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Abstract. This paper is concerned with an extension and reinterpretation of previous results on
the variational characterization of eigenvalues in gaps of the essential spectrum of self-adjoint op-
erators. We state two general abstract results on the existence of eigenvalues in the gap and a
continuation principle. Then these results are applied to Dirac operators in order to characterize
simultaneously eigenvalues corresponding to electronic and positronic bound states.

1. Introduction

In [4] we proved an abstract result on the variational characterization of the eigenvalues
of operators with gaps in the essential spectrum. Such a result was designed to deal with
nonpositive perturbations of a fixed self-adjoint operator with a gap in its essential spec-
trum but without eigenvalues. In that case, the “branching” of the potential “pulls down”
eigenvalues from the right hand side of the gap. In other words, these eigenvalues emerge
from the right end of the gap when the coupling is turned on. Here we address the general
case of a perturbation with negative and positive parts, so that eigenvalues can emerge
simultaneously from the left and right hand sides of the gap. We observe that a simple
extension of the general abstract result proved in [4] allows us to treat much more general
cases.

For a historical overview of the subject, we refer the reader to the introduction
of [4], in which an extended review of the literature on eigenvalues in gaps of the es-
sential spectrum is presented. Some relevant physics papers dealing with this problem are
[5, 10, 15, 2] (see also the references therein). On the mathematical side we can quote (in
chronological order) [6, 8, 7, 3, 4].

Let H be a Hilbert space with scalar product(·, ·), andA : D(A) ⊂ H → H be a
self-adjoint operator. We denote byH′ the dual ofH and byF(A) the form-domain ofA.
Let H+, H− be two orthogonal Hilbert subspaces ofH such thatH = H+⊕H−. We
denote by3+, 3− the projectors onH+,H−. We assume the existence of a coreF (i.e.
a subspace ofD(A) which is dense for the norm‖·‖D(A)) such that:
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(i) F+ = 3+F andF− = 3−F are two subspaces ofF(A).
(ii−) a− := supx−∈F−\{0}(x−, Ax−)/‖x−‖

2
H < +∞.

(ii+) a+ := infx+∈F+\{0}(x+, Ax+)/‖x+‖
2
H > −∞.

We consider the sequences of min-max and max-min levels(λ+

k )k≥1 and (λ−

k )k≥1
defined by

λ+

k := inf
V subspace ofF+

dimV =k

sup
x∈(V ⊕F−)\{0}

(x, Ax)

‖x‖
2
H

, (1)

λ−

k := sup
V subspace ofF−

dimV =k

inf
x∈(V ⊕F+)\{0}

(x, Ax)

‖x‖
2
H

. (2)

The sequences(λ+

k )k≥1 and(λ−

k )k≥1 are respectively nondecreasing and nonincreasing.
As a consequence of their definitions we have :

λ+

k ≥ max{a−, a+
} and λ−

k ≤ min{a−, a+
} for all k ≥ 1. (3)

Let b− := inf{σess(A)∩ (a−, ∞)} andb+ := sup{σess(A)∩ (−∞, a+)}, and consider the
two cases

(iii −) k+

0 := min{k ≥ 1 : λ+

k > a−
},

(iii +) k−

0 := min{k ≥ 1 : λ−

k < a+
}.

Theorem 1. If (i)-(ii −)-(iii −) hold, then for anyk ≥ k+

0 , either λ+

k is the(k−k+

0 +1)-th
eigenvalue ofA in the interval (a−, b−) or it is equal tob−. If (i)-(ii +)-(iii +) hold, then
for anyk ≥ k−

0 , either λ−

k is the(k − k−

0 + 1)-th eigenvalue ofA (in reverse order) in
the interval (b+, a+) or it is equal tob+.

Eigenvalues are counted with multiplicity, and the order has no meaning if, for instance,
λ+

k = λ+

k+1. The above result does not state anything about the possible eigenvalues ofA

in the interval [a+, a−] if a−
≥ a+. We will extensively comment on this in Section 2

and explain how the abstract result of [4] implies Theorem 1 and a continuation result.
In Section 3 we will address the particular case in which the operatorA is of the form
H0 + V , whereH0 is the free Dirac operator andV is an electrostatic scalar potential.

2. Abstract results

Theorem 1.1 in [4] can be stated as follows:

Under the assumptions of Theorem1, if λ+

1 > a−, then all eigenvalues in(a−, b−)

are given by the min-max levelsλ+

k as long as they take their values in(a−, b−) (and
otherwise,λ+

k = b−).

This result dealt with the family of eigenvalues{λ+

k }k and only in the casek+

0 = 1.
Nothing was said on eigenvalues belowa+. The result in [4] already covered all cases
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corresponding to a Dirac operator with a potential given by a positive Coulomb singular-
ity. Here, by considering the casek+

0 ≥ 1 and by considering the levelsλ−

k as well, we
extend the method to a framework with interesting physical applications.

The proof fork+

0 > 1 is similar to the proof given in [4] and we will not reproduce it
here.A posteriori,passing fromk+

0 = 1 to k+

0 > 1 is not very difficult. Consider indeed
a (k+

0 −1)-dimensional spaceVk+

0−1 of F+ such that

a−
= λk+

0−1 ≤ sup
x∈(V

k
+

0 −1
⊕F−)\{0}

(x, Ax)

‖x‖
2
H

< λk+

0
,

and define a new decompositionH = H̃+
⊕H̃− by settingH̃−

= H−
⊕Vk+

0−1. Then the
first case of Theorem 1 reduces to Theorem 1.1 in [4].

As for the second case, note that the statement concerning the family{λ−

k }k follows
from that concerning{λ+

k }k applied to the operator−A. This completes the sketch of the
general ideas for the proof of Theorem 1. ut

Next, as in [4], we can also consider 1-parameter families of self-adjoint operators of the
form Aτ := A0 + τ V , τ ∈ [0, τ̄ ] = I, V being a bounded scalar potential. In this case,
it would be interesting to prove (iii±) for all Aτ knowing thatA0 satisfies it and having
some spectral information onAτ .

More precisely, letA0 : D(A0) ⊂ H → H be a self-adjoint operator. LetH+, H−,
3+ and3− be defined as in Section 1. Assume further that there is a spaceF ⊂ H such
that, for all τ ∈ I, F is a core forAτ and the following hypotheses hold:

(j) F+ = 3+F andF− = 3−F are two subspaces ofF(Aτ ).
(jj−) There isa−

∈ R such that supτ∈I, x−∈F−\{0}(x−, Aτ x−)/‖x−‖
2
H ≤ a−.

(jj+) There isa+
∈ R such that infτ∈I, x+∈F+\{0}(x+, Aτ x+)/‖x+‖

2
H ≥ a+.

Define the numbers(λτ,+
k )k≥1 and(λ

τ,−
k )k≥1 as in (1)–(2) by

λ
τ,+
k = inf

V subspace ofF+

dimV =k

sup
x∈(V ⊕F−)\{0}

(x, Aτ )

‖x‖
2
H

,

λ
τ,−
k = sup

V subspace ofF−

dimV =k

inf
x∈(V ⊕F+)\{0}

(x, Aτ )

‖x‖
2
H

.

With the definitions

a−

1 := inf
τ∈I

[inf(σ (Aτ ) ∩ (a−, +∞))],

a+

1 := sup
τ∈I

[sup(σ (Aτ ) ∩ (−∞, a+))],

b− := inf(σess(A0) ∩ (a−, +∞)),

b+ := sup(σess(A0) ∩ (−∞, a+)),

we obtain the following continuation principle.
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Theorem 2. Under the above assumptions

• If λ
0,+

k+

0
> a− for somek+

0 ≥ 1, and a−

1 > a−, then for allk ≥ k+

0 and all τ ∈ I, the

numbersλτ,+
k are either eigenvalues ofA0 + τV in (a−, b−), or λ

τ,+
k = b−.

• If λ
0,−

k−

0
< a+ for somek−

0 ≥ 1, anda+

1 < a+, then for allk ≥ k−

0 and all τ ∈ I, the

numbersλτ,−
k are either eigenvalues ofA0 + τV in (b+, a+), or λ

τ,−
k = b+.

Exactly as in [4], one can prove this result for a class of more general (unbounded) po-
tentialsV using a truncation argument and then passing to the limit in the truncation
parameter. This applies to the perturbation of the free Dirac operator studied in Section 3
by potentials with Coulomb singularites. We refer the interested reader to [4] for more
details.

Proof of Theorem 2. Assumptions (i), (ii±) of Theorem 1 follow from (j), (jj±). Because
of the boundedness ofV , the mapsI 3 τ 7→ λ

τ,±

k±

0
are continuous. The sets

P +

k0
:= {τ ∈ I : λ

τ,+
k0

≥ a−

1 }, P −

k0
:= {τ ∈ I : λ

τ,−
k0

≤ a+

1 }

are thus closed inI, and the sets

Q+

k0
:= {τ ∈ I : λ

τ,+
k0

> a−
}, Q−

k0
= {τ ∈ I : λ

τ,−
k0

< a+
}

are open. Obviously,P ±

k0
⊂ Q±

k0
. But if τ ∈ Q±

k0
thenAτ satisfies (iii±), so it follows

from Theorem 1 that
λ

τ,±
k ∈ σ(Aτ ) for all k ≥ k0,

hence, by our assumptions,τ ∈ P ±

k0
. As a consequence,P ±

k0
= Q±

k0
, and the setsP ±

k0
are

both open and closed inI. But if λ
0,+
k0

> a− (resp.λ0,−
k0

< a+), thenQ+

k0
(resp.Q−

k0
) is

nonempty: it contains 0, soQ+

k0
(resp.Q−

k0
) coincides withI. ut

Example (A Pauli type operator). For everyν > 0 consider the operator

Aν =

(
1 − 1 −

ν
|x|

0
0 −1 + 1 +

ν
|x|

)
,

on L2(R3, C)2. This operator is self-adjoint with domainH 2(R3, C)2 and form-domain
H 1(R3, C)2. An easy analysis shows that for allν > 0, Aν has two families of eigenval-
ues:

E−
ν,n = −1 +

ν2

4n2
, E+

ν,n = 1 −
ν2

4n2
, n ≥ 1,

and moreovera±
ν = E±

ν,1. Furthermore, for allk ≥ 1,

λ±

ν,k = E±

ν,n(k) if and only if ν ≤

√
8n2

n2 + 1
, n = n(k).
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Notice indeed that the eigenvalues are degenerate for anyn ≥ 2, so that we have to count
the levels with multiplicity and introducen := n(k). If ν ∈ (

√
8n2/(n2+1),

√
8), then

λ±

ν,k = E∓

ν,1 for anyn = n(k) ≥ 1.
Hence, ifν ≤ 2, all the eigenvalues of the operatorAν are given by the variational

procedures defining the numbersλ±

k . In the intervalν ∈ (2,
√

8) some (but not all) of
them still have this property. These results are illustrated in Fig. 1 below.

1

−1

0

a
−

ν
= E−

ν,1

aν
= E

ν,1
+ +

E
+
ν,2

E
+
ν,3

...

ν

...

E
−

ν,3

E
−

ν,2

ν3ν2ν1

= Eν,

+

ν,

+

...

...

E
+
ν (n)k,

==

n

n

Fig. 1. Depending on the values ofν, all eigenvalues are achieved by the two families of levels
λ+

ν,k
andλ−

ν,k
(caseν = ν1 < 2), or only some of them (caseν = ν2 ∈ (2,

√
8)). For ν >

√
8

(caseν = ν3), the gap(−1, 1) is contained in(a+, a−) and the method does not characterize
any eigenvalue in the gap. To clarify the picture, only the family of eigenvaluesE+

ν,n has been
represented, but the familyE−

ν,n is easily recovered by symmetry with respect to the horizontal
axis. To take the multiplicity into account, we denote byk(n) the smallestk for whichλ+

ν,k
= E+

ν,n.

3. Application to Dirac operators

Let us consider the free Dirac operator

H0 := −i

3∑
k=1

αk∂k + β,

where we have written it in physical units for which the speed of light, the mass of the
electron and Planck’s constant are taken equal to 1. In the Dirac equation,α1, α2, α3 and
β are 4× 4 complex matrices, whose standard form (in 2× 2 blocks) is

β =

(
I 0
0 −I

)
, αk =

(
0 σk

σk 0

)
(k = 1, 2, 3),
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andσk, k = 1, 2, 3, are the 2× 2 complex Pauli matrices:σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

σ3 =
(

1 0
0 −1

)
. Let V be a scalar potential satisfying

lim
|x|→+∞

V (x) = 0, (4)

and assume that it is continuous everywhere except at two finite sets of isolated points,
{x+

i }, {x−

j }, i = 1, . . . , I , j = 1, . . . , J, where

lim
x→x+

i

V (x) = +∞, lim
x→x+

i

V (x)|x − x+

i | ≤ νi,

lim
x→x−

j

V (x) = −∞, lim
x→x−

j

V (x)|x − x−

j | ≥ −νj ,
(5)

with νi, νj ∈ (0, 1) for all i, j . Under the above assumptions,H0 + V has a distinguished
self-adjoint extensionA with domainD(A) such that

H 1(R3, C4) ⊂ D(A) ⊂ H 1/2(R3, C4),

and the essential spectrum ofA is the same as that ofH0:

σess(A) = (−∞, −1] ∪ [1, +∞)

(see [16, 14, 11, 9]). Finally,V sendsD(A) into its dual, since (4)–(5) imply that for all
φ ∈ H 1/2(R3) we haveV φ ∈ H−1/2(R3).

In this section, we shall prove the validity of a variational characterization of the
eigenvalues ofH0 + V corresponding to the positive/negative spectral decomposition of
the free Dirac operatorH0:

H = Hf
+ ⊕Hf

−,

with Hf
± = 3

f
±H, where

3
f
+ = χ(0,+∞)(H0) =

1

2

(
Id +

H0
√

1 − 1

)
,

3
f
− = χ(−∞,0)(H0) =

1

2

(
Id −

H0
√

1 − 1

)
.

This will be done under conditions which are optimal for the potentials satisfying (4)–(5)
using Theorems 1 and 2. As already stated in [4], the theorem is optimal in the sense that
it covers the optimal range in the case of Coulomb potentials. If we consider the operator
Aτ := H0 + τV , τ > 0, with V satisfying (4)–(5), our variational characterization will
provide us with all eigenvalues ofAτ as long asτ is not too large.

Theorem 3. Take a positive integerk0 and anyk ≥ k0 and letA be the self-adjoint
extension ofH0 + V defined above, whereV is a scalar potential satisfying(4)–(5).

• If a− < λ+

k0
< 1, thenλ+

k is either an eigenvalue ofH0 + V in the interval(a−, 1),

or λ+

k = 1. If additionallyV ≥ 0, thena−
= 1 andλ+

k = 1.
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• If −1 < λ−

k0
< a+, thenλ−

k is either an eigenvalue ofH0+V in the interval(−1, a+)

or λ−

k = −1. If additionallyV ≤ 0, thena+
= −1 andλ−

k = −1.

The sequences(λ+

k )k≥k±

0
and(λ−

k )k≥1 are respectively nondecreasing and nonincreasing.

The spectrum ofA contained inR \ [a+, a−] is

(−∞, −1] ∪ {λε
k : k ≥ 1, ε = ±} ∪ [1, +∞),

and we do not state anything about the possible eigenvalues in the interval [a+, a−]. As
we showed in the previous section, there can be operators for whichall or almost allthe
eigenvalues lie in the interval [a+, a−] and thus, they are not given by the variational
procedures defining theλ±

k ’s.
Theorem 3 easily follows from Theorem 1. The details of the proof are left to the

reader. The continuation argument of Theorem 2 applies. Indeed, first one has to truncate
the potential at some levelM, apply Theorem 2, and then pass to the limit whenM goes
to +∞. It is worth mentioning that by the continuation principle for the Dirac operators
H0 + τV , with V satisfying (4)–(5), and the definition ofλ

τ,±
k ,

lim
τ→0+

λ
τ,±
k = ±1 for all k ≥ 1.

Also notice that Talman’s decomposition [15, 4], i.e. the decomposition into “upper” and
“lower” two-components spinors, does not apply here, while the spectral decomposition
does.

Corollary 1. Under the assumptions of Theorem3, a sufficient condition forλ+

1 to be in
the interval(a−, 1) is

c1 −
ν

|x|
≤ V ≤ c2, c1, c2 ≥ 0, c1 + c2 − 1 <

√
1 − ν2.

Proof. It is straightforward to check thata−
≤ c2 − 1 and

λ+

1 (V ) ≥ λ+

1

(
−

ν

|x|

)
− c1 = λ1

(
H0 −

ν

|x|

)
− c1 =

√
1 − ν2 − c1. ut

Recall that under assumptions (4)–(5), for anyk ≥ 1, for the above result to possibly
imply thatλ±

k is an eigenvalue we need that

±a∓ < 1 and ± (λ±

1 − a∓) > 0.

To illustrate our results, we end this paper by giving some sufficient conditions for these
inequalities to hold true. Assume thatV satisfies (4)–(5) and can be written as

V = −

∑
i∈I

V −

i +

∑
j∈J

V +

j ,

where theV −

i ’s (resp. theV +

j ’s) are nonnegative potentials satisfying (4)–(5), with a

unique singularity atx−

i (resp. atx+

j ). If

νi, νj ∈ [0, 2/(π/2 + 2/π)) for all i ∈ I, j ∈ J,
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it follows from [17] and [1] that there are constantsδ±

` ∈ (0, 1) such that, for alli ∈ I

andj ∈ J ,
δ−

i H0 − V −

i ≥ 0 inH+, δ+

j H0 + V +

j ≤ 0 inH−,

a−
= sup

e∈F−

‖e‖H=1

(H0 + V ) ≤ sup
e∈F−

‖e‖H=1

(
H0 +

∑
j∈J

V +

j

)
≤

(
1 −

∑
j

δ+

j

)
sup
e∈F−

‖e‖H=1

H0 =

∑
j

δ+

j − 1.

So,a− < 1 if ∑
j∈J

δ+

j < 2. (6)

Next, let us estimateλ+

1 . For everye+ ∈ F+,

sup
e∈[e+]⊕F−

‖e‖H=1

(H0 + V ) ≥ sup
e∈[e+]

‖e‖H=1

(
H0 −

∑
i∈I

V −

i

)
≥ 1 −

∑
i

δ−

i ,

and hence
λ+

1 ≥ 1 −

∑
i

δ−

i .

So, finally,λ+

1 > a− if ∑
i∈I

δ−

i +

∑
j∈J

δ+

j < 2. (7)

Similar computations show thatλ−

1 <a+ if (7) holds, anda+ >−1 if∑
i∈I

δ−

i < 2. (8)

Conditions (6)–(8) are very restrictive. If the distances between the singularity pointsx−

i

andx+

j are taken into account and made large enough, these conditions can certainly be
radically weakened when these distances become large.
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