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Abstract. We study singularly perturbed 1D nonlinear Schrödinger equations (1.1). WhenV (x)
has multiple critical points, (1.1) has a wide variety of positive solutions for smallε and the number
of positive solutions increases to∞ as ε → 0. We give an estimate of the number of positive
solutions whose growth order depends on the number of local maxima ofV (x). Envelope functions
or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.
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1. Introduction

In this paper we study the following nonlinear Schrödinger equation inR:

− ε2uxx + V (x)u = up in R,

u(x) > 0 in R, (1.1)

u(x) ∈ H 1(R).

Hereε > 0, p ∈ (0, ∞) andV ∈ C1(R) satisfies

0 < inf
x∈R

V (x) ≤ sup
x∈R

V (x) < ∞.

The study of the existence and the profile of solutions of (1.1) was originated by Floer–
Weinstein [11], Oh [16, 17] and developed by Ambrosetti–Badiale [1], Ambrosetti–Ba-
diale–Cingolani [2], del Pino–Felmer [5], del Pino–Felmer–Tanaka [6], Gui [12], Kang–
Wei [13], Rabinowitz [18], Wang [19]. In particular, they succeeded in proving the ex-
istence of solutions with finitely many peaks concentrating close to critical points of the
potentialV (x) asε → 0. In particular, Kang–Wei [13] find positive solutions with any
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prescribed number of peaks clustering around each given local maximum point or saddle
point of the potentialV (x). We also refer to Ambrosetti–Malchiodi–Ni [3, 4], Malchiodi–
Montenegro [15] and del Pino–Kowalczyk–Wei [7] for the existence of solutions which
concentrate on spheres or curves for related Neumann boundary problems. These results
suggest that ifV (x) has multiple critical points, then the number of positive solutions of
(1.1) increases asε → 0. The main purpose of this paper is to give an estimate of the
number of positive solutions.

Recently a similar question for Neumann boundary value problems has been studied
by Lin–Ni–Wei [14]. More precisely, they study

− ε21u + u = up in �,

u > 0 in �, (1.2)
∂u

∂n
= 0 on∂�,

where � ⊂ R is a bounded domain with a smooth boundary∂� and wherep ∈

(1, (N + 2)/(N − 2)) if N ≥ 3, andp ∈ (1, ∞) if N = 1, 2. They show that for
any integerK satisfying 1≤ K ≤ α/εN

|logε|N , whereα = αN,�,p > 0 is a constant
depending only onN , �, p, the problem (1.2) has a positive solution withK interior
peaks. In particular they show that

lim inf
ε→0

εN
|logε|Nnε > 0,

wherenε is the number of positive solutions of (1.2).
In this paper we show that for 1D nonlinear Schrödinger equations there is a strong

effect of the potentialV (x) on the numbernε of positive solutions and ifV (x) hask local
maxima, thennε grows at least with order 1/εk.

In what follows we say an interval [α, β] ⊂ R is a local maximumof V (x) if

(m1) V (x) is constant in [α, β],
(m2) there is a constantδ > 0 such thatV (x) < V (α) for all x ∈ [α − δ, α)∪ (β, β + δ].

We also say a pointα ∈ R is a local maximum ofV (x) if (m2) holds withβ = α.
The main result of this paper is the following

Theorem 1.1. Suppose thatV (x) hask local maxima and letnε be the number of positive
solutions of(1.1). Then there exists a constantc1(V ) > 0 depending only onV (x) such
that

lim inf
ε→0

εknε ≥ c1(V ). (1.3)

Remark 1.2. The constantsc1(V ) andc2(V ), which will appear in (1.5) below, will be
expressed explicitly in (3.2) and Remark 3.3.
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A similar result holds also for Neumann boundary value problems:

− ε2uxx + V (x)u = up in (0, 1),

u > 0 in (0, 1), (1.4)

ux = 0 atx = 0, 1.

We say [α, β] ⊂ [0, 1] is a local maximumof V (x) in [0, 1] if either [α, β] ⊂ (0, 1) and
(m1)–(m2) hold, or [α, β] = [0, β] ⊂ [0, 1) ([α, β] = [α, 1] ⊂ (0, 1] respectively) and
[α, β] satisfies (m1) and

(m3) there exists a constantδ > 0 such thatV (x) < V (β) for all x ∈ (β, β + δ]
(V (x) < V (α) for all x ∈ [α − δ, α)).

Theorem 1.3. Suppose thatV (x) hask local maxima in[0, 1] and letnε be the number
of positive solutions of(1.4) without peaks on the boundary, that is, solutions which do
not have local maxima on the boundary of[0, 1]. Then there exists a constantc2(V ) > 0
depending only onV (x) such that

lim inf
ε→0

εknε ≥ c2(V ). (1.5)

Remark 1.4. WhenV (x) has a local maximum at 0 or 1, that is, the boundary ofI , there
exists a family of positive solutions with a peak at 0 or 1, that is, a family of solutions
which have a local maximum at 0 or 1. Letn0,ε, n1,ε, n0,1,ε be the numbers of positive
solutions of (1.4) with a peak only at 0, a peak at 1, or peaks at 0 and 1, respectively. Then
(1.5) also holds forn0,ε, n1,ε, n0,1,ε.

The following examples show that the existence of local maxima ofV (x) is necessary
for estimates like (1.3) and (1.5) to hold withk ≥ 2.

• If V ∈ C1(R) is a strictly monotone function inR, for exampleVx(x) 6= 0 for all
x ∈ R, then (1.1) has no positive solutions.

• If V ∈ C1(R) satisfiesV (−x) = V (x) andxVx(x) > 0 for all x ∈ R \ {0}, then (1.1)
has a unique positive solution.

• In the setting of the Neumann boundary problem (1.4), ifV (x) ≡ 1, then (1.4) has
exactly 2[

√
p − 1/πε] positive solutions, where [n] denotes the greatest integer which

is less thann. As a consequence, we have

lim
ε→0

εnε = 2
√

p − 1/π.

In Section 4, we will give more precise information on estimates of the number of positive
solutions.

Theorems 1.1 and 1.3 are consequences of our recent studies [8, 9, 10] on high fre-
quency solutions of 1D semilinear problems. In [10] we deal with 1D nonlinear Schrödin-
ger equations and we consider a family(uε) of solutions which is uniformly bounded but
becomes highly oscillatory asε → 0. We show that it is possible to describe its behavior
by means of an envelope function, which is the asymptotic amplitude of solutions(uε),
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or equivalently by an adiabatic profile. Conversely, we also prove that for a given enve-
lope function or adiabatic profile, there exists a family of solutions having such behavior.
WhenV (x) hask local maxima, there exists an adiabatic profile whose support is a union
of k intervals near local maxima. A family(uε) corresponding to such an adiabatic profile
hask clusters of peaks and each clusterCi (i = 1, . . . , k) hasni

ε peaks, whereni
ε satisfies

limε→0 εni
ε = αi andαi > 0 is determined by an adiabatic profile. This is the key to the

proof of our theorems.

2. Adiabatic profiles and solutions with clusters of peaks

To introduce adiabatic profiles, first we consider the followingx-independent problem:

− v′′
+ V v = |v|

p−1v, s ∈ R,

v(0) = y0, (2.1)

v′(0) = y1,

whereV ∈ (0, ∞) andy0, y1 ∈ R. This equation appears as a limit equation when we
take the limit asε → 0 in (1.1) after a suitable scaling. We denote the solution of (2.1) by
v = v(V, y0, y1; s) and remark that

• v(V, y0, y1; s) is periodic and has constant sign if1
2y2

1 −
V
2 y2

0 +
1

p+1y
p+1
0 < 0,

• v(V, y0, y1; s) is periodic and sign-changing if12y2
1 −

V
2 y2

0 +
1

p+1y
p+1
0 > 0,

• v(V, y0, y1; s) is homoclinic to 0, or identically 0, if12y2
1 −

V
2 y2

0 +
1

p+1y
p+1
0 = 0.

We denote byT (V, y0, y1) the period ofv(V, y0, y1; s) if 1
2y2

1 −
V
2 y2

0 +
1

p+1y
p+1
0 6= 0

and setT (V, y0, y1) = ∞ if 1
2y2

1 −
V
2 y2

0 +
1

p+1y
p+1
0 = 0. Now we define

A(V, y0, y1) =



1

2

∫ T (V,y0,y1)

0
|v′(V , y0, y1; s)|2 ds if

1

2
y2

1−
V

2
y2

0+
1

p+1
y

p+1
0 > 0,∫ T (V,y0,y1)

0
|v′(V , y0, y1; s)|2 ds if

1

2
y2

1−
V

2
y2

0+
1

p+1
y

p+1
0 < 0,

A0(V ) if
1

2
y2

1−
V

2
y2

0+
1

p+1
y

p+1
0 = 0,

where

A0(V ) =

∫
∞

−∞

∣∣∣∣v′

(
V,

(
p + 1

2
V

)1/(p−1)

, 0; s)

∣∣∣∣2 ds.

We remark thatA(V, y0, y1) is the area (or half the area) enclosed by the orbit
(v(s), v′(s)) in the phase plane and is a function of classC1. We also remark thatA0(V )

is the area enclosed by a homoclinic orbit and is an increasing function ofV .

Remark 2.1. It is easily seen thatT (V, y0, y1) andA(V, y0, y1) are functions ofV and
E =

1
2y2

1 −
V
2 y2

0 +
1

p+1y
p+1
0 . So we may write them asT (V, E) andA(V, E). We remark
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that for fixedV > 0, E 7→ A(V, E) is a strictly increasing function and thusE can be
regarded as a function ofV and the areaA. ThereforeT (V, E) can also be regarded as a
function ofV andA. We denote it by

T = T̃ (V , A).

We remark thatA 7→ T̃ (V , A) is strictly increasing whenA < A0(V ) and strictly de-
creasing whenA > A0(V ). We also remark thatA < A0(V ) (A > A0(V ) respectively)
if and only if E < 0 (E > 0 respectively) and moreover the corresponding solutionv(s)

of (2.1) has constant sign (is sign-changing, respectively).
In what follows we mainly work in the setting of Theorem 1.3. Theorem 1.1 requires

only minor modifications.
We setI = [0, 1] and for a given potentialV : I → (0, ∞) we define the trivial

action function by
a0(x) = A0(V (x)),

which is the area enclosed by a homoclinic orbit of (2.1) withV = V (x) and is aC1-
function ofx.

Definition 2.2. We say a functiona : I → (0, ∞) is an adiabatic profile(or action
profile) if it is continuous and whenevera(x) 6= a0(x), we havea′(x) = 0. We also define
its supportby

supp(a) = {x ∈ I ; a(x) 6= a0(x)}.

Fig. 2.1. An adiabatic profile and the corresponding solution.

For a given family(uε) of solutions of

−ε2uxx + V (x)u = |u|
p−1u in I,

ux = 0 at∂I,
(2.2)

we define an approximate adiabatic profile (or action)aε(x) by

aε(x) = A(V (x), uε(x), εu′
ε(x)).

The following is one of the main results of [10].
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Theorem 2.3. Let (uε) be anL∞-bounded family of solutions of(1.4). Then after ex-
tracting a subsequenceεn → 0, the corresponding approximate adiabatic profileaε(x)

converges to an adiabatic profilea(x). Moreoveruεn(x) has peaks only in a neighbor-
hood ofsupp(a) ∪ {x ∈ I ; V ′(x) = 0} ∪ ∂I , that is, for anyδ > 0 there is ann0(δ) > 0
such thatuεn(x) has peaks only in aδ-neighborhood ofsupp(a)∪{x ∈ I ; V ′(x) = 0}∪∂I

if n ≥ n0(δ).

Remark 2.4. Let (α, β) ⊂ I be an isolated connected component of supp(a). Then:

(1) If a(x) < a0(x) in (α, β), thenuεn(x) has constant sign in(α, β) for largen.
(2) If a(x) > a0(x) in (α, β), thenuεn(x) is sign-changing in(α, β) for largen.
(3) Let nεn(α, β) be the number of peaks (i.e., positive local maxima or negative local

minima) ofuεn(x) in (α, β). Then

εnnεn(α, β) →


∫ β

α

1

T̃ (V (x), a(x))
dx if a(x) < a0(x) in (α, β),∫ β

α

2

T̃ (V (x), a(x))
dx if a(x) > a0(x) in (α, β),

whereT̃ (V , A) is defined in Remark 2.1.

Conversely, for a given adiabatic profilea(x) we can construct the corresponding family
of solutions of (2.2).

Theorem 2.5. For a given adiabatic profilea(x), there exists a family(uε) of solutions of
(2.2)such that the corresponding approximate adiabatic profileaε(x) converges toa(x)

asε → 0. Moreover for anyδ > 0, there exists anε0(δ) > 0 such that for0 < ε < ε0(δ),
uε(x) has peaks only in aδ-neighborhood ofsupp(a).

Remark 2.6. The statements in Remark 2.4 hold foruε(x) obained in Theorem 2.5 with-
out taking a subsequence.

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3 (dealing with Theorem 1.1 requires slight modifica-
tions). Since we deal with only positive solutions of (2.2), recalling Remark 2.4, we may
consider adiabatic profilesa(x) satisfyinga(x) ≤ a0(x) for all x ∈ I.

For the proof of Theorem 1.3, assumek ≥ 2 and that there exists an adiabatic profile
a(x) such that:

(a1) a(x) ≤ a0(x) for all x ∈ I anda(x) 6≡ a0(x).
(a2) supp(a) consists of exactlyk disjoint intervalsI1, . . . , Ik. For eachj ∈ {1, . . . , k},

Ij is of the form(α, β) (0 < α < β < 1), [0, β) (β ∈ (0, 1)), or (α, 1] (α ∈ (0, 1)).
(a3) There exists aδ > 0 such that
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(1) ForIj = (α, β) (0 < α < β < 1),

Vx(x) > 0 in (α − 2δ, α + 2δ),

Vx(x) < 0 in (β − 2δ, β + 2δ).

(2) ForIj = [0, β) (β ∈ (0, 1)),

Vx(x) < 0 in (β − 2δ, β + 2δ).

(3) ForIj = (α, 1] (α ∈ (0, 1)),

Vx(x) > 0 in (α − 2δ, α + 2δ).

Remark 3.1. RecallingA0(V ) is a strictly increasing function ofV , we have

(1) ForIj = (α, β) (0 < α < β < 1), V (x) > V (α) = V (β) for all x ∈ Ij .
(2) ForIj = [0, β) (0 < β < 1), V (x) > V (β) for all x ∈ Ij .
(3) ForIj = (α, 1] (0 < α < 1), V (x) > V (α) for all x ∈ Ij .

Under the assumption of Theorem 1.3, we can easily find an adiabatic profilea(x) such
that eachIj is a neighborhood of a local maximum ofV (x).

To prove Theorem 1.3, it suffices to show the following

Proposition 3.2. Leta(x) be an adiabatic profile given above and define

mj ≡

∫
Ij

1

T̃ (V (x), a(x))
dx (j = 1, . . . , k). (3.1)

Then there exists anε0 > 0 such that for anyε ∈ (0, ε0] and(Kj )
k
j=1 ⊂ N satisfying

1 ≤ Kj ≤
1

ε
mj (j = 1, . . . , k),

there exists a positive solutionuε(x) of (1.4)such thatuε(x) has exactlyKj interior peaks
in Nδ(Ij ) for j = 1, . . . , k and no peaks elsewhere.

From the above proposition, considering combinations of(K1, . . . , Kk), we can observe
that (1.4) has at least [m1/ε] × · · · × [mk/ε] positive solutions. Thus

lim inf
ε→0

εknε ≥ m1 · · · mk > 0.

We remark that under the assumption of Theorem 1.3 there exists an adiabatic profile
a(k)(x) satisfying (a1) and

(a2′) supp(a(k)) consists of exactlyk disjoint intervalsI1, . . . , Ik. For eachj ∈{1, . . . , k},
Ij has the form(α, β) (0 ≤ α < β ≤ 1), [0, β) (β ∈ (0, 1]), (α, 1] (α ∈ [0, 1)) or
[0, 1].
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(a4) There are no adiabatic profilesa(x) whose support has exactlyk disjoint intervals
and

a(x) ≤ a(k)(x) for all x ∈ I,

a(x0) < a(k)(x0) for somex0 ∈ I.

We call an adiabatic profile satisfying (a2′) and (a4) ak-minimal adiabatic profile.
We can easily see that there exists a sequence(a`)

∞

`=1 of adiabatic profiles such that

• a`(x) satisfies (a1)–(a3).
• a`(x) ≥ a(k)(x) for all x ∈ I,

• a`(x) → a(k)(x) as` → ∞.

Writing supp(a(k)) = I
(k)
1 ∪ · · · ∪ I

(k)
k and noting that supp(a`) ⊂ supp(a(k)), set

mj,` =

∫
I

(k)
j

1

T̃ (V (x), a`(x))
dx for ` ∈ N.

Then, repeating the previous argument, we can see that for each` ∈ N,

lim inf
ε→0

εknε ≥ m1,` · · · mk,`.

Sincemj,` →
∫
I

(k)
j

1
T̃ (V (x),a(k)(x))

dx, we have

lim inf
ε→0

εknε ≥

k∏
j=1

∫
I

(k)
j

1

T̃ (V (x), a(k)(x))
dx.

Thusc2(V ) in Theorem 1.3 is given explicitly by

c2(V ) =

k∏
j=1

∫
I

(k)
j

1

T̃ (V (x), a(k)(x))
dx. (3.2)

Remark 3.3. The constantc1(V ) in Theorem 1.1 is also represented by (3.2). Here
a(k)(x) is ak-minimal adiabatic profile whose support is a bounded subset ofR.

Proof of Proposition 3.2.We argue indirectly and suppose that there exist sequences
εn → 0 and(Kjn)

k
j=1 ⊂ N such that

1 ≤ Kjn ≤ mj/εn (j = 1, . . . , k)

and (1.4) withε = εn has no solutions with the following property:

• u(x) has exactlyKjn interior peaks inNδ(Ij ) for eachj = 1, . . . , k and no peaks
elsewhere.

Taking a subsequence if necessary, we may assume that

Kjn/εn → j̀ ∈ [0, mj ] asn → ∞.

For such(`1, . . . , `k) we have the following
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Proposition 3.4. Let I1 ∪ · · · ∪ Ik be a support of an adiabatic profilea(x) and let

j̀ ∈

[
0,

∫
Ij

1

T̃ (V (x), a(x))
dx

]
(j = 1, . . . , k).

Then for anyδ > 0 and for any sequence(K̄jε)
k
j=1 ⊂ N satisfying

εK̄jε → j̀ asε → 0,

there exists anε0 > 0 such that forε ∈ (0, ε0], (1.4) has a solutionuε(x) which has
exactlyK̄jε interior peaks inNδ(Ij ) for eachj but no peaks elsewhere. Moreover the
approximate adiabatic profileaε(x) corresponding touε(x) converges to an adiabatic
profile ā(x) after extracting a subsequence andā(x) satisfies

a(x) ≤ ā(x) ≤ a0(x) for all x ∈ I,∫
Ij

1

T̃ (V (x), ā(x))
dx = j̀ for j = 1, . . . , k.

If we set j̀ =
∫
Ij

(1/T̃ (V (x), a(x))) dx for j = 1, . . . , k, Theorem 2.5 follows from
Proposition 3.4. We will give a sketch of the proof of Proposition 3.4 in Section 5.

TakingK̄jε = Kjn in Proposition 3.4, we get a contradiction to our assumption that
(1.4) has no solutions with exactlyKjn interior peaks inNδ(Ij ), and this completes the
proof of Proposition 3.2. ut

Remark 3.5. In Propositions 3.2 and 3.4, if 0∈ supp(a) (1 ∈ supp(a), {0, 1} ⊂ supp(a)

respectively), then we can construct a positive solution with exactlyKj interior peaks in
Nδ(Ij ) and a peak at the boundary point 0 (a peak at 1, peaks at both 0 and 1, respectively).

Remark 3.6. The uniqueness of solutionsuε(x) obtained in Propositions 3.2 and 3.4 is
an important problem. If the solutions are unique for all(Kj )

k
j=1 andε small, we believe

that the following is true:
lim sup

ε→0
εk0+1nε = 0.

Herek0 is the number of local maxima ofV (x) in [0, 1].

4. Number of positive solutions with prescribed number of peaks

Let k be the number of local maxima ofV (x) in [0, 1] and leta(k)(x) be the corresponding
k-minimal adiabatic profile. From the proof it is clear that Theorem 1.3 estimates just the
number of solutions corresponding to adiabatic profiles which are less thana(k)(x). Such
solutions have at most(1/ε)

∫
I
(1/T̃ (V (x), a(k)(x))) dx peaks inI . We remark that there

are solutions with more peaks. In this section we study the number of such solutions.
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We use the following notation: for an adiabatic profilea(x), we set

p(a) =

∫
I

1

T̃ (V (x), a(x))
dx.

For 0 < ν1 < ν2 we also denote bỹnε(ν1, ν2) the number of positive solutions of (1.4)
which have no peaks at the boundary∂I and the number of interior peaks is between
(1/ε)ν1 and(1/ε)ν2.

With this notation, Theorem 1.3 shows

lim inf
ε→0

εkñε(0, p(a(k))) > 0.

Our next result is the following

Theorem 4.1. Assume that there exists an adiabatic profilea(x) whose support consists
of exactlỳ intervals. Then for anyδ > 0,

lim inf
ε→0

ε`ñε(p(a) − δ, p(a)) > 0.

Proof. Let δ > 0 be a given number and let supp(a) = J1 ∪ · · · ∪ J` (Ji ∩ Jj = ∅ for
i 6= j ). As in the proof of Theorem 1.3, we take another adiabatic profileā(x) such that

• ā(x) satisfies (a1)–(a3).
• supp(ā)—denoted byJ ′

1 ∪ · · · ∪ J ′

`—is slightly smaller than supp(a) and

p(a) − δ/2 < p(ā) < p(a). (4.1)

We can adapt the previous argument toā(x). We remark that we may restrict the number
of peaks inJ ′

i between

1

ε

(∫
Ji

1

T̃ (V (x), ā(x))
dx −

δ

2`

)
and

1

ε

∫
Ji

1

T̃ (V (x), ā(x))
dx,

thus we have

lim inf
ε→0

ε`ñε(p(ā) − δ/2, p(ā)) ≥

(
δ

2`

)`

> 0.

By (4.1), we havẽnε(p(a)−δ, p(a)) ≥ ñε(p(ā)−δ/2, p(ā)) and we have the conclusion
of Theorem 4.1. ut

In the following example we say for̀ > 2 thata(x) is an`-minimal adiabatic profileif
a(x) satisfies (a1), (a2′) and (a4) withk = `.

Example 4.2. We consider the following situation:V ∈ C1([0, 1]) has exactly five criti-
cal points 0< s1 < t1 < s2 < t2 < s3 < 1 ands1, s2, s3 are local maxima andt1, t2 are
local minima ofV (x). We also assume that

V (0) = V (1) < V (t2) < V (t1).
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We remark that in this situation we can find unique pointsτ11 ∈ (0, s1), τ12 ∈ (s2, t2) and
τ21 ∈ (0, τ11), τ22 ∈ (s3, 1) such that

V (τ11) = V (t1) = V (τ12), V (τ21) = V (t2) = V (τ22).

We can easily see that adiabatic profilesa(2)(x), a(3)(x) satisfying

supp(a(2)) = (τ21, t2) ∪ (t2, τ22), supp(a(3)) = (τ11, t1) ∪ (t1, τ12) ∪ (t2, τ22)

are 2-minimal and 3-minimal respectively. We also havea(2)(x) ≤ a(3)(x) for all x ∈ I ,
a(2)(x) 6≡ a(3)(x) andp(a(2)) > p(a(3)). It is also clear that for any 0< ν3 ≤ p(a(3)) <

ν2 ≤ p(a(2)) there exist adiabatic profilesa3(x) anda2(x) such that

p(a3) = ν3 and p(a2) = ν2

and whose supports consist of exactly three and two intervals respectively. Thus by The-
orem 4.1 we have

lim inf
ε→0

ε3ñε(ν3 − δ, ν3) > 0, lim inf
ε→0

ε2ñε(ν2 − δ, ν2) > 0

for all 0 < ν3 ≤ p(a(3)) < ν2 ≤ p(a(2)) andδ > 0.

Remark 4.3. Formallya(1)(x) ≡ 0 can be regarded as a 1-minimal adiabatic profile and
T̃ (V (x), 0) = π/

√
(p − 1)V (x). Settingp(a(1)) = (2/π)

∫
I

√
(p − 1)V (x) dx, we also

have
lim inf

ε→0
εñε(ν1 − δ, ν1) > 0

for all p(a(2)) < ν1 ≤ p(a(1)) andδ > 0.

5. Existence: proof of Proposition 3.4

This section is devoted to the proof of Proposition 3.4. For simplicity, we considerI =

(0, 1) and we assume that the adiabatic profilea(x) has support supp(a) = (α1, β1) ∪

(α2, β2) ⊂ (0, 1). Fix δ > 0 small such that 0< α1 − δ, β1 + δ < α2 − δ, β2 + δ < 1
andV ′(x) > 0 in (αi − δ, αi + δ), V ′(x) < 0 in (βi − δ, βi + δ) for i = 1, 2.

We want to show that ifεK̄jε → j̀ asε → 0 for j = 1, 2 with

0 ≤ lj ≤

∫ βj

αj

1

T̃ (V (x), a(x))
dx,

then, for sufficiently smallε > 0, we can find a family(uε) of solutions of (2.2) which
has exactlyK̄jε peaks in(αj − δ, βj + δ) for j = 1, 2.

We consider an adiabatic profilēa(x) such thata(x) ≤ ā(x) ≤ a0(x) for all x ∈ I

and ∫ βj

αj

1

T̃ (V (x), ā(x))
dx = j̀ for j = 1, 2. (5.1)
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This result will be proved by maximizing a finite-dimensional functional of Nehari
type. In the proof we will have to know precisely the behavior of the oscillatory solutions
of (2.2). Assume we have functionsun : [an, bn] → R satisfying (2.2) forε = εn and
I = [an, bn], whereεn → 0 asn → ∞. Suppose thatun is positive,an andbn are local
minima ofun, limn→∞ an = ā and limn→∞ bn = b̄ with ā < b̄.

Let an < y0
n < y1

n < · · · < y
sn−1
n < y

sn
n < bn be the local maximum points ofun in

[an, bn] and assume thatsn → ∞ asn → ∞. Considering a subsequence, if necessary,
we define

α = lim
n→∞

y0
n and β = lim

n→∞
ysn
n .

The following proposition, corresponding to Proposition 4.1 of [10], is crucial to prove
our result.

Proposition 5.1. AssumeV ′(x) is positive in [ā, b̄]. Then for any interval[x1, x2]
⊂ (α, β) there existsn0 such that for everyn ≥ n0 the solutionun has at least one
maximum point and one minimum point in[x1, x2]. Moreover:

(i) If α > ā, then the approximate adiabatic profileaεn(y
0
n) tends toa0(α).

(ii) If y
in
n → x̄ ∈ (α, b̄], thenlim supn→∞ |aεn(y

in
n )| < a0(x̄).

(iii) b̄ = β.

An analogous statement holds ifV ′(x) is negative in[ā, b̄].

We start by defining an auxiliary adiabatic profileã such that supp(ã) = (α̃1, β̃1)

∪ (α̃2, β̃2) and

supp(a) ⊂ supp(ã) ⊂ (α1 − δ/2, β1 + δ/2) ∪ (α2 − δ/2, β2 + δ/2).

Forx, y ∈ I we define

d(x, y) =
1

ε

∫ y

x

2

T̃ (V (x), ã(x))
dx.

SetN1
ε = 2K̄1ε, N2

ε = 2K̄2ε, Nε = N1
ε + N2

ε − 1 andx0 = 0, xNε+1 = 1, and define the
domain1ε ⊂ RNε as

1ε = {(x1, . . . , xNε ); x0 ≤ x1 ≤ · · · ≤ xNε+1,

d(xi, xi+1) ≥ 1 for i = 0, . . . , Nε,

xN1
ε −1 ≤ β1 + δ/2, xN1

ε +1 ≥ α2 − δ/2}. (5.2)

ForX = (x1, . . . , xNε ) ∈ 1ε we letui : [xi, xi+1] → R be a solution of

ε2u′′

i − f (x, ui) = 0, u′

i(xi) = 0 = u′

i(xi+1),

(−1)iu′

i > 0, ui > 0 in [xi, xi+1],
(5.3)

for i = 0, . . . , Nε. Sinced(xi, xi+1) ≥ 1, by Theorem 5.1 of [10], the functionui is
well defined, andui as a function of(xi, xi+1) is of classC1. We define the functional
gε : 1ε → R as

gε(X) =

Nε∑
i=0

∫ xi+1

xi

Eε(x, ui(x)) dx,
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where

Eε(x, u) = ε2u′2(x)

2
+ V (x)

u2

2
−

up+1

p + 1
.

The functionalgε is of classC1 and it is easy to check that

∂gε

∂xi

(X) = F(xi, ui−1(xi)) − F(xi, ui(xi)), 1 ≤ i ≤ Nε,

with F(x, u) = V (x)u2

2 −
up+1

p+1 . Thus, if∇gε(X) = 0 then the functionuε, defined as

uε(x) = ui(x), x ∈ [xi, xi+1], i = 0, . . . , Nε, (5.4)

is a solution of (2.2). In view of these considerations, Proposition 3.4 will be proved if we
show that the maximum ofgε is achieved in Int(1ε).

Proof of Proposition 3.4.We proceed by contradiction. Suppose there exist sequences
εn → 0 andXn = (xn

1 , . . . , xn
Nεn ) ∈ ∂1εn such thatgεn(Xn) ≥ gεn(X) for all X ∈ 1εn .

For simplicity we writexi = xn
i , 1n = 1εn , gn = gεn , N

j
n = N

j
εn for j = 1, 2, and

Nn = Nεn . We letâ be an adiabatic profile with supp(â) = (α̂1, β̂1) ∪ (α̂2, β̂2) and such
thatα̃j < α̂j < αj , βj < β̂j < β̃j for j = 1, 2.

For j = 1, 2 we defineBj
n = {i; [xi, xi+1] ∩ (α̂j , β̂j ) 6= ∅}.

Step 1. For someκ > 0 there existj1
n ∈ B1

n andj2
n ∈ B2

n such that up to a subsequence,

lim
n→∞

d(xj k
n
, xj k

n+1) > 1 + κ for k = 1, 2. (5.5)

Suppose that (5.5) does not hold fork = 1. Then for some sequenceγn → 0 we have

|B1
n| =

1 + γn

εn

∫ β̂1

α̂1

2

T̃ (V (x), ã(x))
dx,

which contradictsB1
n ⊂ {0, . . . , N1

n }.
We writeB1

n = {i1
1, . . . , i1

l }, B2
n = {i2

1, . . . , i2
l }.

Step 2. The functionuεn defined in(5.4)is a solution of(2.2)in (xi1
1
, xi1

l +1)∪(xi2
1
, xi2

l +1).

Suppose thatuεn is not a solution in(xi1
1
, xi1

l
). Then there is a sequence of integerskn

so thati1
1 < kn ≤ j1

n (or j1
n + 1 ≤ kn < i1

l + 1) such that∂gn(Xn)/∂xkn 6= 0 and
uεn is a solution of (2.2) in(xkn , xj1

n+1) (or in (xj1
n
, xkn)). Note that by Theorem 2.3,

d(xkn , xkn+1) > 1 + κ̄ for someκ̄ > 0. We have to analyze two cases:
(a) If for a subsequenced(xkn−1, xkn) > 1 for all n, then we can choose a point

Yn = (y1, . . . , yNε ) with yi = xi if i 6= kn andykn close toxkn such thatYn ∈ 1n and
∂gn(Xn)

∂xkn
(ykn − xkn) > 0, contradicting the maximality ofXn.

(b) If for a subsequenced(xkn−1, xkn) = 1 for all n, then after a simple computation
we can prove that forn large,

∂gn(Xn)

∂xkn

= F(xkn , ukn−1(xkn)) − F(xkn , ukn(xkn)) > 0,

thus, constructing aYn as above we contradict the maximality ofXn.
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Therefore,uεn is a solution of (2.2) in(xi1
1
, xi1

l
). Similarly, we can conclude thatuεn

is a solution in(xi2
1
, xi2

l
).

Step 3. Up to a subsequence, the appropriate adiabatic profilesa1
εn

, a2
εn

, defined in
(xi1

1
, xi1

l
) and(xi2

1
, xi2

l
) respectively, converge toa(x) with support in(α1, β1) ∪ (α2, β2)

with α̂k < αk, βk < β̂k for k = 1, 2.

From Remark 2.4, we obtain∫ βk

αk

1

T̃ (V (x), a(x))
dx = lim

n→∞
εn|B

k
n | ≤

∫ βk

αk

1

T̃ (V (x), ã(x))
dx,

for k = 1, 2. Using this inequality and proceeding as above, we can easily see that
α̂k < αk, βk < α̂k.

Step 4. xi1
1
, xi1

l +1, xi2
1
, xi2

l +1 are all local minima ofuεn .

Suppose thatxi1
l +1 is a maximum. Theni1

l + 1 < N1
n and sinceβ̃1 > β̂1 we can easily

prove thatd(xi1
l
, xi1

l +1) > 1. We analyze three possible cases:

(a) For a subsequence,d(xi1
l +1, xi1

l +2) > 1.

(b) For a subsequence,d(xi1
l +1, xi1

l +2) = 1 andxil+2 → x̄ < β̃1.

(c) For a subsequence,d(xi1
l +1, xi1

l +2) = 1 andxil+2 → x̄ ≥ β̃1.

For (a) we can use the same argument as in Step 2(a) to prove thatuεn defined as in
(5.4) is a solution of (2.2) in(xi1

1
, xi1

l +2), but this cannot happen by Proposition 5.1. To
prove that (b) does not hold, we can proceed as in Step 2(b).

Suppose that (c) holds. In this casexi1
l +1 → β̃1, and forn large,xi1

l +1 − xi1
l

> c

for some positive and fixedc. We defineYn = (y1, . . . ., yNε ) ∈ 1n by settingyi = xi if
i 6= i1

l +1 andyi1
l +1 = xi1

l +1−ζ for ζ > 0 small. If we rescale we obtaing(Xn)−g(Yn) =

εnIn with In → I given by

I = 2
∫

∞

0
(|z′

|
2/2 + F(β̃1, z)) dx − 2

∫
∞

0
(|w′

|
2/2 + F(β̃1 − ζ, w)) dx,

wherez andw satisfy

z′′
− V (β̃1)z + zp

= 0, z′(0) = 0, z(∞) = 0,

w′′
− V (β̃1 − ζ )w + wp

= 0, w′(0) = 0, w(∞) = 0.

It is easy to check that

I = C(V (β̃1)
p+3

2(p−1) − V (β̃1 − ζ )
p+3

2(p−1) ) < 0. (5.6)

This contradicts the maximality ofXn.
All the remaining cases can be handled in the same way.
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Step 5. i1
1 = 0, i1

l + 1 = i2
1 = N1

n , i2
l + 1 = Nn + 1.

We start by proving thati1
l + 1 = N1

n . If this is not the case theni1
l + 2 ≤ N1

n , and since
xi1

l
is a minimum we havexi1

l +1 − xi1
l

> c for some fixedc > 0. If d(xi1
l +1, xi1

l +2) > 1,
then arguing as in Step 2(a), we find thatuεn as defined by (5.4) is a solution of (2.2) in
(xi1

1
, xi1

l +2) with an isolated peak. This cannot happen by Proposition 5.1.

If d(xi1
l +1, xi1

l +2) = 1 andxi1
l +2 → x̄ < β̃1 we can proceed as in Step 2(b) to

reach a contradiction. Whend(xi1
l +1, xi1

l +2) = 1 andxi1
l +2 → x̄ ≥ β̃1 then we define

Yn = (y1, . . . ., yNε ) ∈ 1n asyi = xi if i 6= i1
l + 1, i1

l + 2 andyi1
l +1 = xi1

l +1 − ζ ,
yi1

l +2 = xi1
l +2 − ζ for ζ > 0 small. Then as before we haveg(Xn) − g(Yn) = εnIn with

In → I given by

I = 2
∫

∞

0
(|z′

|
2/2 + F(β̃1, z)) dx − 2

∫
∞

0
(|w′

|
2/2 + F(β̃1 − ζ, w)) dx,

with z, w as in Step 4(c). Thus, by (5.6) we conclude thatg(Yn) > g(Xn), which contra-
dicts the maximality ofXn.

All the other cases can be argued similarly.

Step 6. xN1
n−1 < β1 + δ/2, xN1

n+1 > α2 + δ/2 andd(xN1
n±1, xN1

n
) > 1.

By the arguments given above we have shown thatuεn is a solution in [x0, xN1
n
)

∪ (xN1
n
, xNn+1] satisfying u′

εn
(xN1

n+1) = 0. Therefore, by Proposition 5.1, Theorem

2.3 and Remark 2.4 we havexN1
n−1 → β̄1 < β̃1 andxN1

n+1 → ᾱ2 > α̃2. Therefore,
d(xN1

n−1, xN1
n
) > 1 andd(xN1

n
, xN1

n+1) > 1. This concludes the proof.
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