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Abstract. We study the existence, nonexistence and multiplicity of positive solutions for the family
of problems−1u = fλ(x, u), u ∈ H1

0 (�), where� is a bounded domain inRN ,N ≥ 3 andλ > 0
is a parameter. The results include the well-known nonlinearities of the Ambrosetti–Brezis–Cerami
type in a more general form, namelyλa(x)uq + b(x)up, where 0≤ q < 1 < p ≤ 2∗

− 1.
The coefficienta(x) is assumed to be nonnegative butb(x) is allowed to change sign, even in the
critical case. The notions of local superlinearity and local sublinearity introduced in [9] are essential
in this more general framework. The techniques used in the proofs are lower and upper solutions
and variational methods.

Keywords. Multiplicity, semilinear elliptic problem, local sub- and superlinear nonlinearities, con-
cave-convex nonlinearities, critical exponent, upper and lower solutions, variational method

1. Introduction

This paper is concerned with the existence, nonexistence and multiplicity of solutions for
the family of problems 

−1u = fλ(x, u) in �,

u > 0 in�,

u = 0 on∂�,

(1.1)

where� is a bounded domain inRN , N ≥ 3, andλ > 0 is a parameter. An important
feature of this family is its monotone dependence onλ, i.e.fλ(x, s) ≤ fλ′(x, s) if λ < λ′.
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There are several motivations to our study. One of them comes from the following
example: 

−1u = λa(x)uq + b(x)up in �,

u > 0 in�,

u = 0 on∂�,

(1.2)

where 0≤ q < 1 < p. This example was extensively studied in [1] whena(x) ≡ 1,
b(x) ≡ 1; it was in particular shown there that ifp ≤ 2∗

− 1 where 2∗ = 2N/(N − 2),
then there exists 0< 3 < ∞ such that (1.2) has at least two solutions forλ < 3,
at least one solution forλ = 3, and no solution forλ > 3. In this paper we extend
this result of [1] to the case of variable coefficientsa(x) andb(x), with a(x) ≥ 0 but
b(x) possibly indefinite. This is partly carried out along the lines of our previous work [9]
where the notions of local superlinearity and local sublinearity were introduced. The main
difference here with respect to [9], as far as example (1.2) is concerned, is the assumption
a(x) ≥ 0 in �. This allows in particular the use of the strong maximum principle. We
emphasize thatb(x) in (1.2) is allowed to change sign even in the critical case where
p = 2∗

− 1. As observed in [5, p. 454], critical problems become more delicate in the
presence of variable coefficients. In this respect, our basic assumption onb(x) above in
the critical case requires thatb(x) remains equal or sufficiently close to‖b‖∞ on a small
ball (cf. condition(b) in Theorem 4.2).

Our results relative to (1.1) apply as well to several situations rather different from
example (1.2). We can handle for instance a problem like

−1u = λc(x)(u+ 1)p in �,

u > 0 in�,

u = 0 on∂�,

(1.3)

where 1< p ≤ 2∗
− 1 andc(x) ≥ 0. This problem was studied in [5] and [11] when

c(x) ≡ 1.
Our present approach to obtain multiple solutions to (1.1) is different from that in [9].

We follow here the classical method of obtaining a first solution via upper-lower solutions
and a second one via the mountain pass theorem. TheH 1 versusC1 minimization result
of [6] plays an important role in this approach. In the critical case we use some of the
techniques developed in [5] and [1] to handle the (PS) condition.

Our results relative to (1.1) are stated in detail in Section 2 and their proofs given in
Section 3. Their application to problems (1.2) and (1.3) is dealt with in Section 4.

2. Statement of results

In this section we state our results relative to (1.1), first for a nonlinearity of arbitrary
growth, then in the subcritical case, and finally in the critical case.

Let � be a smooth bounded domain inRN , N ≥ 3. Our general assumption on the
family fλ(x, s) is:



Problems under local superlinearity and sublinearity 271

(H ) For eachλ > 0,fλ : �× [0,∞) → R is a Carath́eodory function with the property
that for anys0 > 0, there exists a constantA such that

|fλ(x, s)| ≤ A

for a.e.x ∈ � and alls ∈ [0, s0]. Moreover ifλ < λ′, thenfλ(x, s) ≤ fλ′(x, s) for
a.e.x ∈ � and alls ≥ 0.

The following assumption concerns the behavior offλ(x, s) near s = 0; it implies
fλ(x,0) ≥ 0 and, as assumption(H), will be assumed throughout the paper:

(H0) For eachλ > 0 and eachs0 > 0, there existsB > 0 such that

fλ(x, s) ≥ −Bs

for a.e.x ∈ � and alls ∈ [0, s0].

We will always understand thatfλ(x, s) has been extended fors < 0 by putting
fλ(x, s) = fλ(x,0) for λ > 0, a.e.x ∈ � ands < 0.

Observe that, at this stage, ifu ∈ H 1
0 (�) ∩ L∞(�) satisfies the equation−1u =

fλ(x, u) in theH 1
0 (�) sense, then(H) and the standard regularity theory implyu ∈

W2,r(�) for any r < ∞ and sou ∈ C1(�). Moreoveru ≥ 0 (in fact, take−u− as a
test function in the equation and usefλ(x,0) ≥ 0); in addition, we haveu > 0 in� and
∂u/∂ν < 0 on∂� if u 6≡ 0 (this follows from(H0) and the strong maximum principle).
Hereν denotes the exterior normal. Observe also that the associated functional

Iλ(u) :=
1

2

∫
�

|∇u|2 −

∫
�

Fλ(x, u),

whereFλ(x, s) :=
∫ s

0 fλ(x, t) dt , is well defined foru ∈ H 1
0 (�) ∩ L∞(�).

The following two assumptions will be used in our first result:

(He) There existλ > 0 and a nondecreasing functiong with inf{g(s)/s : s > 0} <

1/‖e‖∞ such that
fλ(x, s) ≤ g(s)

for a.e.x ∈ � and alls ≥ 0; heree is the solution of−1e = 1 in �, e = 0 on
∂�, and‖ ‖∞ denotes theL∞(�) norm.

(H�1) For anyλ > 0 there exists a smooth subdomain�1, s1 > 0 andθ1 > λ1(�1) such
that

fλ(x, s) ≥ θ1s

for a.e.x ∈ �1 and alls ∈ [0, s1]; hereλ1(�1) denotes the principal eigenvalue
of −1 onH 1

0 (�1).

Here are some comments on the above two assumptions. Assumption(He) is a rather
standard condition to guarantee the existence of an upper solution (cf. e.g. [10]). This
condition is motivated by the fact that an upper solution for an equation of the type
−1u = f (u) can be obtained if one has an upper solution for another equation of the
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form −1u = g(u) with f (s) ≤ g(s) for all s. Assumption (H�1) is a local sublinearity
condition at 0, which is satisfied for instance if the following stronger condition holds:

lim
s→0
s>0

fλ(x, s)

s
= ∞,

uniformly for x ∈ �1. Assumption(H�1) is used to construct a lower solution.

Theorem 2.1 (Existence of one solution without growth condition). Under the assump-
tions(H), (H0), (He) and(H�1), there exists0< 3 ≤ ∞ such that problem(1.1)has at
least one solutionu (with Iλ(u) < 0) for 0< λ < 3 and no solution forλ > 3.

We remark that in the present generality,3 can be∞. One trivial example is provided by
a family as above such that, for eachλ > 0, there existsMλ > 0 with fλ(x,Mλ) < 0 for
a.e.x. In this case the constantMλ is an upper solution.

Theorem 2.2 (Nonexistence forλ large). In addition to the hypotheses of Theorem2.1,
assume:

(H�̃) There exist a functionh with h(λ) → ∞ asλ → ∞, a smooth subdomaiñ� and
m̃ ∈ L∞(�̃) with m̃ ≥ 0, m̃ 6≡ 0, such that

fλ(x, s) ≥ h(λ)m̃(x)s

for all λ > 0, a.e.x ∈ �̃ and all s ≥ 0.

Then3 < ∞.

Assumption(H�̃) can be looked at as a localized version of the trivial sufficient condition
of nonexistence for−1u = l(u) in �, u > 0 in�, u = 0 on∂�, namely that inf{l(s)/s :
s > 0} > λ1(�).

Due to the absence of growth condition, we have up to now defined a solution as a
function inH 1

0 (�) ∩L
∞(�). However, if the following growth condition with respect to

s in the nonlinearityfλ(x, s) is assumed, then one can speak of anH 1
0 (�) solution in the

usual sense:

(G) For any [r, R] ⊂ {λ > 0}, there existd1, d2 andσ ≤ 2∗
− 1 such that

|fλ(x, s)| ≤ d1 + d2s
σ

for all λ ∈ [r, R], a.e.x ∈ � and alls ≥ 0.

If σ < 2∗
− 1 in (G), then a standard bootstrap argument gives that anyu ∈ H 1

0 (�)

which solves−1u = fλ(x, u) belongs toW2,r(�) for anyr < ∞ and consequently to
C1(�). This conclusion also holds ifσ in (G) is equal to 2∗ − 1, by using a result of [4].
Condition(G) (with σ ≤ 2∗

−1) also implies that the functionalIλ(u) is well defined for
u ∈ H 1

0 (�).
Aiming now to prove the existence of a solution forλ = 3, we will assume the

following condition:
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(AR)d For any [r, R] ⊂ {λ > 0}, there existθ > 2, ρ < 2, d ≥ 0 ands0 ≥ 0 such that

θFλ(x, s) ≤ sfλ(x, s)+ dsρ

for all λ ∈ [r, R], a.e.x ∈ � and alls ≥ s0.

This condition(AR)d is a weakening of the classical superquadraticity condition of
Ambrosetti–Rabinowitz [2]. It was introduced in [9] in order to handle indefinite non-
linearities.

Theorem 2.3 (Existence of one solution forλ = 3). In addition to the hypotheses of
Theorem2.2, assume(G), (AR)d and the continuity offλ(x, s) with respect toλ (for
a.e.x and uniformly fors bounded). Then problem(1.1)has at least one solutionu (with
Iλ(u) ≤ 0) for λ = 3.

Remark. The uniformity with respect toλ ∈ [r, R] in (G) and(AR)d is used only in
Theorem 2.3 to deal with the limiting caseλ = 3. It is not needed in the following
Theorems 2.4–2.6, whereλ < 3 will be fixed.

Now we discuss multiplicity for subcritical families, namely the ones satisfying(G)

with σ < 2∗
− 1. Our purpose is to prove the existence of at least two solutions when

λ < 3. For that matter we have to strengthen a little bit some of the hypotheses of
Theorem 2.1. Condition(H0) is replaced by

(H0)
′ For anyλ > 0 and anys0 > 0, there existsB ≥ 0 such that for a.e.x ∈ �,

s 7→ fλ(x, s)+ Bs

is nondecreasing on [0, s0]; moreoverfλ(x,0) ≥ 0 for all λ > 0 and a.e.x ∈ �.

Condition(H0)
′ is a classical requirement when dealing with upper-lower solutions. The

monotonicity of the familyfλ is also assumed to be strict in the following sense:

(M) For anyλ < λ′ and anyu ∈ C1
0(�) with u > 0 in�,

fλ(x, u(x)) ≤6≡ fλ′(x, u(x)).

We will also assume:

(H�2) For anyλ > 0, there exist a subdomain�2, s2 andθ2 > 0 such that

Fλ(x, s) ≥ θ2s
2

for a.e.x ∈ �2 and alls ≥ s2.

Condition(H�2) is implied by a local superlinearity condition at∞ of the form

lim
s→∞

fλ(x, s)

s
= ∞

uniformly for x ∈ �2. It is used in conjunction with(AR)d to derive the geometry of the
mountain pass.
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Theorem 2.4 (Existence of a second solution in the subcritical case). In addition to the
hypotheses of Theorem2.1, assume(G) with σ < 2∗

− 1 as well as(AR)d , (H0)
′, (M)

and(H�2). Then problem(1.1)has at least two solutionsu, v for 0< λ < 3, withu < v

in �, ∂u/∂ν > ∂v/∂ν on ∂� andIλ(u) < 0.

Finally, we consider multiplicity for critical families. This means thatfλ(x, s) behaves at
∞ like b(x)sp with p = 2∗

− 1. We thus write the functionfλ as

fλ(x, s) = hλ(x, s)+ b(x)sp (2.1)

and we distinguish two cases: (i)hλ satisfies(G) with σ < 1, b(x) may change sign,
(ii) hλ satisfies(G) with σ < 2∗

− 1, b(x) ≥ 0 in�.
We first deal with case (i).

Theorem 2.5 (Existence of a second solution in the critical case withσ < 1). In ad-
dition to the hypotheses of Theorem2.1, assume thatfλ(x, s) satisfies(H0)

′ and (M).
Suppose also thatfλ(x, s) can be written as in(2.1)with p = 2∗

− 1, hλ(x, s) satisfying
(G) with σ < 1, andhλ(x, s) nondecreasing with respect tos for anyλ > 0 and a.e.x.
Suppose also thatb(x) in (2.1) is 6≡ 0, belongs toL∞(�) and satisfies

(b) for somex0 ∈ �, some ballB1 ⊂ � aroundx0, some constantM and someγ with
γ > 2∗ whenN ≥ 5, γ ≥ 2∗ whenN = 4, γ > 3/5 whenN = 3, one has

0 ≤ ‖b‖∞ − b(x) ≤ M|x − x0|
γ

for a.e.x ∈ B1. (Recall that‖ ‖∞ denotes theL∞(�) norm.)

Then the conclusion of Theorem2.4holds.

Assumption(b) implies‖b−
‖∞ ≤ ‖b+

‖∞, with in addition some limitation on the way
b(x) approaches‖b‖∞. It trivially holds if b(x) = ‖b‖∞ a.e. on a small ball.

We now deal with the critical case (ii).

Theorem 2.6 (Existence of a second solution in the critical case withσ < 2∗
− 1). In

addition to the hypotheses of Theorem2.1, assume thatfλ(x, s) satisfies(H0)
′ and(M).

Suppose also thatfλ(x, s) can be written as in(2.1)with p = 2∗
− 1, hλ(x, s) satisfying

(G) with σ < 2∗
− 1, hλ(x, s) nondecreasing with respect tos for anyλ > 0 and a.e.x,

and hλ(x, s) satisfying(AR)d . Suppose thatb in (2.1) is 6≡ 0, ≥ 0 in �, belongs to
L∞(�) and satisfies condition(b) above. Then the conclusion of Theorem2.4holds.

In Theorem 2.6,hλ(x, s) is allowed any subcritical growth, at the expense of assuming
(AR)d for hλ(x, s) andb(x) ≥ 0.
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3. Proofs

This section is devoted to the proofs of all theorems stated above. It will be convenient
from now on to denote (1.1) as (1.1)λ.

Proof of Theorem 2.1.We start by proving the existence of an upper solution of (1.1)λ

for the value ofλ provided by(He). The construction is inspired from [3] (see also [1],
[10]). One takes the solutione of −1e = 1 in �, e = 0 on∂�. With λ andg given by
(He), there existsM > 0 such that

1/‖e‖∞ ≥ g(M‖e‖∞)/(M‖e‖∞)

and so one has

−1(Me) = M ≥ g(M‖e‖∞) ≥ g(Me) ≥ fλ(x,Me).

This shows thatMe is a classical upper solution of(1.1)λ.
We now construct a lower solution for (1.1)λ by using the subdomain�1 provided by

(H�1). Denote byϕ1 the positive principal eigenfunction of−1 onH 1
0 (�1). Extendϕ1

by 0 on� \�1; the extended function, still denoted byϕ1, belongs toH 1
0 (�) ∩ L∞(�).

One then argues as in [9, pp. 464–465] to show that forε > 0 sufficiently small,εϕ1 is a
weak lower solution of (1.1)λ which satisfiesεϕ1 ≤ Me in �.

It follows that Theorem 2.4 of [13] can be applied; it yields the existence of a solution
u ∈ H 1

0 (�) ∩ L∞(�) of (1.1)λ for the value ofλ provided by(He). So at this stage we
have proved that

3 := sup{λ > 0 : (1.1)λ has a solution} > 0.

It remains to show that for each 0< λ < 3, (1.1)λ has a solutionu with Iλ(u) < 0.
Let 0< λ < 3 and takeλ such thatλ < λ < 3 and (1.1)λ has a solutionu; this is clearly
possible by the definition of3. One has, by the monotonicity of the familyfλ,

−1u = fλ(x, u) ≥ fλ(x, u),

which shows thatu is an upper solution for (1.1)λ. A previous argument involving the
subdomain�1 from (H�1) shows that forε > 0 sufficiently small,εϕ1 is a weak lower
solution of (1.1)λ which satisfiesεϕ1 ≤ u in �. Theorem 2.4 from [13] then yields the
existence of a solutionu0 ∈ H 1

0 (�) ∩ L∞(�) of (1.1)λ which satisfies

Iλ(u0) = min{Iλ(u) : u ∈ H 1
0 (�) andεϕ1 ≤ u ≤ u}. (3.1)

Since by(H�1),

Iλ(εϕ1) =
ε2

2

∫
�

|∇ϕ1|
2
−

∫
�

Fλ(x, εϕ1) < 0 (3.2)

for ε sufficiently small (so thatεϕ1 ≤ s1), one deducesIλ(u0) < 0. This completes the
proof of Theorem 2.1. ut
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Proof of Theorem 2.2.We have to prove that forλ sufficiently large, (1.1)λ has no solu-
tion. The subdomaiñ� provided by(H�̃) will be used here. Suppose that (1.1)λ admits
a solutionu ∈ H 1

0 (�) ∩ L∞(�). Denoting byϕ̃ the positive eigenfunction associated to
the principal eigenvalueλ1(m̃, �̃) of −1 onH 1

0 (�̃) for the weightm̃ and extending̃ϕ by
0 on� \ �̃, one argues as in [9, p. 466] to get∫

�

∇u∇ϕ̃ =

∫
∂�̃

u
∂ϕ̃

∂ν
+

∫
�̃

u(−1ϕ̃) ≤ λ1(m̃, �̃)

∫
�̃

m̃uϕ̃. (3.3)

On the other hand, by(H�̃),∫
�

∇u∇ϕ̃ =

∫
�

fλ(x, u)ϕ̃ ≥ h(λ)

∫
�̃

m̃uϕ̃. (3.4)

Since
∫
�̃
m̃uϕ̃ is > 0, one deduces from (3.3) and (3.4) thath(λ) ≤ λ1(m̃, �̃). The

conclusion follows sinceh(λ) → ∞ asλ → ∞. ut

Proof of Theorem 2.3.We have to prove that (1.1)λ has at least one solutionu with
Iλ(u) ≤ 0 for λ = 3. The continuity offλ with respect toλ as well as the fact that(G)
and(AR)d hold uniformly forλ ∈ [r, R] will be used here. Letλk → 3with 0< λk < 3

andλk increasing, and letuk be a solution of (1.1)λk with I (uk) < 0.
We first show that the sequence(uk) remains bounded inH 1

0 (�). Indeed, using
Iλk (uk) < 0 and(AR)d , one obtains

θ

2
‖uk‖

2
−

∫
�

ukfλk (x, uk) ≤ d

∫
�

u
ρ
k + c1

for some constantc1, where‖v‖ denotes(
∫
�

|∇v|2)1/2. But
∫
�
ukfλk (x, uk) = ‖uk‖

2 by
(1.1)λk , and consequently (

θ

2
− 1

)
‖uk‖

2
≤ c2‖uk‖

ρ
+ c1

for some constantc2. This implies the desired bound sinceθ > 2 andρ < 2.
Bootstrapping that bound using(G), one sees in particular that for a subsequence,

uk → u in H 1
0 (�)∩C(�). The bootstrapping here is the standard one whenσ < 2∗

− 1,
and is based on [4] (see also [7]) whenσ = 2∗

− 1.
Clearlyu solves−1u = f3(x, u) in �, u ≥ 0 in� andu = 0 on∂�, and one has

I3(u) ≤ 0. It remains to see thatu 6≡ 0. Assume by contradictionu ≡ 0. We will use
(H�1) for λ = λ1, the first element of the increasing sequenceλk. Let as before�1 be the
corresponding subdomain andϕ1 the positive eigenfunction associated to the principal
eigenvalueλ1(�1) of −1 onH 1

0 (�1). We have∫
�

∇uk∇ϕ1 =

∫
�1

fλk (x, uk)ϕ1 ≥

∫
�1

fλ1(x, uk)ϕ1 ≥ θ1

∫
�1

ukϕ1 (3.5)
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for k sufficiently large (so that 0≤ uk(x) ≤ s1 for x ∈ �1, which is possible since
uk → 0 uniformly on�). On the other hand,∫

�1

∇uk∇ϕ1 =

∫
∂�1

uk
∂ϕ1

∂ν
+

∫
�1

uk(−1ϕ1) ≤ λ1(�1)

∫
�1

ukϕ1, (3.6)

and a contradiction follows from (3.5), (3.6) sinceθ1 > λ1(�1) and
∫
�1
ukϕ1 > 0. This

completes the proof of Theorem 2.3. ut

Proof of Theorem 2.4.We have to prove the existence of a second solution of (1.1)λ for
each 0< λ < 3. Fix such aλ. Proceeding exactly as at the end of the proof of Theorem
2.1 above, introducingλ, u and considering the solutionu0 of (1.1)λ constructed there,
we start by showing that

u < u0 < u in �, (3.7)

∂u/∂ν > ∂u0/∂ν > ∂u/∂ν on ∂�, (3.8)

whereu denotesεϕ1, with ϕ1 a positive principal eigenfunction of−1 onH 1
0 (�1) (ex-

tended by 0 outside�1).
The inequalities of (3.7), (3.8) involvingu andu0 are obtained in the following way.

Sinceu is the extension by 0 on� \�1 of aC1
0(�1) function and sinceu0 is a solution,

these inequalities clearly hold on�\�1 and on∂�\∂�1 respectively. On the other hand
u 6≡ u0 in �1; moreover, using(H0)

′, one gets for a suitableB,{
−1(u0 − u) ≥ fλ(x, u0)− fλ(x, u) ≥ −B(u0 − u) on�1,

u0 − u ≥ 0 on�1.

Consequently, by the strong maximum principle,u0−u > 0 in�1 and∂(u0−u)/∂ν < 0
on ∂�1. The proof of the inequalities in (3.7), (3.8) involvingu0 andu is simpler since
both functions belong toC1

0(�); the fact thatu0 6≡ u in � here follows from(M).
It follows from (3.7) and (3.8) that{u ∈ H 1

0 (�) : u ≤ u ≤ u} contains aC1
0(�)

neighborhood ofu0 and consequently, by (3.1),u0 is a local minimizer ofIλ onC1
0(�).

Theorem 1 of [6] then shows thatu0 is also a local minimizer ofIλ onH 1
0 (�) (assumption

(G), with σ ≤ 2∗
− 1, is used here).

The second solution will be constructed in the formu0 + w whereu0 is the first
solution above andw satisfies

−1w = gλ(x,w) in �,

w 6≡ 0 in�,

w = 0 on∂�,

(3.9)

wheregλ(x, s) := fλ(x, u0(x)+ s
+)− fλ(x, u0(x)). This is a device already considered

in [1] for (1.2) with a(x) ≡ b(x) ≡ 1. Clearly any solutionw of (3.9) is≥ 0 (in fact,
multiply by −w− and conclude), and so, by the strong maximum principle and(H0)

′,
w satisfiesw > 0 in� and∂w/∂ν < 0 on∂�. Consequently,u0 + w will be a second
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solution of (1.1)λ which fulfills the requirements of Theorem 2.4. WritingGλ(x, s) :=∫ s
0 gλ(x, t) dt and

Jλ(w) :=
1

2

∫
�

|∇w|
2
−

∫
�

Gλ(x,w), (3.10)

we are thus led to look for a nonzero critical point ofJλ onH 1
0 (�).

One easily verifies, using

Gλ(x, s) = Fλ(x, u0(x)+ s+)− Fλ(x, u0(x))− fλ(x, u0(x))s
+

and the fact thatu0 solves(1.1)λ, that forw ∈ H 1
0 (�),

Jλ(w) = Iλ(u0 + w+)− Iλ(u0)+
1

2
‖w−

‖
2. (3.11)

It follows from (3.11) that 0 is a local minimizer ofJλ onH 1
0 (�), i.e., for somer > 0,

Jλ(0) ≤ Jλ(w) (3.12)

for all w ∈ B(0, r), the ball of center 0 and radiusr in H 1
0 (�).

Assumption(G) with σ < 2∗
−1 and(AR)d imply thatIλ satisfies the (PS) condition

onH 1
0 (�), as shown in [9, p. 460]. On the other hand, one easily verifies that ifwk is a

(PS) sequence forJλ at levelc, then‖w−

k ‖ → 0 andu0 +w+

k is a (PS) sequence forIλ at
level c + Iλ(u0). It follows thatJλ satisfies the (PS) condition onH 1

0 (�).
Now comes an alternative connected with (3.12). Either there existsw ∈ B(0, r) with

w 6= 0 andJλ(w) = 0, or the strict inequality holds in (3.12) for allw ∈ B(0, r) with
w 6= 0. In the first case thisw is a nonzero local minimizer forJλ and so a critical point
of Jλ, and the proof is finished. In the second case, Theorem 5.10 from [8] applies to
guarantee that for eachr > 0 sufficiently small,

Jλ(0) < inf{Jλ(w) : w ∈ H 1
0 (�) and‖w‖ = r}, (3.13)

i.e. there is a “mountain range” around 0. We aim at applying the mountain pass theorem.
For that purpose we look for someu2 ∈ H 1

0 (�) such thatJλ(tu2) → −∞ ast → ∞.
Assumption (H�2) will be used here. In fact, as shown in [9, p. 462],(H�2) and(AR)d
imply that for somes3 and somec > 0,

Fλ(x, s) ≥ csθ

for a.e.x ∈ �2 and alls ≥ s3, whereθ > 2 comes from(AR)d . This inequality clearly
implies the same type of inequality forGλ:

Gλ(x, s) ≥ c′sθ

for somes′3 andc′ > 0, and a.e.x ∈ �2 and alls ≥ s′3. One then takes a smooth function
u2 with support in�2 andu2 ≥ 0, 6≡ 0. Calculating as in [9, p. 462], one finds that
Jλ(tu2) → −∞ ast → ∞. The usual mountain pass theorem can thus be applied. This
concludes the proof of Theorem 2.4. ut
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Proof of Theorem 2.5.Fix λ with 0 < λ < 3. Proceeding exactly as at the beginning
of the proof of Theorem 2.4, one has a first solutionu0 which is a local minimizer ofIλ
onH 1

0 (�), and one is reduced to proving the existence of a solutionw of (3.9), where
gλ(x, s) now reads

gλ(x, s) := hλ(x, u0(x)+ s+)− hλ(x, u0(x))+ b(x)[(u0(x)+ s+)p − u0(x)
p].

The associated functionalJλ has again the form given in (3.10), with now

Gλ(x, s) := Hλ(x, u0(x)+ s+)−Hλ(x, u0(x))− hλ(x, u0(x))s
+

+ b(x)

[
(u0(x)+ s+)p+1

− u0(x)
p+1

p + 1
− u0(x)

ps+
]
,

whereHλ(x, s) :=
∫ 1

0 hλ(x, t) dt . As before 0 is a local minimizer ofJλ onH 1
0 (�), and

we are reduced to proving the existence of a nonzero critical point forJλ.
Assume by contradiction that 0 is the only critical point ofJλ. Then, for some ball

B(0, r) in H 1
0 (�),

Jλ(0) < Jλ(w) (3.14)

for all w ∈ B(0, r). The following lemma will be proved below.

Lemma 3.1. Assume0 is the only critical point ofJλ. ThenJλ satisfies the(PS)c condi-
tion for all levelsc with

c < c0 := SN/2/(N‖b‖
(N−2)/2
∞ ), (3.15)

whereS is the best Sobolev constant.

Using this lemma and Theorem 5.10 in [8] (which only requires the (PS)c condition to
hold at the level of the strict local minimum, here the levelJλ(0) = 0< c0), one deduces
from (3.14) that (3.13) holds for allr > 0 sufficiently small. We aim again at applying
the mountain pass theorem. For this purpose we will show the existence ofu1 ∈ H 1

0 (�)

such thatJλ(u1) < 0 and the infmax value ofJλ over the family of all continuous paths
from 0 to u1 is < c0. Once this is done, the usual mountain pass theorem yields the
existence of a nonzero critical point forJλ, a contradiction which will complete the proof
of Theorem 2.5.

To construct au1 as above, we consider as in [1] functions of the formtψµ with t > 0
and

ψµ(x) := dζ(x)

(
µ

µ2 + |x − x0|
2

)(N−2)/2

whereµ > 0, x0 comes from assumption(b), ζ is a fixed smooth nonnegative function
with ζ ≡ 1 nearx0 and support in a small ballB2 aroundx0 (with B2 chosen such that
B2 ⊂ B1 andb(x) ≥ someε > 0 a.e. onB2), and the normalizing constantd > 0 is
taken so thatψ1 satisfies−1ψ1 = ψ

(N+2)/(N−2)
1 nearx0. Sincehλ satisfies(G) with

σ < 1 (in fact σ < p suffices in this part of the argument), one finds that for each
µ > 0, Jλ(tψµ) → −∞ as t → ∞, and consequently there existst = tµ > 0 such
thatJλ(tµψµ) < 0. The following lemma implies that forµ sufficiently small, the infmax
value ofJλ over the family of all continuous paths from 0 tou1 = tµψµ is indeed< c0.
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Lemma 3.2. One has
sup
t>0

Jλ(tψµ) < c0

for µ > 0 sufficiently small.

The above two lemmas, to be proved below, complete the proof of Theorem 2.5.ut

Proof of Lemma 3.1.Letwn be a (PS)c sequence withc < c0, i.e.

1

2
‖wn‖

2
−

∫
�

Gλ(x,wn) → c, (3.16)∫
�

∇wn · ∇ϕ −

∫
�

gλ(x,wn)ϕ ≤ εn‖ϕ‖, ∀ϕ ∈ H 1
0 (�), (3.17)

whereεn → 0. We first observe thatwn remains bounded inH 1
0 (�). This follows by

multiplying (3.17) withϕ = u0 +wn by 1/(p+1) and subtracting from (3.16); the terms
of powerp + 1 cancel and the remaining dominating term is‖wn‖

2, which easily yields
the boundedness ofwn. Note that the assumption thathλ satisfies(G) with σ < 1 is used
in this argument. So, for a subsequence,wn ⇀ w0 in H 1

0 (�) andwn → w0 in Lr(�) for
anyr < 2∗. From (3.17) it follows thatw0 solves{

−1w = gλ(x,w) in �,

w = 0 on∂�,

and consequently, by the assumption of the lemma,w0 = 0. We now go back to (3.17)
with ϕ = u0 + wn, multiply again by 1/(p + 1) and subtract from (3.16) to get

lim ‖wn‖
2

= cN. (3.18)

There are two possibilities: eitherc = 0 or c 6= 0. If c = 0 thenwn converges inH 1
0 (�)

by (3.18) and we are done. We will now see thatc 6= 0 leads to a contradiction. For that
purpose we deduce from (3.17) withϕ = wn that

lim ‖wn‖
2

= lim
∫
�

gλ(x,wn)wn = lim
∫
�

b(x)(w+
n )
p+1. (3.19)

By definition ofS,

‖wn‖
2

≥ S

(∫
�

|wn|
2∗

)2/2∗

≥
S

‖b‖
2/2∗

∞

(∫
�

b(x)(w+
n )

2∗

)2/2∗

, (3.20)

where the latter integral is> 0 for n sufficiently large (by (3.18), (3.19) andc > 0). It
follows from (3.18)–(3.20) that

cN ≥
S

‖b‖
2/2∗

∞

(cN)2/2
∗

,

i.e.,c ≥ c0, asc > 0. This contradicts (3.15) and completes the proof of Lemma 3.1.ut
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Proof of Lemma 3.2 whenN ≥ 4. We start as in [1, p. 537] observing that for some
positive constantα,

gλ(x, s) ≥ b(x)[(s+)p + α(u0(x))
p−1s+]

a.e. onB2. Note that the assumption thathλ is nondecreasing is used here; note also that
B2 was introduced just before the statement of Lemma 3.2. Consequently,

Jλ(tψµ) ≤
t2

2
‖ψµ‖

2
−
tp+1

p + 1

∫
�

b(x)ψp+1
µ −

t2

2
α′

‖ψµ‖
2
2

for some other positive constantα′. Computing the maximum of the right-hand side for
t > 0 yields

sup
t>0

Jλ(tψµ) ≤
1

N
[(‖ψµ‖

2
− α′

‖ψµ‖
2
2)

+]N/2/

[∫
�

b(x)ψ2∗

µ

](N−2)/2

. (3.21)

We will use the following estimates from [5] (see also [12, 14]) forµ → 0:

‖ψµ‖
2

= SN/2 +O(µN−2) whenN ≥ 3,

‖ψµ‖
2∗

2∗ = SN/2 +O(µN ) whenN ≥ 3,

‖ψµ‖
2
2 =

{
k1µ

2
+O(µN−2) whenN ≥ 5,

k2µ
2
|logµ2

| +O(µ2) whenN = 4,

(3.22)

wherek1, k2 are positive constants. To estimate the denominator in the right-hand side of
(3.21), we callb0 := ‖b‖∞, introduce a ballBµδ = B(x0, µ

δ) with 0 < δ < 1 to be
determined later and write∫

�

b(x)ψ2∗

µ =

∫
B
µδ

(b(x)− b0)ψ
2∗

µ +

∫
�\B

µδ

(b(x)− b0)ψ
2∗

µ + b0‖ψµ‖
2∗

2∗ .

Using assumption(b) and (3.22), one has∣∣∣∣∫
B
µδ

(b(x)− b0)ψ
2∗

µ

∣∣∣∣ ≤ M̃µγ δ[SN/2 +O(µN )]

for some constant̃M. On the other hand, for some constantC,∣∣∣∣∫
�\B

µδ

(b(x)− b0)ψ
2∗

µ

∣∣∣∣ ≤ C

∫
�\B

µδ

ψ2∗

µ = O(µN(1−δ)),

where the latter equality can be verified by using a Taylor expansion in∫
∞

µδ
[µ/(µ2

+ r2)N ]rN−1 dr.
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Let us first consider the caseN ≥ 5. Using the above estimates in (3.21), one gets,
for µ sufficiently small,

sup
t>0

Jλ(tψµ) ≤
SN/2

Nb
(N−2)/2
0

[1 − α′′µ2
+O(µN−2)]N/2

[1 +O(µγ δ)+O(µN(1−δ))](N−2)/2
(3.23)

with another positive constantα′′. Sinceγ > 2∗, one can findδ such thatγ δ > 2 and
N(1 − δ) > 2. It follows that the quotient [· · · ]N/2/[· · · ](N−2)/2 in (3.23) is< 1 for µ
sufficiently small. This proves the lemma whenN ≥ 5.

WhenN = 4 the bracket [· · · ]N/2 in (3.23) now reads

[1 − α′′µ2
|logµ2

| +O(µ2)]N/2,

and the same argument as above, usingγ ≥ 2∗, yields the conclusion. ut

Proof of Lemma 3.2 whenN = 3. We again start as in [1, p. 537] to reach here

Jλ(tψµ) ≤
t2

2
‖ψµ‖

2
−
t6

6

∫
�

b(x)ψ6
µ −

t5

5
α‖ψµ‖

5
5 (3.24)

for some positive constantα. The maximum of the right-hand side fort > 0 is achieved
for t0 = t0(µ) satisfying

‖ψµ‖
2

=

(∫
�

b(x)ψ6
µ

)
t40 + α‖ψµ‖

5
5 t

3
0 . (3.25)

In addition to (3.22) we will use

‖ψµ‖
5
5 = kµ1/2

+O(µ5/2) (3.26)

with k a positive constant (cf. [1]). We will also use∫
�

b(x)ψ6
µ = b0S

3/2
+O(µγ δ)+O(µ3(1−δ)), (3.27)

which is obtained as in the proof forN ≥ 4.
Using (3.26), (3.27) together with (3.22), one deduces from (3.25) that

t0(µ) =
1

b
1/4
0

−
k

4b0S3/2
µ1/2

+ o(µ1/2)

providedδ is chosen so thatγ δ > 1/2 and 3(1 − δ) > 1/2, which is possible since
γ > 3/5. It then follows from (3.24) that

sup
t>0

Jλ(tψµ) ≤
S3/2

3b1/2
0

−
k

5b5/4
0

µ1/2
+ o(µ1/2) <

S3/2

3b1/2
0

for µ sufficiently small. This is the conclusion of Lemma 3.2 whenN = 3. ut
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Proof of Theorem 2.6.The only difference with the proof of Theorem 2.5 occurs at the
beginning of the proof of Lemma 3.1, at the point where one shows that any (PS)c se-
quence is bounded.

The argument to prove that any sequencewn satisfying (3.16) and (3.17) is bounded
here goes as follows. First observe that in our situation,Hλ(x, s) ≥ 0 and soθ in the
condition(AR)d for hλ can always be chosen such that 2< θ < p+ 1. We will estimate

8(wn) := Jλ(wn)−
1

θ
J ′
λ(wn)(u0 + wn).

By (3.16) and (3.17), one has, for some constantC,

8(wn) ≤ C +
εn

θ
‖u0 + wn‖. (3.28)

On the other hand, expanding8(wn), one obtains

8(wn) =

(
1

2
−

1

θ

)
‖wn‖

2
−

∫
�

[
Hλ(x, u0 + w+

n )−
1

θ
hλ(x, u0 + w+

n )(u0 + w+
n )

]
−

(
1

p + 1
−

1

θ

) ∫
�

b(x)(u0 + w+
n )
p+1

+ An, (3.29)

whereAn is a first order term, i.e. satisfies‖An‖ ≤ c1 + c2‖wn‖ for some constants
c1, c2. Combining (3.28) and (3.29) gives(

1

2
−

1

θ

)
‖wn‖

2
=

∫
�

[
Hλ(x, u0 + w+

n )−
1

θ
hλ(x, u0 + w+

n )(u0 + w+
n )

]
+

(
1

p + 1
−

1

θ

) ∫
�

b(x)(u0 + w+
n )
p+1

+ A′
n,

for another first order termA′
n. Using(AR)d , 2 < θ < p + 1 andb(x) ≥ 0, one easily

concludes thatwn remains bounded. The proof of Theorem 2.6 is thus complete. ut

4. Applications

In this section we will see how the previous theorems apply to problems (1.2) and (1.3).
We start with (1.2), whereIλ(u) now reads

Iλ(u) =
1

2

∫
�

|∇u|2 −
λ

q + 1

∫
�

a(x)(u+)q+1
−

1

p + 1

∫
�

b(x)(u+)p+1.

Theorem 4.1. Let 0 ≤ q < 1< p and assume thata, b ∈ L∞(�) with

(i) a(x) ≥ 0 a.e.x in �,
(ii) a(x) ≥ ε1 > 0 a.e. on some ballB1.

Then there exists0 < 3 ≤ ∞ such that problem(1.2) has at least one solutionu (with
Iλ(u) < 0) for 0< λ < 3 and no solution forλ > 3. If in addition
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(iii) b(x) ≥ 0 a.e. on some ballB2, with a(x)b(x) 6≡ 0 onB2,

then3 < ∞. Moreover, if in additionp ≤ 2∗
− 1, then problem(1.2) has at least one

solutionu (with Iλ(u) ≤ 0) for λ = 3.

Note that3 can be∞ in the first part of Theorem 4.1. This happens for instance if
b(x) ≡ −1 (cf. the observation following Theorem 2.1).

Proof of Theorem 4.1.It suffices to verify the hypotheses of Theorems 2.1, 2.2 and 2.3.
(H) and(H0) are obvious, by (i). In(He) one takesg(s) = λ‖a‖∞s

q
+ ‖b‖∞s

p with
λ sufficiently small.(H�1) follows from (ii). At this stage Theorem 2.1 yields the first
part of Theorem 4.1. On the other hand,(H�̃) follows from (iii) by applying Lemma 3.6
from [9]. Theorem 2.2 thus yields the second part of Theorem 4.1. Finally,(G) is obvious
whenp ≤ 2∗

− 1, and(AR)d follows as in [9, p. 457] by takingθ = p + 1, ρ = q + 1,
d = R(θ/(p + 1)− 1)‖a‖∞ ands0 = 0. (Recall thatλ ∈ [r, R] in (AR)d .) The last part
of Theorem 4.1 thus follows from Theorem 2.3. ut

Theorem 4.2. Let 0 ≤ q < 1 < p and assume thata, b ∈ L∞(�) with (i) and (ii)
above. Assume in addition eitherp < 2∗

− 1 and

(iv) b(x) ≥ ε2 > 0 a.e. on some ballB2,

or p = 2∗
− 1 and condition(b) of Theorem2.5 for b(x). Then problem(1.2) has at

least two solutionsu, v for 0 < λ < 3, with u < v in �, ∂u/∂ν > ∂v/∂ν on ∂� and
Iλ(u) < 0.

Note that(b) is a stronger condition than (iv). Note also thatb(x) above is allowed to
change sign in�.

Proof of Theorem 4.2.It suffices to verify the hypotheses of Theorems 2.4 and 2.5. As
observed in the proof of Theorem 4.1, the hypotheses of Theorem 2.1 follow from (i)
and (ii), and(AR)d can be verified as in [9, p. 457]. Moreover,(H ′

0) and(M) are obvious.
Theorem 2.4 thus applies whenp < 2∗

− 1. In the critical casep = 2∗
− 1, Theorem 2.5

clearly applies. ut

We now turn to problem(1.3). The functionalIλ(u) here reads

Iλ(u) =
1

2

∫
�

|∇u|2 −
λ

p + 1

∫
�

c(x)(u+
+ 1)p+1.

Theorem 4.3. Letp > 1 and assume thatc ∈ L∞(�) with

c(x) ≥ 0 a.e. in� and c(x) ≥ ε > 0 a.e. on some ballB. (4.1)

Then there exists0 < 3 < ∞ such that problem(1.3) has at least one solutionu (with
Iλ(u) < 0) for 0 < λ < 3 and no solution forλ > 3. Moreover, ifp ≤ 2∗

− 1, then
problem(1.3)has at least one solutionu (with Iλ(u) ≤ 0) for λ = 3.
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Proof. Theorems 2.1–2.3 easily apply to yield the desired conclusions. In the verification
of (He) one can takeg(s) = λ‖c‖∞(s + 1)p. In the verification of(AR)d one has

θFλ(x, s)− sfλ(x, s) ≤ λc(x)(s + 1)p
[(

θ

p + 1
− 1

)
(s + 1)+ 1

]
(4.2)

and so, if we chooseθ with 2 < θ < p + 1, the right-hand side of(4.2) is ≤ 0 for s
sufficiently large, which yields(AR)d with d = 0.

Theorem 4.4. Let p > 1 and assume thata ∈ L∞(�) with (4.1). Assume in addition
eitherp < 2∗

− 1, or p = 2∗
− 1 and condition(b) of Theorem2.5 holds fora(x).

Then problem(1.3) has at least two solutionsu, v for 0 < λ < 3, with u < v in �,
∂u/∂ν > ∂v/∂ν on ∂� andIλ(u) < 0.

Proof. The subcritical casep < 2∗
− 1 follows immediately from Theorem 2.4. The

critical casep = 2∗
− 1 requires more care because the right-hand side of (1.3) is not

written in the form(2.1) . However,u solves (1.3) forλ if and only if v = λ1/(p−1) u

solves 
−1v = c(x)(v + µ)p in �,

v > 0 in�,

v = 0 on∂�,

(4.3)

for µ = λ1/(p−1). It follows in particular that(4.3) has at least one solution forµ <

31/(p−1) and no solution forµ > 31/(p−1). We aim at applying Theorem 2.6 to(4.3).
For this purpose, we write

c(x)(s + µ)p = hµ(x, s)+ c(x)sp,

wherehµ(x, s) = c(x)[(s + µ)p − sp]. A simple application of the mean value theorem
shows thathµ(x, s) satisfies(G) with σ = p − 1, and a calculation similar to(4.2)
shows that it satisfies(AR)d with d = 0. The other hypotheses of Theorem 2.6 are easily
verified, in the same way as they were verified earlier for (1.3). It follows that(4.3) admits
a second solution forµ < 31/(p−1), with negative energy. Finally, one observes that the
energy of the corresponding solution of (1.3) is also negative.
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