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Abstract. We study singularly perturbed 1D nonlinear Schrédinger equatjonp (1.1). When
has multiple critical points[ (I} 1) has a wide variety of positive solutions for siaaitl the number

of positive solutions increases t& ase — 0. We give an estimate of the number of positive
solutions whose growth order depends on the number of local maxiiaxf Envelope functions
or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.
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1. Introduction

In this paper we study the following nonlinear Schrédinger equatidit in

— Uy + Vu =u? inR,
u(x) >0 inR, (1.2)
u(x) € HY(R).

Heree > 0, p € (0, o0) andV e CL(R) satisfies

0< inf V(x) < supV(x) < oo.
xeR xeR

The study of the existence and the profile of solutiong of| (1.1) was originated by Floer—
Weinstein [11], Ohl[16, 17] and developed by Ambrosetti-Badlale [1], Ambrosetti-Ba-
diale—Cingolanil[2], del Pino—Felmerl[5], del Pino—Felmer-Tanaka [6], Gui [12], Kang—
Wei [13], Rabinowitz [[18], Wang [19]. In particular, they succeeded in proving the ex-
istence of solutions with finitely many peaks concentrating close to critical points of the
potentialV (x) ase — 0. In particular, Kang—Wei [13] find positive solutions with any
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prescribed number of peaks clustering around each given local maximum point or saddle
point of the potentiaV (x). We also refer to Ambrosetti-Malchiodi—Nil[3, 4], Malchiodi—
Montenegrol[15] and del Pino—Kowalczyk—Wel] [7] for the existence of solutions which
concentrate on spheres or curves for related Neumann boundary problems. These results
suggest that iV (x) has multiple critical points, then the number of positive solutions of
(1.7) increases as — 0. The main purpose of this paper is to give an estimate of the
number of positive solutions.

Recently a similar question for Neumann boundary value problems has been studied
by Lin—Ni-Wei [14]. More precisely, they study

—PAu+u=u’ inQ,

u=>0 in €, (1.2)
0
o 0 onog,
on

where Q2 C R is a bounded domain with a smooth boundag and wherep ¢
QA (N+2)/(N—-2)if N >3,andp € (1,00) if N = 1,2. They show that for
any integerk satisfying 1< K < a/e¥|loge|V, wherea = an,q,p > 0is a constant
depending only onV, €, p, the problem[(1]2) has a positive solution wikhinterior
peaks. In particular they show that

liminf eV |loge|Vn, > 0,
e—0

wheren, is the number of positive solutions ¢f (IL.2).

In this paper we show that for 1D nonlinear Schrodinger equations there is a strong
effect of the potentiaV (x) on the number, of positive solutions and i¥’ (x) hask local
maxima, them, grows at least with order/z*.

In what follows we say an intervak[ 8] C R is alocal maximunof V (x) if

(ml1) V(x) is constanting, 8],
(m2) thereis a constadt> 0 such thal (x) < V(«) forall x € [« — 8, ) U (B, B +3].

We also say a point € R is a local maximum o¥ (x) if (m2) holds withg = «.
The main result of this paper is the following

Theorem 1.1. Suppose thal' (x) hask local maxima and let, be the number of positive
solutions of (L.7)). Then there exists a constantV) > 0 depending only of¥ (x) such
that
lim igf ekng > c1(V). (1.3)
E—>

Remark 1.2. The constants;(V) andcz(V), which will appear in[(15) below, will be
expressed explicitly irf (3]2) and Rem@rk]3.3.
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A similar result holds also for Neumann boundary value problems:

— U + Vu =u?  in(0,1),
u>0 in(0,1), (1.4)
u, =0 atx =0, 1.

We say , 8] C [0, 1] is alocal maximunof V (x) in [0, 1] if either [«, 8] C (0, 1) and
(m1)—-(m2) hold, org, 8] = [0, 8] € [0, 1) ([e, B] = [e, 1] C (O, 1] respectively) and
[a, B] satisfies (m1) and

(m3) there exists a constafit> 0 such thatV(x) < V(B) for all x € (8,8 + §]
(V(x) < V(a) forall x € [ — 8, a)).

Theorem 1.3. Suppose thaV (x) hask local maxima in0, 1] and letn, be the number

of positive solutions ofI.4) without peaks on the boundary, that is, solutions which do
not have local maxima on the boundary[@f 1]. Then there exists a constani(V) > 0
depending only oi¥ (x) such that

lim irgf ekng > ca(V). (1.5)
Pd
Remark 1.4. WhenV (x) has a local maximum at 0 or 1, that is, the boundary,dhere
exists a family of positive solutions with a peak at 0 or 1, that is, a family of solutions
which have a local maximum at O or 1. Leg ., n1., no,1.. be the numbers of positive
solutions of [(1.}4) with a peak only at 0, a peak at 1, or peaks at 0 and 1, respectively. Then
(1.9) also holds forg ¢, n1.¢, n0,1.¢-

The following examples show that the existence of local maxima(af is necessary
for estimates like[(1]3) an@ (].5) to hold with> 2.

e If V € CL(R) is a strictly monotone function iR, for exampleV,(x) # 0 for all
x € R, then[1.]) has no positive solutions.

e If V e CY(R) satisfiesV (—x) = V(x) andxV,(x) > Oforallx € R\ {0}, then[1.1)
has a unique positive solution.

e In the setting of the Neumann boundary problém](1.4); i) = 1, then [[T.4) has
exactly 2|/p — 1/m¢] positive solutions, where:] denotes the greatest integer which
is less tham. As a consequence, we have

limen, =2/p —1/m.
e—0

In Section 4, we will give more precise information on estimates of the number of positive
solutions.

Theorem$ 1]1 ar{d 1.3 are consequences of our recent studiés [8, 9, 10] on high fre-
guency solutions of 1D semilinear problems.[In/[10] we deal with 1D nonlinear Schrédin-
ger equations and we consider a fanily) of solutions which is uniformly bounded but
becomes highly oscillatory as— 0. We show that it is possible to describe its behavior
by means of an envelope function, which is the asymptotic amplitude of solutiohs
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or equivalently by an adiabatic profile. Conversely, we also prove that for a given enve-
lope function or adiabatic profile, there exists a family of solutions having such behavior.
WhenV (x) hask local maxima, there exists an adiabatic profile whose support is a union
of k intervals near local maxima. A family:.) corresponding to such an adiabatic profile
hask clusters of peaks and each clusferi = 1, ..., k) hasn’ peaks, where! satisfies
lim._.oen’ = o; ande; > 0 is determined by an adiabatic profile. This is the key to the
proof of our theorems.

2. Adiabatic profiles and solutions with clusters of peaks

To introduce adiabatic profiles, first we consider the followirgdependent problem:
— V' 4+ Vo= P, seR,
v(0) = yo, (2.1)
v'(0) = y1,

whereV e (0, co) andyp, y1 € R. This equation appears as a limit equation when we
take the limitag — 0 in (1.1) after a suitable scaling. We denote the solutiop of (2.1) by
v =1v(V, yo, y1; s) and remark that

e v(V, yo, y1; 5) is periodic and has constant signif? — %yg + p+1y6’+1 <0,
e u(V, yo, y1: 5) is periodic and sign-changing ¥y? — % y2 + pHy{)”Ll >0,
e v(V, yo, y1; ) is homoclinic to 0, or identically O, |§y1 — §y0 + p+1y5’+1 =0.

. . 1
We denote byI'(V, yo, y1) the period ofv(V, yo, y1; s) if 1y% — %32 p+1yg+ #0
. 1
and se'(V, yo, y1) = oo if 332 — Y32 p+lyg+ = 0. Now we define
1 TWV.yo.y1) 2 1, V.,
. ; p+1
E/o W'V, yo, y1; )|“ds if Eyl—EyO—i— +1y0 > 0,

T(V.y0.y1) 74 1
AV, yo, y1) = / W (V, yo, y1; )|?ds  if —yl——yo—i— p+1 <0,
0

2 +1
. \%4 1
Ao(V if =y?2 ot )
o(V) 2)’1 2)’0+ +1
where YD) 5
e3¢} 1 pP—
Ag(V) :/ v’(V, <p + V) ,0;s)
—oo 2

We remark thatA(V, yo, y1) is the area (or half the area) enclosed by the orbit
(v(s), v'(s)) in the phase plane and is a function of cl&8s We also remark thato(V)
is the area enclosed by a homoclinic orbit and is an increasing functign of

Remark 2.1. ltis easily seen thaf' (V, yo, y1) andA(V, yo, y1) are functions oV and
E=3y2-Yy2+-Lo p+l ”+1 . So we may write them &B(V, E) andA(V, E). We remark
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that for fixedV > 0, E — A(V, E) is a strictly increasing function and thu#scan be
regarded as a function &f and the areal. ThereforeT (V, E) can also be regarded as a
function of V andA. We denote it by

T =T(V,A).

We remark thatd > T(V, A) is strictly increasing whem < Aq(V) and strictly de-
creasing whem > Ag(V). We also remark thal < Ag(V) (A > Ao(V) respectively)
if and only if E < O (E > O respectively) and moreover the corresponding solutien
of (2.7) has constant sign (is sign-changing, respectively).

In what follows we mainly work in the setting of Theor¢m|1.3. Theoferh 1.1 requires
only minor modifications.

We set!l = [0, 1] and for a given potentiav : I — (0, co) we define the trivial
action function by

ao(x) = Ao(V (x)),

which is the area enclosed by a homoclinic 0rbit(2.l) with= V (x) and is aC!-
function ofx.

Definition 2.2. We say a functiom : I — (0, o0) is an adiabatic profile(or action
profile) if it is continuous and whenevelx) # ag(x), we haver’ (x) = 0. We also define
its supportby

suppa) = {x € I; a(x) # ap(x)}.

Fig. 2.1. An adiabatic profile and the corresponding solution.

For a given family(u,) of solutions of

—2Ue + VO u = ulP"u  inl,
u, =0 atol,

we define an approximate adiabatic profile (or actiut)) by
ag(x) = AV (x), ug (x), g1y (x)).
The following is one of the main results of [10].

(2.2)
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Theorem 2.3. Let (u.) be anL>-bounded family of solutions ¢f.4). Then after ex-
tracting a subsequencg, — 0, the corresponding approximate adiabatic profilgx)
converges to an adiabatic profile(x). Moreoveru,, (x) has peaks only in a neighbor-
hood ofsupfa) U {x € I; V'(x) = 0} U 3I, that s, for anys > Othere is ang(s) > 0
such that,, (x) has peaks only in &neighborhood o$uppa)U{x € I; V'(x) = 0jual

if n > no(8).

Remark 2.4. Let (o, 8) C I be an isolated connected component of supprhen:

(1) Ifa(x) < ao(x) in (a, B), thenu,, (x) has constant sign i, 8) for largen.

(2) If a(x) > ap(x) in (o, B), thenu,, (x) is sign-changing irf«, B) for largen.

(3) Letng,(a, B) be the number of peaks (i.e., positive local maxima or negative local
minima) ofu,, (x) in («, B). Then

g 1
e if ) 7 |
/oz T(V(x),a(x)) x Ifalx) <aolx) In (a, B)

B
/ ;dx if a(x) > ap(x) in («, B),
a T(V(x),a(x))

enlg, (@, B) —

whereT (V, A) is defined in Remark 2/1.

Conversely, for a given adiabatic profit€éx) we can construct the corresponding family
of solutions of[(Z.R).

Theorem 2.5. For a given adiabatic profile(x), there exists a familgu. ) of solutions of
(2.2) such that the corresponding approximate adiabatic prafilex) converges ta (x)
ase — 0. Moreover for anys > 0, there exists ang(§) > 0such that fol0 < ¢ < ¢(6),
ug (x) has peaks only in &-neighborhood ofuppa).

Remark 2.6. The statements in Remdrk 2.4 hold fQi(x) obained in Theorefn 2.5 with-
out taking a subsequence.

3. Proof of Theorem[1.3

In this section we prove Theorgm [L.3 (dealing with Thedrerp 1.1 requires slight modifica-
tions). Since we deal with only positive solutions[of {2.2), recalling Refnatk 2.4, we may
consider adiabatic profilegx) satisfyinga(x) < ag(x) forall x € I.

For the proof of Theorein 11.3, assurne- 2 and that there exists an adiabatic profile
a(x) such that:

(@l) a(x) < ap(x) for all x € I anda(x) # ag(x).

(a2) suppa) consists of exactly disjoint intervalsiy, ..., I;. For eachj € {1, ..., k},
I; is of the form(e,, B) (0 < o < B < 1), [0, B) (B € (0, 1), or («, 1] (« € (O, 1)).

(a3) There exists & > 0 such that
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(1) Forl; =(a,p) O <a < B <1),

Vi(x) >0 in(e— 26, a + 28),

Vi(x) <0 in(B—25, 8+ 20).
(2) Forl; =[0.8) (B € (0. 1)),

Vix) <0 in(B—25, 8+ 20).
(3) Forl; = (o, 1] (« € (0, 1)),

Vi(x) >0 in(ax— 28, o + 26).

Remark 3.1. RecallingAq(V) is a strictly increasing function df , we have

Q) Forl; = (o, B))(0<a < B <1),V(x) > V() = V(B) forall x € I;.
(2) Forl; =[0,8) (0< B <1),V(x) > V(p) forall x € I;.
(3) Forl; = (o, 1] O < < 1),V(x) > V() forall x € I;.

Under the assumption of Theor¢m|1.3, we can easily find an adiabatic profilsuch

that eachy; is a neighborhood of a local maximum @{(x).

To prove Theorerp 113, it suffices to show the following

Proposition 3.2. Leta(x) be an adiabatic profile given above and define

1
L= - d i=1,...,k). 3.1
" /1,- Fvaaay Y ) G-

Then there exists asp > 0 such that for any € (0, gg] and (Kj)i.‘:1 C N satisfying

1
1§Kj§—mj (j=1,...,k),
&
there exists a positive solution (x) of @)such that. (x) has exactlyk; interior peaks

in Ns(I;) for j = 1,..., k and no peaks elsewhere.

From the above proposition, considering combination&kaf, . . ., K;), we can observe
that [1.4) has at leastq; /] x - - - x [my /€] positive solutions. Thus

liminf &¥ng > my- - my > 0.
e—0
We remark that under the assumption of Theofem 1.3 there exists an adiabatic profile
a® (x) satisfying (al) and

(a2) suppa™®) consists of exactly disjointintervalsly, .. ., Ix. Foreachj e {1, ..., k},
I; has the forma, ) 0 < @ < B < 1), [0, 8) (8 € (0.1]), (. 1] (« € [0, 1)) or
[0, 1].



260 Patricio Felmer et al.

(a4) There are no adiabatic profile6x) whose support has exacttydisjoint intervals
and

a(x) <a®x) foralxel,
a(xg) < a®(xp) for somexg € I.

We call an adiabatic profile satisfying (32nd (a4) a&-minimal adiabatic profile.
We can easily see that there exists a sequénog’ ; of adiabatic profiles such that

e ay(x) satisfies (al)-(a3).
o a;y(x) >a®x)forallx €1,
e ar(x) = a®(x) ast — oo.

Writing suppa®) = I{k) U---u I,Ek) and noting that supp,) C suppa®), set

1
mM:/ ———dx forteNl.
P T ). ag@)

Then, repeating the previous argument, we can see that foreath

liminfefn, > my g -my .

e—0

Sincem; ; — ij(“ dx, we have

1
T(V(x),a® (x))

k
. 1
liminf e¥n, > l_[/ - dx.
e~0 1410 TV (), a® (1))

Thusc2(V) in Theorenj 1.3 is given explicitly by

k
1
co(V) = f —dx. 3.2
,»Ul 10 T (V(x),a®(x)) 5.2
Remark 3.3. The constani1(V) in Theorem[ 1]l is also represented by |3.2). Here

a® (x) is ak-minimal adiabatic profile whose support is a bounded subs®t of

Proof of Propositiorf 3.2.We argue indirectly and suppose that there exist sequences
Nk
e, — 0 and(K,n)j:l C N such that

lijnfmj/!En (]21,,]()
and [1.4) withe = ¢, has no solutions with the following property:

e u(x) has exactlyK;, interior peaks inNs(I;) for eachj = 1,...,k and no peaks
elsewhere.

Taking a subsequence if necessary, we may assume that
Kjn/en — €; €[0,mj] asn — oo.

For such(¢y, ..., £;) we have the following
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Proposition 3.4. Let/; U - - - U I, be a support of an adiabatic profile(x) and let

1
l; 0, —d =1, ...,k).
/€ [ /1,. T(V (). atx) x} v :

Then for anys > 0 and for any sequenc(e’?jg)j?zl C N satisfying
Ekjs g fj ases — 0,

there exists arg > 0 such that fore € (0, &o], (1.4) has a solutioru, (x) which has
exactIyIEj‘E interior peaks inN;s(I;) for eachj but no peaks elsewhere. Moreover the
approximate adiabatic profile,(x) corresponding tas.(x) converges to an adiabatic
profile a(x) after extracting a subsequence and) satisfies

a(x) <a(x) <ap(x) forallxel,

/ Y =4 forj=1..k
;; T(V(x),a(x))

If we sett; = f,j(l/T(V(x), a(x))dx for j =1,... k, Theore follows from
Propositiorf 3.4. We will give a sketch of the proof of Proposifion 3.47in Section 5.
Taking I?,-E = Kj, in Propositio, we get a contradiction to our assumption that
@) has no solutions with exactly;,, interior peaks inVs(Z;), and this completes the
proof of Propositiof 3]2. O

Remark 3.5. In Proposition§ 3]2 ar{d 3.4, if @ supfa) (1 € suppa), {0, 1} C supfa)
respectively), then we can construct a positive solution with exdctlinterior peaks in
Ns(I;) and a peak at the boundary point O (a peak at 1, peaks at both 0 and 1, respectively).

Remark 3.6. The uniqueness of solutioms (x) obtained in Propositiorjs 3.2 andB.4 is
an important problem. If the solutions are unique for(a?d});.‘:1 ande small, we believe
that the following is true:

lim supsotin, = 0.

e—0

Herekg is the number of local maxima df (x) in [O, 1].

4. Number of positive solutions with prescribed number of peaks

Letk be the number of local maxima &f(x) in [0, 1] and letz®) (x) be the corresponding
k-minimal adiabatic profile. From the proof it is clear that Theofer 1.3 estimates just the
number of solutions corresponding to adiabatic profiles which are less than). Such
solutions have at most/e) [,(1/T (V(x), a® (x))) dx peaks inl. We remark that there

are solutions with more peaks. In this section we study the number of such solutions.
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We use the following notation: for an adiabatic profiler), we set

1
= - d
@ /1 TV@.am)

For 0 < v1 < vz we also denote by, (v1, v2) the number of positive solutions ¢f (1.4)
which have no peaks at the boundark and the number of interior peaks is between
(1/e)vy and(1/e)va.

With this notation, Theorefn 1.3 shows

Iimilgf kg (0, p(a®)) > 0.

Our next result is the following

Theorem 4.1. Assume that there exists an adiabatic praofil@) whose support consists
of exactly¢ intervals. Then for any > 0,

Iimigf elig(pa) — 8, p(a)) > 0.
&e—

Proof. Let§ > 0 be a given number and let supp = J1U---U Jp (J; N J; = @ for
i # j). Asin the proof of Theorein 1.3, we take another adiabatic prafit¢ such that

e a(x) satisfies (al)—(a3).
e suppa)—denoted by/; U - - - U J;,—is slightly smaller than suggp) and

pa) —48/2 < p(a) < p(a). (4.1)

We can adapt the previous argumenéte). We remark that we may restrict the number
of peaks inJ; between

1( 1 8 1 1
e\Jy T(V(x),a(x)) 2t & Jy T(V(x),a(x))

thus we have .
)
. . Z~ - _ - e
IIEnJQfE ng(p(a) —48/2, p(a)) > (%) > 0.

By (4.1), we havéi. (p(a) —§, p(a)) > i.(p(a)—8/2, p(a)) and we have the conclusion
of Theoreni 4. O

In the following example we say fdr > 2 thata(x) is an¢-minimal adiabatic profilaf
a(x) satisfies (al), (dRand (a4) withk = ¢.

Example 4.2. We consider the following situatiorV. € C1([0, 1]) has exactly five criti-
cal points O< s1 < 11 < 52 < f2 < s3 < 1 andsz, s2, s3 are local maxima and, r, are
local minima ofV (x). We also assume that

VO =V(@) < V() < V().
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We remark that in this situation we can find unique potatse (0, s1), T12 € (s2, 2) and
121 € (0, 7111), T22 € (53, 1) such that

V(riy) = V(i) = V(r12), V(21 = V(2) = V(122).
We can easily see that adiabatic profié8 (x), a® (x) satisfying
supfa®) = (121, 12) U (12, 122),  supfla®) = (t11, 1) U (11, 112) U (12, 720)

are 2-minimal and 3-minimal respectively. We also hat(x) < a®® (x) forall x € I,
a@(x) £ a®(x)andp@?@) > p®). Itis also clear that for any & vz < p(a®) <
v2 < p(a'?) there exist adiabatic profiles(x) andax(x) such that

plaz) =v3 and p(a2) =2

and whose supports consist of exactly three and two intervals respectively. Thus by The-
orem4.1 we have

liminf 3. (v3 — 8,v3) > 0,  lim i(r)lf %7, (vy — 8, v9) > 0
£—>

e—0
forall0 < v3 < p(a®) < s < p(a?) ands > 0.

Remark 4.3. Formallya™ (x) = 0 can be regarded as a 1-minimal adiabatic profile and
T(V(x),0) = 7//(p — DV (). Settingp(a®) = (2/7) [, /(p — DV (x) dx, we also
have

lim igf eng(vy —38,v1) >0

E—>

forall p(a®) < v1 < p(a®P) ands > 0.

5. Existence: proof of Propositior] 3.4

This section is devoted to the proof of Proposifion| 3.4. For simplicity, we congider
(0, 1) and we assume that the adiabatic prafile) has support sugp) = (a1, 81) U
(a2, B2) C (0,1). Fixs > Osmallsuchthat < a1 — 8, B1+8 < a2 —8,B82+8 <1
andV’(x) > 0in(a; —8,a; +8), V'(x) <0in(B; — 6, Bi +8) fori =1, 2.

We want to show that K ;. — ¢; ase — 0 for j = 1, 2 with

Bj 1
051]5/ ——dx
o T(V(x),a(x))

7

then, for sufficiently smalk > 0, we can find a familyu.) of solutions of [(2.2) which
has exactyK;, peaks in(e; — 6, §; 4+ 6) for j =1, 2.

We consider an adiabatic profigx) such thatu(x) < a(x) < ag(x) forall x € I
and

Bj 1
———  dx=¢ forj=12 (5.1)
/a T(V(x),a(x)) !

J
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This result will be proved by maximizing a finite-dimensional functional of Nehari
type. In the proof we will have to know precisely the behavior of the oscillatory solutions
of (2.2). Assume we have functions : [a,, b,] — R satisfying [2.2) fore = ¢, and
I = [a,, b,], whereg,, — 0 asn — oo. Suppose thai, is positive,a,, andb,, are local
minima ofuy,, lim,_ o a, = @ and lim,_, « b, = b with a < b.

Leta, <0 <yt < ... <yt <y < b, be the local maximum points af, in
[an, by] and assume that, — oo asn — oo. Considering a subsequence, if necessary,
we define

a= lim y0 and B= lim y'.
n—oQ n—>oo
The following proposition, corresponding to Proposition 4.1 01 [10], is crucial to prove
our result.

Proposition 5.1. AssumeV’(x) is positive in[a, b]. Then for any intervallxy, x2]
C (a, B) there existsig such that for everyr > ng the solutionu,, has at least one
maximum point and one minimum poini, x2]. Moreover:

(i) If « > a, then the approximate adiabatic profilg, (y0) tends taug(a).
(i) If y;' — ¥ € (e, b], thenlimsup, ,  las, (yi")| < ao(¥).
(i) »=8.
An analogous statement holds/f(x) is negative irfa, b].
We start by defining an auxiliary adiabatic profiiesuch that sup@) = (@, f1)
U (a2, B2) and

SUpPRa) C Supfpa) C (a1 —38/2,81+8/2) U (g —6/2, B2+ 68/2).

Forx, y € I we define
y
dx,y) = }/ ; X
& Jx T(V(x),a(x))

SetN} = 2Kj., N? = 2K2:, Ne = N} + N2 — 1 andxo = 0, xy,+1 = 1, and define the
domainA, c R as

Ae={(x1,...,xN,); X0 S X1 < -+ < XN, +1,
d(xi, xjy1) > 1fori =0,..., N,
Xy S BL+8/2 xy11q = a2 —8/2). (5.2)
ForX = (x1,...,xn,) € A; we letu; : [x;, x;+1] — R be a solution of

e2u — fxoup) =0,  u)(x;) =0=uj(xis1), 5:3)
(—1)iu; >0,u; >0 in[x;, xi41], '

fori = 0,..., N. Sinced(x;, x;+1) > 1, by Theorem 5.1 of [10], the functios; is
well defined, and:; as a function of(x;, x;11) is of classCl. We define the functional
g A > Ras

Ne Xi+1
w0 =) [ Bt
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where
zu’z(x) u2 yrtl
E.(x,u)=¢"—+ V(x)7 — L

2
The functionalg, is of classC! and it is easy to check that

08e
8xi

(X) = F(xi,ui—1(x)) — F(xi, ui(x;)), 1=<i=<Ng,

Mp+l

with F(x,u) = V(x)”—z2 - 55T Thus, ifVg.(X) = 0 then the functiom,, defined as

us(x) =ui(x), xe€lxi,xit1], i=0,...,Ng, (5.4)
is a solution of[(Z.R). In view of these considerations, Propodfitign 3.4 will be proved if we
show that the maximum gf; is achieved in IntA;).

Proof of Propositior] 34.We proceed by contradiction. Suppose there exist sequences
ep — 0andX, = (x7,...,x}e,) € dA,, such thatg,, (X,) > g, (X) forall X € A, .
For simplicity we writex; = x', A, = Ag,, g0 = &z, N,{ = Ng; forj = 1,2, and
N, = N,,. We leta be an adiabatic profile with supp) = (&1, 1) U (&2, B2) and such
thate; < @ < aj, Bj < /§j < Bj forj =1,2.

Forj = 1,2 we defineB; = {i: [x;, xi41] N (@, Bj) # 9}
Step 1. For somex > Othere existj* € B} andjn2 € B,f such that up to a subsequence,

n||_>mood(xj’§, xj,f+1) >1+4k fork=12 (5.5)

Suppose thaf (5.5) does not hold fo& 1. Then for some sequengg — 0 we have

Bl = L /ﬁl 2
" en Jao T(V(x),ax))

which contradictsB! c {0, ..., N1}.
wopl il 1y p2 _ q:2 2
We write B, = {iy, ..., i}, By = {if, ..., ij}.
Step 2. The function,, defined ir@)is a solution og)in (2, X1,V (X2, X2 )
Suppose that,, is not a solution in(xl.%, xl-ll). Then there is a sequence of integkyfs

so thatif < k, < ji(orjl+1 <k, < i+ 1) such thatg,(X,)/dx;, # 0 and
ug, is a solution of ) ir(xkn,xj”lﬂ) (or in (xjnl, xk,)). Note that by Theore@.&
d(xk,, x,+1) > 1+ i Tor somek > 0. We have to analyze two cases:

(a) If for a subsequencé(xy,_1, xr,) > 1 for all n, then we can choose a point
Y, = (01,...,yn,) With y; = x; if i # k, andy, close toxg, such thatt,, € A, and
%}CX")(% —xz,) > 0, contradicting the maximality of,.

(nb) If for a subsequencé(xk,—1, xx,) = 1 for all n, then after a simple computation
we can prove that fot large,

0gn(Xn)

= F(x,, ug,—1(xk,)) — F(xg,, ug, (xg,)) > 0,
0Xp

n

thus, constructing &, as above we contradict the maximality Xf .
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Thereforeu,, is a solution of@) ir(xi%, .xill). Similarly, we can conclude that,
is & solution in(x;2, x;2)-
Step 3. Up to a subsequence, the appropriate adiabatic profﬂéﬂs agzn, defined in
(xi%, )Cl-ll) and(xi%, xilz) respectively, converge to(x) with support in(e1, f1) U (a2, B2)
with & < ax, ék < ,ék fork=1,2.

From Remark 24, we obtain

Bk 1 Bk 1
/ — dx = lim €n|B,]1‘| 5/ —dx
a T(V(x),ax)) n—00 a T(V(x),a(x))

for k = 1,2. Using this inequality and proceeding as above, we can easily see that
&k < Uk, _ﬂk < &k-

Step 4. Xy X1y g, X2, X;2 g A€ all local minima ofi,, .

Suppose that;. ,; is a maximum. Ther! + 1 < N} and sincef; > 1 we can easily
prove tha'd(xill, Xy > 1 We analyze three possible cases:

(@) Forasubsequenaéx;1,;, x;1,5) > 1.

(b) Fora subsequenaé(xillﬂ, xi]l+2) =1andx;42 - ¥ < B1.

(c) Fora subsequencé(xillH, .xil:l_+2) =1andx;;2 — ¥ > 1.

For (a) we can use the same argument as in Step 2(a) to prove jhdgfined as in
) is a solution off(2]2) irtjxi%, .xil:l_+2), but this cannot happen by PropositWS.l. To

prove that (b) does not hold, we can proceed as in Step 2(b).
Suppose that (c) holds. In this case,, — B1, and forn Iarge,xill+1 —xp >

for some positive and fixed We defineY,, = (y1,...., yn.) € A, by settingy; = x; if
i # i11+1 andyillJrl = xl-11+1—§ for ¢ > O small. If we rescale we obtag(X,)—g(¥,) =
en I, with I, — I given by

I= 2/ (IZ'12/2+ F(B1, 2)) dx — 2/ (Iw'1?/2+ F(B1 — ¢, w)) dx,
0 0
wherez andw satisfy

' —V(PBDz+2P =0, Z©0) =0 z(c0)=0,
w —VP1—-Dw+wP =0, w0 =0 w(o) =0.

It is easy to check that
~ p+3 - p+3
I =C(V(B1)2rD —V(B1—¢)2rD) <0 (5.6)

This contradicts the maximality of,.
All the remaining cases can be handled in the same way.
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Step 5. 11—011+1—11—N1 12+1=Nn+1.

We start by proving tha’; + 1= N2 If this is not the case theﬁ +2 < N}, and since
X is a minimum we have; i1 T X1 > ¢ for some fixed: > 0. If d(x;1y, %i1,0) > 1,
then arguing as in Step 2(a) we fmd thaf as defined by (5]4) is a solution ¢f(R.2) in
(x; i1 X ll+2) with an isolated peak. This cannot happen by Propo@n 5.1.

If d(x1,0, 61,5 = Landxp,, — X < p1 we can proceed as in Step 2(b) to
reach a contradiction. Whef(x;1 4, x;1,,) = 1 andxp,, — ¥ > p1 then we define
Y, = (y1,-.-YN.) € Apasy; = x; if i # i[1 + 1,1'[1—0— 2 ahdyillJrl = Xl — Z,
Yily2 = Xty = ¢ for ¢ > 0 small. Then as before we hayéX,) — g(Y,) = &, 1, with
I, — I given by

I= 2/ (I2'12/2+ F(B1, 2)) dx — 2/ (lw'|?/2+ F(B1 — ¢, w)) dx,
0 0

with z, w as in Step 4(c). Thus, b (5.6) we conclude thét,) > g(X,), which contra-
dicts the maximality ofX,.
All the other cases can be argued similarly.

Step 6. Xy1g < B1+8/2, Xyl > 02+ 8/2 andd(anlﬂ,anl) > 1.

By the arguments given above we have shown thatis a solution in ,Ef(),.anl)
U (xy1, x,+1] satisfyingu, (xy1,1) = 0. Therefore, by Propositio@.l, Theorem

and Remar.4 we hawg: ; — f1 < f1andxyiy — & > . Therefore,
xyi_1,xy1) > Tandd(xy1, xy1,1) > 1. This concludes the proof.
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