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Abstract. Consider the divergence structure elliptic inequality

div{A(x, u,Du)} + B(x, u,Du) ≥ 0 (1)

in a bounded domain� ⊂ Rn. Here

A(x, z, ξ) : K → Rn, B(x, z, ξ) : K → R, K = �× R+
× Rn,

andA, B satisfy the following conditions:

〈A(ξ), ξ〉 ≥ |ξ | − c(x)z− a(x), |A(x, z, ξ)| ≤ const, B(x, z, ξ) ≤ b(x),

for all (x, z, ξ)) ∈ K, wherea(x), b(x), c(x) are given non-negative functions. Our interest is in
the validity of the maximum principle for solutions of (1), that is, the statement thatany solution
which satisfiesu ≤ 0 on ∂� must be a priori bounded above in�.

This question arises, in particular, when one is interested in the mean curvature equation

div
Du√

1 + |Du|2
= nH(x).
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Introduction

We are concerned with the divergence structure elliptic inequality

div{A(x, u,Du)} + B(x, u,Du) ≥ 0 (1)

in a bounded domain� ⊂ Rn. Here

A(x, z, ξ) : K → Rn, B(x, z, ξ) : K → R, K = �× R+
× Rn,

andA, B satisfy the following structure conditions:

|A(x, z, ξ)| ≤ const, 〈A(ξ), ξ〉 ≥ |ξ | − c(x)z− a(x), B(x, z, ξ) ≤ b(x), (2)
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for all (x, z, ξ)) ∈ K, wherea(x), b(x), c(x) are given non-negative functions. Our inter-
est is in the validity of the maximum principle for solutions of (1), that is, the statement
thatany solution of(1) which satisfiesu ≤ 0 on∂�must be a priori bounded above in�.

This question arises, in the first instance, from the example of the mean curvature
inequality

div
Du√

1 + |Du|2
≥ nH(x), (3)

and secondly from a result of Gilbarg and Trudinger ([1, Theorem 10.10]) for the more
general case of inequality (1). In particular, Gilbarg and Trudinger prove the following
result.

Let u ∈ C(�̄) ∩ C1(�) be a distribution solution of the inequality(1), whereA, B
satisfy conditions(2) with a(x), b(x), c(x) constants, written simplya, b, c.1 Suppose
u ≤ 0 on ∂� and that

(b + c)|�|
1/n < 1/S

whereS = 1/nω1/n
n is the Sobolev constant for the spaceW1,1

0 (Rn) andωn denotes the
measure of the unit ball inRn. Then

u ≤ Ca in �,

withC a constant depending only onn, b, c and|�|.

This result can be applied immediately to the mean curvature equation, though for pur-
poses of comparison with our results, we shall defer this until later.

Gilbarg and Trudinger assert as well (without proof) that the same conclusion holds
whenu ∈ W

1,1
0 (�) and the coefficientsa(x), b(x), c(x) in (2) are inLn(�). It seems

to me, however, that the spaceLn(�) is too weak and should be replaced byLq(�) for
someq > n. In fact, we have the following result.

Theorem 1. Let u ∈ W
1,1
loc (�) be a distribution solution of the inequality(1) where

A, B satisfy conditions(2) with a(x), b(x), c(x) in Lq(�) for someq > n. Then if2

‖b + c‖q |�|
1/n−1/q < 1/S (4)

we have
u ≤ C ‖a‖q |�|

1/n−1/q/δ in �, (5)

where (explicitly)

C = C1(n) = 3S

(
3

[
n

n− 1

]n−1)nq/(q−n)
(6)

andδ ∈ (0,1) is any constant such that(4) holds with the right side replaced by(1− δ)S.

(For the record,(n/(n− 1))n−1 has the universal bounde for all n ≥ 2.)

1 Alternatively, a(x), b(x), c(x) can be bounded by constants, which without confusion can
equally be calleda, b, c.

2 By ‖ · ‖q we mean‖ · ‖Lq (�).
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If a(x), b(x), c(x) are bounded, the conclusion can be strengthened. It is convenient
here to introduce theeffective radiusR of � by the definition

|�| = ωnRn.

We can then replace (4) by
(b + c)R < n, (4′)

and (5) by
u ≤ CaR/δ (5′)

where now

C = C2(n) =
2

n

(
3

[
n

n− 1

]n−1)n
. (6′)

Condition (4) in Theorem 1 can in fact be replaced by the weaker restriction∫
�

(
b + c

n

)n
< ωn, (7)

but at the cost that the conclusion (5) arises in the less precise form

u ≤ C(n, q, |�|; ‖b + c‖n, ‖b + c‖q)‖a‖q , (8)

with no simple expression forC in terms of the listed parameters. Moreover,C → ∞ not
only asq → n but also as‖b + c‖q → ∞, even when‖b + c‖n is finite.

Theorem 1 and the extensions given above will be proved in Section 1. For the explicit
case of the mean curvature inequality (3), the conclusions take the following form.

Theorem 2. Letu ∈ W
1,1
loc (�) be a distribution solution of the mean curvature inequal-

ity (3), with u ≤ 0 on ∂�. Assume thatH−
∈ Lq(�) for someq > n. Then if

‖H−
‖q |�|

1/n−1/q < ω
1/n
n (9)

we have
u ≤ CR/δ (10)

where

C = C3(n) =
1

n

(
3

[
n

n− 1

]n−1)nq/(q−n)
. (11)

If H(x) is bounded below, sayH(x) ≥ −H0,H0 > 0, the conclusion can be strengthened,
with (9) replaced by

H0R < 1 (9′)

and(11)by

C = C4(n) =
0.6

n

(
3

[
n

n− 1

]n−1)n
. (11′)
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Corresponding to condition (7), it is actually enough to assume only that

‖H−
‖
n
n < ωn, (12)

though the conclusion again takes the less explicit form

u ≤ C(n, q, |�|; ‖H‖n, ‖H‖q). (13)

In the canonical casen = 2, H(x) = −H0 andδ = 1/2 the estimate (10) can be
replaced by (see Section 3)

u ≤ 15R. (14)

Of course this is not too accurate for the case of balls, or even convex sets, where optimal
estimates can be obtained, at least forC1 solutions, by using the standard maximum
principle and spherical caps as comparison functions. See also the comments in Section 3.

Theorem 2 appears to be new. We emphasize in particular that the solution class con-
sists of weakly differentiable functions, that� is unrestricted except to have finite mea-
sure, and finally that (11), (11′) and (14) are all explicit.

It remains an open question, at least to the present author, whether the spaceLq(�)

for the coefficients can be replaced byLn(�), as asserted by Gilbarg and Trudinger (see
the comments at the foot of page 276 and the top of page 277 of [1]). This is, in fact,
true when the solution is in the strong classC2(�) (or evenW2,n

loc (�)), as proved by the
same authors (Corollary 10.6), but again it is an open question whether the smoothness
condition can be removed.

The reader may question whether the restrictions (9) or (9′) are necessary for the
validity of (10). In fact, for the specific caseH(x) ≥ −H0 = negative constant, no
solution at all is possible if� contains a ballB = BR of radiusR andH0 ≥ 1/R. To
see this, take a hemispherical capv = v(x) over the ball, of radius exactlyR. The graph
z = v(x) overB has mean curvature−1/R, so that

div

(
Dv√

1 + |Dv|2

)
+ n/R = 0 inB. (15)

By a vertical translation ofv(x), either up or down, it can be arranged that the cap is
tangent to the graphz = u(x) at some pointx0 ∈ B, while alsov(x) ≤ u(x) in B. The
translated cap of course continues to solve (15).

We can now apply a beautiful theorem of Eberhard Hopf ([2, Satz 3′]; see also [3,
Theorem 2.5]) concerningtangent solutionsof quasilinear elliptic equations, to conclude
that in this caseu ≡ v in B, which is obviously impossible.

A simple consequence is that if� is a ball of radiusR andH(x) = constant= −H ,
then the conditionHR ≤ 1 is necessary for the mere existence of a solution, while
HR < 1 is sufficient to provide an upper bound on the solution in terms of its boundary
values.

Section 1 is devoted to the proof of Theorem 1, and Section 2 to the proof of Theo-
rem 2. In Section 3 we add some final remarks.
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1. Proof of Theorem 1

For completeness we first recall that a functionu ∈ L1
loc(�) is aweak distribution solution

of (1) in� if A( · , u,Du) is measurable in�; B( · , u,Du) ∈ L1
loc(�); and∫

�

〈A(x, u,Du),Dϕ〉 ≤

∫
�

B(x, u,Du)ϕ (16)

for all ϕ ∈ C1(�) such thatϕ ≥ 0 in � andϕ ≡ 0 near∂�. (In view of the condition
|A| ≤ const in (2), this inequality is meaningful.)

In order to have a sufficiently large supply of test functionsϕ for later purposes, the
following lemma is crucial.

Lemma 1. Letψ : R → R+

0 be a non-decreasing continuous function such thatψ(t) = 0
for t ∈ (−∞, `] andψ ∈ C1[`,m] ∩ C1[m,∞), with possible corners att = ` and
t = m, ` ≤ m, and withψ ′ uniformly bounded. Ifu ∈ W

1,1
loc (�) is a distribution solution

of (1) such thatu ≤ 0 on ∂�, then(16) is valid forϕ = ψ(u), in the sense that∫
�

〈A(x, u,Du),Dϕ〉 ≤

∫
�

[B(x, u,Du)]+ϕ. (17)

A proof can be found in [4, Section 3.1].
The proof of Theorem 1 is based on two main lemmas.

Lemma 2. Letw ∈ W
1,1
loc (�) be a solution of inequality(1), and suppose the coefficients

a(x), b(x), c(x) in (2) are in the Lebesgue spaceLq(�) for someq > n. Assume that
|�| = 1 and

w ≥ k in �, w = k on ∂�,

with k = αS‖a‖q , α > 0 andS = 1/nω1/n
n . Thenw ∈ L∞(�) and

w ≤

(
K

[
n

n− 1

]n−1
)nq/(q−n)

‖w‖1, K = e1/e
+ 1/α + S‖b + c‖q . (18)

(In the case of bounded coefficients we can take more simplyK = 1 + 1/α + S(b + c).)

Proof. Step 1.This relies on a Moser-type iteration argument. We argue by induction,
showing that ifw ∈ W

1,1
loc (�) ∩ Lr(�) for somer ≥ 1, then

w ∈ W
1,1
loc (�) ∩ Lκr(�),

whereκ = n/(n− 1). Forr = 1 one obviously hasw ∈ W
1,1
loc (�) ∩ L1(�), sincew = k

on ∂�. Hence by induction

w ∈ W
1,1
loc (�) ∩ L%(�) for all % ≥ 1.
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Let `, m be fixed, withk < ` < m (ultimately we takè → k andm → ∞). For all
real numbersr ≥ 1, define

ψ(t) =


0 if k ≤ t ≤ `,

t r − `r if ` < t < m,

mr − lr if t ≥ m;

(19)

v(t) =


`r if k ≤ t ≤ `,

t r if ` < t < m,

mr if t ≥ m.

(20)

The truncation ofψ(t) andv(t) whent ≥ mmakesψ(t) andv(t) piecewise smooth with
corners only att = ` andt = m.

By Lemma 1 it is clear thatϕ = ψ(w) can serve as a test function for (1) in�. In
particular by (17) we have∫

�

〈A(x,w,Dw),Dϕ〉 ≤

∫
�

[B(x,w,Dw)]+ϕ, (21)

whereDϕ = 0 in � \ 0 and

Dϕ = rwr−1Dw in 0, (22)

with 0 = {x ∈ � : ` < w(x) < m}. Forx ∈ 0,

rwr−1
|Dw| = |Dv|, v = v(w) = wr .

Hence by the structure conditions (2), the inequality (21) leads to

‖Dv‖1 ≤ r

∫
�

(b + c + a/k)v. (23)

where we have used the fact that (23) is trivially satisfied on the set� \ 0. (The integrals
in (23) are well defined, sincev ≤ mr andDv ∈ L1(�). Even more,k > 0 unlessa ≡ 0.)

Step 2.By Hölder’s inequality and the fact thatk = αS‖a‖ we obtain from (23)

‖Dv‖1 ≤ r(‖b + c‖q + 1/αS)‖v‖1−n/q

1 ‖v‖
n/q

n/(n−1).

On the other hand, by Sobolev’s inequality (recallv ≡ `r near ∂�) it follows that
‖v − `r‖n/(n−1) ≤ S‖Dv‖1. But also‖`r‖n/(n−1) = ‖`r‖1 since|�| = 1. Therefore

‖v‖n/(n−1) ≤ ‖v − `r‖n/(n−1) + ‖`r‖n/(n−1) ≤ S‖Dv‖1 + ‖`r‖1 ≤ S‖Dv‖1 + ‖v‖1.

sincev ≥ `r in �. Combining the previous two displayed inequalities now gives

‖v‖n/(n−1) ≤ Srd‖v‖
1−n/q

1 ‖v‖
n/q

n/(n−1) + ‖v‖1, (24)

whered = ‖b + c‖q + 1/αS.
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Application of Young’s inequality with the exponent pair(q/(q−n), q/n) shows that

Srd‖v‖
1−n/q

1 ‖v‖
n/q

n/(n−1) ≤

(
1 −

n

q

)
(Srd)q/(q−n)‖v‖1 +

n

q
‖v‖n/(n−1).

Thus (24) implies (!)

‖v‖n/(n−1) ≤ [(Srd)q/(q−n) + q/(q − n)]‖v‖1 ≤ [Srd + e1/e]q/(q−n)‖v‖1.

Step 3. It is not hard to check that

‖wr‖κ,0′ ≤ ‖v‖κ = ‖v‖n/(n−1), 0′
= {x ∈ � : k ≤ w(x) < m}

with κ = n/(n− 1). Similarly

‖v‖1 ≤ ‖wr‖1 + (`r − kr) |� \ 0| ≤ ‖wr‖1 + `r − kr .

Hence the concluding inequality of Step 2 can be rewritten

‖wr‖κ,0′ ≤ [Kr]q/(q−n){‖wr‖1 + `r − kr},

with K = 1/α + e1/e
+ S‖b+ c‖q . Letting` → k gives‖wr‖κ,0′ ≤ [Kr]q/(q−n)‖wr‖1.

Finally, takingm → ∞ and using the monotone convergence theorem, there follows

‖w‖
r
κr ≤ [Kr]ν‖w‖

r
r , ν = q/(q − n). (25)

The right side of (25) is finite by the induction assumptionw ∈ Lr(�). Thus also‖w‖κr

is finite, completing the induction step and consequently showing thatw ∈ L%(�) for all
% ≥ 1.

Step 4.The inequality (25) holds for allr ≥ 1. Taking firstr = 1, we get

‖w‖κ ≤ Kν
‖w‖1.

Next, taker = κ so that

‖w‖κ2 ≤ (Kκ)ν/κ ‖w‖κ ≤ [(Kκ)1/κ K]ν ‖w‖1 = [K1+1/κ κ1/κ ]ν ‖w‖1.

Continuing in this way, withr successively equal to 1,κ, κ2, etc., we get

‖w‖κj ≤ [K6 κ6
′

]ν‖w‖1, (26)

where

6 = 6j =

j−1∑
i=0

1

κ i
, 6′

= 6′

j =

j−1∑
i=1

i

κ i
.

The series6 converges toκ/(κ − 1) = n asj → ∞, and similarly6′ converges to
κ/(κ − 1)2 = n(n− 1). Thus lettingj → ∞ in (26) gives

‖w‖∞ ≤

(
K

[
n

n− 1

]n−1)nq/(q−n)
‖w‖1. (27)
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If a, b, c are bounded, we can effectively supposeq = ∞, so that (24) reduces to

‖v‖κ ≤ [Srd + 1]‖v‖1.

Hence in this case one can takeK = 1 + 1/α + S(b + c). The proof is complete.

Lemma 3. Let the hypotheses of Lemma2 hold with the exception that

‖b + c‖n ≤ (1 − δ)/S (28)

where0< δ < 1. Then
‖w‖1 ≤ (1 + α)S‖a‖q/δ. (29)

Proof. As in the proof of Lemma 2, but usingonly the caser = 1, we obtain correspond-
ing to (23)

‖Dv‖1 ≤

∫
�

[(b + c)v + a].

In turn, by Ḧolder’s inequality,

‖Dv‖1 ≤ ‖b + c‖n ‖v‖n/(n−1) + ‖a‖1 ≤
1 − δ

S
‖v‖n/(n−1) + ‖a‖1 (30)

by (28).
Next by Sobolev’s inequality, as before,

‖v‖n/(n−1) ≤ ‖v − `‖n/(n−1) + ‖`‖n/(n−1) ≤ S‖Dv‖1 + `.

Using (30), this gives

‖v‖n/(n−1) ≤ (1 − δ)‖v‖n/(n−1) + S‖a‖1 + `.

After transposing, one can take` → k andm → ∞. Then as in the proof of Lemma 2
there follows

‖w‖n/(n−1) ≤ (1 + α)S‖a‖q/δ (31)

sincek = αS‖a‖. The required conclusion (29) is now obvious.

Proof of Theorem 1.First take|�| = 1. Definew = u+
+k. Thenw ≥ k in� andw = k

on ∂�, so that Lemmas 2 and 3 apply. In particular by (4) and (18),

K = e1/e
+ 1/α + S‖b + c‖ ≤ e1/e

+ 1/α + 1 − δ. (32)

We are free to chooseα as we wish. For bounded coefficients take, say,α = 1, and replace
e1/e by 1. Then 1+α = 2 andK ≤ 2+1/α = 3. Otherwise takeα = 2, giving 1+α = 3
andK ≤ 3.

The conclusions (5) and (5′) for the case|�| = 1 now follow at once from (18) and
(29). The general result is then obtained by scaling.

These estimates can be compared with the casep = 1 of Theorem 10.10 in [1].
A boundary conditionu ≤ M on∂� can be handled by the change of variableũ = u−M

and replacinga by a +Mc.
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2. The mean curvature inequality

Consider the mean curvature inequality

div

(
Du√

1 + |Du|2

)
≥ nH(x). (33)

PuttingA(ξ) = ξ
/√

1 + |ξ|2 , B = −nH(x), we see that|A| < 1 and

〈A(ξ), ξ〉 ≥ |ξ| − a, a =

√
5
√

5 − 11

2
∼ 0.3002831.

[This is an easy exercise in differential calculus. In fact, the best value fora is

max
0≤t<∞

(t − t2/
√

1 + t2).

By elementary calculus the maximum occurs att0 =

√
(
√

5 − 1)/2 ∼ 0.78614, and in

turn t0 − t20/

√
1 + t20 takes the valuea given above.]

Thus (33) satisfies the structure conditions (2), witha as given,c = 0 andb =

−nH−1(x). From Theorem 1 we then get

u ≤

(
3

[
n

n− 1

]n−1)nq/(q−n)
S|�|

1/n/δ (34)

provided‖H−
‖q |�|

1/n−1/q
≤ (1−δ)ω

1/n
n . Rewriting this in terms of theeffective radius

R of �, it becomes

u ≤
1

n

(
3

[
n

n− 1

]n−1)nq/(q−n)
R/δ,

which is just (10)–(11). In the same way we obtain (10)–(11′). This proves Theorem 2.

In the canonical casen = 2,H(x) ≥ −H0 andδ = 1/2 the estimate (10)–(11) can be
somewhat improved. In fact, from (32) we can takeK = 3/2 + 1/α. Then withα = 1.1,
(n/(n − 1))n−1

= 2, we see from (18), (29) thatu/R = 2.1 · (5.3/1.1)2a ∼ 14.6, as
required for (14).

Remark. If u ≤ 0 on ∂� andH = 0 one expects the conclusionu ≤ 0 in �. This
however cannot be obtained by the present approach since the constanta ∼ 0.3002831
acts as an inhomogeneous term in the structure conditions (2).



398 James Serrin

3. Remarks

The a priori estimates (10)–(11′) for the supremum of a solution of (3) in� can be sup-
plemented, as we have noted above, by the result of Corollary 10.6 in [1] as well as by
simple bounds based on spherical caps (or even the upper part of cylindrical tubes). Each
of these results has its own separate merit, depending on given smoothness assumptions
onu, or on the geometry of the domain�.

A final esimate, obtained also by Gilbarg and Trudinger ([1, p. 409]) can also be noted.
In particular, assume that the boundary∂� of � is of classC2,α (no smoothness condi-
tions on∂� were required in the previous results). Suppose also that the mean curvature
H ′ of the boundary satisfies

H ′(y) ≥
n

n− 1
H0, (35)

whereH(x) ≥ −H0 = negative constant. Then the following upper bound holds.

Letu be a solution of(3) of classC1(�). Then ifu ≤ 0 on ∂� we have

u ≤ (eµD − 1)/µ in � (36)

whereµ = 1 + nH0 andD = diam�.

Gilbarg and Trudinger in fact assume thatH(x) ≡ const, thatu ∈ C2(�), and thatu
solves (3) with equality, but it is not hard to see that their proof implies the more general
result stated here.

When� is a ball of radiusR, condition (35) becomes 1/R ≥ (n/(n− 1))H0, that is,
H0R ≤ (n− 1)/n, a condition somewhat stronger than (9′). Since obviouslyD = 2R for
balls, (36) gives

u ≤ (e2(1+nH0)R − 1)/(1 + nH0). (37)
If R is small the bound is essentiallyu ≤ 2R, which is quite good. On the other hand, for
largeR clearly (37) is not nearly as good as (10) or (14).

Whatever else, it should be kept in mind (i) that condition (35) is exactly the boundary
curvature condition necessary for the existence of solutions of the Dirichlet problem for
the constant mean curvature equation for arbitrary continuous data, while (ii) the estimate
(36) does not apply at all in the generality of Theorem 1.
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