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Abstract. For singularly perturbed Schrödinger equations with decaying potentials at infinity we
construct semiclassical states of a critical frequency concentrating on spheres near zeroes of the
potentials. The results generalize some recent work of Ambrosetti–Malchiodi–Ni [3] which gives
solutions concentrating on spheres where the potential is positive. The solutions we obtain exhibit
different behaviors from the ones given in [3].
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1. Introduction

This paper is concerned with semiclassical states of nonlinear Schrödinger equations with
potentials {

−ε21v + V (x)v = vp, x ∈ Rn,
u ∈ W1,2(Rn), u > 0.

(1)

HereV ∈ C(Rn,R) is a radially symmetric nonnegative potential andp > 1. In recent
years intensive work has been done to construct semiclassical bound states. In particular,
following the seminal work by Floer–Weinstein [13], numerous papers have been devoted
to constructing various types of spike solutions which concentrate at points ofRn. With
no intent to survey those results we just refer to the latest monograph [2] for references.
Our interest in this paper lies in solutions concentrating on higher dimensional sets, in
particular on spheres. In a recent paper [3] Ambrosetti–Malchiodi–Ni constructed solu-
tions concentrating on spheres for equation (1) with positive potentials. The locations of
the concentrations are determined by the critical points of a weighted potential. More
precisely, if the weighted potentialM(r) = rn−1V `(r), ` = (p + 1)/(p − 1) − 1/2,
has a minimum or maximum at somer∗ > 0, then (1) has a radial solutionvε which
concentrates on the sphere of radiusr∗. The result was generalized in [5] to the case of
decaying potentials. On the other hand, when infRn V (x) = 0 (this will be referred as
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a critical frequency), spike solutions have been constructed in [9, 10] which concentrate
on the zeroes of the potential asε → 0. These solutions are different from the spike
solutions and the spherical solutions which concentrate at points and spheres where the
potential is positive. In fact the solutions given in [9, 10] are small solutions asε → 0:
theL∞ norm tends to 0, while the spike and spherical solutions concentrating on points
and spheres where the potential is positive have theL∞ norm staying bounded away from
zero. We also comment on the recent work in [1, 4, 5] treating potentials which decay to
zero at infinity, for which both spike solutions and spherical concentration solutions are
constructed, but the concentrations are at positive values of the potentials.

The purpose of the present paper is twofold. First we show that for the critical fre-
quency case we can also construct ‘small’ solutions concentrating on spheres near zeroes
of the potentials. Second, our work covers a general class of decaying potentials for which
we construct solutions concentrating near zeroes of the potentials. All of this will be done
by further developing and modifying the local minimization techniques of [9]. Set

Z = {x ∈ Rn | V (x) = 0}.

We assume from now on thatV satisfies

(V ) V ∈ C(Rn,R) is radially symmetric, and lim inf|x|→∞ |x|2V (x) ≡ 4λ > 0.

Note that(V ) implies thatZ is bounded. Our main existence result is the following.

Theorem 1. Suppose that(V ) holds. LetA ⊂ Z be an isolated component ofZ such that
0 /∈ A. Then forε sufficiently small,(1) has a radially symmetric solutionvε ∈ W1,2(Rn)
such that

lim
ε→0

‖vε‖∞ = 0 and lim inf
ε→0

ε−2/(p−1)
‖vε‖∞ > 0. (2)

Moreover, for eachδ > 0, there are constantsC, c > 0 such that

vε(x) ≤ C exp(−c/ε)(dist(x,Aδ)/ε)ωε , (3)

where

ωε ≡ −
(n− 2)+

√
(n− 2)2 + 4λ/ε2

2
and Aδ ≡ {x ∈ Rn | dist(x,A) ≤ δ}.

Remark 2. The behavior of the solutionvε found above depends on the fact that the
concentration point is a zero ofV , and is different from that of solutions constructed
in [3]. In [3] if the weighted potentialM(r) = rn−1V (r)`, ` = (p + 1)/(p − 1) −

1/2, has a minimum or maximum at somer∗ > 0 then forε small a radial solutionvε
concentrates on the sphere of radiusr∗ andvε ∼ U((r − r∗)/ε), whereU is the positive,
radial solution of−U ′′

+ U = Up such thatU ′(0) = 0. On the other hand, the solutions
we give here have different behavior by property (2). More precise information on the
asymptotics may depend upon the local behavior ofV nearA like for the spike solutions
in [9]. More precise results will be given in a separate work.
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Remark 3. We point out that, with the decay of the potentials at infinity, the variational
problem associated with the equation is not well posed inW1,2(Rn). In fact, it is not even
well posed in the weighted spaces associated naturally to the problem (see [1]). More
precisely, the spaceEε defined in Section 2 is not embedded intoLp+1. Nevertheless, we
still manage to construct solutions by a variational method. To overcome the difficulty
of dealing with decaying potentials, we devise a new localized approach generalizing the
methods of [9].

Remark 4. In [3, 4, 5], a Lyapunov–Schmidt reduction method was used, which requires
certain smoothness properties ofV. In fact, they assume thatV and|∇V | are bounded.
Our approach in this paper is purely variational requiring only the continuity ofV.

The proof of Theorem 1 is given in Section 2. We finish with a few remarks about
further extensions of the results and methods.

2. Proof of Theorem 1

The proof of Theorem 1 is based on a minimization process with two constraints which
was used in [9] to construct spike solutions concentrating near zeroes of the potential.
Here we construct solutions concentrating on spheres near zeroes ofV .

By a scalingu(x) = v(εx) we consider the following equivalent problem:{
−1u+ V (εx)u = up, x ∈ Rn,
u ∈ W1,2(Rn), u > 0.

(4)

Now, letA ⊂ Z be the isolated component as assumed in the theorem. We choose
δ > 0 such that 0/∈ A8δ, andA8δ

∩ (Z \A8δ) = ∅, whereAδ = {x ∈ Rn | d(x,A) ≤ δ}.
We setAδε = {x ∈ Rn | εx ∈ Aδ}. Let C∞

0,rad(R
n) be the class of radially symmetric

functions inC∞

0 (R
n). LetEε the completion ofC∞

0,rad(R
n) with respect to the norm

‖u‖ε =

( ∫
(|∇u|2 + V (εx)u2)

)1/2

.

We might sometimes useVε for V (εx).
We first consider the subcritical case, i.e., we assume 1< p < (n+ 2)/(n− 2). We

will indicate later how to modify the proof to handle the case ofp ≥ (n+ 2)/(n− 2).
Fix a constantγ with γ (p − 1)/(p + 1) > 2. We define a functionχε by

χε(x) =


ε−(n−1)−3(p+1)/(p−1) if |x| ≤ R0/ε, x /∈ A

4δ
ε ,

(|x|/ε)γ if |x| ≥ R0/ε,

0 if x ∈ A4δ
ε .

HereR0 ≥ 1 is fixed such thatV (x) > 0 for |x| ≥ R0 andZ8δ
⊂ B(0, R0).
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We consider the following minimization problem:

Mε = inf

{
‖u‖2

ε

∣∣∣∣ ∫
Rn

|u|p+1 dx = 1,
∫

Rn
χε|u|

p+1 dx ≤ 1, u ∈ Eε

}
. (5)

We note that
∫
Rn χε|u|

p+1 dx may not be well defined onEε, and may not be differen-
tiable even if

∫
Rn χε|u|

p+1 dx < ∞ is defined. We will overcome this deficiency via a
certain approximation procedure.

In the following,C denotes a generic constant which may be different on different
lines but independent of the limits concerned.

Lemma 5. limε→0 ε
(n−1)(p−1)/(p+1)Mε = 0.

Proof. Let x0 ∈ A. For alla > 0 there existsb > 0 such thatV (x) ≤ a for all |x − x0|

≤ b. Without loss of generality, we can assume|x0| = 1 so thatSδε ⊂ Aδε, whereS is the
unit sphere inRn. Then

Mε ≤ inf
u∈C∞

0,rad(S
δ
ε )

∫
[|∇u|2 + V (εx)u2] dx

(
∫
Rn |u|p+1 dx)2/(p+1)

≤ inf
u∈C∞

0,rad(S
δ
ε )

∫
[|∇u|2 + au2] dx

(
∫
Rn |u|p+1 dx)2/(p+1)

≤ Cε−(n−1)(p−1)/(p+1) inf
u∈C∞

0 (−δ/ε,δ/ε)

∫ δ/ε
−δ/ε

[|u′
|
2
+ au2] dr

(
∫ δ/ε
−δ/ε

|u|p+1 dr)2/(p+1)
.

If we let ε → 0, the last infimum is bounded by a constant which tends to zero asa → 0.
Sincea is arbitrary, the lemma follows. ut

Lemma 6. For ε small,Mε is achieved atuε which satisfies for someαε ≥ 0 ≥ βε,

−1uε + V (εx)uε = αε(uε)
p

+ βεχε(uε)
p, uε > 0. (6)

Proof. In order to show thatMε is achieved we use approximations. For a fixedε > 0,
we chooseRm > 0 such thatR0/ε < R1 < R2 < · · · and limm→∞ Rm = ∞. Define
Emε ≡ Eε ∩W

1,2
0 (B(0, Rm)). Then we consider a restricted minimization problem

Mm
ε = inf

{
‖u‖2

ε

∣∣∣∣ ∫
Rn

|u|p+1 dx = 1,
∫

Rn
χε|u|

p+1 dx ≤ 1, u ∈ Emε

}
. (7)

It is standard to show that there exists a nonnegative minimizerumε ofMm
ε , thatMm

ε ≥ Mε

andMm
ε → Mε asm → ∞. Thus,{umε }m is a minimizing sequence forMε, and for some

αmε , β
m
ε ∈ R, umε satisfies

−1umε + V (εx)umε = αmε (u
m
ε )
p

+ βmε χε(u
m
ε )
p, umε > 0 inB(0, Rm). (8)

Taking a subsequence if necessary, we can assume that for someuε ∈ Eε, u
m
ε converges

weakly touε in Eε asm → ∞. Since
∫
Rn χε|u

m
ε |
p+1 dx ≤ 1, it follows that for any fixed

largeR > 0, ∫
Rn\B(0,R)

|umε |
p+1 dx ≤ (ε/R)γ .
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For 1< p < (n+ 2)/(n− 2), the embedding ofEmε into Lp+1(B(0, Rm)) is compact.
Thus it follows that

∫
Rn(uε)

p+1 dx = 1, and that
∫
B(0,T ) χε|uε|

p+1 dx ≤ 1 for each
T > 0. Note that‖uε‖ε ≤ lim infm→∞ ‖umε ‖ε. This implies thatuε is a minimizer of
Mε > 0.

In equation (8), we can show as in [9] thatαmε ≥ 0 ≥ βmε .

Next we showuε satisfies equation (6). We claim that for 0< ε < 1/2, {αmε }m is
bounded. In fact, arguing by contradiction, assume that lim supm→∞ αmε = ∞ for some
0 < ε < 1/2. Without loss of generality, we may assume that limm→∞ αmε = ∞. For
any σ > 0, we chooseφσ ∈ C∞

0 (int(A4δ
ε )) satisfying 0≤ φσ ≤ 1, φσ (x) = 1 for

dist(x, ∂A4δ
ε ) ≥ σ, and|∇φσ | ≤ 2/σ. From (8), we deduce that∫

Rn
(|∇umε |

2φσ + ∇umε · ∇φσu
m
ε + Vε(u

m
ε )

2φσ ) dx = αmε

∫
Rn
φσ (u

m
ε )
p+1 dx.

Since infx∈supp(|∇φσ |) Vε(x) > 0, it follows that for someC > 0, independent ofm,∫
Rn
(|∇umε |

2φσ + ∇umε · ∇φσu
m
ε + Vε(u

m
ε )

2φσ ) dx ≤ C‖umε ‖
2
ε .

Since {‖umε ‖ε}m is bounded and limm→∞ αmε = ∞, we see that for eachσ > 0,
limm→∞

∫
Rn φσ (u

m
ε )
p+1 dx = 0. By the constraints onumε we have forσ > 0,

lim inf
m→∞

∫
{x∈Rn | dist(x,∂A4δ

ε )≤σ }

(umε )
p+1 dx > 0. (9)

Since limm→∞

∫
Rn φσ (u

m
ε )
p+1 dx = 0 for eachσ > 0, there existxm ∈ A4δ

ε such that
limm→∞ dist(xm, ∂A4δ

ε ) = 0 andum(xm) = 1. Taking a subsequence if necessary, we
may assume that limm→∞ |xm| = r0 and for eachσ > 0,

lim inf
m→∞

∫
{x | r0−σ≤|x|≤r0+σ }

(umε )
p+1 dx > 0.

We defineDσr0 ≡ {x | r0 − σ ≤ |x| ≤ r0 + σ }. By the Poincaŕe inequality, there exists
someC > 0, independent ofσ , such that for sufficiently largem > 0,∫

Dσr0

(umε − 1)2+ dx ≤ Cσ 2
∫
Dσr0

(|∇(umε − 1)+|
2
+ Vε(u

m
ε − 1)2+) dx. (10)

Note that∫
Dσr0

(|∇(umε − 1)+|
2
+ Vε(u

m
ε − 1)2+) dx ≤

∫
Dσr0

(|∇umε |
2
+ Vε(u

m
ε )

2) dx. (11)
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Then, by (10), (11), the Ḧolder inequality and Sobolev inequality, we see that for some
s ∈ (0,1) andC > 0,∫

Dσr0

(umε − 1)p+1
+ dx ≤ C

( ∫
Dσr0

(umε − 1)2+ dx

)s(p+1)/2

×

( ∫
Dσr0

(|∇(umε − 1)+|
2
+ Vε(u

m
ε − 1)2+) dx

)(1−s)(p+1)/2

≤ Cσ s(p+1)
‖umε ‖

p+1
ε .

This contradicts (9) since{‖umε ‖ε}m is bounded. Thus we see that{αmε }m is bounded.
Finally, for any radially symmetric functionϕ ∈ C∞

0 (B(0, R/ε) \ A4δ
ε ), we have∫

Rn
(∇umε · ∇ϕ + Vεu

m
ε ϕ) dx = αmε

∫
Rn
(umε )

pϕ dx.

Sinceumε converges weakly touε in Eε asm → ∞, it follows thatαmε converges to some
αε ≥ 0 asm → ∞. Then, since for anyϕ ∈ C∞

0,rad(R
n),∫

Rn
(∇umε · ∇ϕ + Vεu

m
ε ϕ) dx = αmε

∫
Rn
(umε )

pϕ dx + βmε

∫
Rn
χε(u

m
ε )
pϕ dx,

we see that limm→∞ βmε = βε for someβε ≤ 0. Now, it follows that for someαε ≥ 0 and
βε ≤ 0,

−1uε + V (εx)uε = αεu
p
ε + βεχεu

p
ε , uε > 0. (12)

ut

We will show that forε small ∫
Rn
χε|uε|

p+1 dx < 1. (13)

If this is the case, for anyϕ ∈ C∞

0,rad(R
n), we define

ϕs ≡ (uε + sϕ)

( ∫
Rn
(uε + sϕ)p+1 dx

)−1/(p+1)

.

Then we see thatϕ0 = uε,
∫
Rn(ϕs)

p+1 dx = 1 and that
∫
Rn χε(ϕs)

p+1 dx < 1 for
small|s|. Thus we deduce that

0 =
d‖ϕs‖

2
ε

ds

∣∣∣∣
s=0

=

∫
Rn
(∇uε · ∇ϕ + Vεuεϕ) dx − ‖uε‖

2
ε

∫
Rn
(uε)

pϕ dx.

This implies that

−1uε + Vεuε = Mε(uε)
p, uε > 0 in Rn.
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Thenwε = (Mε)
1/p−1uε is a solution of

−1wε + V (εx)wε = (wε)
p, wε > 0 in Rn, (14)

andvε(x) := wε(ε
−1x) = (Mε)

1/p−1uε(ε
−1x) solves (1).

To show
∫
Rn χε|uε|

p+1 dx < 1, we need some asymptotic properties ofαε anduε
given in Lemmas 7 and 8.

Lemma 7. In the previous notations, one haslimε→0 ε
(n−1)(p−1)/(p+1)αε = 0.

Proof. To the contrary, assume, taking a subsequence if necessary, that
limε→0 ε

(n−1)(p−1)/(p+1)αε ≡ α ∈ (0,∞]. In the previous notation one hasφσ ∈

C∞

0 (int(A4δ
ε )) satisfying 0≤ φσ ≤ 1, φσ (x) = 1 for dist(x, ∂A4δ

ε ) ≥ σ, and|∇φσ | ≤

2/σ. From equation (6), we deduce that∫
Rn
(|∇uε|

2φσ + ∇uε · ∇φσuε + Vε(uε)
2φσ ) dx = αε

∫
Rn
φσ (uε)

p+1 dx.

Since infsupp(|∇φσ |) Vε(x) > 0, it follows that for someC > 0, independent ofε,∫
Rn
(|∇uε|

2φσ + ∇uε · ∇φσuε + Vε(uε)
2φσ ) dx ≤ C‖uε‖

2
ε .

Since limε→0 ε
(n−1)(p−1)/(p+1)

‖uε‖
2
ε = 0 and limε→∞ ε(n−1)(p−1)/(p+1)αε > 0, for each

σ > 0, limε→∞

∫
Rn φσ (uε)

p+1 dx = 0. Since
∫
Rn χε(uε)

p+1 dx ≤ 1, it follows that for
anyσ > 0 we have

lim
ε→0

∫
{x∈Rn | dist(x,∂A4δ

ε )≥σ }

(uε)
p+1 dx = 0.

Thus, there exist somex0 ∈ ∂A4δ
ε andω > 0 such that for anyσ > 0,

lim inf
ε→0

∫
{x∈Rn | |x0|/ε−σ≤|x|≤|x0|/ε+σ }

(uε)
p+1 dx ≥ 2ω.

We fix σ > 0 and choose a radially symmetricψσ ∈ C∞

0 such that

ψσ (x) =

{
0 if ||x| − |x0|/ε| ≥ 2σ ,

1 if ||x| − |x0|/ε| ≤ σ ,

0 ≤ ψσ ≤ 1 and|∇ψσ | ≤ 3/σ. Then lim infε→0
∫
Rn(ψσuε)

p+1 dx ≥ ω.
On the other hand, we claim that

lim
ε→0

ε(n−1)p−1/p+1
‖ψσuε‖

2
ε = 0. (15)

This follows from Lemma 5 and the fact that for someC > 0, independent ofε > 0,

‖ψσuε‖
2
ε ≤ C‖uε‖

2
ε = CMε;

here we used the fact thata0 := infsupp(ψσ ) Vε > 0.
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Finally, settingD(ε) ≡ {x ∈ Rn | |x0|/ε − 2σ ≤ |x| ≤ |x0|/ε + 2σ }, we deduce

lim inf
ε→0

ε(n−1)(p−1)/(p+1)
‖ψσuε‖

2
ε

≥ lim
ε→0

ε(n−1)(p−1)/(p+1)
‖ψσuε‖

2
p+1 inf

u∈C1
0,rad(D(ε))

‖u‖2
ε

‖u‖2
p+1

≥ ω2/(p+1) lim inf
ε→0

(|x0| − 2εσ )n−1(|x0| + 2εσ )−(n−1)2/(p+1)Jσ ,

where

Jσ ≡ inf
g∈C1

0((−2σ,2σ))

∫ 2σ
−2σ (|g

′(s)|2 + a0g(s)
2) ds

(
∫ 2σ
−2σ g(s)

p+1 ds)2/(p+1)
.

This implies that

lim inf
ε→0

ε(n−1)(p−1)/(p+1)
‖ψσuε‖

2
ε ≥ ω2/(p+1)

|x0|
(n−1)(p−1)/(p+1)Jσ > 0,

which contradicts (15). This completes the proof. ut

Lemma 8. If uε andαε are as above, then

lim
ε→0

‖(αε)
1/(p−1)uε‖L∞(Rn) = 0.

Proof. We note that

−1((αε)
1/(p−1)uε)+ V (εx)((αεn)

1/(p−1)uε) ≤ ((αε)
1/(p−1)uε)

p onRn.

Suppose that lim infε→0
∫
B(y/ε,2)((αε)

1/(p−1)uε)
p+1 dx > 0 for somey ∈ Rn \ {0}. This

implies that

lim inf
ε→0

(ε/|y|)n−1(αε)
(p+1)/(p−1)

∫
{x∈Rn | |y|/ε−2≤|x|≤|y|/ε+2}

(uε)
p+1 dx > 0.

This formula contradicts Lemma 7. Thus, we see that

lim sup
ε→0

∫
B(y/ε,2)

((αε)
1/(p−1)uε)

p+1 dx = 0.

Then, by the Sobolev embedding and a Moser iteration argument, we deduce that

lim
ε→0

‖(αε)
1/(p−1)uε‖L∞({x∈Rn | |y|/ε−1≤|x|≤|y|/ε+1}) = 0.

Since 0 /∈ A4δ and
∫
Rn χε(uε)

p+1 dx ≤ 1, there exists a constantr0 > 0 such that for
smallε > 0, ∫

B(0,2r0/ε)
(uε)

p+1 dx ≤ ε(n−1)+3(p+1)/(p−1).
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This implies that for smallε > 0,∫
B(0,2r0/ε)

((αε)
1/(p−1)uε)

p+1 dx ≤ ε3(p+1)/(p−1).

Then, again by standard results, we deduce that

lim
ε→0

‖(αε)
1/(p−1)uε‖L∞(B(0,r0/ε)) = 0. ut

Proof of the main theorem.Definewε ≡ (αε)
1/(p−1)uε. Then

−1wε + Vεwε ≤ (wε)
p onRn.

By Lemma 8, we see that‖wε‖L∞ → 0 asε → 0. We let

2c ≡ inf
x∈B(0,3R0)\Zδ

V (x).

Then, by a comparison principle, we deduce (see [9]) that for smallε > 0,

wε ≤ exp(−c dist(x, ∂(B(0,3R0/ε) \ Zδε ))).

Thus, we see that maxx∈∂Z2δ
ε
wε(x) ≤ exp(−cδ/ε) for smallε > 0.

For a connected componentK of int(Z4δ
\ A4δ), we consider the first eigenvalue

problem onK, {
18+ λ18 = 0, x ∈ K,

8(x) = 0, x ∈ ∂K.
(16)

Define8ε(x) ≡ 8(εx). We may assume that maxx∈K∩∂Z3δ 8(x) ≥ 1. By elliptic esti-
mates [14, Theorem 9.20] and from the fact that

∫
Rn χε(wε)

p+1 dx ≤ (αε)
(p+1)/(p−1), it

follows that‖wε‖L∞(Z3δ
ε \A3δ

ε )
≤ Cε3/(p−1) for someC > 0. Then, for sufficiently small

ε > 0,
−18ε + Vε8ε ≥ (wε)

p−18ε in Kε.

By the comparison principle, we see that

wε(x) ≤ exp(−cδ/ε)8ε(x) for x ∈ Kε ∩ Z3δ
ε .

Thus, we conclude that for someC, c > 0,

‖wε(x)‖L∞(B(0,3R0/ε)\A
4δ
ε )

≤ C exp(−cδ/ε). (17)

From the inequality
∫
Rn χε(wε)

p+1 dx ≤ (αε)
(p+1)/(p−1), it follows that there exists

C > 0 such that for anyy ∈ Rn \ B(0,2R/ε),∫
B(y,2)

(wε)
p+1 dx ≤ C

(
ε

R0

)n−1

(αε)
(p+1)/(p−1)

(
ε

|y|

)γ
≤ C

(
ε

|y|

)γ
.
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Thus, [14, Theorem 9.20] shows that for someC > 0 independent ofy we havewε(x) ≤

C(ε/|x|)γ /(p+1) for anyx ∈ B(y,1). We define

ωε ≡ −
(n− 2)+

√
(n− 2)2 + 4λ/ε2

2
.

Then, settingψε(r) = rωε , we deduce from condition(V ) that for smallε > 0,

−1ψε + Vεψε ≥

(
2λ

ε2
− ω2

ε − (n− 2)ωε

)
rωε−2

≥
λ

ε2
rωε−2, r ≥ R0/ε.

Thus, it follows that for smallε > 0,

−1ψε + Vεψε ≥ (wε)
p−1ψε in Rn \ B(0,2R0/ε).

Note that maxx∈∂B(0,2R0/ε)wε(x) ≤ C exp(−c/ε) for someC, c > 0. Then, by the max-
imum principle, we find that for someC, c > 0,

wε(x) ≤ C exp(−c/ε)ψε(x) for x ∈ Rn \ B(0,2R0/ε). (18)

By (17) and (18), we see that
∫
Rn χε(uε)

p+1 dx < 1 for sufficiently smallε > 0.
The first property of (2) is proven in Lemma 8. The second property of (2) can be

proved in the same way with the arguments of [9]. The decaying property (3) follows
from (17) and (18). From (3), we see that the solutionuε ∈ Eε belongs toL2(Rn). This
implies thatuε ∈ W1,2(Rn).

For the casep ≥ (n+ 2)/(n− 2), we make the following modifications in the proofs.
We definef (u) = up for |u| ≤ 1 andf (u) = uq for |u| ≥ 1, where 1< q <

(n+ 2)/(n− 2) is fixed. Then we consider (4) withup replaced byf (u). SettingF(u) =∫ u
0 f (s) ds, we consider

Mε = inf

{
‖u‖2

ε

∣∣∣∣ ∫
Rn
F(u) dx = 1,

∫
Rn
χεF(u) dx ≤ 1

}
.

Sincef is subcritical,Mε is achieved by someuε which satisfies

−1uε + V (εx)uε = αεf (u)+ βεχεf (u), uε > 0. (19)

Lemma 5 still holds since we may use functions of smallL∞ norms. Lemma 7 can be
proved by modifying the proofs and by noticing thatF(u) ≤

1
q+1|u|q+1. Lemma 8 is

proved by the same arguments sincef (u) ≤ uq . Then following the proofs for the sub-
critical case we deduce thatuε is a solution withβε = 0. Then we can show‖uε‖L∞ → 0
asε → 0, thereforeuε is a solution of the original equation. The rest of the proof is
similar to that for the subcritical case.

This completes the proof of Theorem 1. ut

We finish with some remarks for further results with details omitted.
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Remark 9. Our methods may be modified easily to construct solutions concentrating on
lower dimensional spheres of zeroes of the potential when the potentialV (x) is radially
symmetric with respect to some spaces. For example,V (x) = V (x1, x2) with (x1, x2) ∈

Rn = Rk1 × Rk2, andV (x1, x2) = V (|x1|, |x2|). We mention [7, 11, 12, 15, 16] for some
related problems on solutions with multidimensional concentrations.

Remark 10. Our results cover potentialsV which stay away from zero at infinity:
lim inf |x|→∞ V (x) > 0. In this case, the solutions constructed are of exponential de-
cay at infinity. In fact, as long as lim inf|x|→∞ |x|αV (x) > 0 is satisfied for someα < 2,
the solutions have exponential decay at infinity.

Remark 11. Spike solutions concentrating near zeroes of the potentials are obtained in
[6] for a related problem with decaying potentials:−ε21v + V (x)v = K(x)vp in Rn
where the decaying rates forV andK are related and restricted byp. Using the methods
in the present paper, condition(V ) may be sufficient for constructing spike solutions
concentrating near zeroes ofV .
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