs toL?(R"). This
implies thatu, € WL2(R").

For the casg > (n + 2)/(n — 2), we make the following modifications in the proofs.
We definef(u) = u? for |u] < 1 and f(u) = u? for |u| > 1, where 1< ¢ <
(n + 2)/(n — 2) is fixed. Then we considdr](4) with” replaced byf (x). SettingF (u) =
fo f(s)ds, we consider

M, = inf{||u||§ /R” Fu)dx =1, fRn xe F(uw)dx < 1}.

Sincef is subcritical M, is achieved by some, which satisfies
—Aug + V(ex)ug = ae f(u) + Bexe (1), ug > 0. (19)

Lemma[$ still holds since we may use functions of sni&fl norms. Lemma]7 can be
proved by modifying the proofs and by noticing th&atu) < q_-l+1|“|q+l' Lemma@ is
proved by the same arguments sint@) < u?. Then following the proofs for the sub-
critical case we deduce thaf is a solution withg, = 0. Then we can shoVl, ||z~ — O
ase — 0, thereforeu, is a solution of the original equation. The rest of the proof is
similar to that for the subcritical case.

This completes the proof of Theorgr 1. O

We finish with some remarks for further results with details omitted.
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Remark 9. Our methods may be modified easily to construct solutions concentrating on
lower dimensional spheres of zeroes of the potential when the pot&ialis radially
symmetric with respect to some spaces. For example) = V (x1, x2) with (x1, x2) €

R" = RK x R*2 andV (x1, x2) = V (Jx1], |x2]). We mention[[7,_11, 12, 15, 16] for some
related problems on solutions with multidimensional concentrations.

Remark 10. Our results cover potential¥ which stay away from zero at infinity:
liminfy— V(x) > 0. In this case, the solutions constructed are of exponential de-
cay at infinity. In fact, as long as limipf_  [x|*V (x) > 0 is satisfied for some < 2,

the solutions have exponential decay at infinity.

Remark 11. Spike solutions concentrating near zeroes of the potentials are obtained in
[6] for a related problem with decaying potentiaist?Av + V(x)v = K (x)v? in R”
where the decaying rates forandK are related and restricted Ipy Using the methods

in the present paper, conditiqf¥) may be sufficient for constructing spike solutions
concentrating near zeroes of
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