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Abstract. We prove an Ambrosetti—-Prodi type result for the periodic solutions of the equation
(u'1P~2uy) + f@u' + g(x,u) =t, when f is arbitrary angg (x, u) — 400 or g(x, u) — —oo
when|u| — oo. The proof uses upper and lower solutions and the Leray—Schauder degree.
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1. Introduction

LetQ c RY be open, bounded and smooth, and let us denolg by 1, < A3 < --- the
eigenvalues of- A with Dirichlet boundary conditions 092, and byg > 0 the principal
eigenfunction. Consider the semilinear Dirichlet problem

Au+ fw)=vx) INQ, u=0 o0nag, 1)

wherev € C%*(Q) and f € C?%(R). The following seminal result was proved by
Ambrosetti—Prodi in 1972 [2].

Theorem 1. Assume thaf satisfies the following conditions:

f’(s)>0 foralls eR 2)
and
o< tim £ < iim L9 -4, 3)
§—>—00 S s—>4+00 5

Thenihere exists a closed connected manifold= €% () of codimensiorl such that
CO%(Q)\ A1 = AgU As and@) has exactly zero, one or two solutions according s
in Ag, A1 Or Ao.
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The proof of Theorerp|1 is based upon an extension of Caccioppoli's mapping theorem to
some singular case. Conditiofi (3) mean thatnonlinearityf crosses the first eigen-
valuei of —A whens goes from—oo to +o0.

It is convenient to write[ (1) in an equivalent way. Let

Lu = Au+ Au, g(u) = f(u) — \u,
v(x) = rp(x) +h(x) with / h(x)¢(x)dx =0,
Q

so that problen{ (1) is equivalent to
Lu+gu)=tp(x)+h(x) iInQ2, u=0 o0no, (4)
condition [2) is equivalent to
g’(s) >0 foralls e R, (5)
and condition[(B) is equivalent to

— X1 < lim @<O< lim &<A2—A1. (6)

§—>—00 s—>+00 §
A cartesian representation aff was given by Berger—Podolak in 1975 [4].

Theorem 2. If conditions(B) and (6) hold, then there existg such that{4) has exactly
zero, one or two solutions according as: t1,t =t Ort > t1.

The proof of Theorerp|2 is based upon a global Lyapunov—Schmidt reduction. The same
year, using upper and lower solutions, Kazdan-Watner [9] weakened the assumptions
(and the conclusions) of Berger—Podolak.

Theorem 3. If

. S . . S
— oo < lim sup& < 0 < liminf & < 400, @)
s—>—00 S s—>+00 §
then there exists such that{4) has zero or at least one solution accordingras t1 or
> n1n.

The multiplicity conclusion of Ambrosetti—Prodi (without exactness) was obtained inde-
pendently by Dancer in 1978I[6] and Amann—Hess in 1979 [1] under the Kazdan—Warner
condition [7), wherg satisfies a suitable growth condition -abo. We state the more
general result of Dancer.

Theorem 4. If condition (7)) holds and

. N+1
im 8% _o o =MD (8)
s—>+4o00 57 N -1

then there exists such thaid)) has zero, at least one or at least two solutions according
ast <t,t=r0rt>mn.

The proof of Theorerp|4 is a combination of the method of upper and lower solutions and
of degree theory.
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Condition [7) implies that

lim g(u) = +oo. 9

|u|—o00

Can we replacg [7) by|(9) in the Ambrosetti—Prodi problem?
In 1986, a positive answer was givenlin [7] for a second ordinary differential equation
with periodic boundary conditions. We describe the result in the special case

u' +cu' +gw)=t+h(x), u@ —uT) =u0)—u(T)=0, (20)

wherec e Randg : R — R, & : [0, T] — R are continuous anﬁ)T h(x)dx = 0. Notice
that O is the principal eigenvalue efd?/dx? — cd/dx with the T-periodic boundary
conditions.

Theorem 5. If condition (9) holds, then there exists such that(10) has zero, at least
one or at least two solutions accordingas t1,t = t1 Or t > f1.

The nonlinearities

1/2

gu) = |ul g(u) =10g(1 + |ul)

satisfy condition[(P) but are such that

lim @= lim M=

u—>—00 U u—>—+00 1Y

0.
There is no crossing of the zero eigenvalue!
A similar conclusion holds for the Neumann problem

. 9
Au+gu)=1+h(x) in<, 3-“:0 onae, (11)
v

with ¢ : R — R andh : @ — R Holder continuous, ang@2 h(x)dx = 0, as shown in
1987 in [11], with the following result.

Theorem 6. Assume that conditiof®) holds and

. N
lim g(u):07 =57 whennN > 3. (12)

u—>+o0o0 yu° - N —

Then there existg such thai{11]) has zero, at least one or at least two solutions according
ast <t,t=10rt>1n.

A natural question was to know if conditiop] (9) could also replace condifipn (6) in the
Dirichlet problem. In the case of dimensioh= 1,

u +u+gu) =1(2/m)Y?sinx + h(x), u(0) =u(r)=0, (13)

with ¢ : R — Randh : [0,7] — R, continuous, and A(x)sinxdx = 0, the
following result was proved in 1987 ihl[5].
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Theorem 7. If condition (@) holds, then there existg < r, such that(I3) has zero,
at least one or at least two solutions accordingras< t1,t € [f1,t2] or t > 1. If
u — Mu + g(u) is nondecreasing in a neighborhood @ffor someM, thent; = 1.

The problems of knowing ify = #, without an extra condition upog (even if N = 1)

and of extending Theorefi) 7 to higher dimensions are still open. A partial answer to the
second question for the Dirichlet problem can be found in a 1987 paper of Kannan—Ortega
[8], for sufficiently smoothg and.

Theorem 8. If

N+1
sl = ylul” + 8. o<

whenN > 2, (14)

lim [A1s + g(s)] = +o0, lim g(s) = +o0, (15)
§—>—00 §—>+00

then there exists such thatd)) has zero, at least one or at least two solutions according
astr <n,t=nort > n.

The stability of T-periodic solutions obtained inl[7] was considered by Ortega in 1989
[14,[15].

Theorem 9. Assume that > 0, g € C1(R) is strictly convex and satisfies conditi@,
and

2 2
0 < g'(+00) < (%) + CZ. (16)

Then, for each > r1, one solution ofI0) is asymptotically stable and the other unstable.

The proof is based upon the use of Poitapperator and Brouwer degree.
The delicate case of almost periodic solutiong of (10) was studied by Ortega—Tarallo
in 2003 [16].

Theorem 10. Assume that € C(R, R) is almost periodicg € C1(R) is strictly convex
and satisfies

2
— 00 < g/(—00) <0 < g'(+00) < CZ (17)

Then there exists such that(10) has zero, at most one or exactly two almost periodic
solutions according as < r1,t =1 Or t > 11.

The proof uses separation conditions, Opial's method of ordered upper and lower solu-
tions and a special case of a result on nonordered upper and lower solutions diven in [13].
Letp > 1,
pRo>R, s> |s]P s,

f i R — R be continuousg : R x R — R be T-periodic inx for someT > 0 and
continuous, and let € R. In this paper, we are interested in studying the_aplacified’
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Ambrosetti—Prodi problem for thE-periodic solutions of the equation
(p")) + fwyu' +gx,u) =1, (18)

in terms of the value of the forcing term A T-periodic solutionof (18) is a periodic
functionu € C1(R) of periodT such thay o u’ € C1(R) and which satisfie§ (18). Using

an approach similar to that dfi[7], but with substantial technical differences due to the
presence of the-Laplacian, we prove here the following result.

Theorem 11. If
lim g(x,s) =+o00 uniformlyinx € R, (29)

|s]—o00

then there existg such tha({I8)has zero, atleast one or at least t@eperiodic solutions
accordingas < t1,t =t ort > 1.

This theorem is a consequence of Leminidg 4, § and 7. Let us mention that, very recently,
Arcoya and Ruiz[[B] have extended the conditions of Amann—Hess for the Ambrosetti—
Prodi problem to perturbations of theLaplacian inQ ¢ RY with Dirichlet conditions,
whenp > 2. Itis interesting to notice that, in the case where b < 2, their conclusion
is similar to the one in [5].

We use the following notations. Fér> 0 integer, let

Ck = {u:R — R:uis of classC* andT-periodig.

If veC?, andp > 1, we set
1 T
i::—/ v(x)dx, V=v-—1,
T Jo

1 /T 1/p
||v||m=m]§X|v|, ||v||p=<7/0 Iv(x)lpdx> .

If @ C X is an open bounded set of a normed sp&i@nd ifS : @ ¢ X — X is compact
and such that & (I — S)(9%2), theLeray—Schauder degresf I — S with respect ta2
and O is denoted by s[I — S, 2, 0].

2. Periodic upper and lower solutions and degree

We need the following results on the method of upper and lower solutions.

Definition 1. A T-periodic lower solutiorr (resp.T-periodic upper solutio) of (18)
is aCl T-periodic function such that o o’ € C1(R) (resp.¢ o g’ € CL(R)) and

(P (X)) + fla@)a' (x) + gx, a(x)) > 1 (20)
(resp.
(@B (X)) + fF(BONB (x) + g(x, B(x)) = 1) (21)

for all x € R. A lower (resp. upper) solution ®trictif the strict inequality holds if20)
(resp.(27).
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If the T-periodic lower solutionx and theT-periodic upper solutio of (I8) are such
thata(x) < B(x) for all x € R, let us define the bounded continuous ma®R x R — R

by

alx) ifu <o),
r(x,u) =13 u if a(x) <u < Bx),
Bx) ifu>pBx),

and consider the modified equation
@) —[p@) — @lr &, w]] + fIr@x, wlu’ + glx, rx, w)] = 1. (22)
The following result is classical. We give its simple proof for completeness.
Lemma 1. Each possiblg-periodic solutioru of (22)is such that
alx) =u(x) =) (xeR).

Proof. We prove the first inequality, the other case being similar. If the conclusion does
not hold,u — « reaches a negative minimum, say:aso that

u@) <a®), u'E =d . (23)
Hence,s (&, u(§)) = a(£), and, by [d),

@@ (€)' —[p®) — p@@EN] + f@@)a' () + g, a(§))
=1 < (@@ EN + fa@)a' () + g&, a®)),

so that
(@' (£)) = (@@ () < ) — $p(x(§)) <O.
By continuity, there exists > 0 such that
@' () — (@@ (x))) <0 whenever x € [§ —¢, & +e¢],

and¢ ou’ — ¢ o « is decreasing org[— ¢, & + ¢], and vanishes &t This easily implies
that(u —a) <0onk,&+¢eland(u —a) > 00n [ — &, £[, a contradiction witht — «
reaching a minimum. O

Remark 1. If « and g are respectivelyr'-periodic lower and upper solutions ¢f {18)
such thax(x) < B(x) for all x € R, a similar proof shows that each possiBleeriodic
solution of [22) is such that

a(x) < B(x) (x eR). (24)

The following result will be useful in proving the existence of goeriodic solution
of the modified equation.
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Lemma 2. Givenr* € R, there existR, R’ > 0 such that, for each. < [0, 1], eacht
with |z| < t* and each possibl&-periodic solution of

(@) —[¢w) — Ap[r(x, w)]] + Af[r(x, w)]u" + rglx, r(x, u)] = rt (25)
one has
lulloo < R, [ltlloc < R'. (26)

Proof. Let A € [0, 1] andu be a possible-periodic solution of[(2p). If we multiply
both members of (25) by, integrate over [0T] and use integration by parts and the
T -periodicity, we get

A T
S = full? — 7/0 U () (rCx, u(x)) dx

r (T r (T
+ —f u(x) f(r(x, u(x)u' (x)dx + —/ u(x)g(x, r(x,u(x))dx
T Jo T Jo

A T
= T./O u(x)tdx.

Hence, for some constant$, M’ we have, using the élder inequality,
'y + llully < Mllullplla'llp + M llullp 4+ 15 Null .
This easily implies the existence §f= S(:*) andS’ = §’(¢*) such that
lull, + 'l < S, Nulloo < . (27)

Now, there exist§ such that:/(§) = 0, so that, integrating (25) betweénandx we
obtain

¢ @' (x)) +/§ [¢(u(s) — @ (r(s, u(s)) + Af (r(s, u(s)u'(s) + rg(s, r(s, u(s))] ds

X
=f tds.
&

Hence, usind (37) we géi/(x)|?~ < §” for all x € [0, T] and someS” = §”(1*). O
Lemma 3. For eachk € Cr there exists a uniqué&-periodic solutioru of
(W) — ¢ u) = h(x). (28)
Furthermore, the mapping
H:CT—>C%, h— u, (29)

is completely continuous.
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Proof. The existence of at least ofieperiodic solution for[(Z28) follows from Corollary
4.1 in [10] and the fact that -1 is not an eigenvalue of pheaplacian with periodic
boundary conditions, or from Remark 2.1 [n_[12]. For the uniqueness,aifd v are
T-periodic and such that

@) — @) =hx), (W) —¢@)=hx),
then
(@) — o)) —[pw) — ()] =0. (30)
Now, it is easily checked that, for alls € R, one has
[¢(r) = @1 =) = (rIPH = Is1PH(r| = Ish

and hence, integratinfy (30), we obtain

T T
02/0 (u' 1P~ = 1P H (') = |v’|)+fO (ulP~ = P (ul = o)) = O,
Consequently, for alt € R,
' ()] = '), |u@)| = [vx)]. (31)

Hence[(3DP) can be written as

(/172 = v')) = ulP~?(u = v) =0,
which gives, by integration after multiplication ly— v,

T

/ /1P 720" = v)? + [ulP "2 — v)?] =0,
0

and hence, together with (31), implies that= v. Now it follows from an argument

analogous to the one used in the proof of Lenfifjna 2 that

1 T
—llu Iy = llully = ?f u(x)h(x) dx,
0

so that by the Idlder inequality,

115+ lully < Wlloolllu 15 + Nl 147,
which gives

1/p—-1 1/p—1

el < WRISEPE 'l < IRl (32)

and hence, for some constantdepending only upoff,
1/p-1
lulloo < CllAII ™ (33)

Now, there exist$ such thatu/(§) = 0, so that integrating (28) betweénandx we
obtain

¢(M’(X))+/S ¢>(M(S))d3=/§ h(s)ds,



Ambrosetti—Prodi problem 383

and hence, for alt € [0, T,
1 1P~ < T(CP™ + Dlhleo,
which gives, for some consta@t only depending upoft,
I/ loo < C' AN (34)
Let (h,) be a sequence @7 such that
lAnlloc = R (35)

forall n» > 1 and someR > 0. Letu, := H(h,). From relations[(33)[(34) and Ascoli—
Arzela's theorem, we can assume, passing to a subsequence if necessary, that
u € Cr uniformly onR. Now, if §, € [0, T] is such that,(¢,) = 0, we have, for all
x €0, 7],

¢, (1) = _/s <75(un(S))dS+/g hn(s)ds, (36)

and, from relationd (33) (35) and Ascoli-Ara&l theorem, we can assume, passing to a
subsequence if necessary, that the right-hand member]of (36) converges to satie
uniformly on [0, T]. Consequently/,) converges uniformly on [0F'] to ¢ ~1(z), and so

‘H is completely continuous. O

Define
G :Cr— Cr, ur —p)— fwu' —g(-,u)+1, (37)

and, fora, B € Cr such thaix(x) < B(x) forall x € R, andR’ > 0, define the open
bounded se@ C C} by

Q:={ueCh: akx) <ux)<pk), —R <u'(x) <R (x eR)). (38)

Proposition 1. If (I8) hasT-periodic lower and upper solutions S such thatx(x) <
B(x) for all x € R, then it has ar'-periodic solutioru such thaix(x) < u(x) < B(x) for
all x € R. Furthermore, ife and 8 are strict and ifa(x) < B(x) for all x € R, then

dis[I — HG:, 2,0l =1 (39)

Proof. By Lemmd], the existence conclusion follows from the existencelopariodic
solution to [22). Let

Qi={ueCtlulw <R, 'l < R
whereR andR’ are given by Lemmp]2, and let
G: C% x [0,1] - Cr,  (u, ) > —Ap(r(-,u)) — Af(r(-,u))u’ — Ag(-, u) + At.

It is clear from Lemma |3 that th&-periodic solutions of[(22) are the fixed points of
HG(, D in C%. The homotopy invariance of the Leray—Schauder degree gives

and the excision property of the Leray—Schauder degree gives
dis[T —HG(, 1), Q,0] = dis[I — HG(-, 1), Q,0] = dis[l —HG,2,0. O
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3. Existence of the first solution

Assume now that

g(x,u) -> +oo as|u| — oo, uniformly inx € R. (40)

Let
= min Ju). 41
7 ueR,xeRg(x ) ( )

Lemma 4. If condition (40) holds, then there exists > o such that(18) has noT-
periodic solution ift < ¢1 and at least ong -periodic solution ift > 71.

Proof. We first notice that, for > * := maxg g(x, 0), O is an upper solution fof (18)
(a strict upper solution if > ¢*). Givens > t*, it follows from condition [[40) that there
existsR; > 0 such that

g(x,u) >t whenever |u| > R;, x € R,

so that—R; (or any smaller number) is a strict lower solution fprj(18). Hence, from
Proposition L, for each> ¢*, this equation has at least ofieperiodic solution such that
—R; < u(x) < Oforallx € R. Let us now show that if (18) hasZ-periodic solutiorn:

for somer < t*, then it has & -periodic solution for alt € [z, #*]. Indeed, for such a,

we have

(@@ () + f@a)a’(x) + gx, u(x)) =7 <1,

which shows thafi is an upper solution fof (18). Furthermore, by the reasoning above,
there existsR, > — ming % such that mip.g g(x, —R,) > t so that—R, < mingu

is a lower solution for[(T18). Again, this implies the existence df-periodic solution

for (I8). Consequently, the set ofe R such that[(IB) has @-periodic solution is an
interval unbounded from above. Let

11 = inf{r € R : (I§) has & -periodic solutiomh. (42)

We now show that{ (18) has rib-periodic solution forr < o. Indeed, ifu were aT-
periodic solution of{(18) for some< o, and ifu(&) = ming u, thenu’(¢) = 0, and

(W' (©)) =1t —gE u®) <o —gE u®)=<0.
By continuity, there exists > 0 such that
(@' (x)) <0 forx e[ —e, & +¢],

so thatp o u’ is decreasing ort[— ¢, & + ¢], and the same is true faf. This contradicts
the fact thau reaches its minimum &t Consequentlyt; > o. ]
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4. A priori estimates

We now prove an a priori estimate for the possibl@eriodic solutions of (78) whenis
bounded from above.

Lemma 5. For eachr, > 11, there existM (o) > 0 and N () > 0 such that, for each
t € [t1, 12] and each possibl&-periodic solutioru of (18), one has

lullo < M(12), (43)
4 lloc < N (22). (44)

Proof. Letr € [r1, 2] and letu be aT -periodic solution of[(I8). Integrating both members
of the equation over [OI'] gives

1 T
—/ glx,u(x))dx =t. (45)
T Jo
We deduce fron{(18) that
u(p@) +ufu +ug(x, u) =ut,

which, integrated over [(OI'], gives, by theT -periodicity ofu,

1T .
L + 7/0 2w ()T dx = 0,

and hence, using (#5), with defined in[(4]L),

1 T
lu'lly = ?/0 [g(x, u(x)) — olu(x)dx

IA

1 T
7/ [g(x, u(x)) — o]u(x)| dx
0
[tlloo(t — 0) < |lilloo(t2 — 0). (46)

Now, if & is such thaii(¢) = 0, we have for each € R, using the Hblder inequality,

IA

< Tllu'llp,

[(x)| = ‘/X u'(s)ds
§

so that[(4p) implies that
lu'llp < [T (2 = )Y P70, (47)

Now, there exist®, > 0 such thaig(x, u) > r» whenevelu| > R, andx € R. Conse-
quently, if[u(x)| > R> for all x € R, we have, by[(4b),

1 T
t = —f g(x,u(x)dx > 1,
T Jo
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which is impossible. Henci (£)| < R2 for somet € R, which implies

/X u'(s)ds
§

< Ry + [T (1 — )YP™D = M(zp). (48)

lu()] < |u@)]+ < R+ T|ullp

Now, there exist§ € R such that/(¢) = 0. If we set

F(u) = /u f(s)ds, (49)
0
we can write[(IB) in the form

[P+ Fw) =1 —gx,u),

so that, integrating frorg to x, we get
¢ (' (x)) + F(u(x)) = F(u(®)) +/§ [t — g(s, u(s))]ds,
which gives, by[(4B), for each € R,

T
lp (' (x))| <2 max IF(u)|+/ lg(s, u(s)) —tlds
lul<M(12) 0

T
<2 max |F(u)|+/ [lg(s, u(s)) —o|+lo —tl]ds
0

lu|<M(t2)
<2 max |Fw)|+T[t—o0)+|o—t]]
lul<M(t2)
<2[ max |F(u)|+T(t2—o0)]:= S(t2),
lu|<M(t2)
and this immediately yield§ (#4) for any(s) > [S(12)]Y/ Y. a)

This result allows us to prove the existence of at least one solutian=fas .

Lemma 6. If condition (40) holds, then(18) has at least oné’-periodic solution for
t=1n.

Proof. Let (z;) be a sequence inq} +oo[ which converges tai, and letu; be aT-
periodic solution of[(TB) with = 7; given by Lemma}4. From Lemnja 5, we know that,
forall k > 1,

luklloo < M(12),  lluglloo < N(22), (50)
and from Lemm@]3 that, for all > 1,
U = Hg‘rk (uk) (51)

Conditions [(5p) and the complete continuity &fimply that, up to a subsequence, the
right-hand member 01) converges(ﬂ%, and then(uy) converges to some € C%
such thaut = HG,, (u), i.e. to aT-periodic solution of[(IB). O
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5. Existence of two solutions

Define
B(R,R) :={ueC}: |uloo <R, |t]lcc <R}

Lemma 7. If condition(@0) holds, then, for each> r1, (18) has at least twd -periodic
solutions.

Proof. Letr, > 11 and letr € [t1, 12]. As (18) has nd’-periodic solution for < r1, we
have, for allr < 1, using LemmaJs,

dis[I — HG:, B(M(t2), N(t2)),0] = 0. (52)
By the reasoning in the proof of Lemrh 4, there exigts> 0 such that
?yﬂgg(x’ _Rlz) > 12,

and hence
ming(x, —Ry,) >t forallt <.
xeR

Thus,—R,, is a strictT-periodic lower solution fo@S) whenever< r,. On the other
hand, ar'-periodic solutior of (18) withr = r; is such that

(@ wh (X)) + flur(x)uf(x) + g(x, u1(x)) =1 <t,

and is a strict’-periodic upper solution of (18). We can of course always incréage)
in such a way that

—M(12) < =Ry, <u1(x) < M(t2)
for all x € R. Hence, ifQ; is the open bounded subset®fM (12), N (t2)) defined by
{u € CF 1 =Ry <u(x) <u1(x), —N(t2) < u'(x) < N(t2) (x € R)},
it follows from Propositiof [L thaf (18) has at least digeriodic solution irt21, and that

dis[I — HG;, Q1,0] = 1. The excision property of the Leray—Schauder degree[arjd (52)
give, fort € 111, 12],

dis[l — HG:, B(M(t2), N(t2)) \ €1, 0]
=d s[I — HG;, B(M(t2), N(t2)), 0] — ds[I — HG;, 21,0] = —1,

which implies the existence of @-periodic solution of equatior{ (18) contained in
B(M(2), N(12)) \ Q1. Asty > 11 is arbitrary, the proof is complete. ]
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