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Abstract. Recent papers have studied the existence of phase transition solutions for Allen—Cahn
type equations. These solutions are either single or multi-transition spatial heteroclinics or homo-
clinics between simpler equilibrium states. A sufficient condition for the construction of the multi-
transition solutions is that there are gaps in the ordered set of single transition solutions. In this
paper we explore the necessity of these gap conditions.

1. Introduction

Recent papers have established the existence of phase transition states for model equa-
tions of Allen—Cahn type [1]5[2][16]H7]. Mathematically these states are single or multi-
transition spatially homoclinic or heteroclinic solutions of the equation

(PDE) —Au+Gu(x,y,u)=0, (x,y)€ R2,
The functionG satisfies
(G1) G € C2(R? x R,R) and is 1-periodic it andy;

Gx,y,00=0=G(x,y,1),

(G2) G(x,y,z) >0 for(x,y) € R?andz € (0, 1);

(G3) G(x,y,z) >0 forall x,y,z.

Hypothesi$ (G)|implies[(PDE) possesses constant solutiors 0 andu = 1.

We will only consider solutions ¢f (PDE) with € « < 1. Indeed, the solutions= 0
andu = 1 of[(PDE) behave like geodesics for the minimization arguments of [6]-[7] and
these arguments yield a variety of solution§ of (PDE) with 8 < 1.
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The single transition states[of (PI)E) are solutions which are heteroclinic from 0 to 1 or
from 1 to 0 in one of the variablesandy, and are 1-periodic in the other variable. Multi-
transition solutions undergo multiple transitions between the constant states. Generally
they shadow the single transition solutions, i.e. they are near them on large regions. Each
of the sets of one transition solutions is ordered.

The existence proofs for the multi-transition solutions are carried out assuming there
are gaps in the ordered sets of simpler 1-transition solutions. A goal of this paper is to
show that these gap conditions for the simpler states are necessary as well as sufficient
for the existence of the more complex states.

In 82, some results from [6]-7] will be recalled briefly and a theorem showing the
necessity of these gaps for the existence of multi-transition solutions will be proved.

Another result obtained in [1]H2] andI[6]2(7] is the existence of solutiorjs of (PDE)
that e.g. as functions of are heteroclinic between a distinct pair of the basic 1-transition
heteroclinics inx mentioned above. A gap condition is again required to obtain these
solutions. In 83, it will be shown that this gap condition is also necessary for such doubly
heteroclinic states to exist.

See also Bangelit[3] for some related results.

2. The first necessity result
Considef (PDE) under the hypothe§es }&Gsz)} The functionsu = 0 andu = 1 are
solutions of (PDE) callegure statesOther solutions callechixed statesvhich are het-

eroclinic from 0 to 1 inx and 1-periodic iny are obtained by minimizing the functional
associated with (PDE). More precisely, let

12
L(u) = Elvul +G(x, y,u)

o) 1
I1(u) = / / Lu)dxdy.
—o0 JO

Fori € Z, letS; = [i,i + 1] x T whereT! is the 1-torus. Thus is defined on the class
of functions

and set

FO,)={ueWgZ®xTLR) [0<u <1 |lullzg, — 0 i— —oo;
11— ullp2c5,) = O, i — oo}
The elements of (0, 1) are 1-periodic iny and satisfy the desired asymptotic conditions
in x in a weak form.

C( ’ ) ME]I (0,1) ( ) ( )

Then it was shown in_[6]=]7] thal has minimizers in" (0, 1) which are solutions of

(PDE).
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Theorem 2.2. Let G satisfy(G1)H(G)} Then

1° M(0,1) = {u € I'(0,1) | I(u) = c(0, 1)} # 0.

2° If u € M(0, 1), thenu is a classical solution

3 lullcz;) — 0asi - —ooand||1 — ull ¢z, — 0asi — oo.

4 u(x,y) <u(x+1,y)=rt_1u(x,y) foral (x,y) e R x T*andr_iu € M(0, 1).

5° M(0, 1) is an ordered set, i.e:, w € M(0, 1) impliesv = w, v < w, Orv > w.

6° u € M(0,1) has a minimality property: for any bounded op&hc R x 71, if
UeWE2R x TY, R) with U = u in (R x T1) \ D, then

/ (L(u) — L(U))dxdy < 0. (2.3)
D

Remark 2.4. (i) 4° will be referred to as thenonotonicity propertyor u.

(i) By5°, eitherM(0, 1) foliatesR x T'1 x [0, 1] or there are gaps iM (0, 1), i.e. there
arev, w € M(0, 1) with v < w and no members of1(0, 1) lie betweerv andw.
The existence of such a gap pair is tiep conditiorreferred to in §1.

(iii) An equivalent form of the minimality property is that for al € WH2(R x T, R)
with compact support,

f (L(w) — L(u+¢))dxdy <O0. (2.5)
RxT1

(iv) Any functionu € Wlé*cz(R x T, R) which satisfies3) for somP is in fact a
solution of (PDE)) irD. This follows from standard elliptic regularity arguments [4].
Thus the minimality property for for all D as above impliew is a solution of

onR x T1.

(v) Actually a stronger form of 6was proved in[[6]-[7]. Namely viewing the domain
of u to beRR?, for any bounded ope® c R2,if U e Wé’cz(Rz, R) with U = u in
R2\ O, then

/ (L(u) — L(U))dxdy < 0.
(]

As a consequence of Theorgm|2.2 and the companion resulit tar 0), the existence
of multi-transition solutions df (PDE) can be obtained.

Theorem 2.6 ([6]-[[7]). Supposes satisfie(G1)H(G3z)| and M (0, 1) and M (1, 0) con-
tain gaps. Then for each € N, k > 2, there exist infinitely many solutions[@DE]in

Wé’CZ(R x T1, R) which undergd transitions and satisful|c2(5,) — 0,i — —o0.

Remark 2.7. (i) The same conclusion obtains for solutions which satidfy- u| c2s,)
— 0asi —» —oo.

(i) For U asin Theore 6, it is even,|lu|lc2(5,) — 0 asi — oo and the solutions
are homoclinic to O inx, while if k is odd, |1 — u||c25,) — 0 asi — oo and the
solutions are heteroclinic from 0 to 1.in
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(iii) The simplest case of Theorem 2.6 is flor= 2 where the solutions are near 0 for
|x| large and are near 1 for an intermediataterval (and ally). The infinitude of
solutions is distinguished by the length of this intermediaieterval.

Theoreni 2.6 is proved by minimizingover a set of functions in & u < 1 satisfying
several integral constraints. The precise nature of these constraints is not of importance
here except the fact that the constraints involve a compact subBekaf!. Therefore
the arguments of [6]=[7] show that a solution of (PDE) given by Thedrein 2.6 does not
satisfy [2.3) or[(25), i.e. is not minimal in the sense &fo8 Theoren{ 2.p. However it
does have a partial minimality property.

Definition. We sayu satisfies thesymptotic minimality propertyf there is anxg > 0
such that ifD is contained infx > xo} x Tt orin {x < —xo} x T%, then(2.3) or
equivalently(2.5) holds.

Now the main result of this section can be stated:

Theorem 2.8. Let G satis Suppose: € C%(R x T1, R) is a solution of
[[PDE]and the asymptotic minimality condition holds. Then

1° (@) llullczes;y — 0or (b) 11— ullc2es;) — 0asi — —oo.

2° (@) llullczes,y — 0or () 11— ullc2cs,) — Oasi — oo.

3° If 1°(a)and2°(a) (resp.1°(b) and2°(b)) hold andu = O (resp.u # 1), thenM (0, 1)
and M (1, 0) have gaps.

4° If 1°(a)and2°(b) hold andu ¢ M(O, 1), thenM (0, 1) has gaps.

5° If 1°(b) and2°(a) hold andu ¢ M(1, 0), thenM (1, 0) has gaps.

6° If uis minimal andu # 0, # 1, then eitherl®(a) and2°(b) hold andu € M (O, 1), or
1°(b) and2°(a) hold andu € M (1, 0).

The proof of Theorern 28 involves several steps. The first is to get the appropriate asymp-
totics foru.

Proposition 2.9. Letu be a solution satisfying the asymptotic minimality prop-
erty for{x > xo} x T'1. Then2° of Theore holds.

Proof. Fori € N, sety; (x, y) = u(x +1i,y). Leta € (0,1). Since0O<u < landGisa

C? function of its arguments, by standard estimates from elliptic regularity thebry [4], the
functionsy; are bounded iC%*(Sp). Therefore as — oo, ¥; — ¥ in C?(Sp) along a
subsequence, wheteis a solution of (PDE). Moreover

/ LYi)dxdy — L(Y)dxdy
So So

asi — oo along the subsequence. 189y # 1, there is 8 > 0 such that

/ L) dxdy > B.
So
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Hence there is afy € N, ig > xp, such that foi > ig andi in the subsequence, then
/ Ly dxdy > f/2.
So

Since
f L) dxdy = 0
So

foralli e N, if £; > ¢; > ip and are in the subsequence,

¢i+1 L — ¥
/ Lw)dxdy > - 5B (2.10)
i
On the other hand, define
u(x), x < ¥,
i +1-—xux), & =<x=¢{+1,
u*(x) =10, (i+1<x<g, (2.11)
(x = £j)u(x), (i<x=<{+1
u(x), £i+1<x.
Then by [2.8) and (2.10),
0 0; ¢ i
J T Y
Tﬁ < ];[f& L(u)dxdy S,;[»/;k Lu™)dxdy
:/ L(u*)dxdy+/ L(u*)dxdy. (2.12)
Sii ng

Settingf (x, y) = x¥ (x, y), we get, ag; — oo,

/ L(u*)dxdy—)/ L) dxdy.
Se So

J

Consequently, the right hand side pf (2.12) is bounded; as- oo while the left hand
side tends teo, a contradiction. Thug = 0 ory = 1. Since any subsequenceyafhas
a further subsequence convergingif(So) to 0 or 1, Propositi09 follows. O

Remark 2.13. 1° of Theorenj 2. is proved by the same argument.
Corollary 2.14. Letu be as in Theoreffd.8 Then! (u) < oo.

Proof. Sincex € C2(R x T1, R), it suffices to show

2/ L(u)dxdy < oo. (2.15)
Si

i>xp
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Then similarly

Z / L(u)dxdy < oo.
S

i<—Xx0

To verify (2.15), letw* be as in[(2.11) with;, ¢; replaced by, ;. By (2.12) fori > io,

j
Z/ L(u)dxdyf/ L(u*)dxdy—i—/ Lw*)dxdy. (2.16)
k=i Sk Si j

Sj

Letting j — oo, by Propositio 2J9 and Remdrk 2|13,

[ Lw)dxdy - 0, j — oo.

Sj

Hence

o0
Z/ L(u)dxdy 5/ L(u*)dxdy < oo. O
i Sk Si

The next result extends the asymptotic minimality property to allb be unbounded.

Proposition 2.17. Suppose that satisfies the asymptotic minimality property with asso-
ciatedxg. Then

/[ L0 Lt g drdy <0
X0,00) X

forall g € Wy?([xo, 00) x T1, R).
Proof. If
/ L+ ¢)dxdy = oo, (2.18)
[x0,00)xT1

the result is trivially true via Corollary 2.14. So suppose the integrglin{2.18) is finite. If
Propositiory 2.7 is false, there ispaas above angt > 0 such that

/ (L) — L(u+¢))dxdy = y. (2.19)
[x0,00)xT1

Since
Lu)dxdy, / Lu+¢)dxdy < oo,

[x0.00)xT1 [x0,00)xT1

there is amg € N, ng > xg, such that

/ L(u)dxdy, / Lu+¢)dxdy < (2.20)
[no+1,00)xT1

[no+1,00)xT1

INJIAN

Hence
(2.21)

N R

/ (L) —L(u+¢))dxdy >
[x0,n0+1]xT1
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By PropositiorEP,HullCz(Sno) or |11 — u||C2(SnO) is small forng large. Likewisep €
Wy %([x0, 00) x TLR) implies||¢[ly2s,,) is small. Set

@(x), x0 < x < no,
Y(x)=1 (mo+1-x)pkx), no<x=<no+1,
0, no+1<x.
Then the above observations show

(Lu~+¢) — L+ y))dxdy| <
Sno

(2.22)

A=

for ng sufficiently large. Consequently
| (L) — L(u +¢)) dx dy
[x0,no+1]x T2
-/ (LG = L@+ ) + L+ ) — L +g)]drdy < & (223)
[x0,n0+1]xT1 4

via (2.3) and[(2.22). Buf (2.23) is contrary [o (2.21) and Proposdition] 2.17 is verified.

One final preliminary is needed to prove Theofenj 2.8.

Proposition 2.24. Letu be as in1°(a) and 2°(a) of Theorenf2.§ Suppose € M(0, 1)
andv > u for x > —xp whereu is asymptotically minimal ifix < —xg}. Thenv > u on
R x 7! and there is & > O such thaty > u + § for x > —xg.

Proof. We have ma, v) € I'(0, 1). Therefore by[(Z]1),
I(max(u, v)) > ¢(0,1) = I(v). (2.25)
LetA = {(x,y) e Rx T! | u(x,y) > v(x,y)}. If A # @, thenA C {x < —xo} x T1,

and by [2.2p),

I(maxXu, v)) — I(v) = /A(L(u) — L(v))dxdy > 0. (2.26)
By Propositiorj Z.1]7 witly = v — u,
fA(L(u) — L(u))dxdy > 0. (2.27)
Combining [2.26)4(2.37) gives

/L(u)dxdy:/L(v)dxdy
A A

and
f L(max(u, v))dxdy = c(0, 1). (2.28)
RxT1
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Therefore mag, v) € M(0, 1). By 5° of Theorenj 2.2 M (0, 1) is an ordered set. Thus
either (a) maxu, v) > v or (b) maxu,v) = v. But (a) impliesu = max(u,v) > v
contrary tov > u for x > —xp. If (b) occurs,v = max(u, v) > u soA = @. It follows
thatv > u onR x T1.

Suppose there is a poit*, y*) € R x T such that(x*, y*) = u(x*, y*). Set
w = v — u. Since each ob andu are solutions of (PDE)y satisfies the linear elliptic
partial differential equation

—Aw+ Hx,y)w=0 (2.29)
where
Gu(x’yvv()(:’y))_Gu(-x9y9u(x7y)) |f U()C y)>u(x y)
H(x’y): U(xv)’)—u(xa)’) ’ ' ’

Guu(xa)’a U(x»y)) If U(x»y):"i(x’y)-

ThusH is continuousw > 0 andw(x*, y*) = 0. Consequently, the maximum principle
impliesw =0, i.e.u = v. Butasx — oo, u(x, y) > Owhilev(x, y) - 1. Thusv > u
onR x T1.

Lastly, to prove the second assertion of Proposifion]2.24, the different asymptotic
behaviors ofv andu imply there is g8 > 0 such thav(x, y) > u(x, y) +1/2 forx > 8.
Sincev > u for —xg < x < B, thereis & > 0 such that > u + § for x > —xp. O

Now we are ready for the

Proof of Theorem 2.81° and 2 of the theorem follow from Propositi¢n 2.9 and Remark
[2.13. To prove 3 set

A={veM@O,1|v>uforx > —xp}.
The difference in the asymptotic behavioriodndv asx — oo showsA # @. Define

Vix,y) = in}‘\ v(x, y). (2.30)

We claim thatV e A. Certainly V(x,y) > u(x,y) for x > —xp. Since anyv €
M(0, 1) is a solution of (PDE) lying between 0 and 1, standard elliptic estimates [4] give
C%g‘ (R x T, R) estimates fop which are independent of Choose a sequenceg) C A
such thatv;(—xo, yo) — V(—xo0,y0) asj — oo for someyy € Tl Passing to a
subsequence if necessary, it can be assumedvihednverges inCI%C(IRi x T, R) to
W e C2(R x T1, R). TheCZ, convergence anc*4and & of Theoren) 2.2 implyW is a
solution of (PDE) which is minimal and monotone. Sifg€—xo, yo) = V (—xo, yo) >
u(—xo, yo) > 0, the monotonicity of¥ and 2 ofTheorenE]B impyi1 — W25,y — O
asi — oo. By 1° of Theorem , either @Wlic2,) — 0asi — —oo or
(D) 11— Wl ¢cz(s,) — 0asi — —oo. If (b) holds, the monotonicity o impliesW = 1.
But W(—xo, yo) < 1 so (a) must hold. Therefol& € I'(0, 1).
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Forf e N,
/ L(W)dxdy = lim / L(vj)dxdy
[—e,e]xTt J=>00 J[—p,0]xT?
< lim / L(vj)dxdy =c(0,1). (2.31)
J=>00 JRxT!

Letting ¢ — oo showsI(W) < ¢(0,1). ButW € I'soI(W) = ¢(0,1) andW €
M(0, 1). TheCI%C convergence ofv;) also impliesW € A. ThusV < W.If V(x*, y*) <
W (x*, y*) for some(x*, y*) € R x T, there is @ € A such that

V(x*, y%) S v@x™, y*) < W™, yH).
SinceM (0, 1) is ordered,
V (=x0, yo) < v(—x0, yo) < W(—x0, yo) = V(—x0, y0),

a contradiction. Consequently, = W € A. By Propositiorj 2.24, there iséa> 0 such
thatV > u 4 & for x > —xg. Suppose that1 (0, 1) does not possess a gap. Consider the
ordered connected set

C={weM@ODL|VEx-1y) <wkx,y <V,

There is anR > 0 such thal (x — 1, y) > u(x, y) + é for x > R. Therefore anyw € C
nearV satisfiesV > w > u + %8 for x > —xgp. But this contradicts the definition df.
ThusM (0, 1) must contain gaps.

Replacingv in Propositior] 2.24 by € M(1, 0) wherew > u for x < xg yields a
variant of that result withv > u + § for x < xp. This fact and the argument just given
showsM(1, 0) also must contain gaps anél i3 proved.

Parts 4-5° of Theoren] 2.B are proved in the same way so ofilyvll be treated
here. Thus suppose ¢ M(0, 1) is a solution of (PDH) which satisfie$ () and 2(b)
and is asymptotically minimal ifx < —xo} and{x > xo}. Set

A*={veM(@O,1) |v=>ufor(x,y) € [—xo, xo] x T1}.
Define
V*(x,y) = inf v(x,y).
vEA*

As in the proof above of 3 V* € M(0, 1). By the argument associated WiE(lz.Zg),
V* > ufor(x, y) € (—xq, x0) x T1. If M(0, 1) has no gapsy* > u for [—xg, xo] x T+ is
not possible as in the proof of SThusV*(x*, y*) = u(x*, y*) for somex* € {—xg, xo}
andy* e T1. Let

AT ={(x,) € (x0,00) x T | u(x, y) > V*(x, )},
A™ ={(x,) € (=00, —x0) x Tt | u(x, y) > V*(x, y)}.
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The argument of Propositi¢n 2]24 shows$ = ¢ = A~. ThereforeV* > u with equal-
ity at (x*, y*). But the maximum principle argument ¢f (2]29) again shows this is not
possible. Hencé1(0, 1) must contain gaps.

Lastly to prove 6 of Theorenj 2.8, observe that b§-2°, there are four possibilities
for the asymptotic behavior af. If 1°(a) and 2(a) occur, minimality implies: = 0.
Likewise if 1°(b) and 2(b) hold, therw = 1. These cases are excluded by the hypotheses
of 6°. Thus suppose thae(a) and 2(b) occur. Thent € I'(0, 1).

Now a comparison argument as in earlier results shows M (0, 1). Choose any
v € M(0, 1) andk € N. Define

_ vy, Ixl =k,
Ukx, y) = {u(x,y>, | > k+1,

and interpolate linearly im for the intermediate region. By the minimality of

k+1 1
[(U) — I (u) = / / (L(Uy) — L(u)) dx dy > 0. (2.32)
—k—1J0
But
k+1 1
/ / (L) — L(w)) dx dy
—k—1J0

—k 1 k+1 pl1
= / / (L(Uy) —L(u))dxdy—l—/ / (L(Ux) — L(m))dxdy
—k-1Jo, k 0
+/ / (L(v) — L(w))dxdy
Tk k+1 pl
= / / (L(Up) — L(w)dxdy + / / (L(Up) — L(w)dxdy
—k-1Jo k 0

—k 1 00 1
—/ /(J(L(v)—L(u))—/k /O(L(v)—L(u))dxdy+1(v)—I(u>.

(2.33)
Lettingk — oo and combining[(Z2.32)F(2.83) shows
c(0,1) = I(v) > I(u). (2.34)
Thereforel (u) = ¢(0, 1) andu € M(O, 1).
The remaining case of6s treated in the same way. O

3. A second necessity result

In addition to the multi-transition solutions [of (PDE) that are periodig,iit was further
shown in [6]-[7] that there are solutiortg, that are heteroclinic from 0 to 1 inand from
vtow in y wherev < w belong toM(0, 1). This existence result assumes thdt0, 1)
contains gaps and, w is an associated gap pair. Our main result in this section is that
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this sufficient condition is also necessary. Some notation is needed before a theorem can
be formulated. Foi € Z, letT; = R x [i, i + 1]. Forv, w € M(0, 1) with v < w, define

F(v,w) = {u € Wel(R%R) | v <u < w, |lu— |2, = 0asi — —oo,

ThusT (v, w) contains candidates for the doubly heteroclinic solutior|s of (PDE) men-
tioned above. Such solutions cannot be obtained directly by minimigind. (1) dx dy
over I'(v, w) since this functional will be infinite on all members Bfv, w). Conse-
qguently, the functional has to be renormalized in some fashion to subtract this infinity
from it.

Forp < g € Zandu € I'(v, w), set

q
Jp.q(u) = Z(/T L) dxdy — ¢(0, 1))

i=p

and define
Jw) = lim J, ).

p—>—00
q— 00

It was shown in[[6]-+[7] that it/ (1) < oo, then

J(u) = pﬂrﬂoo Ip.q (W)

q—>0
and
lu —vllwizq,y) —> 0 asi > —oo, |lu—wlyizq)— 0 asi — oo.
Moreover

Theorem 3.1 ([6]-[7]). Suppose thaG satisfied(G1)H(G3) and v, w is a gap pair in
M(0, 1). Set
clv,w)= inf J(u). (3.2
el (v,w)

u

Then
1° Mw,wy={uel(v,w)|Ju)=cl,w)} #0.
If U e M(v,w), then:

2° U is a classical solution ¢fPDE}
3 U = vllcz(r,y) — 0asi — —oo, and||U — w||¢2(7,) — 0asi — oo.
4 vx,y) <Ux,y) <Ux+1y) <wk,y),
vx,y) <UMx,y) <Ux,y+ 1 < w(x,y).
5° M(v, w) is an ordered set.
6° U is minimal in the sense df/) of Remark2.4
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Now the main theorem of this section can be stated:

Theorem 3.3. Let G satisfy(GLH(G)} For v < w € M(0, 1), suppose there is & €
I'(v, w) such that

JW)= it . (3.4)

uel' (v,w

Thenv, w is a gap pair.

Remark 3.5. Once we know < w is a gap pair, Theorefn 3.1 appliest$as a minimal
solution of (PDE) which is monotone inin the sense of4

Proof of Theorem 3|3Suppose that, w is not a gap pair inM(0, 1). Then there is a
@ € M(0, 1) with v < ¢ < w. We claim this implies

(A) min(U, ¢) € T'(v, ) and maxU, ¢) € I'(p, w),
(B) J(min(U, ¢)) = c(v, ¢), J(MaxU, ¢)) = c(g, w),
(C) min(U., ¢) and maxU, ¢) are solutions df (PDE) ifR2.

Assume (A)—(C) for now. Then since

forx € [0, 1] andy > 1, minU, ¢)(x, y) = ¢(x, y). Butg and minU, ¢) are solutions
of (PDE} inR? with ¢ > min(U, ¢) with equality forx € [0, 1] andy > 1. Therefore by
the maximum principle argument centered[at (R.29% min(U, ¢) soU > ¢. On the
other hand,

IU = vligoqy =0 asi— —co (3.6)

so forx € [0,1] andy « —1 we have miU, ¢)(x,y) = Ux,y) < ¢(x,y) =
min(U, ¢)(x, y), a contradiction. Thus suchgacannot exist and, w is a gap pair.
It remains to prove (A)—(C). O

Proof of (A). It will be shown that mitU, ¢) € T'(v, ). That maxU, ¢) € ' (¢, w)
follows similarly. Certainlyy < min(U, ¢) < ¢ and minU, ¢) € WI%;CZ(RZ, R) so all that
need be proved is mii¥, ¢) has the desired asymptotic behavior:

lv — min(U, o2y = 0, i = —o0, (3.7)
lo —minU, o)l 2¢7,) = 0, i — oo. (3.8)

To verify (3.7), note that
v —minU, @)l @2 r) < 1.
Therefore

[v — min(U, ¢)|?dxdy < / (Min(U, ) — v) dx dy. (3.9)
T; T;
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Now for anyp € N,
/(min(U,w)—v)dxdy:/ +/ +/
Ti [—oo.—pIx[i.i+1]  J[=p.pIx[i,i+1]  J[p,o0]x[i,i+1]
=h+Db+13 (3.10)

with I, I», I3 > 0. If we write I as
I = / (MiNU (e, y + 1), g, y) — v(e y)dxdy,  (3.10)
[-p.p]x[0,1]

then [3.6) and the Dominated Convergence Theorem imiply> 0 asi — —oo. To
analyzel; and /3, let j € N and note thabv(x + j, y) — 1 asj — oo uniformly for
y € T1. Therefore for; sufficiently largep(j, 0) > ¢(1, 0). Sincev(- + j, -) € M(0, 1)
andM(0, 1) is an ordered set,

v(x. ) < 9(x. y) < v(x + j. ).
Thus
Is < / Wk + o ¥) — v(x, ) dx dy
[p,00)x[0,1]

= lim f (wx +j,y) —v(x,y)dxdy
[p.q1x[0,1]

q—> 00

= lim [/ v(x + J, y)dxdy—/ v(x,y)dxdyi|
47 °LJ[g—j.q]x[0,1] [p.p+j1x[0,1]

=J —f v(x,y)dxdy. (3.12)
[p.p+i1x[0.1]

Lete > 0. Sincev(x, y) — 1 asx — oo uniformly iny € [0, 1], p can be chosen so
large that the right hand side above<is. Similarly I1 < €. Thus

im | |v—minU, ¢)|?dxdy < 2.

i—oo JT;
Sincee is arbitrary, [(3.7) and likewis¢ (3.8) follows. O
Proof of (B). First observe that
Jp,q (min(U, ®)) + Jp,q (max(U, ¢))

q
= Z[ f (L(MIN(U, ¢)) + L(maxU, ¢))) dx dy — 2¢(0, 1)}. (3.13)
i=p T;
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Since
/T (L(MIN(U, ¢)) + L(Max(U, ¢))) dx dy

=/(L(U)+L(<p))dxdy=/ L(U)dxdy +¢c(0,1), (3.14)
T; T;

i

substituting[(3.14) i (3.13) and letting— —oo, ¢ — oo yields
J(Min(U, ¢)) + J(max(U, ¢)) = J(U). (3.15)
By (A), min(U, ¢) € I'(v, ) and maxU, ¢) € I'(¢, w). Therefore[(3.15) implies
c(, @) +clp,w) < JU) =c(v, w). (3.16)

If there is equality in[(3.36), thef (3.]15) showemin(U, ¢)) =c(v, ) andJ (max(U, ¢))
= c(p, w), i.e. (B) holds. To verify equality irf (3.16), arguing indirectly, suppose

e=c,w)—c,¢) —clp,w) > 0.
Choosef € I'(v, ¢) andg € I' (¢, w) such that
J(f) <cv,p)+€/3, J(g) <c(p,w)+€/3. (3.17)

Sinceu € I'(y, x) impliesu(-, -+ j) € T'(y, x) foranyj € Z, it can be assumed
that

Jo00,0(f) <c(v,9) +€/3,  J100(g) <clp,w)+¢€/3 (3.18)
and
If —elwieg, <o, l >0, (3.19)
lg —ollwrzery <o, =<1,
whereo is free for the moment. Define
fx, ), y <0,
h(x,y) =1 v8@x, )+ L=y flx,y), 0<y=<1, (3.20)
g(x,y), y=1
soh € I'(v, w). Then foro sufficiently small,
/ L(h)ydxdy —c(0,1)] < £ (3.21)
To 3
via (3.19). Hence by (3.18)-(31),
J(h) < c(v, @) + c(p, w) + € = c(v, w). (3.22)
Buth € I'(v, w) implies
J(h) = c(v, w). (3.23)
Thus [3.22)4(3.23) show > 0 is impossible and (B) has been established. O

Proof of (C). It suffices to prove the more general result:
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Proposition 3.24. Let f < g with f, g € M(0, 1). Suppose there isiae M(f, g) such
that

Jw)=c(f,g) = I‘ilr)n:”) J.

(
Thenu is a solution o in R2.
Proof. It suffices to show that there is an> 0 such that for anyx*, y*) € R?,
Jw) < J(u+12) (3.25)

forall ¢ € C1(R?, R) with supportinB, (x*, y*) (the open ball of radius about(x*, y*))
and for allz € [0, to(¢)] whererg(¢) > 0. Indeed, if this is the case, suppds&x*, y*) C
R x [p, ¢ + 1]. Then by [[3:2F),

Jpg) = Jpq(u+18), (3.26)
which in turn implies
f L(u)dxdy < / L(u+tg)dxdy. (3.27)
By (x*,y%) By (x*,y%)

Now (3.27) and standard elliptic regularity arguments imple C2(B,(x*, y*)) and
satisfie$ (PDE) irB, (x*, y*).
To verify (3.25), leta = max(u + ¢, g) andb = min(u + 1¢, g). Set

T(g) ={y € We?@®RER) | f—1<y <g+1and|y — gll 2, — Oasli| — oo}.
Then, as was shown inl[7},(y) > 0. Sincea € I'(g) (via the argument of (A)),
Jb)<J@+Jb)=Ju+10), (3.28)

the latter equality following as in (3.15). Sét= max(b, /) and¥ = min(b, f). Then
as aboveb € I'(f, g) and¥ € I'(f) where

L(f)={y € Wel@®ER) | f—1<y <g+1and|y — fll 2, — Oasli| — oo}.

Again via [1], J(¥) > 0 so

J(®) < J(®) + J(V) = J(b). (3.29)

Hence by[(3.28){(3.29),
c(f,g)=Jw) = J(P) = J(u+19). (3.30)
Thus Propositiofi 3.24, (C), and Theorgm| 3.3 are proved. O

Remark 3.31. Just as for Theorefn 2.2, Theorém|3.1 leads to an analogue of Theorem
[2.8 obtained by variationally gluing, e.g., numbers\dfv, w) and M (w, v). This con-
struction succeeds when there are gapaitw, w) and M(w, v). Seel[T]. Our earlier
arguments can be used again to show that such gap conditions are necessary.
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Itis natural to ask whether there is a version of Thedrern 2.8 in the current setting. As
was shown in [3], there are minimal solutiong of (PDE) that are (a) heteroclinic from O to
1 in any directiord in the x, y plane with tar® € Q and (b) periodic in the orthogonal
direction. Thus a complete classification of solutions here based on asymptotic minimality
or even minimality will be complicated. However, there is an interesting special case that
is in part an application of Theorgm B.3. It will be studied next.

SupposeG satisfie$ (G) andu e C%(RZ, [0, 1)) is a solution of (PDE) which

is minimal and for all(x, y) € R<,

u(x+1,y) > u(x,y) (3.32)
ux,y+1) > u(x,y). (3.33)
Fork € Z, set
ug(x, y) = u(x,y+k). (3.34)
Then by [3:3B),
O<upr <up41 <1 (3.35)

loc
Hence there are functions w € C%*(R x T3,[0, 1]) such thatuy — v in CZ_ as

k — —oo andu; — w in C,%C ask — oo. Moreoverv andw are minimal solutions of
[[PDE]. By [332)¢(x + 1, y) > ¢(x,y) for ¢ € {v, w}. Thus by 8 of Theoren{ 2.8,
¢ =0,90=1,0rp € M(0, ). If for some(xo, yo), v(x0, yo) = w(xo, yo) # 0, 1, then

v = w via the ordering properties 0¥1(0, 1). Consequently, we have the following five
possibilities foru:

Asin Propositio, the function(®;),cz are bounded i|€2’°‘(R x [0, 1], [0, 1]).

(A v=w=u€{0,1, M0, 1)};
B) v=0,w=1andO<u < 1;
(C) v=0andw € M(0, 1);

(D) ve M(0,1) andw = 1;

(E) v, w e M(0,1) andv < w.

In case (B), fork € Z, setUi(x, y) = u(x + k, y). Then as abov&/, — V, W as
k — —oo,00 andV < W. Thus reversing the roles af and y puts us either in case
(A) whenV = W at some point, or case (E) whéh < W. Cases (C) and (D) are also
essentially the same with 0 and 1 interchanged. Thus, there are really only two different
cases to analyze. We begin with case (E) which involves modifying arguments from [8].

Theorem 3.36. Let G satis Suppose € C%(R?, [0, 1]) is a minimal solu-
tion of[[PDE)with the asymptotics of cagg). Thenv, w is a gap pair and

ue Muw,w)={U el"'(v,w) | JWU) =c(v, w)}.

Proof. It suffices to prove (ix € I'(v, w) and (i) J () = c¢(v, w). Thenu € M(v, w)
and by Theorerh 3|3;, w is a gap pair.
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Proof of (i). It will be shown that withu, as in [3.34),

(ug — v)2dxdy — 0 ask - —oc. (3.37)
To

The remaining asymptotic condition follows similarly. To verify (3.37),pe¢ N. Then

f(uk—v)zdxdy:/ +/ +/ =N+ I+ 1.
To (—00.—p]x[0.1]  J[—p.pIx[0.1]  J[p.c0)x[0.1]

Sinceu; — v in C%C(R x [0, 1], [0, 1]) ask — —oo, Iz — 0. Noting that for some
jeN,

135/ (w—v)zdxdy§/ lv(x + J, y)—v(x,y)|2dxdy,
[p,00)x[0,1] [p,00)x[0,1]

the 7; and I3 terms can be bounded as|in (3.12) and (i) follows. O

Proof of (ii). Sinceu € I' (v, w),
Jw) > c(v, w). (3.38)

Thus we must show inequality if (3]38) is not possible. This involves comparison argu-
ments for which a strengthening ¢ (3]37) is needed. We claim

To verify (3.39) forv, note thatu andv are solutions of (PDE). Therefotgé = v — u
satisfies[(2.29):
—AU+H(x,y)U=0 (3.40)

where || H || oo r2y < G uull oo m2x[0,17)- LEL M be a cut-off function withy = 1 on

Uj—_1Ti+j, n = 0 outside ofl °__, T;;, and|Vn| < 3. Multiplying 340) bynU
and integrating by parts yields

0= / GRIVUI2 + 20UV - VU + Hp2U?) dx dy. (3.41)
U,?=72 Tiyj

Hence by simple estimates,

1 1
—/ IVU|?dx < -/ n?|VU|?dx dy
2 U= 1 Tiv) 2 UL 2Ty
<18+ ||H||L°°)/ U?dx dy (3.42)
U;:—2n+j
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By (3:37), the right hand side df (3}42) tends to G as —oco. Hence[(3.4R) yield$ (3.39)

for v and similarly forw.
Now suppose
J(u) > c(v, w). (3.43)

Thenthereis & € I'(v, w) and as > 0 such that
clv,w) <JWU) <JWU)+o0o < J(u). (3.44)

Lete > 0. By (3:39) and the fact that(U) < oo, there is ap = p(e) € N such that if
¢ € {u, U},
lo — U”lez(T,-) <€, l <-p, (3.45)
llo — w||W1,2(T[,) <€ 1=Dp.

Fori € Zandy < [i,i + 1], set
gi=(—-NU+OG+1-Du, h=>C-yu+(y+1-)HU.

Then fore sufficiently small andp € {u, U, g;, h;}, for |i| > p(e),

|Ji(p)| <o/6 where Ji(p) = / L(p)dxdy — c(0, 1). (3.46)

T;

Next letg € N, g > 1. Forg large enough,

J_g.q-1(U) < J(U) + 0 /6. (3.47)
Set
u, Iyl = ¢,
CD: g—q» _quf_q+1s
U, —-qg+1<y=<qg-1

hg, gq—-1<y<gq,
and consider

/ (L(u) — L(U))dxdy
Rx[~q.9]

(L) — L(®)) dx dy + J_g(®) — J_o(U) + J,(®) — J,(U)
(3.48)

Sinceu is minimal, the first term on the right if (3:48) s 0 so by [(3.4p) the right hand
side of [3:4B) is< 0. For the left hand side of (3.48) we have

/léx[—q+1,q+1]

q-1
[ aw-rwyixay= Y [ ww-rwyddy
Rx[-q.4] j Ti

i=—q
= J—q,q—l(“) - J—q,q—l(U) > J—q,q—l(”) - JWU)—-o0o/6 (3.49)
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by (3:47). Now ifJ (u) = oo, by (3:49), the left hand side ¢f (3}48) tendstoasqg — oo
while if J(u) < oo, by (3.49), for largew the left hand side excee@sr. In either event
we have a contradiction. Thus (ii) and Theoffem B.36 are proved. o

We conclude this section with some remarks about cases (C) and (D) which are roughly
equivalent. We do not know if (C) or (D) can occur. However, suppofsgther satisfies,

for each(ky, ko) € Z2 and for all(x, y) € R?, either @) u(x + k1, y + k2) = u(x, y),

(B) u(x + k1, y + k2) > u(x,y) or (y) u(x + k1, y + k2) < u(x, y). This property is

what Moser in[[5] calls the “without self-intersection” property. Then (C) and (D) are
impossible unless we are in case (A). E.g. to exclude (D),kake 1 = —k1 andp € N.

If («) occurs, then by (3:32), fdr € N,

ux,y)=ulx—k,y+k)>ulx—k—p,y+k). (3.50)

Asp > oo,u(x—k—p,y+k)—> V(x —k,y+k)=V(x,y+k)whereV liesin the
analogue ofM (0, 1) with the roles ofx andy reversed. Thus

u(x,y) = V(x,y +k) (3.51)

and lettingk — oo yieldsu(x, y) > 1 sou = 1. But then we are in case (A).
If (B) occurs forka = 1 = —kj, then

ux,y)>ux+k,y—k)y>ulx+k—p,y+k). (3.52)

Hence lettingp — oo givesu(x,y) > v(x + k, y), and lettingk — oo shows that
u(x,y) > 1sou =1 as for &). A similar argument applies fog/.
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