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Abstract. Consider the divergence structure elliptic inequality
div{A(x, u, Du)} + B(x,u, Du) >0 (@)
in a bounded domaif2 c R”. Here
Ax, 2,8 K> R", Bx,z,8):K—>R, K=QxRT xR",
and A, B satisfy the following conditions:
(A€), &) = [§]l —c(x)z —a(x), |A(x,z,8)| <const B(x,z§) < b(x),

for all (x, z, £)) € K, wherea(x), b(x), c(x) are given non-negative functions. Our interest is in
the validity of the maximum principle for solutions ¢f| (1), that is, the statementatinatsolution
which satisfies < 0 on a3 must be a priori bounded above

This question arises, in particular, when one is interested in the mean curvature equation

div—2"  _H.

V1+ |Dul?
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Introduction

We are concerned with the divergence structure elliptic inequality
div{A(x, u, Du)} + B(x,u, Du) >0 D
in a bounded domaife c R”". Here
Ax,z,6): K —->R" Bx,z,6):K—>R, K=QxR"xR",
and A, B satisfy the following structure conditions:

|A(x,z,8)| =const  (A(§).&) = [§] —c(x)z—alx), Bx,z,8 <bkx), (2
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forall (x, z, £)) € K, wherea(x), b(x), c(x) are given non-negative functions. Our inter-
est is in the validity of the maximum principle for solutions [of (1), that is, the statement
thatany solution offT)) which satisfies < 00ona< must be a priori bounded above §n

This question arises, in the first instance, from the example of the mean curvature
inequality

divL >nH(x), (€))

V14 |Du|?2
and secondly from a result of Gilbarg and Trudingéf ([1, Theorem 10.10]) for the more
general case of inequality|(1). In particular, Gilbarg and Trudinger prove the following
result.

Letu € C(Q) N CL(Q) be a distribution solution of the inequali@), where A, B
satisfy conditions@) with a(x), b(x), c(x) constants, written simply, b, cE] Suppose
u < 00ona and that

b+oQY" <1/8

whereS = 1/na),l,/n is the Sobolev constant for the spa@é’l(R") andw, denotes the

measure of the unit ball iR”. Then
u<Ca IinS,

with C a constant depending only anb, c and |<].

This result can be applied immediately to the mean curvature equation, though for pur-
poses of comparison with our results, we shall defer this until later.

Gilbarg and Trudinger assert as well (without proof) that the same conclusion holds
whenu € Wol’l(sz) and the coefficienta(x), b(x), c(x) in (2) are inL" (). It seems
to me, however, that the spaé(Q2) is too weak and should be replaced b¥($2) for
someg > n. In fact, we have the following result.

Theorem 1. Letu € Wlﬁ;cl(sz) be a distribution solution of the inequali@) where
A, B satisfy conditiong2) with a(x), b(x), c¢(x) in L4(2) for someg > n. Then iﬂ

b+ cllg 17" < 1/8 (4)
we have
u < ClalgQY" Y8 inQ, (5)
where (explicitly)
n rI\ra/@—n
C=Ci(n) = 35(3[—} ) (6)
n—1

ands € (0, 1) is any constant such th@d]) holds with the right side replaced k§g — §)S.

(For the record(n/(n — 1))"~1 has the universal boundfor all n > 2.)

1 Alternatively, a(x), b(x), c¢(x) can be bounded by constants, which without confusion can
equally be called, b, c.

2 By || - 4 we mean| - |l ra(q)-
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If a(x), b(x), c(x) are bounded, the conclusion can be strengthened. It is convenient
here to introduce theffective radiusk of 2 by the definition

Q2] = w, R".
We can then replace (4) by
b+ )R <n, &)
and (5) by
u<CaR/s (5)
where now
2 n n—=1\ n
C=Cn)=-(3 . (6)
n n—1

Condition [4) in Theorerf|1 can in fact be replaced by the weaker restriction

[ <
Q n

but at the cost that the conclusign (5) arises in the less precise form

u=<Cn,q, Qb+ clla 10 +cliglalg, 8

with no simple expression fa¥ in terms of the listed parameters. Moreow@r~ oo not
only asqg — n but also ag|b + c|l; — oo, even wher|b + c||, is finite.

Theorenj L and the extensions given above will be proved in S¢gtion 1. For the explicit
case of the mean curvature inequalfty (3), the conclusions take the following form.

Theorem 2. Letu € W,i’cl(sz) be a distribution solution of the mean curvature inequal-
ity @) withu < 00nadQ. Assume that ~— € L9(2) for someg > n. Then if

IH Iy 1YY < " ©)
we have
u<CR/S (10)
where
1 A0
C =C3z(n) = —(3|: ] ) . 11
n n—1

If H(x)is bounded below, sa§y (x) > — Hp, Ho > 0, the conclusion can be strengthened,
with (9) replaced by
HoR <1 9)

0.6 n—1\n
C = Cy(n) = 7(3[’1 . J ) . (11)

and(17)) by
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Corresponding to condition (7), it is actually enough to assume only that
IH™ I, < wn, (12
though the conclusion again takes the less explicit form
u=C,q, |2 [1Hln 1 Hllg)- (13

In the canonical case = 2, H(x) = —Hp andé = 1/2 the estimatd (10) can be
replaced by (see Sectiph 3)
u < 15R. (14

Of course this is not too accurate for the case of balls, or even convex sets, where optimal
estimates can be obtained, at least dr solutions, by using the standard maximum
principle and spherical caps as comparison functions. See also the comments in[$ection 3.

Theorenj 2 appears to be new. We emphasize in particular that the solution class con-
sists of weakly differentiable functions, th@tis unrestricted except to have finite mea-
sure, and finally thaf (11); (I1and [14) are all explicit.

It remains an open question, at least to the present author, whether theL.$pege
for the coefficients can be replaced b¥{(2), as asserted by Gilbarg and Trudinger (see
the comments at the foot of page 276 and the top of page 277 of [1]). This is, in fact,
true when the solution is in the strong clag%(Q2) (or evenW,g’g(Q)), as proved by the
same authors (Corollary 10.6), but again it is an open question whether the smoothness
condition can be removed.

The reader may question whether the restrictipfs (9) ora@ necessary for the
validity of (I0). In fact, for the specific casH (x) > —Hp = negative constant, no
solution at all is possible if2 contains a balB = By of radiusR andHy > 1/R. To
see this, take a hemispherical aap- v(x) over the ball, of radius exactl®. The graph
z = v(x) over B has mean curvaturel/R, so that

div<L> +n/R=0 inB. (15)
Vi+[DvP?

By a vertical translation of(x), either up or down, it can be arranged that the cap is
tangent to the graph = u(x) at some poinkg € B, while alsov(x) < u(x) in B. The
translated cap of course continues to sdlve (15).

We can now apply a beautiful theorem of Eberhard Hdpf ([2, S§tzs8e alsol[B,
Theorem 2.5]) concerninigingent solutionsf quasilinear elliptic equations, to conclude
that in this case = v in B, which is obviously impossible.

A simple consequence is thatSif is a ball of radiusk and H (x) = constant= —H,
then the conditionHR < 1 is necessary for the mere existence of a solution, while
HR < 1is sufficient to provide an upper bound on the solution in terms of its boundary
values.

Sectior{ 1 is devoted to the proof of Theorgm 1, and Sefiion 2 to the proof of Theo-
rem2. In Sectiofi]3 we add some final remarks.
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1. Proof of Theorem[1

For completeness we first recall that a functioa LL (<) is aweak distribution solution

of () inQif A(-,u, Du) is measurable i®; B(-, u, Du) € L} (%2); and
f (A(x, u, Du), Dp) < / B(x,u, Du)g (16
Q Q

for all ¢ € C1(Q) such thaty > 0in Q andy = 0 neard. (In view of the condition
|A| < constin[2), this inequality is meaningful.)

In order to have a sufficiently large supply of test functignfor later purposes, the
following lemma is crucial.

Lemmal. Lety : R — RBL be a non-decreasing continuous function such tha) = 0
forr € (—oo, €] andy e C¢, m] N CYm, 0o), with possible corners at = ¢ and
t = m, £ < m, and withy/" uniformly bounded. li Wli'cl(fz) is a distribution solution
of (I) such thatx < 00n a2, then(16)is valid forg = ¥ (u), in the sense that

/(A(x,u,Du),Dgo) 5/[B(x,u,Du)]+go. a7
Q Q

A proof can be found in 4, Section 3.1].
The proof of Theorerfi|1 is based on two main lemmas.

Lemma 2. Letw € W@;}(Q) be a solution of inequalit@), and suppose the coefficients
a(x), b(x), c(x) in (2) are in the Lebesgue spade () for someg > n. Assume that
2] =1and

w>k InQ, w=k onaiQ,

withk = aS|all,, « > 0andS = 1/nwy’". Thenw € L®(K) and

. L nq/(q—n)
w < <1< [ 1] ) lwlls, K =e"+1/a+S|b+cl,. (189
n—

(In the case of bounded coefficients we can take more sikplyl + 1/a + S(b +¢).)

Proof. Step 1.This relies on a Moser-type iteration argument. We argue by induction,
showing that ifw € W,é’cl(Q) N L" () for somer > 1, then

w e Wil@)n L (@),

1
o

wherex = n/(n — 1). Forr = 1 one obviously has € W, ’Cl(SZ) N LY(), sincew = k

on d$2. Hence by induction

weWhk @ nLe@) forallg> 1.
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Let ¢, m be fixed, withk < ¢ < m (ultimately we takeZ — k andm — o0). For all
real numbers > 1, define

0 ifk<r<eé,

Y)=3t" -0 ifl<t<m, (29)
m =1 ift>m;
£r fk<t<d,

v(t) = {¢t" if ¢ <t <m, (20)
m" if t > m.

The truncation ofy (t) andv(¢) whens > m makesy (¢+) andv(z) piecewise smooth with
corners only at = ¢ andt = m.

By Lemma[] it is clear thap = v (w) can serve as a test function o1 (1)dh In
particular by [(I}) we have

/ (A(x, w, Dw), Dg) < / [B(x, w, Dw)] "o, (21
Q Q
whereDy = 0in 2\ I" and
Dy =rw 'Dw inT, (22
Wthl' ={x e Q:¢ < wkx) <m}. Forx € T,
rw Y Dw| = |Dv|, v=vw) =w".

Hence by the structure conditions (2), the inequality (21) leads to
1ol <7 [ b c+asbp. 23
Q

where we have used the fact tHat](23) is trivially satisfied on th@sgf'. (The integrals
in ) are well defined, sinae< m” andDv € L1(2). Even morek > 0 unless: = 0.)

Step 2. By Holder’s inequality and the fact that= « S||a| we obtain from|[(ZB)
1—
1DVl < (b + clly + aS) Il vl ).

On the other hand, by Sobolev’s inequality (recall= ¢" neard() it follows that
lv =€ ln-1 < SlIDvll1. Butalso||€" ||,,/;—1) = II£"[l1 since|2| = 1. Therefore

Ivlln/m-1 < v =€ llnjm-1) + 1€ /-1 < SlIDvlla+ €711 < SIDvl1 + vl
sincev > ¢" in 2. Combining the previous two displayed inequalities now gives
1—
10llajn-) < Srdllvliy" oIl _y) + v, (24)

whered = ||b+c|ly + 1/aS.
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Application of Young’s inequality with the exponent p&it/ (¢ —n), g/n) shows that
1— n _ n
srd|lvlly" ol ) < (1— 5><Srd)q/<‘f Vol + 2l -

Thus (24) implies (1)
0llnj-1) < [(Srd)" 4™ + /(g = m]lvlly < [Srd + €]/ @v]|1.
Step 3.1t is not hard to check that
Iw e < Ivlle = IVllye-1, T'={xeQ:k<wkx) <m)
with « = n/(n — 1). Similarly
vlls < lw'lla + (@ =KD IQA\T] < Jw'lla + € — k.
Hence the concluding inequality of Step 2 can be rewritten
lw” lle,r < [Kr]9/ @ {lw" 11+ €7 = K7},

with K = 1/a + €Y/ + S||b + c||,. Letting £ — k gives||w” |1 < [Kr]?/@= ||w" ||,
Finally, takingm — oo and using the monotone convergence theorem, there follows

lwlk, < [Kr]"llwly, v =gq/(q@—n). (25

The right side of[(2p) is finite by the induction assumptiore L” (2). Thus alsd|w ||,
is finite, completing the induction step and consequently showinguthat 2 (2) for all
o=>1

Step 4. The inequality (25) holds for all > 1. Taking firstr = 1, we get
lwle < KYlwll.
Next, taker = « so that
lwile < (K" Nlwlle < [(KOY* K1Y llwlly = [KF< <Y wllz.
Continuing in this way, with- successively equal to &, «2, etc., we get
lwles < K™ wlla, (26)
where

j—1 1 -1 i
p— Jap— R [ [ J—
=% = P E_EJ_ZKV
i=0 i=
The seriesX converges tac/(xk — 1) = n asj — oo, and similarlyX’ converges to

«/(k — 1)2 = n(n — 1). Thus lettingj — oo in (26) gives

n ] L\na/a—m)
lwlleo < (K[n—l] ) lwll1. (27)
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If a, b, ¢ are bounded, we can effectively suppgse oo, so that (24) reduces to
lvlle < [Srd + 1]|lv|l1.

Hence in this case one can taKe= 1+ 1/a + S(b + ¢). The proof is complete.

Lemma 3. Let the hypotheses of Lemf@&old with the exception that
1b+clln =< @A—=98)/S (28
where0 < § < 1. Then
lwlli1 < @A+ a)Sllally/é. (29
Proof. As in the proof of Lemm@]2, but usiranly the case = 1, we obtain correspond-
ing to (23)

||DU||1§/[(b+c)v+a].
Q

In turn, by Holder’s inequality,

8
5 IVllnye-2) + llallz (30)

[DvllL < 16+ clln 1V]ln/(-1) + llalls <

by (28).

Next by Sobolev’s inequality, as before,
lolln/—1) < v —=Lluy—1) + I€llnjm-1) < SIDv]I1+ L.
Using [30), this gives
lvlln/m-1) < @ = vllnsn-1) + Sllallr + €.

After transposing, one can take— k andm — oo. Then as in the proof of Lemnja 2
there follows

lwlln/m-1) < X+ a)Sllally/s (31)
sincek = aS||a|. The required conclusion (29) is now obvious.

Proof of Theorerﬁ]l.First take|Q2| = 1. Definew = u™ +k. Thenw > kin Q andw = k
on a2, so that Lemmds| 2 afdl 3 apply. In particular By (4) &ndl (18),

K=eY+1/a+S|b+c| <e¥+1/a+1-05. (32

We are free to chooseas we wish. For bounded coefficients take, say 1, and replace
e/ by 1. Then H-«a = 2andK < 2+1/a = 3. Otherwise take = 2, giving 1+a = 3
andK < 3.

The conclusiond {5) anfl](5for the casg| = 1 now follow at once from[(18) and
(29). The general result is then obtained by scaling.

These estimates can be compared with the gase 1 of Theorem 10.10 in_[1].
A boundary conditiom < M ond<2 can be handled by the change of variable u — M
and replacing: by a + Mc.
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2. The mean curvature inequality

Consider the mean curvature inequality

>nH(x). (33

div( Du >
V1+|Dul?

Putting A(¢) = ¢/y1+ (€2, B = —nH(x), we see thatA| < 1 and

(A©), &) > €] —a, a=, %‘“ ~ 0.3002831

[This is an easy exercise in differential calculus. In fact, the best valueifor

max (r — t2/v/1+ 12).
0<t<oo
By elementary calculus the maximum occursgt= +/ (v/5— 1)/2 ~ 0.78614, and in

turnto — 12/,/1+ 13 takes the value given above.]

Thus (33) satisfies the structure conditions (2), witlas given,c = 0 andb =
—nH~Y(x). From Theorerh|1 we then get

n n—1\ nq/(g—n)
u < (3[ J ) s /5 (34
P

provided|| H ||, |22*/"~Y4 < (1—8)w;’". Rewriting this in terms of theffective radius

R of Q, it becomes
1 n—1\ nq/(g—n)
e T
n n—1

which is just[10){(1]1). In the same way we obtain| (10)})1This proves Theorefr] 2.

In the canonical case= 2, H(x) > —Hp ands = 1/2 the estimatq (JO)=(11) can be
somewhat improved. In fact, fro 2) we can take= 3/2+ 1/«. Then witha = 1.1,
(n/(n — )" = 2, we see fro%&@% thay R = 2.1- (5.3/1.1)%a ~ 146, as
required for [(T4).

Remark. If u < 0ond2 and H = 0 one expects the conclusian< 0 in Q. This
however cannot be obtained by the present approach since the cansta@3002831
acts as an inhomogeneous term in the structure condifibns (2).
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3. Remarks

The a priori estimate$ (10]—()¥or the supremum of a solution df|(3) @ can be sup-
plemented, as we have noted above, by the result of Corollary 10.6 in [1] as well as by
simple bounds based on spherical caps (or even the upper part of cylindrical tubes). Each
of these results has its own separate merit, depending on given smoothness assumptions
onu, or on the geometry of the domain

A final esimate, obtained also by Gilbarg and Trudinder ([1, p. 409]) can also be noted.
In particular, assume that the boundagy of Q is of classC%* (ho smoothness condi-
tions ona2 were required in the previous results). Suppose also that the mean curvature
H' of the boundary satisfies

n
H'(y) > 1 Ho. (35
whereH (x) > — Hp = negative constant. Then the following upper bound holds.

Letu be a solution of3) of classC1(€2). Then ifu < 0 0n 32 we have
u<@P-1/u inQ (36)
whereu = 1+ nHp and D = diamg.

Gilbarg and Trudinger in fact assume théatx) = const, that: € C2(2), and that
solves (3) with equality, but it is not hard to see that their proof implies the more general
result stated here.

WhenQ is a ball of radiusk, condition [3%) becomes/R > (n/(n — 1)) Ho, that is,

HoR < (n — 1)/n, a condition somewhat stronger thaf)(Since obviouslyD = 2R for

balls, [36) gives
& u < (PHHOR _ 1) /(1 4 nHy). (37)

If Ris smallthe bound is essentially< 2R, which is quite good. On the other hand, for
large R clearly [37) is not nearly as good @s|(10)[or](14).

Whatever else, it should be kept in mind (i) that condit[orj (35) is exactly the boundary
curvature condition necessary for the existence of solutions of the Dirichlet problem for
the constant mean curvature equation for arbitrary continuous data, while (ii) the estimate
(38) does not apply at all in the generality of Theofgm 1.
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