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Abstract. We propose to study a fully nonlinear version of the Yamabe problem on manifolds with

boundary. The boundary condition for the conformal metric is the mean curvature. We establish
some Liouville type theorems and Harnack type inequalities.

1. Introduction

Let (M, g) be am-dimensional compact smooth Riemannian manifold without boundary,
n > 3. The well known Yamabe conjecture states that there exist metrics which are
pointwise conformal t@ and have constant scalar curvature. The Yamabe conjecture is
proved through the work of Yamabe (1960), Trudinger (1968), Aubin (1976) and Schoen
(1984). There has been much activity on fully nonlinear versions of the Yamabe problem
(see, e.g./[14] and the references therein). A very general fully nonlinear version of the
Yamabe problem was proposed, and solved when manifolds are locally conformally flat,
in joint work with Aobing Li (seel[12] and[14], and in particular Conjecture 1.1~ant
Theorem 1.1-1/4n [14]). In the present paper, we start to look at analogues on manifolds
with boundary.

If we let (M", g) denote some smooth compactimensional Riemannian manifold
with boundary an analogous problem is to find conformal metrics with constant scalar
curvature and constant boundary mean curvature. The problem has been studied by many
authors: see, e.g., Cherrier!([51)+[9]), Han and Li{[10] &nd [11]), Ambrosetti, Malchiodi
and Li ([1]), Brendle ([3]), and the references therein. This boundary Yamabe problem is
calledof positive typef the first eigenvalue of

—Lgp = Ag inM°,
dp n-—2

— 4+ ——h,¢p =0 o0noM,
v T2 e?

is positive, wheré:, denotes the mean curvature.
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We consider an extension of the boundary Yamabe problem of positive type to the
following fully nonlinear setting. Let

4, = —(Ric Ry
¢ T o\ T Tyt
denote the Schouten tensorgfwhere Ri¢ andR, denote respectively the Ricci tensor
and the scalar curvature gf Let, as in[[14],V be an open convex subset&f which

is symmetric with respect to the coordinates and has non-e@ptypoundarydV. For
A € 0V, letv(X) denote the inner unit normal /. We further assume that

v el = eR" | A >0, Vli<i<n}, ViedV, (1)

and
v(A)-A >0, VieadV. (2)

Let
F'V)y={8r|2eV,0<s < o0} 3)

be the (open convex) cone with vertex at the origin generatéd. by

Question 1. Assume thaV is an open symmetric convex subseR&f with@ # aV €
C satisfying(l)) and (2). Let (M", g) be a compact smooth Riemannian manifold with
boundary satisfying

MAg) €T(V) onM,

and letc € R be any constant. Does there exist a smooth positive funatiorC> (M)
such that the conformal metrig = u* "~2 g satisfies
AL(Az) €V onM",
and the boundary mean curvatukg satisfies
hy =c onoM?

Forg = u¥/=2g,

A; = —iu_lvzu + ——=u
§ n—2 (n—2)2
where covariant derivatives on the right side are with respegtt@t g1 = u® =2 g,
wheregiat denotes the Euclidean metric &f. Then, by the above transformation for-

mula,

“2Vu ® Vu — u"?|Vul?g + Ag,

2
(n —2)?

Ag = u4/(”72)A§‘jdxidxj,
where
2 2n
P r—— 7(n+2)/(n72)v2
n— ZM e (n —2)2
2
(n —2)?

and/ is then x n identity matrix. In this case\(A,,) = 1(A") wherer(A") denotes the
eigenvalues of the x n symmetric matrixA“.

u=2=2yvy @ Vu

w22 vy 2,
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Let ¢ be a Mdbius transformation ifR”, i.e., a transformation generated by transla-
tion, multiplication by nonzero constants, and the inversies x/|x|. For any positive
C? function u, letuy = |Jy|""2/2"(u o y) where J, denotes the Jacobian @f.

A calculation shows that”v and A" o v differ only by an orthogonal conjugation and
therefore
LAY = A(AY) o .

Let S"*" denote the set of x n real symmetric matricess,*" C S"*" the set of

positive definite matrices) (n) the set ofn x n real orthogonal matriceg/ c S"*" an
open set satisfying

o lvo=U, YOeo®), (4)
UN{M+1tN|0<t <oo}isconvex, YM e 8", N e S\*", (5)

and letF € C1(U) satisfy
F(O™IMO)=FM), VM eU, O€ O0®n), (6)
(F;j(M)) >0, VM eU, (7)

whereF;;(M) := E,"’TZ(M).

To answer Questidn 1, it is important to investigate the corresponding Liouville type
problem on Euclidean half space. Theoréms 1[gnd 2 below provide such Liouville type
theorems.

We useBg(x) to denote the ball iR" of radius R and centered at, and write
Bg = Br(0). LetR" = {(x1,...,x,) € R" | x, > 0} andB] = By NR". Consider,
for somec € R,

F(AY)=1, A“eU, u>0 onR",
ou

= cu” =2 onadRY . ®
0xy,

Ouir first result is under the assumption that the solution has good behavior near infinity.

Theorem 1. For n > 3, letU C S™*" be an open set satisfyin) and (8), and let
F e cY) satisfyd(__sl) and (7). For ¢ € R, assume that € C2(R") is a solution of@)
satisfying, foruo 1(x) := |x|*"u(x/|x|?),

up,1 can be extended to a positive continuous functioﬁn (9)
. n —
limsupx - Vup1(x) < 10,1(0),
x—0
and
lim |x|?Vug.1(x) = 0.
x—0
Then

| ; (n—2)/2
. onR’, 10
o = (s =) i -
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wherex = (&', %,) € R”,a > 0andb + (minX,, 0)2 > 0 are two constants satisfying
2a=2bI € U, F(2a=?bI) = 1and (n — 2)a~bx, = c.

Remark 1. In the above theorem, we do not assuite be superharmonic.

Corollary 1. Forn > 3,letU c S™" be an open set satisfyin@) and (5), and let
F e CY(U) satisfy(6) and (7). Assume that € C2(By) satisfies, for some € R,
F(AY=1, A“eU, u=>0 inBy,
ou n—2
w2
wherev denotes the unit outer normal 8a31. Thenu is of the form

a (n-2)/2
= (—2 in By,
“) (1+b|x —;|2) !

u=—cu""=2 0ondBj,

wherea, b € R andx € R" satisfy

2b 2b _2
a>0, Zrevu, F(Z1)=1 “ZZ@+pFP-b) = —ca.
a? a? 2

Our next Liouville type theorem does not require any hypothesis on the solution near
infinity.

Theorem 2. For n > 3, let U C S™" be an open set satisfyir{g) and (5), and let

F e CY(U) satisfy(6) and (7). Assume that

0¢ F-1(1). (11)
For ¢ € R, assume that € Cz(ﬁ) is a solution of@ satisfying
Au<0 inRY.
Thenu is of the form(10) with X, a andb given below(10).
Remark 2. Forc < 0, the assumptioif (11) is not needed. This can be seen in the proof.

ForM e §"*", let(A1(M), ..., A,(M)) denote its eigenvalues. Set

FeM) = Y hg(M) -+ d (M),

1<iy<--<ix=<n

Up = (M e S"™" | F;(M)>0Vl<i<Kk).

Remark 3. (F,U) = (Fkl/k, Uy), 1 < k < n, satisfy the hypotheses of the theorem.
Remark 4. For (F, U) = (Fy, U1), the result was proved by Li and ZHu [17]; while un-
der an additional hypothesigx) = O (|x|>~") for large|x|, the solutions were classified
by Escobari[5].
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Our proofs of Theorenfs 1 afifl 2 make use of the following result concerning radially
symmetric solutions.

Theorem 3. Forn > 3, letU c S"*” be an open set satisfyirlg), and letF € C1(U)
satisfy@) and @) Assume that € C?(By) is radially symmetric and satisfies

F(AY)Y=1 AYeU, u>0 inB.

a (n—2)/2
= —— in By, 12
u(x) <l+b|x|2) 1 (12)

wherea > 0,b > —1, (2b/a®)I € U and F((2b/a®)]) = 1.

In the following we state some of the results in a forthcoming paper [15]. First, an exis-
tence and compactness result on subcritical equations:

Then

Theorem 4. Let (M, g) be a smooth, compact, connected Riemannian manifold of di-
mensiom > 3, and let

2 2
1<1+e§p§—n+ —e<n+.
n—2 n—2
Then there exists a positive solutiore C*° (M) to
Ukl/k(A,,zv(n—z)g) — P~/ 5 (13)

Moreover all positive solutions L3) satisfy, for allm > 2,
lullcmm,g) + 11/ ullemm,g) < C,
whereC > 0 depends only oaM™, g), € andm.
Remark 5. Fork = 1, this is well known.
Next, a Harnack type inequality on Euclidean half balls:
Theorem 5. Forn > 3andR > 0, letu € C2(B_§)“R) be a solution of the equation
o/ (A")y=1  inBj, =B NRY,
ou

9x,
u>0, A€T; onBg.

Then there exists some constaht- 0 depending only on andc such that

(supu)(inf u) < CR*™".
BY B3k

= cu/ =2 onjBZ, N IR’ for some constant,

Remark 6. Fork = 1, this, as well as a stronger form, is established by Li and Zhang in
[16] (see Theorem 1.7 and Remark 1.11 there).

Remark 7. Theorem§} and 5 hold for more genefflI") (see[15]).

Theorem$ 1 and] 2, which are Liouville type theorems on Euclidean half spaces, are
extensions of Theorem 1.4 in[12] and Theorem 1.8 in [14] respectively. The present paper
is essentially the second part bf [13]. The first parf of [13] is essentially [14].
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2. Proof of Theoremd 1EB
2.1. Proof of Theorein3

Letu be as in Theorefn] 3, and let
v(#) =u(r0,...,0), O0<r<l1
Clearly,v’(0) = 0. Forx = (r,0,...,0),0 < r < 1, we have
v'(r) v’(f))

cey

5 -
r r

Vu(x) = @'(r),0,...,0), Vux)= diag<v”(r),

and
A¥(x) = diagﬁﬁ(r), Ag(r), ce A (),
where
_ _ 2n—1) 5 /-
_ (n+2)/(n—2), 11 2n/(n—2) (, 1\2
M) = — T T 4 Ty TR0
M) = o= 20 = — 2 /@2 2 onjn2 )2
2 " n—2 r (n—2)2 '
Here and in the following, we use di@g, ..., A,) to denote the diagonal matrix
Al
An
Let
a_ \"P2 2/n-2) 1 ewpy
— : _ n— _ —n
wx) = <Tb|x|2> with a = v(0) , b= TCI v"(0).

With these choices af andb, we have
w(0) = v(0), w'(0)=v'(0)=0, w’(0)=1"(0).
A calculation yields
2b
AY(x) = 51 = A(0),
a
and thereforav satisfies
F(A")=1, AYeU, w>0 inf{xeR"|bx]*> —1}.
Introducef (A1, ..., Ap) = F(diag(Ay, ..., Ay)). Clearly,

2
2j(0) == |imoxj(r) =— 2u(0)*<"+2>/<”*2>u”(0), 1<j<n,
and therefore, by the symmetry ¢fin 11, ..., A,, we have
1, (A10), .., 20 (0) = f1,(A1(0), ..., 4,(0)), 2<j <n.

Since diagr1(0), ..., 1,(0)) € U, we have, by[:(]7)fkl()»1(0), ..., A, (0)) > 0.
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Lemma 1. Let o and B8 be positive constants, and let> 1 be an integer satisfying
k 4y > « for some0 < y < 1. Assume thag € C*~17 ([0, g]) satisfies

()] < %/ E(s)|ds. YO <r <8, (14)
0
and
£0) =0 =---=t%DO) =0 (15)
Then
£=0 on]0,A]. (16)

Proof. We deduce fron{ (15) that
EM <Y 0<r <8, (17)
whereC is some positive constant. Usirjg [17), we deduce, fforh (14) that

Ca

k—=1+y
r , O0<r<B. 18
s p (18)

.
E@r)| < %/O Cs 17 gs =

Using [18), we deduce frorp (JL4) that

a [ Ca o 2
&) < —/ —— s ds = c(—) P 0<r<p

rJo k+vy k+vy

Continuing this way (by induction), we have

o
k+y
Sincea/(k + y) < 1, we obtain[(1p) by sending— oco. Lemmd ] is established. O

J
lE(r)| < C( ) WY vo<r<B, Vi=12....

Continue the proof of Theorepj 3. Since

1=FA10r), ... 2 () = fOL (), ..., A5 (),

we have
1rd
0= / (—f(tk”(r) +(1- z),\W(r))> dt
o \dt
n ol
B (Z [ e+ aznio dt> L) =22 ).
i=1
Sincer”(0) = A*(0) and f3, (A" (0)) = f3,(A”(0)) > O, we deduce from the above that

ME) =2 ) == A+o@)R/ ) —A"1),

n
i=2

whereo(1) denotes some quantities tending to G-as 0.
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Sincev’(0) = w’(0) = 0, we have

ANy =) = — v(r) "= 1 ) — W ()

n—2
+ o0 (v(r) —w@)|+ V') —w @)D,

and, for 2<i <n,

42/ (n—2) V(1) = w'(r)
- 2v(r) .
+ 0@ (Jv(r) —w)| + [V'(r) —w' ().

M) =2 = —

It follows that

1
V(N —w"(r) = — = () = w (M) (LH+o(D) + O D) (o) —w(r) [+ () —w' ()],

,
ie.,

"L () =w (1) = 0" A () —w' () +0 " (v () —w () [+ () —w' ())).
Integrating the above, we have, usin@) — w(0) = 0,
[v'(r) — w'(r)]
0(1) " / / " !/ /
sjfﬁ|uw—w@nw+cﬁuwn—meHuw—w@mw

<22 [ W) - w1

r Jo

Applying Lemmd 1 t& = v — w’, we have, for somé > 0,
V() —w' @) =0 in(0,$).

Forr > §, the O.D.E. satisfied by andw is regular, sow = w in (0, 1). Hencew is
regular in(0, 1). Consequentlyy > —1.
2.2. Proof of Theorein] 1

To give the main idea of the proof, we first prove Theofém 1 under a stronger assumption
onu,i.e.,

uo.1(x) = |x|2"u(|%> can be extended to a positive functiorﬂﬁ(B_f), (19)
X

and o
A1 e U onBj. (20)
Forx € R", A > 0, letu, , denote the reflection of with respect taB; (x), i.e.,

A\ A2(y —
ura(y) = (I ) u(x + (y—);)>
y— x| ly — x|
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Lemma 2. Letu be as in Theore@ Then, for anyx € 9R" , there exists.g(x) > 0
such that e
uc; <u ONRY\ By(x), V0<2i<iox). (21)

Proof. We follow the arguments in the proof of Lemma 2.1[in|[16]. Without loss of gen-
erality, takex = 0 in (21), and use; to denoteuq ;. By the C* regularity ofu, there
existsrg > 0 such that
d
d—(r<"—2>/2u(r, 0)) >0, YO<r<rg 6eS 1
,

from which we deduce
u (y) <u(y), VY0<x<|yl<ro. (22)

Because of (9), there exists some constant 0 such that
o
u(y) = W, Yyl = ro.

Letig = min{al/("‘z)(ma?u)l/(Z—”), ro}. Then
o

Ao n—2 o

up(y) < <|y—|) maxu < 2 =u(y), VO<Ai<ao, Iyl =ro
B

o

Now (21) withx = 0 follows from [22) and the above. Leminia 2 is established. O
Forx € aR", let
A(x) ==supu > 0] uyx <uonRL\ B;(x), VO <A < u}. (23)

Clearly,A(x) > 0. On the other hand,(x) < oo because of (9).

Lemma 3. Letu be as in Theoreffi, and assume that satisfieq19) and (20). Then, for
all x € 9R’,,
Uy iy =4 ONRE N\ {x}. (24)

Proof. Without loss of generality, take = 0. We use the notatioh = 1(0) andu; =
ug,,- By the definition ofx,

u; <u ONRL\ B;. (25)
From now on, we always assume tHaf]|(24) does not hold fer0, and we will reach a
contradiction. We first show that

u—u; >0 OHM\B_;. (26)
Indeed, if(u — u3)(x) = 0 for somex e R’} \B_;, then using) and hypothesﬂt (4)

and [6), we have .
F(A"') =1 onR’ \ Bj.



304 Aobing Li, YanYan Li

A calculation using[(B) yields

ous,

n/(n—2) n
ox, :cui/ onaR’ \ Bj.
Arguing as in the proof of Lemma 2.1 in [12] (using hypothe$és (5) ghd (7)), we have,
nearx,
0= F(A") — F(A"%) = L(u — u3), 27)
whereL = —a;;(x)0;;+b; (x)0;+c(x) is an elliptic operator with continuous coefficients.
By the strong maximum principle; — u; = 0 nearx. This implies [(24) forx = 0, a
contradiction. o
If (u —uz)(x¥) = 0 for somex € IR™ \ B;, we have
o(u — uj n/(n— -
AW =45 2y (cun @D _ D) 0,
0xy, A
Since we still have[ (37) near, we apply the Hopf lemma to deduce that- u; = 0
nearx, again leading td (24) far = 0, a contradiction. We have thus establistjed (26).
Next we show that
_lim oy y) — uz(y) > 0. (28)

yeRY, [y|—o0
Lettingx = y/|y|?, we have
A%y
lyI?

By ), ) and the conformal invariance Er (8), baty andv areC? solutions of).

We also know, from6), thaigq1 — v > 0in BIF/X' By the same arguments used in

provingu — uj; > 0 ondR’, \B_;, we have(ug 1 — v)(0) > 0, which implies).
Sinceu — u; = 0 ondB; N and [2§) holds, we can apply the Hopf lemma as in
the proof of Lemma 2.1 in [12] (see also the outlines near (27)) to obtain

o(u —u3)
av

wherev denotes the unit outer normal §a; .
Finally, we prove that

V" 2u(y) = uo1(x), |yI"Puz(y) = /—\n—zu< > =05 =t o).

>0 ondB; NRY, (29)

o(u —uz)
av

wherev still denotes the unit outer normal &a; .
Letx € 3B; N dR’}. Then as in the proof of Lemma 2.1 in]12], we hajve|(27) near
with continuous coefficients. Clearly, for some constant 0,

o(u —u3z)
0xy,

>0 ondB; NoRY, (30)

= e@" "2 —21"7B) < A —uz) i (RL\ BY) N Bi().
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By (27), and for a possibly larget, we have
aijdij(u — uz) + bidi(u — uz) < Aw —uy) in R\ B N By(@).

Now an application of Lemma 10.1 ¢f [16] (with = (R, \ B;) N B1(X), 0 = xn,
p = |x|?> — 22, and ourn — u; being thex there) yields
o(u — u3z)

So we have establish

dd {30). L
Given ), ), ),0), and the positivity and continuityuobn R” , we can

easily prove that there exists some- 0 such that
u, <u ONRL\ B, VA<i<i+te,
which violates the definition of. Lemmd 3 is established. O

Proof of Theorerh]1 under the additional hypothe@&) and (20). Letu be as in Theo-
rem[] and suppose satisfies[(I9) and (20). By Lemrpa 3 and a calculus lemma used in
[17] (see, e.g., Lemma 11.1 in [16]),

A

a

n—1
(|x/ _ )f’|2 + d2)(n—2)/2 onR ’ (31)

u(x',0) =

wherex’ € R"~1, anda andd are positive constants. L&t = (x/, —d) and define

()__< 2d )”—2 (P+4d2(z—P))
v(Z) .= |Z—P| u —|Z—P|2 .

By the arguments in [17] andl[2], as in the proof of Lemma 4.5 in [16], we knowtlet
radially symmetric with respect t@ := (x’, d) in B2;(Q). By the conformal invariance
of the equation satisfied by, we have

F(A'Y) =1, A’eU, v>0 inBy(0).

a (n—2)/2 )
v(z) = <m> In B24(Q),

wherea > 0 and 1+ b(2d)? > 0. Comparing this with (31), we must haize> 0. This,
together with[(3]L), implies

a (=272
=—7 onRR’ ,
“) (1+b|x—i|2> *

By Theorenj B,

wherea = d=24%"=2 p = d=2, 5 = (¥, %), 4, d, ¥ are given in[(3lL), and,, is
some real number.
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SinceA“(0) = 2a—2bI, we have 2=2b1 € U andF (2a—2bI) = F(A*(0)) = 1. By
the boundary condition far atx = 0, we have(n — 2)a~bx, = c. Theoren] [L is thus
established under the additional hypotheses. O
Proof of Theorern]1 By Lemm4 2, there existsy > 0 such that

up <u ONRL\ B;, VO<Ai <A, (32)

whereu; = ug; andB;, = B, (0). Letw = ug 1. As in the proof of LemmE]Z and in the
proof of Lemma 2.1 of [1R2], there exists sore > 0 such that

w) < w on]RTi\ B,, VY0<X <A1 (33)
Rewrite [32) and (33) as
w, <w inBf,  VA> 1/,
wy > w inB;’, VO < A < Aq,

and let
=supp | wa(x) > w(x), VO < [x| <A < pu},

> >

=inf{u | wi(x) < wx), YA > u, 0 < |x| <A}

If % < 4, thenw; = wy; = w, andu satisfies[(1D) and (20). In this case Theofgm 1 has
already been established. In the following, we assumejthat > and we will reach a
contradiction.

Clearly,w; (0) = -u(0), so we have

u(0) =w(0) = u(0).

An—Z

Xn—2

Sincex > 1, there must be at least one strict inequality in the above. Without loss of

generality, we assume that
1

This guarantees that there is no touchingugfandw near 0 fori close tox. Therefore,
by the moving sphere arguments used earlier, we have, éwse tox, w; < win B;.
This violates the definition of. Theoren] 1L is established. o

2.3. Proof of Theorein| 2

Let

a:= liminf |x]"2u(x) € [0, x].
xeRY, [x|—o00

Lemma 4. We haver > 0.
Proof. We follow the arguments of the proof of Lemma 4.1[in|[16]. Let
0 :={y e R} lu(y) <y*™"}.
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We only need to show
liminf  |x|"%u(x) > O.

x€0, |x|]—>o00
We know that
Au<0 1inoO,
ou

0Xy

= cu" "2 < (le| + D|y|"%u  ondO NIR".

ForA > 1, let
E(y) = |y — Aey 27" + [y|F

For largeA andR = A2, we have

—AE <0 onR’ \ Bg,
d& le]+1

> , Vy e dR™ \ Bg.
ox, (= e §(y), Vy Y+ \ Br

Leté(A) > 0 be a small constant such that
w:=u—¢e >0 o0nd(0\ Bg)NR].

It follows that

Aw <0 ono \ Bg,

a 1

Y-ty <0, vy a0 By naRe.
dxn Iyl

Clearly, liminf,co\ Bg, |x|-00 w(x) > 0. By the maximum principlew > 0on O \ Bg.

Hence

liminf |x|"2

u(x)>¢€>0.
x€0, |x|—>00

Lemmd 4 is proved. o
Lemma 5. For anyx € oR'}, there exists.o(x) > 0 such that
uxjy <u ONRYL\ By(x), VO0<2i<iox).
Proof. Since we know that > 0, Lemmd}b follows from the proof of Lemmi& 2. O
Forx e dR", letA(x) be defined as ir} (23). By Lemrab(x) > 0.
Lemma 6. If « = oo, then
AMx) =00, VxedR].

If o < 00, then
A" 2u(x) =, Vx e dRL. (34)
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Proof. By the definition ofi(x),
ue () <u(y), VY0 <i<ai(x), Yy e R\ Bi(x).

It follows that

A 2u(x) = liminf  |y" 2

yeRY, |yl>00

< liminf  |y"%u(y) =a, V0 <i <i(x).

yeRY, |y|—o00

uy ()

If « < 00, we have .
L) 2u(x) <@ <00, Vx € dRL.

In fact we must have .
A" %u(x) = a.

Indeed, ifA(x)"2u(x) < a, then

lm 2 =ty 5 () = @ = 40" 2ux) > 0,
yeRY, |y|—>o00

and the arguments in the proof of Lempja 3 show that the moving sphere procedure should
not stop at.(x), violating the definition o (x).

Now assumer = oo. Without loss of generality, we show:= 1(0) = co. We prove
it by contradiction. Suppose < co. By the definition oft, (25) holds. Sincer = oo, we
have

liminf  (u(y) —uz )Iy""% = oc.
yeRY, [yl—o0

This plays the same role 4s [28) in the proof of Lerilna 3, and the arguments there lead to
a contradiction to the definition af Lemmd 6 is established. O

To prove Theoreh|2, we first consider the case oco. Our proof goes along the lines of
the proof of Theorem 1.3 in_[14]. Our next lemma, whose proof is given towards the end
of this section, is an analogue of Lemma 4.1in [14].

Lemma7. Forn > 3,a,d > 0,c € R, p,g € R"Yandp # ¢, letu € CX(B} \ {0}
satisfy

Au <0 in BJ inthe distribution sense

ou
=cu™"=2 on@B NIR%)\ {0
axn cu ( d +) \ { }’ (35)
u(x) > maxa + p - x’ + ca™ "= dx, — §(|x|),
a+q-x'+ca""2x, —§(x|)}, Vx € B},

wherex’ = (x1, ..., x,-1), 8(r) > 0andlim,_ o+ 8(r)/r = 0. Then

liminf u(x) > a.
xeBz',x—>0
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Lemma 8. Under the hypothesis of Theor@inf « < oo, thenu is of the form{I0) with
X, a andb given below(I().

Proof. Forx € aR’}, let

A(x)%(y — x) Y
vz YOERE

By the definition ofi(x),

¢ (y) == x+ W () 1= (Ugw)y = g oy -

U>uyw ON R\ By (), Vxe ORY. (36)
By 34), _

w®(0) = A(x)"2u(x) =a, Vx € IR".
We have

uy € C2(R1),

Auy <0 inR7 sinceAu <0 in R},

iminf uy(y) = liminf  |z]"2u(z) = a,
R%5y—0 zeR', |z| > 00

and it is clear, for somé(x) > 0 and by|[(3p), that

w® e CZ(B;(x)), Vx € 9R",
Uy > w®, in B;Ex).

By (8) and the conformal invariance of the boundary condition satisfied by

dw™

= [w®]V =2 onaR" \ {x/|x|?},
Yn

0

8”"’ = cluy]®=2  onaR" \ {0}.

Yn

By LemmdT,
Vyw®(0) = Vyw @),  Vx e dRL.

So forx = (x/, 0),

V= Vyw@0) = (1 — 2)0)" " 2u(x)x + A(x)" Voru(x) + Ax)" Vyu(x)
= (n — 2ax’ + "Dy (x)" Y Ly (x).

Thus we have

_2 -2 -
VX/I:H . a"/("’z)u(x’, 0)—2/(1172) _ nT|x/|2 +V ,x/i| =0,

which implies, for som&’ € R*~! andd € R, that

u(x', 0202 = =2/0=D |\ _ 2 4 o2 0-2)
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Sinceu > 0, we havel > 0 and

37)

2/ (=2 (n—2)/2
d+ |x/ _ )f/|2

u(x',0) = (
For simplicity, we taker’ = 0. By (34) and the above,

_ 3 n—2 Y n—2 o
@ = 10" 2u(0) = L0y,

which givesi := A(0) = /d. Since

X n—2 ‘2y
uo) = (m) ”(W)’

M2 o

X2+ 24Hn=2/2 ~ (X2 + d)n-27/2

we have, by[(3]7),

=u(x',0), Vx eR'"L

uz (x',0) =

Thus by the conformal invariance of the equation and the boundary condition satisfied
by u, we have

F(A*) = F(A%) =1, AYe U, A% eU inR%\ {0},

u—u; =0 ondR’} \ {0},

o —u;) _ =2 _ M= _ g onaR” \ {0},
0xy, A

u—u; >0 onR’} \ Bj.

As usualu —uj; satisfies a linear second order elliptic equation and therefore, by the Hopf
lemma and the strong maximum principle,

Jp— n
u—u; =0 onR+.

In particular,u satisfies[(I9) and (20). Sois of the form [[I0) by our earlier discussion
of Theorenj 2 undef (19) and (20). Lem[ja 8 is established. O

Lemma 9. Under the hypotheses of Theorigraxcept(1])), if « = oo, then

ux',x) =u@,x,), Vi eR"L vx,>0. (38)
Moreoverc > 0, and ifc = 0, theny must be a constant.
Proof. Sincea = oo, we have, by Lemmig 6,

AMx) =00, VxedR].
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ie.,
uyy <u onR}\ B;(x), V0<Ai<oo,

which, by a calculus lemma (see, e.g., Lemma 11.3ih [16]), imfligs (38). Let
h(t) :==u(0,t) fort>0.

SinceAu < 0, we have
n'@) <0, Vt=>0,

o)
W) <h(s), Vt=>s>0.
Hence
h(t) —h(s) <h'(s)(t —s), Vi=s=>0,
and

ht)—h
h'(s) > Iitminf h) — h(s) >0, Vs>0.
—00

— Y%

r—s

Sincedu/dx, = cu™ =2 onyR",
h'(0) = ch(0)"/"~2.

Sinceh(0) > 0 andh/(0) > 0, we haver > 0. If ¢ = 0, we haveh/(0) = 0. Recall that
h'"(t) <0, so0
W) <h(@©) =0, Vi=>0.

On the other handy'(t) > 0, sok’(¢) = 0 andh(t) = h(0). Lemmd 9 is established.o

Proof of Theorer|2If & < oo, the theorem follows from Lemniq 8. & = oo, then by
Lemmd9,[(3B) holds, and we only need to rule out the possibility:ef0. For this aim,
we make use of (11). As before, let

h(t) :=u(0,r), Vt=>0.
Claim. Va > 0,
im MO _
t—o00 h(t)¢ -
Indeed, if lim_ « k(t) = oo, then [39) is obvious, since & h'(t) < h'(0). Other-
wise, there exists some € [h(0), co) such that lim, o () = b. We also know that

lim;_ o h'(¢) exists sinceh”(r) < 0. So, by the boundedness bft), we must have
lim,— o0 #'(t) = 0, which yields|[(3p).

(39)

Let (A1, ..., A,) denote the eigenvalues af. Then
M) = - = Apa(t) = ——2 Hw*
B e T T G 222 ()22
) = — 2 h (1) 2m—1) K@)

n — 2 h(t)+2/n-2) (n — 2)2 h(1)2/(n=2"
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By (39) and the equation satisfied by

f()"ls'-'a)"n) =11
M=0),.... 1 =001,
2

Ap = ————h~ T/ =D 4 5(1),
n—2

By assumption[(11), there exists sote 0 such that
(A1, s Al = 8,

so for larger,
2 h (1) 9
T — 2 h(t)(+2)/(n=2) — 2’

) -2
1) > n . Sh(t)n+2/m=2 n - Sh(0)n+D/ (=2

Integrating the above inequality twice leads to
-2
—h(t) + h(0) + I (O) > nTBh(O)(”+2)/(”_2)t2, Vi > 0.

Sendingg — oo in the above yields a contradiction to the positivity/ofThus we have
ruled out the possibility that > 0. Theorenj P is established. O

In the rest of this section, we prove Lempja 7. We use the notations
e1=(L0,...,0), x = (x1,...,x,) = (', x,), BY = B,NRY, 3'Bf =3B NR.
Fixing some smalb > 0 to be specified later, let

x1, VxedBiN{x|x1>0x, >0}
dp(x) = 1 0, Vx e dB1N{x|x1<0,x, >0},
—b, Vx e dB1N{x|x, <0}

Define

d(x) =

1— 2
'x|/ P45 vie B, (40)
d

nwpy B1 |)C - y|n
where, denotes the volume of the unit ball &*. We know that¢ € C*(B1) N
Cc9%B, \ 0R%) and, after fixing some smail > 0,
A¢p =0 in By,

$©0) >0, [l <1, (41)
limsup¢ (x) < max{x1,0}, Vx € dB1.

Blax—ﬂz
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Claim. There exists a constagt > 0, depending only on, b, such that

¢

0xy,

(x)>C >0, VxeBiNiRL (42)

Indeed, consider

b
W(X/,Xn) = ¢(-x/7xn) - ¢(.X/, _xn)» U(x) = Exn» Vx = (-x/a-xn) € B]T

We have
Y >n ond'Bf U(B1NIRY).

And for anyx € B,

—Iyl2 _ ro_
V(x) = 1—|x| oo (y) — oo (Y, —yn) ds,
nw, Jap, lx — y|" ’

_ / (6() — b, —yn»(
¥ By

1
lx —yI"  lx =0 —y)I"

)dSy > 0,

therefore
liminf (y —n)(x) >0, Vi e dB;.
X—>X
By the maximum principleyr > 7 in BIF. Sinceyy — n = 0onB1 N IR", we have

0y _ on

0x, — ox,

b
=5 onB; N AR

The Claim is proved.

Proof of Lemmd [7.We only need to prove the lemma with= 1, p — ¢ = e1 =
(1,...,1). Indeed, replacing by (1/a)u, ¢ by ca® =2, p by (1/a)p andq by (1/a)q,
we can assume = 1. After a rotation, we can assunpe— g = ey for somear > 0.
Replacingu(x) by u(x/A), c by ¢/A, p, g by p/Xx, q /A respectively, we can also assume
p—q=eq. B

Since lim-_08(r)/r = 0, there exists & 7 < d such that

B(r_r) < %q&(O), YO<r <T, (43)

whereg¢ is defined by[(4D). For & r < 7, we consider, for O< s < r,

") =1 ’ ) _ st 5, VxeB \B
¢ (x) =1+cx,+q-x' +ro - —W—sup, x € B\ By.
O,r]

By the equations for and¢, we have

Au—¢") <0 inBt\B}.
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By the last lines in[(35) andl (#1),
limsup(u(x) — ¢"(x)) >0, Vi e dB, NRL. (44)

B ax—x
Indeed, ifx; > 0, we have, using — g = e1,
u(x) = ¢ (x) = L+ p-x'+exy = 8(1xD) — ¢" () = x1 —rd(x/r),
from which we deducd (44). K1 < 0, estimate[(44) follows from
U(x) = ¢" () = A+q - x" +cxn —8(x) — ¢"(x) = —ro(x/r).
Sincel|¢|l L~ p;) < 1, we have

¢"(x) <14cx,+q-x' —sups, VxedB; DM.
0,r]

Thus, by the last line irj (35),
u—¢" >0 ondB, NRL. (45)
Claim. There exist$ € (0, 7] suchthatforalld <s <r < F,

B}QL;(” —¢")=0. (46)

Suppose not; we have, Hy {44), [45), and the strong maximum principle,

inf (u—¢")=(u—¢)E <0 forsomet e IR} N (B, \ By)).

B\ B;

At x,

o(u —¢" d¢ (x ~

0< 2= _ cu™ "2 (%) — ¢ — 2 (%) < "D E)y—c—C,  (47)
0xy 0x, \ r

whereC is the constant in (42). By the last line in {35), we have, for some universal

positive constant,
u(x)>1-Clx|>1-Cr.

On the other hand,
ux)<¢'(x) <1+Cr.

We deduce fron{ (47), using the above two estimates,

0O<cCr—-20C,

which is impossible if we choose< min{C/C, 7}. ) is established.
Sendings — 0 in (48), we obtain

u(x) > 1+cx,+q-x' +ré(x/r)—sups, Vxe B
O.r]
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Sendingr — 0, we have, by{43),

liminf u(x) > 1+ r¢(0) — sups > 1.

Bsx—0 O,r]

LemmdT is established. O
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