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Abstract. We study the existence, nonexistence and multiplicity of positive solutions for the family
of problems—Au = fy(x,u),u € H&(Q), whereQ is a bounded domain iRY, N > 3andx > 0

is a parameter. The results include the well-known nonlinearities of the Ambrosetti-Brezis—Cerami
type in a more general form, namely:(x)u? + b(x)uP, where 0< ¢ < 1 < p < 2* — 1.

The coefficientz(x) is assumed to be nonnegative byt) is allowed to change sign, even in the
critical case. The notions of local superlinearity and local sublinearity introduced in [9] are essential
in this more general framework. The techniques used in the proofs are lower and upper solutions
and variational methods.
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1. Introduction

This paper is concerned with the existence, nonexistence and multiplicity of solutions for
the family of problems

—Au= fi(x,u) ing,

u>0 inQ, (1.1)

u=0 onos2,

where<2 is a bounded domain iRY, N > 3, andx > 0 is a parameter. An important
feature of this family is its monotone dependenceé.pie. f; (x, s) < fir(x,s)if A < 1.
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There are several motivations to our study. One of them comes from the following
example:

—Au = ra(x)u? +b(x)u? inQ,
u>0 inQ, 1.2)
u=~0 onos,

where 0< ¢ < 1 < p. This example was extensively studied [in [1] whe@) = 1,
b(x) = 1; it was in particular shown there thatjpf < 2* — 1 where 2 = 2N /(N — 2),
then there exists 0< A < oo such that[(T]2) has at least two solutions for< A,
at least one solution fak = A, and no solution foi. > A. In this paper we extend
this result of [1] to the case of variable coefficients) andb(x), with a(x) > 0 but
b(x) possibly indefinite. This is partly carried out along the lines of our previous Wwork [9]
where the notions of local superlinearity and local sublinearity were introduced. The main
difference here with respect {0 [9], as far as exaniplg (1.2) is concerned, is the assumption
a(x) > 0in Q. This allows in particular the use of the strong maximum principle. We
emphasize thak(x) in (I.3) is allowed to change sign even in the critical case where
p = 2* — 1. As observed in |5, p. 454], critical problems become more delicate in the
presence of variable coefficients. In this respect, our basic assumptiogxpabove in
the critical case requires thatx) remains equal or sufficiently close 6|~ on a small
ball (cf. condition(b) in Theorenj 42).

Our results relative td (1].1) apply as well to several situations rather different from
example[(Z.R). We can handle for instance a problem like

—Au=ric(x)(u+ 1P inQ,
u=>0 inQ, (1.3)
u=0 onoag,

where 1< p < 2* — 1 andc(x) > 0. This problem was studied inl[5] and [11] when
c(x) = 1.

Our present approach to obtain multiple solution$ to] (1.1) is different from that in [9].
We follow here the classical method of obtaining a first solution via upper-lower solutions
and a second one via the mountain pass theorem HiheersusC! minimization result
of [6] plays an important role in this approach. In the critical case we use some of the
techniques developed inl[5] arid [1] to handle the (PS) condition.

Our results relative td (1]1) are stated in detail in Section 2 and their proofs given in
Section 3. Their application to problenis (1.2) gnd](1.3) is dealt with in Section 4.

2. Statement of results

In this section we state our results relative[to](1.1), first for a nonlinearity of arbitrary
growth, then in the subcritical case, and finally in the critical case.

Let Q be a smooth bounded domainlk¥, N > 3. Our general assumption on the
family fi (x, s) is:
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(H) Foreach. > 0, f; : 2 x [0, o0) — R is a Caratkodory function with the property
that for anysg > 0O, there exists a constaAtsuch that

|falx, ) <A

fora.ex € Q and alls € [0, sg]. Moreover if» < A/, thenf, (x, s) < fi(x,s) for
aex € Qandalls > 0.

The following assumption concerns the behavior fafx, s) nears = 0; it implies
fr(x,0) > 0 and, as assumptiai ), will be assumed throughout the paper:

(Ho) For each. > 0 and eachqg > 0, there exist® > 0 such that
f)»(xv S) 2 _BS
fora.e.x € Qandalls € [0, so].

We will always understand thaf, (x, s) has been extended for < 0 by putting
filx,s) = fix,0)forxA > 0,a.ex € Qands < 0.

Observe that, at this stage,if € Hol(Q) N L*°(2) satisfies the equatior Au =
fu(x,u) in the Hol(Q) sense, therfH) and the standard regularity theory imply €
W27 (Q) for anyr < oo and sou € C1(2). Moreoveru > 0 (in fact, take—u~— as a
test function in the equation and ugg(x, 0) > 0); in addition, we hava > 0in Q and
du/dv < 00ona if u # 0O (this follows from(Hp) and the strong maximum principle).
Herev denotes the exterior normal. Observe also that the associated functional

1
Li(u) == E/QIWIZ—fQFA(x,u),

whereF; (x, s) = fg frlx, 1) dt, is well defined fou € Hol(sz) N L*®(2).
The following two assumptions will be used in our first result:

(H,) There exist. > 0 and a nondecreasing functigrwith inf{g(s)/s : s > 0} <
1/|lellco Such that

fulx,s) = g(s)

fora.e.x € Q and alls > 0; heree is the solution of-Ae = 1inQ,e = 0on
02, and| |« denotes the.*°(22) norm.

(Hg,) Foranyi > 0 there exists a smooth subdom&i, s; > 0 andf; > A1(€21) such
that

filx,s) = 015

fora.e.x € Q1 and alls € [0, s1]; hereA1(21) denotes the principal eigenvalue
of —A on H}(Q).

Here are some comments on the above two assumptions. Assumptipis a rather

standard condition to guarantee the existence of an upper solution (cf._e.g. [10]). This
condition is motivated by the fact that an upper solution for an equation of the type
—Au = f(u) can be obtained if one has an upper solution for another equation of the
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form —Au = g(u) with f(s) < g(s) for all s. Assumption fig,) is a local sublinearity
condition at 0, which is satisfied for instance if the following stronger condition holds:

s—0 N
s>0

)

uniformly for x € ©1. Assumption(Hg,) is used to construct a lower solution.

Theorem 2.1 (Existence of one solution without growth condition)Jnder the assump-
tions(H), (Ho), (H,) and(Hg,), there exist® < A < oo such that problenfI. 1) has at
least one solutiom (with I (1) < 0) for 0 < A < A and no solution foi > A.

We remark that in the present generalitycan beco. One trivial example is provided by
a family as above such that, for each- 0, there exista34, > 0 with f; (x, M;) < 0 for
a.e.x. In this case the constaM; is an upper solution.

Theorem 2.2 (Nonexistence fok large) In addition to the hypotheses of Theoigr,
assume:

(Hg) There exist a function with 2(A) — oo asA — oo, a smooth subdomaift and
m e L%®(Q) with /i > 0, @ # 0, such that

flx,s) = h(A)m(x)s
forall » > 0,a.e.x € Qandalls > 0.

ThenA < oo.

Assumption(Hg) can be looked at as a localized version of the trivial sufficient condition
of nonexistence for- Au = I(u) in Q,u > 0in Q, u = 0 0Nd2, namely that infi(s)/s :
s > 0} > 11(R).

Due to the absence of growth condition, we have up to now defined a solution as a
function in H&(Q) N L*° (). However, if the following growth condition with respect to
s in the nonlinearityf; (x, s) is assumed, then one can speak oH%r(Q) solution in the
usual sense:

(G) ForanyF, R] C {» > 0}, there existl1, d> ando < 2* — 1 such that
| fo.(x, 8)| < d1+ das®

forall » € [r, R], a.e.x € Qand alls > 0.

If o < 2* —1in(G), then a standard bootstrap argument gives thatua&yHOl(Sz)
which solves—Au = f; (x, u) belongs tow?7 (Q) for anyr < oo and consequently to
C1(). This conclusion also holds é in (G) is equal to 2 — 1, by using a result of |4].
Condition(G) (with o < 2* — 1) also implies that the functiond] (1) is well defined for
u € H}(Q).

Aiming now to prove the existence of a solution for= A, we will assume the
following condition:
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(AR); Forany |, R] C {» > 0}, there exist > 2, p < 2,d > 0 andsg > 0 such that
OF;.(x,s) < sfi(x,s) +ds?

forall » € [r, R], a.e.x € Q and alls > sq.

This condition(AR), is a weakening of the classical superquadraticity condition of
Ambrosetti—-Rabinowitz [2]. It was introduced inl[9] in order to handle indefinite non-
linearities.

Theorem 2.3 (Existence of one solution for = A). In addition to the hypotheses of
Theorenf2.2, assumegG), (AR), and the continuity offy (x, s) with respect tax (for
a.e.x and uniformly fors bounded). Then probled.T]) has at least one solutian (with
Ly(u) <0)forr = A.

Remark. The uniformity with respect ta. € [r, R] in (G) and(AR), is used only in
Theoren| 2.8 to deal with the limiting case= A. It is not needed in the following
Theorem§ 2)4=2]6, wheke< A will be fixed.

Now we discuss multiplicity for subcritical families, namely the ones satisfyy
with o < 2* — 1. Our purpose is to prove the existence of at least two solutions when
A < A. For that matter we have to strengthen a little bit some of the hypotheses of
Theorenj 2.]L. ConditionHo) is replaced by

(Hp)' For anyx > 0 and anyg > 0, there exist®3 > 0 such that for a.ex € Q,
s+ fi(x,s)+ Bs
is nondecreasing on [8g]; moreoverf; (x,0) > Oforall» > 0 and a.ex € Q.

Condition(Hp)' is a classical requirement when dealing with upper-lower solutions. The
monotonicity of the familyf;, is also assumed to be strict in the following sense:

(M) Foranyx < 2’ and anyu € C3(Q) withu > 0in €,
Sl u(x)) =# fir(x, u(x)).
We will also assume:
(Hq,) Foranyi > 0, there exist a subdomasip, s> andd, > 0 such that
Fi(x,s) > bas°
fora.e.x € Qp and alls > s».

Condition(Hg,) is implied by a local superlinearity condition &t of the form

lim flx,s) — s

§—>00 Ky

uniformly for x € Q5. Itis used in conjunction witiA R), to derive the geometry of the
mountain pass.
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Theorem 2.4 (Existence of a second solution in the subcritical casa)addition to the
hypotheses of Theoré2nl, assume&G) with o < 2* — 1 as well as(AR)4, (Ho)', (M)
and(Hg,). Then problenfL.d)) has at least two solutions v for 0 < A < A, withu < v
in Q, du/dv > dv/dv ona and I (u) < O.

Finally, we consider multiplicity for critical families. This means thfatx, s) behaves at
oo like b(x)s? with p = 2* — 1. We thus write the functiorf; as

fi(x,8) = ha(x,5) + b(x)s? (2.2)

and we distinguish two cases: (i), satisfies(G) with o < 1, b(x) may change sign,
(i) hy, satisfiegG) witho < 2* —1,b(x) > 0in Q.
We first deal with case (i).

Theorem 2.5 (Existence of a second solution in the critical case withc 1). In ad-
dition to the hypotheses of Theor assume thaff; (x, s) satisfies(Hp)" and (M).
Suppose also thaf, (x, s) can be written as iff2. ) with p = 2* — 1, h, (x, s) satisfying
(G) witho < 1, andh; (x, s) nondecreasing with respect tdfor any A > 0 and a.ewx.
Suppose also thdt(x) in (2.1)is # 0, belongs ta.*°(2) and satisfies

(b) for somexg € 2, some ballB; C Q aroundxg, some constan¥ and some, with
y > 2*whenN > 5,y > 2* whenN =4, y > 3/5whenN = 3, one has

0 < |Iblloc — b(x) < M|x — xol”

for a.e.x € By. (Recall that)| ||, denotes th&.*°(2) norm.)

Then the conclusion of Theorgh# holds.

Assumption(d) implies |67 |lco < |17 ||0o, With in addition some limitation on the way
b(x) approache$§b| . It trivially holds if b(x) = |||l @.e. on a small ball.
We now deal with the critical case (ii).

Theorem 2.6 (Existence of a second solution in the critical case witk: 2* — 1). In
addition to the hypotheses of Theo assume thaf; (x, s) satisfies Hp) and (M).
Suppose also thaf, (x, s) can be written as iff2. Q) with p = 2* — 1, &, (x, s) satisfying
(G) witho < 2* — 1, h; (x, s) nondecreasing with respect tdor anyA > 0 and a.e.x,
and h, (x, s) satisfying(AR),. Suppose thab in (2.1)is # 0, > 0in €, belongs to
L (2) and satisfies conditioth) above. Then the conclusion of Theof2@holds.

In Theoren] 2.6/, (x, s) is allowed any subcritical growth, at the expense of assuming
(AR), for hy (x, s) andb(x) > 0.
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3. Proofs

This section is devoted to the proofs of all theorems stated above. It will be convenient
from now on to denotg (1].1) as (1,1)

Proof of Theorer 2]1We start by proving the existence of an upper solution of {1.1)
for the value ofa provided by(H,). The construction is inspired frornl[3] (see al56 [1],
[10]). One takes the solutionof —Ae = 1in 2, ¢ = 0 on9d2. With » andg given by
(H,), there existsyf > 0 such that

1/llelloo = g(Mlellco)/ (M lelloo)

and so one has
—A(Me) =M > g(M|le|loo) = g(Me) = fi(x, Me).

This shows thab/e is a classical upper solution ¢f.1);,.

We now construct a lower solution for (1,1)y using the subdomaif24 provided by
(Hgq,). Denote byy; the positive principal eigenfunction efA on H&(Ql). Extendg,
by 0 onQ2 \ Q1; the extended function, still denoted by, belongs toHOl(Q) N L®(R).
One then argues as in|[9, pp. 464—465] to show that fer0 sufficiently smallggs is a
weak lower solution of (1.})which satisfieggp; < Me in Q.

It follows that Theorem 2.4 of [13] can be applied; it yields the existence of a solution
u e H&(Q) N L*°(2) of (1.1), for the value ofi provided by(H,). So at this stage we
have proved that

A = supAx > 0: (1.1), has a solutioh> 0.

It remains to show t_hat for each<6_)» < A, (1.1), has a solutiom with I, (u) < 0.
Let0 < A < A and taker such thak < 1 < A and (1.1} has a solutiom; this is clearly
possible by the definition ak. One has, by the monotonicity of the famify,

—Au = fr(x,u) > fi(x,u),

which shows thak is an upper solution for (1.1) A previous argument involving the
subdomairt2; from (Hg,) shows that foe > 0 sufficiently smallgg is a weak lower
solution of (1.1) which satisfiez¢1 < u in Q. Theorem 2.4 from [13] then yields the
existence of a solutiong € Hol(Q) N L () of (1.1), which satisfies

I, (o) = min{L,(u) : u € HX(R) andegy < u < u}. (3.1)

Since by(Hg,),

2
I
Li(ep1) = E/ﬂlvwllz — /Q Fy(x,e91) <0 (3.2)

for ¢ sufficiently small (so thatg; < s1), one deduce$, (ug) < 0. This completes the
proof of Theoren 2]1. o
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Proof of Theorerp 2]2We have to prove that for sufficiently large, (1.3) has no solu-
tion. The subdomai provided by(Hg) will be used here. Suppose that (3. Bdmits

a solutionu € H&(Q) N L*°(£2). Denoting byp the positive eigenfunction associated to
the principal eigenvalug: (7, ) of —A on H&(Q) for the weightm and extending by
0on\ €, one argues as i[9, p. 466] to get

/qu;:/ u8—¢+/ u(—AQp) 5,\1(;;1,52)/ mug. (3.3)
Q an Ov 9 ?)

On the other hand, byH),
/VuV¢ =/ filx, w)@ zh(x)/~ mug. (3.4)
Q Q Q

Since [ mug is > 0, one deduces froni (3.3) and (3.4) thak) < 110w, Q). The
conclusion follows sincé (1) — oo asA — oo. O

Proof of Theorenf 2|]3We have to prove that (1.1)has at least one solutian with
I, (u) < 0forx = A. The continuity off; with respect to. as well as the fact thaG)
and(AR), hold uniformly fori e [r, R]will be used here. Lety — Awith0 < A < A
andi increasing, and let; be a solution of (1.3) with 7 (uz) < O.

We first show that the sequence;) remains bounded irH()l(Q). Indeed, using
I, (ux) < 0and(AR),4, one obtains

0
Sl = [ wnp o <d [ f v
Q Q

for some constanty, where||v|| denotes [, |Vv[»)Y/2. But [o, u fo, (x, ux) = llugl|? by
(1.1),, and consequently

0
(5 - 1>||Mk||2 < callugll” + c1

for some constanty. This implies the desired bound singe- 2 andp < 2.

Bootstrapping that bound usin@r), one sees in particular that for a subsequence,
up —> uin Hol(sz) N C(RQ). The bootstrapping here is the standard one when2* — 1,
and is based on [4] (see al$o [7]) when= 2* — 1.

Clearlyu solves—Au = fa(x,u) in Q,u > 0in Q andu = 0 ond2, and one has
Ix(u) < 0. It remains to see that = 0. Assume by contradictiom = 0. We will use
(Hgq,) for & = Aq, the first element of the increasing sequehge_et as before2, be the
corresponding subdomain agd the positive eigenfunction associated to the principal
eigenvaluer,(Q1) of —A on H}(Q1). We have

/VMkV<P1=/ ka(xyuk)fplif fxl(x,uk)mZ@l/ UrpL (3.5)
Q (o2 Q1 Q1
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for k sufficiently Iargg (so that O< ur(x) < s1 for x € Q1, which is possible since
ur — 0 uniformly on2). On the other hand,

91
/ VurVor =f ug— +/ ur(—Ap1) < 21(Q1) | wurer, (3.6)
o aQr  Ov Q1 Q1

and a contradiction follows fronj (3.5], (3.6) singe> 11(21) andfQl urgpyr > 0. This
completes the proof of Theordm P.3. o

Proof of Theoreri 2]4We have to prove the existence of a second solution of (fot)
each O< A < A. Fix such a\.. Proceeding exactly as at the end of the proof of Theorem
above, introducing, # and considering the solutiam of (1.1), constructed there,
we start by showing that

u<ug<u Iing, (3.7)
du/dv > dug/dv > du/dv  0ONILQ, (3.8)

whereu denotes i, with ¢1 a positive principal eigenfunction 6fA on Hol(szl) (ex-
tended by 0 outsid®;).

The inequalities of (3]7)[ (3 8) involving andug are obtained in the following way.
Sinceu is the extension by 0 of® \ 1 of aCcl,(ﬁl) function and sinceyg is a solution,
these inequalities clearly hold @b\ €21 and ond Q2 \ 921 respectively. On the other hand
u % ug in Q1; moreover, usingHp)', one gets for a suitablB,

—A(uo —u) > filx,ug) — falx,u) > —B(ug—u) 0NQq,
uop—u>0 ong;.

Consequently, by the strong maximum principle;—u > 0in Q1 andd(ug—u)/dv < 0
on 9Q21. The proof of the inequalities if (3.7}, (3.8) involviag andu is simpler since
both functions belong td&(ﬁ); the fact thatg # u in  here follows from(M).

It follows from (3-7) and[(3B) thatu € H}(Q) : u < u < u} contains aC3()
neighborhood ofig and consequently, by (3.1)¢ is a local minimizer off;, on C%(ﬁ).
Theorem 1 ofi[6] then shows thag is also a local minimizer of;, on H&(Q) (assumption
(G), witho < 2* — 1, is used here).

The second solution will be constructed in the fomm+ w whereug is the first
solution above and satisfies

—Aw =g, (x,w) inQ,
w#0 inQ, (3.9
w=0 onog,

whereg; (x, s) := fi.(x, uo(x) +s7) — fo(x, uo(x)). This is a device already considered
in [I] for @.2) with a(x) = b(x) = 1. Clearly any solutionw of (3.9) is> 0 (in fact,
multiply by —w~ and conclude), and so, by the strong maximum principle @#s)’,

w satisfiesw > 0in Q anddw/dv < 0 ond2. Consequentlyyp + w will be a second
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solution of (1.1) which fulfills the requirements of Theorgm P.4. Writidg, (x, s) =
fo 81(x, 1) dt and

Ji(w) = }/ |Vw|2—/ G (x, w), (3.10)
2Jq Q

we are thus led to look for a nonzero critical pointffon Hol(Q).
One easily verifies, using

Gi(x,8) = Fa(x,uo(x) +s%) = Fa(x, uo(x)) = fa(x, uo(x))s™

and the fact thatq solves(1.1),, that forw € H}(Q),
1
Ji(w) = Li(uo + wh) — L (uo) + Enw*n? (3.11)

It follows from (3:13) that O is a local minimizer of, on Hol(Q), i.e., for some > 0,
S (0) < Jr(w) (3.12)

for all w € B(0, r), the ball of center 0 and radiusn Hol(sz).
Assumption(G) with o < 2*—1 and(AR), imply thatl, satisfies the (PS) condition
on H&(Q), as shown in[[9, p. 460]. On the other hand, one easily verifies that i§ a
(PS) sequence fak, at levelc, then|w, || — 0 anduo + w,j is a (PS) sequence féy at
levelc + I, (up). It follows thatJ, satisfies the (PS) condition cﬁﬁ(Q).
Now comes an alternative connected wjth (8.12). Either there exigt$3(0, r) with
w # 0 andJ,(w) = 0, or the strict inequality holds if (3.12) for all € B(O0, r) with
w # 0. In the first case thig is a nonzero local minimizer faf, and so a critical point
of J,, and the proof is finished. In the second case, Theorem 5.10 from [8] applies to
guarantee that for eaeh> 0 sufficiently small,

J1(0) < inf(Js(w) : w € HF(Q) and|w]| = r}, (3.13)

i.e. there is a “mountain range” around 0. We aim at applying the mountain pass theorem.
For that purpose we look for some € H(}(Q) such that/, (fup) — —oo ast — oo.
Assumption fg,) will be used here. In fact, as shown i [9, p. 46@n,) and(AR)4

imply that for somesz and some: > 0,

Fi(x,s) > es®
fora.e.x € Q7 and alls > s3, whered > 2 comes from(AR),. This inequality clearly
implies the same type of inequality f6f; :

G, (x,s) > c's?

for somes; andc’ > 0, and a.ex € Q2 and alls > s3. One then takes a smooth function
up with support inQ2 anduz > 0, # 0. Calculating as in[[9, p. 462], one finds that
J).(tup) - —oo ast — oo. The usual mountain pass theorem can thus be applied. This
concludes the proof of Theordm P.4. o
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Proof of Theorem 2]5Fix A with 0 < A < A. Proceeding exactly as at the beginning
of the proof of Theorer 24, one has a first solutigrwhich is a local minimizer of),

on H&(Q), and one is reduced to proving the existence of a solutiaf (3.9), where
g,.(x, s) now reads

8.(x, 5) 1= hp(x, ug(x) + s) — hy(x, uo(x)) + b(x)[(uo(x) + )7 — ug(x)"].
The associated functiond has again the form given ifi (3]10), with now
Gy.(x,s) == Hy(x, uo(x) + s) — Hy(x, uo(x)) — hy.(x, uo(x))s™

yp+1 +1
+ b(x)|:(u0(x) +s ;:_ I uo)"" _ uo(x)szr],

whereH, (x, s) = fol hy (x, 1) dt. As before 0 is a local minimizer of, on H&(Q), and
we are reduced to proving the existence of a nonzero critical point for
Assume by contradiction that 0 is the only critical point&gf Then, for some ball
B(0,r) in H}(S),
J1(0) < J(w) (3.14)
for all w € B(0, r). The following lemma will be proved below.

Lemma 3.1. Assumé is the only critical point of/,. ThenJ, satisfies théPS). condi-
tion for all levelsc with

¢ < coi=SN2/(N IS PP, (3.15)

wheres is the best Sobolev constant.

Using this lemma and Theorem 5.10 in [8] (which only requires the (E&)dition to
hold at the level of the strict local minimum, here the le¥gl0) = 0 < ¢g), one deduces
from (3.13) that[(3.13) holds for al > 0 sufficiently small. We aim again at applying
the mountain pass theorem. For this purpose we will show the existem@e@H&(Q)
such that/; (u1) < 0 and the infmax value af, over the family of all continuous paths
from O touy is < cp. Once this is done, the usual mountain pass theorem yields the
existence of a nonzero critical point fdg, a contradiction which will complete the proof
of Theoreni Z.b.

To construct a as above, we consider aslin [1] functions of the fogm with r > 0

and
m (N=2)/2
Y0 = dg(x)(uz + |x — x0|2)

whereu > 0, xo comes from assumptiofb), ¢ is a fixed smooth nonnegative function
with ¢ = 1 nearxg and support in a small baB, aroundxg (with B, chosen such that
B> C By andb(x) > somee > 0 a.e. onBy), and the normalizing constadt > 0 is
taken so thaty, satisfies—Ayy = w{N +2/(N-2) nearxg. Sinceh, satisfies(G) with

o < 1 (in facto < p suffices in this part of the argument), one finds that for each
w > 0, Ly, — —oo ast — oo, and consequently there exists= ¢, > 0 such
thatJ, (r,¥,) < 0. The following lemma implies that fqr sufficiently small, the infmax
value ofJ, over the family of all continuous paths from Oug = 1,,v, is indeed< cg.
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Lemma 3.2. One has
Suka(”/’/t) < C0

t>0
for u > 0 sufficiently small.
The above two lemmas, to be proved below, complete the proof of Th¢orgm 2.50

Proof of Lemm@ 3]1Let w, be a (PS) sequence witlr < co, i.e.

1
Euwnuz—/gcx(x, wn) = c. (3.16)

/ Vw, - Vg —/ 6.0, we < enllell, Yo € HI(Q), (3.17)
Q Q

whereg, — 0. We first observe thab, remains bounded imfol(sz). This follows by
multiplying (3:17) withp = uo+ w, by 1/(p + 1) and subtracting fronj (3.16); the terms
of power p + 1 cancel and the remaining dominating ternjis, |2, which easily yields
the boundedness af,,. Note that the assumption thiat satisfies G) with o < 1 is used
in this argument. So, for a subsequengg,— wg in H(;}(Q) andw, — wqin L"(R2) for
anyr < 2*. From [3.17) it follows thatvg solves

—Aw =g (x,w) inQ,
w=20 onog,

and consequently, by the assumption of the lemmgas= 0. We now go back td (3:17)
with ¢ = ug + wy, multiply again by ¥(p + 1) and subtract fron{ (3.16) to get

lim |w,||° = ¢N. (3.18)

There are two possibilities: either= 0 orc¢ # 0. If ¢ = 0 thenw,, converges irY-Iol(Sz)
by (3:18) and we are done. We will now see that 0 leads to a contradiction. For that
purpose we deduce fromn (3]17) with= w,, that

lim Jwy,||? = Iim/s;gx(x,w,,)w,, = |im/ﬂb(x)(wn+)1’+l. (3.19)

By definition of S,

, N\ s N\
IS zubnw(fgb(x)(w:) ) . e
oo

where the latter integral is O for n sufficiently large (by[(3:7]8)[(3.19) and> 0). It
follows from (3.18)4(3.2)) that

S "

cN > T(CN)Z/Z ,
/2
15150

i.e.,c > co, asc > 0. This contradictq (3.15) and completes the proof of Lefnma 3.
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Proof of Lemma 3]2 whel > 4. We start as in[[ll, p. 537] observing that for some
positive constant,

g.(x,5) = b@[(sT)? + a(uo(x)P~ts™]

a.e. onB,. Note that the assumption thiat is nondecreasing is used here; note also that
B> was introduced just before the statement of Lerimp 3.2. Consequently,

tp-i—l il l‘2 , 5
1 Qb(x)wu - 5¢ 1¥.ll2

2
! 2
L@y < EIIWII gy

for some other positive constamt. Computing the maximum of the right-hand side for
t > Oyields

1 2 2\4+1N/2 NP7
Sutr))lx(t%) =< ﬁ[(llwll — o' [[Yull5) "] / /[/Q b(X)%] (3.21)
>
We will use the following estimates frorml[5] (see alsol[12, 14])for> O:
1Vul? = SN2 + 0(uN=2) whenn > 3,
2. = SN2 L o) whenN > 3,
||1/fu||2 122 = (3.22)
a2 = k1?4 0 (uN=2) whenN > 5,
K127 Vkou?llog u2| + O(u?)  whenN = 4,

whereky, ko are positive constants. To estimate the denominator in the right-hand side of
(3.27), we callbg := |[|b]l, introduce a balB,s = B(xo, w®) with 0 < § < 1 to be
determined later and write

f b()yh = / (b(x) — bo)y 2 + / (b(x) — bo)¥a + bollYul5.-
Q BM‘S Q\Bua
Using assumptioii) and [3.2P), one has

< Mp”°[SN2 4+ 0 (uM))]

fB (b(x) — b)Y ?

10

for some constan¥Z. On the other hand, for some constant

f (b(x) — bO)I/fi* <C / wﬁ* — O(MN(]'_‘S)),
Q\B;LS Q\B;L‘S

where the latter equality can be verified by using a Taylor expansion in

[ e+ 2N L
”w
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Let us first consider the cagé > 5. Using the above estimates jn (3.21), one gets,
for u sufficiently small,

SN/2 1— o 2 19) N—-2\1N/2
Sup/i (V) = —x—57 [ 0!(3# - (l;(lfa))] N2 (3.23)
e MO L+ Ou7?) + OGN D))

with another positive constant’. Sincey > 2*, one can finds such thatys > 2 and
N(1—8) > 2. It follows that the quotient-f - ]¥/2/[...]JN=2/2in [3.23) is< 1 for p
sufficiently small. This proves the lemma whan> 5.

WhenN = 4 the bracket.[- - 1V/?in (3.23) now reads

[1 - o"p?llog | + O (u]V/2,
and the same argument as above, usirg 2*, yields the conclusion. O

Proof of Lemma@ 3]2 wheN = 3. We again start as in[1, p. 537] to reach here

6

2 5
B < Sl - /Q DV — Selvul (3.24)

6
for some positive constant The maximum of the right-hand side for- 0 is achieved
for 1o = ro(u) satisfying

1l = ( /Q b(x)w,?)za‘ +allyul2g. (3.25)
In addition to [[3.2R) we will use

1,12 = ku’? + 0 (u®?) (3.26)

with k a positive constant (cf._[1]). We will also use
/Q b)Y2 = boS¥? + 0’ %) + 03, (3.27)

which is obtained as in the proof fof > 4.

Using [3.26),[(3.2]7) together with (3]22), one deduces ffom [3.25) that

1

K 1
/2 1/2
to( - — " +o(u
W) b1/4 4boS3/2 ( )

provideds is chosen so thags > 1/2 and 31 — §) > 1/2, which is possible since
y > 3/5. It then follows from[(3.2}) that

5%/ k1 1/2 §3/2
SUpJr(tyy) < —55 — —zz 0+ o(u9) <
P 3bg/?

for u sufficiently small. This is the conclusion of Leminal3.2 whén= 3. ]
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Proof of Theoreri 2|6 The only difference with the proof of Theorgm P.5 occurs at the
beginning of the proof of Lemn{a 3.1, at the point where one shows that any $BS)
guence is bounded.

The argument to prove that any sequengesatisfying [3.1p) and (3.17) is bounded
here goes as follows. First observe that in our situatix, s) > 0 and s in the
condition(AR), for h, can always be chosen such that? < p + 1. We will estimate

1 /
@ (wn) = Ji.(wn) = 23 (Wa) (o + wp).
By (3.18) and[(3.7]7), one has, for some constant
O(wy) = €+ Z o+ wyl. (3.28)

On the other hand, expandidyw;,), one obtains

1 1 1
D (wy) = (———)IIwnIIZ—/Q[Hx(x,qurwI)—5hx(x,uo+w,f)(uo+w,f)}

2 0
1 1 +yp+1
_ p_+1 -5 /Qb(x)(uo +w,) + A,, (3.29)

where A, is a first order term, i.e. satisfidlA,, || < c¢1 + c2||w,| for some constants
c1, c2. Combining [(3.2B) and (3:29) gives
1 1 1
== ) llwall® = / Hy.(x, up + w;)) — Zhp(x, uo + w;) (o + w;))
2 0 o 0
1 1 1

for another first order term),. Using(AR)4, 2 < 8 < p + 1 andb(x) > 0, one easily
concludes thatv, remains bounded. The proof of Theorgm| 2.6 is thus complete. O

4. Applications

In this section we will see how the previous theorems apply to problens (1.2) ahd (1.3).
We start with[(Z:R), wheré, («) now reads

_} Z_L +q+l_L/ +\p+1
IA(M)—2/9|VM| qu1/9&():)(14 ) P Qb(X)(u )

Theorem 4.1. Let0 < ¢ < 1 < p and assume that, b € L*°(2) with

() a(x) >0a.e.xin,
(i) a(x) > &1 > 0a.e. on some balB;.

Then there exist® < A < oo such that problenfI.2) has at least one solutiom (with
I, (u) < 0)for0 < A < A and no solution foi. > A. If in addition
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(i) b(x) > 0a.e. on some balBy, with a(x)b(x) # 0on By,

then A < oo. Moreover, if in additionp < 2* — 1, then problen{I.Z) has at least one
solutionu (with I, (1) < 0) for A = A.

Note thatA can beoco in the first part of Theorerqh 4.1. This happens for instance if
b(x) = —1 (cf. the observation following Theorgm P.1).

Proof of Theorerfi 4]11t suffices to verify the hypotheses of Theorgmg .1}, 2.2[and 2.3.
(H) and (Hp) are obvious, by (i). INH,) one takes (s) = Allalloos? + [|P|lcos? with

2 sufficiently small.(Hg,) follows from (ii). At this stage Theorefn 2.1 yields the first
part of Theore 1. On the other hand,) follows from (iii) by applying Lemma 3.6
from [9]. Theorre%}z thus yields the second part of Thegrein 4.1. Finallyis obvious
whenp < 2* — 1, and(AR), follows as in[9, p. 457] by taking = p+1,p = ¢ + 1,
d=R@O/(p+1) —1lalle andspo = 0. (Recall that € [r, R]in (AR)4.) The last part

of Theoreni 4.1l thus follows from TheorédmR.3. |

Theorem 4.2. Let0 < g < 1 < p and assume that,b € L°°(Q2) with (i) and (ii)
above. Assume in addition eithgpr< 2* — 1 and
(iv) b(x) > e2 > 0a.e. on some balby,

or p = 2* — 1 and condition(b) of Theorenf2.§ for b(x). Then problem(I:2) has at
least two solutiong, v for0 < A < A, withu < vin €, du/dv > dv/dv on I and
I,(u) < 0.

Note that(b) is a stronger condition than (iv). Note also tliek) above is allowed to
change sign in2.

Proof of Theorer 4]21t suffices to verify the hypotheses of Theordmg 2.4[anfl 2.5. As
observed in the proof of Theorem }4.1, the hypotheses of Thefprgm 2.1 follow from (i)
and (i), and(AR), can be verified as in [9, p. 457]. MoreoveH,;) and(M) are obvious.
Theorenj 2 4 thus applies when< 2* — 1. In the critical casg = 2* — 1, Theorenj 2}5
clearly applies. O

We now turn to problenfL.3). The functionall; («) here reads

1 2 A + +1
== - 1,
I(u) 2/9| ul p+1/QC(X)(M +1)

Theorem 4.3. Let p > 1 and assume that e L°°(2) with
c(x) >0 ae. inQ and c(x)>¢e >0 a.e.onsome balB. (4.1)
Then there exist® < A < oo such that problen{I.3) has at least one solutiom (with

I,(u) < 0)for0 < A < A and no solution foi. > A. Moreover, ifp < 2* — 1, then
problem(1.3) has at least one solutiom (with 7, (1) < 0) for A = A.
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Proof. Theorem§ 2]1-2]3 easily apply to yield the desired conclusions. In the verification
of (H,) one can takg(s) = A||clloo(s + 1)?. In the verification of AR), one has

0
OF (x,s) —sfr(x,s) < ic(x)(s + 1)”[(? - 1) s+1)+ 1i| 4.2)
p
and so, if we choosé with 2 < 6 < p + 1, the right-hand side of4.2) is < 0 for s
sufficiently large, which yield$AR),; with d = 0.

Theorem 4.4. Let p > 1 and assume that € L*(Q) with (4.I). Assume in addition
eitherp < 2* — 1, or p = 2* — 1 and condition(b) of Theorenf2.5 holds fora(x).
Then problen(I.3) has at least two solutions, v for 0 < A < A, withu < v in €,
du/dv > dv/dvondaand’, (u) < O.

Proof. The subcritical casp < 2* — 1 follows immediately from Theorein 3.4. The
critical casep = 2* — 1 requires more care because the right-hand sid@f (1.3) is not
written in the form(2.1) . However,u solves [(1.B) for. if and only if v = A7 ®=D 4
solves

—Av=cx)(v+pn)? inQ,

v>0 inQ, (4.3)

v=0 onog,

for u = AY@=D It follows in particular that(4.3) has at least one solution for <
AY(=1 and no solution fopx > AY®~D. We aim at applying Theorefm 2.6 4.3).
For this purpose, we write

c(x)(s + )P = hy(x,s) + c(x)s?,

whereh, (x, s) = c(x)[(s + n)? — sP]. A simple application of the mean value theorem
shows thath, (x, s) satisfies(G) with o = p — 1, and a calculation similar t¢4.2)
shows that it satisfiesA R); with d = 0. The other hypotheses of Theorgm 2.6 are easily
verified, in the same way as they were verified earlieffor (1.3). It follows(#hdt admits

a second solution for < AY(=D with negative energy. Finally, one observes that the
energy of the corresponding solution [of (1.3) is also negative.
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