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Abstract. This paper is concerned with an extension and reinterpretation of previous results on
the variational characterization of eigenvalues in gaps of the essential spectrum of self-adjoint op-
erators. We state two general abstract results on the existence of eigenvalues in the gap and a
continuation principle. Then these results are applied to Dirac operators in order to characterize
simultaneously eigenvalues corresponding to electronic and positronic bound states.

1. Introduction

In [4] we proved an abstract result on the variational characterization of the eigenvalues
of operators with gaps in the essential spectrum. Such a result was designed to deal with
nonpositive perturbations of a fixed self-adjoint operator with a gap in its essential spec-
trum but without eigenvalues. In that case, the “branching” of the potential “pulls down”
eigenvalues from the right hand side of the gap. In other words, these eigenvalues emerge
from the right end of the gap when the coupling is turned on. Here we address the general
case of a perturbation with negative and positive parts, so that eigenvalues can emerge
simultaneously from the left and right hand sides of the gap. We observe that a simple
extension of the general abstract result provedlin [4] allows us to treat much more general
cases.

For a historical overview of the subject, we refer the reader to the introduction
of [4], in which an extended review of the literature on eigenvalues in gaps of the es-
sential spectrum is presented. Some relevant physics papers dealing with this problem are
[51[10,[15] 2] (see also the references therein). On the mathematical side we can quote (in
chronological order) [6,18,]7] 8] 4].

Let H be a Hilbert space with scalar produet-), andA : D(A) C ' H — H bea
self-adjoint operator. We denote by the dual ofH and byF(A) the form-domain ofd.

Let Hy, H_ be two orthogonal Hilbert subspacesifsuch thatH = H, ®H_. We
denote byA*, A~ the projectors ofi{,, H_. We assume the existence of a céréi.e.
a subspace ab(A) which is dense for the norit|| p(4)) such that:
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() Fr = ATFandF_ = A~ F are two subspaces gf(A).
(i7) a= :=sUp_cp \o(x—, Ax_)/[lx_ 13, < +oc.
(iT) at =infy ep o) (xy, Axy)/ x4 (12, > —oc.

We consider the sequences of min-max and max-min Ie(\}x—jiskzl and (A, k=1

defined by
(x, Ax)

)LZr = v binf - a2y "
subspace o
ibspace of xe(vor (o) X113
x, Ax
)“I: = sup ( . ) (2)
V subspace of_ X€(V®F)\{0} ”x”H
dimV=k

The sequence@»,f)kzl and (A, )r>1 are respectively nondecreasing and nonincreasing.
As a consequence of their definitions we have :

A >maxa ,a™} and Ay <minfa",a*} forallk > 1. (3)

Letbs™ :=inf{oesd{A)N(a~, 00)} andb™ := supcesd A) N (—o0, a™)}, and consider the
two cases

(i ™) kg ==minfk > 1:0f > a7},

(i) kg :=minfk > 1: 4 <a™}.

Theorem 1. If (i)-(ii 7)-(iii =) hold, then for any > kg, either 1} is the(k —k§ +1)-th

eigenvalue oft in the interval (a—, b™) oritis equal tob~. If (i)-(ii )-(iii *) hold, then
foranyk > kg, either A, is the(k — k; + 1)-th eigenvalue ofA (in reverse order) in
the interval (b™, a™) oritis equal tob™.

Eigenvalues are counted with multiplicity, and the order has no meaning if, for instance,
A,j = A,j+1. The above result does not state anything about the possible eigenvalues of

in the interval i, a~] if a= > a™. We will extensively comment on this in Section 2
and explain how the abstract result of [4] implies Theofém 1 and a continuation result.
In Section 3 we will address the particular case in which the operéatds of the form

Ho + V, where Hp is the free Dirac operator and is an electrostatic scalar potential.

2. Abstract results

Theorem 1.1 in[[4] can be stated as follows:

Under the assumptions of Theo@#nif Af > a~, then all eigenvalues itu—, b™)
are given by the min-max Ievei$: as long as they take their values =, 5~) (and
otherwise;” = b7).

This result dealt with the family of eigenvalueésf:}k and only in the casear = 1.
Nothing was said on eigenvalues belaw. The result in[[4] already covered all cases
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corresponding to a Dirac operator with a potential given by a positive Coulomb singular-
ity. Here, by considering the caskg > 1 and by considering the levelg as well, we
extend the method to a framework with interesting physical applications.

The proof forkar > 1 is similar to the proof given iri [4] and we will not reproduce it
here.A posteriori,passing fromkj = 1 to k§ > 1 is not very difficult. Consider indeed
a (kg —1)-dimensional spack;_; of F* such that

(x, Ax)

xE(Ve  ®F\O) Ix112,

Cl_ =A + < < +,
k1= I

and define a new decompositiét = HT@H~ by settingH~ = H~ & V,%fl. Then the
first case of Theoref 1 reduces to Theorem 1.[Llin [4].

As for the second case, note that the statement concerning the féxpily follows
from that concerning{)»,j}k applied to the operatoer A. This completes the sketch of the
general ideas for the proof of Theorgn 1. O

Next, as in[[4], we can also consider 1-parameter families of self-adjoint operators of the
form A; ;== Ap+tV,7 €[0,7] =Z, V being a bounded scalar potential. In this case,
it would be interesting to prove (ifi) for all A, knowing thatAq satisfies it and having
some spectral information oA .

More precisely, letdg : D(Ag) C H — H be a self-adjoint operator. Lé{,, H_,
A* andA~ be defined as in Section 1. Assume further that there is a dpaceH such
that, forallr € Z, F is a core forA; and the following hypotheses hold:

() Fr = ATFandF_ = A~ F are two subspaces ¢f(A,).
(ii7) Thereisa~ € Rsuchthat sunz , cr \jo(x—. Acx_)/llx_ |14, <a™.
(ii™) Thereisa™ € R such that infez, », er,\(0) (x4, Ar x)/llx4 113, > a™.

Define the number&,ﬁ’*)kal and(i; k=1 asin Q)) by

)\"[,4’ _ inf (X, A‘E)
k™ v subspace oF; \c(vmF N0 Ix12,
dmy—k SOOI
_ x, A
AT = sup in ( Zf)_
V subspace of"- ¥*€(VOFO\(0} |lx||%,
dimV=k

With the definitions
a; = iQfI[inf(G(Ar) N(a~, +o0))], b~ = inf(cesdAg) N (a~, +00)),
T

aj = Sglr_iSUD(a(Ar) N(=o0,a™)], bt := supoesdAg) N (00, a™)),

we obtain the following continuation principle.
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Theorem 2. Under the above assumptions

o If Agf > a~ for somekd > 1, anda; > a~, thenfor allk > k§ and allt € Z, the
0

numbers\[** are either eigenvalues ofg +tV in (a=,b7), or A0 " = b,
o If Az’f < a™ for somek, > 1, andazr < a7, then for allk > ky and allz € Z, the
0

numbers\;’~ are either eigenvalues ofg + TV in (b*,a™), or Ay =b™.

Exactly as in[[4], one can prove this result for a class of more general (unbounded) po-
tentials V using a truncation argument and then passing to the limit in the truncation
parameter. This applies to the perturbation of the free Dirac operator studied in Section 3
by potentials with Coulomb singularites. We refer the interested reader to [4] for more
details.

Proof of Theorerh]2 Assumptions (i), (iF) of Theorenj L follow from (j), (if). Because
of the boundedness &f, the mapg > t — AZf are continuous. The sets
0

Pli={reT:n " =ar}, Pyi={rel:r <af)
are thus closed iff, and the sets

Q,';) ::{TEI:)»,Z(’)+>a7}, Qk_oz{teI:)»,;’)_<a+}

are open. ObviouslyP,. C Q. Butif r € Q;; thenA, satisfies (i), so it follows
from Theoreni 1l that

AT eo(A,) forallk > ko,
hence, by our assumptions,c P-. As a consequence’y. = Q;;, and the set®, are
both open and closed Ih. But if A%}* >a” (resp./\g(’; < a™), then Q,j; (resp.Q,:o) is
nonempty: it contains 0, sQ,:) (resp.Qk_O) coincides withZ. O

Example (A Pauli type operator). For every> 0 consider the operator
%
A 1-A-15 0
Y 0 -1+ A+ 5

on L2(R3, C)2. This operator is self-adjoint with domai#?(R?3, C)? and form-domain
H(R3, C)2. An easy analysis shows that for alt- 0, A, has two families of eigenval-
ues:

~ 2 . 2
Ev,n=_1+ R, Ev!nzl—m, nzl,
and moreover = E7,. Furthermore, for alk > 1,
+ + ; ; n?
A = Ev’n(k) ifand only if v < PR n = n(k).
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Notice indeed that the eigenvalues are degenerate fot ang, so that we have to count
the levels with multiplicity and introduce := n(k). If v € (v/812/(n2+1), V/8), then
Ay = ET foranyn = n(k) > 1.

Hence, ifv < 2, all the eigenvalues of the operatdy are given by the variational
procedures defining the numbérjﬁ. In the intervaly € (2, +/8) some (but not all) of
them still have this property. These results are illustrated in Fig. 1 below.

Fig. 1. Depending on the values of all eigenvalues are achieved by the two families of levels
Aj‘k andx, (casev = v < 2), or only some of them (case= v € (2, V/8)). Forv > /8
(casev = vg), the gap(—1, 1) is contained in(a™, a~) and the method does not characterize
any eigenvalue in the gap. To clarify the picture, only the family of eigenvaE,[E,s has been
represented, but the familg,, ,, is easily recovered by symmetry with respect to the horizontal
axis. To take the multiplicity into account, we denotegy) the smallesk for which )‘j,k = Ejf,,.

3. Application to Dirac operators

Let us consider the free Dirac operator

3
Hy:=—i Zakak + B,
k=1

where we have written it in physical units for which the speed of light, the mass of the
electron and Planck’s constant are taken equal to 1. In the Dirac equati@, «3 and
B are 4x 4 complex matrices, whose standard form (ir 2 blocks) is

_ (1 O (0 o .
,3—<0 —I)’ ak_(o’k O) k=1,273),
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andoy, k = 1,2, 3, are the 2« 2 complex Pauli matricest1 = (91), 02 = (?97),
o3=(3_9). LetV be a scalar potential satisfying

im V() =0, (4)

|x]—+o00

and assume that it is continuous everywhere except at two finite sets of isolated points,
{(x;"}, x;hi=1....1,j=1...,J where

lim V(x) = +o0, lim V@o)lx — x| < v,
X*)Xi )C*)Xi 5
lim V(x) = —o0, lim V(x)|x —xj_l > —vj, ©)
X—>X; X=X,

j j
with v;, v; € (0, 1) forall i, j. Under the above assumptiori& + V has a distinguished
self-adjoint extensiom with domainD(A) such that
HY(R®, C* c D(A) c HY2RS, ),
and the essential spectrum 4fis the same as that é{y:
OesdA) = (—o0, —1]U[1, +00)

(see[[16| 14, 11.19]). Finallyy sendsD(A) into its dual, since] (4)f{5) imply that for all
¢ € HY2(R3) we haveV¢ € H 1/2(RS).

In this section, we shall prove the validity of a variational characterization of the
eigenvalues oHp + V corresponding to the positive/negative spectral decomposition of
the free Dirac operatat:

H=H oH,
with Hi = AiH, where

f 1 Hp
Ay = X400 (Ho) = 5 Id + x)

A = (Ho) = ~(1d Ho
_ = X(—00,00(410) = 2 m .
This will be done under conditions which are optimal for the potentials satisfy]nd {4)—(5)
using Theorems|1 afd 2. As already stated in [4], the theorem is optimal in the sense that
it covers the optimal range in the case of Coulomb potentials. If we consider the operator
A; = Ho+ tV, t > 0, with V satisfying [(4)-(b), our variational characterization will
provide us with all eigenvalues df; as long ag is not too large.

Theorem 3. Take a positive integetg and anyk > kg and let A be the self-adjoint
extension offp + V defined above, wheré is a scalar potential satisfyinff)—(3).

o Ifa” < )L,jo <1, then)\;r is either an eigenvalue dflp + V in the interval(a—, 1),
or A = 1. If additionally V > 0, thena™ = landi; = 1.
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o If -1 < )L,;O <at, thena, is either an eigenvalue afp+ V in the interval(—1, a®)
orx, = —1. Ifadditionally vV <0, thena™ = —1andx, = —1.

The sequence(i,j)kzkg and(}, )x>1 are respectively nondecreasing and nonincreasing.
The spectrum oft contained iR \ [a*, a"]is

(—00, —1JU{AS 1k > 1, € = 4} U[L, +00),

and we do not state anything about the possible eigenvalues in the intetvalT]. As
we showed in the previous section, there can be operators for whiohalmost allthe
eigenvalues lie in the intervak{, a~] and thus, they are not given by the variational
procedures defining th?q‘f’s.

Theoren| B easily follows from Theorem 1. The details of the proof are left to the
reader. The continuation argument of Theofém 2 applies. Indeed, first one has to truncate
the potential at some leva, apply Theorem |2, and then pass to the limit wii¢goes
to 4-o0. It is worth mentioning that by the continuation principle for the Dirac operators
Ho + tV, with V satisfying[(4)(F), and the definition af =,

lim A,Z‘i =41 forallk > 1
=0t

Also notice that Talman’s decomposition [15, 4], i.e. the decomposition into “upper” and
“lower” two-components spinors, does not apply here, while the spectral decomposition
does.

Corollary 1. Under the assumptions of Theor@m sufficient condition fORir tobein
the interval(a—, 1) is

v
c1—ﬂ§V§cz, 1,220, c1+e2—1<v1-12
X

Proof. It is straightforward to check that™ < ¢ — 1 and
Aj(V)zAj<—ﬁ)—c1=xl<Ho—ﬁ)—c1=\/1—u2—cl. o
X X

Recall that under assumptiori§ (4)}-(5), for &y 1, for the above result to possibly
imply thatk,f is an eigenvalue we need that

+aT <1 and :I:()\f—ajF)>0.

To illustrate our results, we end this paper by giving some sufficient conditions for these
inequalities to hold true. Assume thitsatisfies[(#)£(5) and can be written as

V==V +) VI,
iel jeJ
where theV,™’s (resp. ther+'s) are nonnegative potentials satisfyi@ (@—(5), with a
unique singularity at;” (resp. at;"). If

vi,v; €[0,2/(w/242/m)) foralliel, jel,
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it follows from [17] and [1] that there are constaﬁ? € (0,1) such that, for ali € I
andj € J,
87 Ho— V7 >0 inHy, 5j+Ho+ vj+ <0 inH_,

a~ = sup (Ho+V)< sup (Ho + Z Vj*)
ecF_ ecF_ jG./
llell=1 llell=1
< (1—28*) sup Hozzfsf—l.
j J eelF_ j J
llell=1
So,a” < 1if
Y5t <2 ©)
jeJ

Next, let us estimate; . For everye, € F,

sup (Ho+V)=z sup (Ho— Y V7 )z1-) 4,
e€ler|DF- e€ley] icl f
lell¢=1 llellx=1

a=1->5
i

and hence

So, finally,A{ > a~ if
- +
D8 +Zaj <2 (7)
iel jeJ

Similar computations show thaf <a™ if (ﬂ holds, andz™ > —1 if

ZS; < 2. (8)

iel

Conditions )) are very restrictive. If the distances between the singularity ppints
andx; are taken into account and made large enough, these conditions can certainly be
radically weakened when these distances become large.
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