J. Eur. Math. Soc. §,39p—414 © European Mathematical Society 2006

C. A. Stuart JEMS

Uniqueness and stability of ground states
for some nonlinear Schibdinger equations

Received September 15, 2005

Abstract. We discuss the orbital stability of standing waves of a class of nonlineab&alyer
equations in one space dimension. The crucial feature for our treatment is the presence of a non-
constant linear potential that is even and decreasing away from the origin in space. This enables us
to establish the orbital stability of all ground states over the whole range of frequencies for which
such solutions exist.

1. Introduction

Standing waves are simple time harmonic solutions of the nonlineaddiolger equation
(NLS) that decay at infinity in space. Ground states are defined as standing waves that
minimize the action with respect to other standing waves of the same frequency. This
paper is concerned with a class of nonlinear 8dimger equations for which we can give
a complete description of all ground states including their stability.

To be more precise, consider a functién: R? — C that satisfies the nonlinear
Schibdinger equation

i0,®+ 3204+ V(@)D +g(|P>)® =0 for(s,x) € R? (NLS)

whereV : R — R is the potential and the functian: [0, co) — R defines the nonlin-
earity. We are interested in solutions such that, -) € H = HY(R, C) forallr € R. To
formulate the hypotheses on the smoothness of the nonlinearity we set

f(s) =g(s?s forseR (1.1)
and assume throughout that
(Hi) V € L*@®)NC(R),
(Hii) f e CY(R) with £(0) = f'(0) = 0.
Noting that® satisfies (NLS) if and only ift (7, x) = ¢/“' (¢, x) satisfies

iV 402 W+ [Vx)+ o]V +g(¥PHW =0 for(,x) € R?
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the hypothesis (Hi) enables us to assume without loss of generality that
inf V(x) =0. (1.2)
xeR
Let A denote the infimum of the spectrum of the self-adjoint operatdf, — V :
H2%(R) c L4R) — L%(R). Then

[, (212 = VIz|?) dx
7o |z dx

A=inf{ :zeH\{O}}fO
andA =0ifand onlyifV = 0.
Solutions of (NLS) of the form

(1, x) = e Mz(x) wherez £0

for someix € R andz € H are calledstanding waveand, for sucly, the orbit®(z) ¢ H
of the associated standing wave is defined by

O(z) = {e''z:t e R} = O('?7) foralld e R.

For standing waves, (NLS) is equivalent to

e H\{0} and rz+z7"+Vz+g(z/PHz=0 inH™*! (1.3)

and in Section 2 we begin by formulating hypotheses ensuring the existence of ground
states. Note that i satisfies[(1]3) then so dogsWe show that, it="*z(x) is a ground

state, then there exists a real-valued, strictly positive solutiof(1.3) such tha®(z) =

®(u), and consequentl§) (z) = O (7). Therefore, in Section 3, we focus on the problem

A+ u" + Vu+gw?u =0 whereu € HY(R) with u > 0 onRR (1.4)

and review some joint work with &léne Jeanjean [9], in which we were able to show
that all solutions 04) form a smooth cur@e= {(A, U(L)) : A < A} inR x H2(R)
with lim;— _oo U || g2 = oo and limy_ 4 |U (V)| g2 = 0. In view of what is proved

in Section 2 this result gives a complete description of all ground states for (NLS).

In Section 4 we consider the stability of these ground states starting from the general
criteria established by Grillakis, Shatah and Straluss [8]. A crucial condition is the mono-
tonicity of |U (1) || .2 with respect ta.. Under the hypotheses used in Section 3 to obtain
the curveC, this monotonicity need not hold and some of the ground states can be un-
stable. In collaboration with J. B. McLeod and W. C. Troy|[12] we have found additional
conditions org that ensure thaf;HU(k)HLz < Oforallx < A and consequently that all
ground states are stable.

The results from[[9] and_[12] that we have recalled here are proved in greater gener-
ality. We have chosen the special foiix)® + g(|®|?)® in (NLS) in order to state the
hypotheses briefly, but our conclusions are available in a broader context. On the other
hand, in higher dimensions, where= RN with N > 2, and even fo (x)® + g(|®|%) ®
whenV is not constant, there does not seem to be a proof of the stability of all ground
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states. IN[1B] and [8], perturbation methods are used to establish stabilitpéarA and

A near—oo, respectively. FolV constant, there is a complete discussion of the stability

of all ground states, but the definition of orbit, and hence of stability, has to be modified
to accommodate the invariance under translation. These comments also apply to the vari-
ational approach to the stability of standing waves initiated by Cazenave and P.-L. Lions.

2. Existence of ground states

Amongst all standing waves, those called ground states are most likely to be stable. They
are defined as follows. Fare R, set

Ay =1{ze H\{0}: hz+ 2"+ Vz+g(z1)z=0inH Y}

and let

o0 N
$@ = [ (2= rz = VI = Gl dx where Go) = [ gyt
—00 0
denote the action of the standing wa®é(z, x) = ¢ *z(x) associated with € A;.
Then bothy € A; and the associated standing wakfeare referred to aground state®f
(NLS) if » < A andS(z) < S(w) forall w € A,. Let

G),={z€ A, :50kz) <Sw)foralw e A,}

denote the set of all ground states with frequepgyIt turns out that the minimality of
the action of a ground state also pertains to a much larger set that is sometimes referred
to as theNehari manifold Forx < A, let

J(z>=f (1212 = Azl? = VIzI* — g(1z1®)1z]?) dx

—0o0

Ny, ={ze€e H\{0}: J(z) =0} andthenM, = {z € N, : S(z) < S(w) forall w € N,}.

Clearly, A; is a subset of the Nehari manifoM,. The conditions (Hi) and (Hii) ensure
thatS andJ are inC1(H, R) with

S'(Dw =2 Re/ Gw —A+V+ g(lzlz)}zw) dx

J(w=2 Re/ @ — A+ V +g(z1% + & (21D))zw) dx
oo N

=SQw -2 Re/ ¢ (zPzwdx forallz,w e H.
—00

ThusS'(2)z = 2J(z) andJ'(2)z = 2J (2) — 2[3000 g'(1z1%)|z|% dx. Note also that

S'(z) =0 ifandonlyif ze A; U{0}.
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Lemma 2.1. Suppose thafHi) and (Hii) are satisfied and considér< A.
() ThenA, c H3([R,C)N C%(R, C) and

' +{A+V+g(z/%)z=0 onR forz € A;.

(i) If z € A,, thenz has only simple zeros.
(iii) If, in addition,

(Hiii) f'(s) > f) [equivalentlyg’(s) > 0] forall s > 0,
S

thenM, C G, andu = |z] € M,, wit_hu > 0whenever € M,. Furthermore there

existsd € [0, 27) such thatz(x) = ¢!?u(x) for all x € R.

(iv) If (Hi) to (Hiii) hold andM, # ¢, thenM, = G,.

Proof. () H c L*NCandsa” = —{»+V +g(z19)}z € L2NC.

(i) If z € A, U{0} andz(y) = 7/(y) = 0 for somey, thenz = 0 by the uniqueness
of the solution to the initial value problem for the equatipn(1.3).

(i) For any z € N,, we have

o0 o0
J )z =2J(z) — 2/ g2z dx = —2/ ¢'(1z19)]z|%dx < 0.

—00 —00
Thus, ifz € M;, there is a Lagrange multipligr such thatS’(z) = £J'(z) and hence
S'(2)z = £§J'(2)z. But §'(z)z = 2J(z) = 0 andJ'(z)z < 0 so we must havé = 0,
showing thatS’(z) = 0. ThusM,; C G,.

If z € H, thenu € H with S(u) = S(z) andJ(u) = J(z). Therefore, ifz € M,

we see that: € M, C G;. Butthenu e C2(R) and has only simple zeros by parts (i)
and (ii). Sincex = |z| > 0, it follows that in factu > 0 onR. We have

A+ +Vz+e(zHz=0,

A+ u” + Vi + gw?yu =0,
sincez andu € G, C A,. Hencez”u — zu” = 0 onR and so there is a constafitsuch
thatz’u — zu’ = C onR. But z, u € H? by part (i) and therefore, z/, u andu’ all tend
to zero ast — oo soC = 0. This means that = z/u is also constant o and since
lv| = 1, there exist® € [0, 27) such thaw = ¢'?.

(iv) Suppose that € M;. Thenz € G, and soS(z) = S(z) for anyz € G,. Since
G, C N, this means that € M, and soG, C M,. O

We now give conditions ensuring thaf, # @.

Remark. Under the hypotheses of Lemina]2.1, it can happenAhaand henceG, is
empty for allx. For example, if in additioV € C1(R) with V/ > 0 andz € A;, then

d _
E{Am%|z’|2+V|z|2+G(|z|2>} = 2Refrz+7"+Vz+g(z1D2) 2]+ V|22 = V'|z)?
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and soi|z|2 + |Z/|2 + Vz|? + G(|z|%) is nondecreasing oR. But z andz’ tend to zero
at infinity because € H? and soi|z|? + |2/|? + V|z|2 + G(|z|?) = 0. ThusV'|z|2 = 0
andz = 0, a contradiction. Thug, =@ if V' > 0onR.

Proposition 2.2. Suppose that the assumptidis) to (Hiii) are satisfied and that
(Hiv) V is even and nonincreasing ¢@, co) with xli_)moo V(x) =0.
(Hv) S&moog(s) = 00.

ThenM, # () for everyr < A.

Proof. (a) A norm onH and its properties.Fix A < A and consided(z) = fi’ooo(lz’l2 -

Az|2 = V|z|?) dx. For anye € (0, 1), we have

d(z)=8/ |z’|2dx+(1—a)/ <|z’|2—V|z|2>dx—/ (+ eV)[zlPdx

7:00 o0 o0
28/ Iz/lzdx+(1—s)A/ |z|2dx—/ A+ eV)|z|2dx
—00 —0o0 —0o0

=e/ |z/|2dx+/ {(L—e)(A — 1) —e(V 4+ M)}z|Pdx

—00 —00
o 2 2
zms)/ (212 + 212 dx.
—00

whereu(e) = min{e, (1 — &)(A — 1) — &(V(0) + A)} > 0 for ¢ small enough. Hence

00 1/2
lzll = {f (1212 = MzI2 = VIz?) dx}
—0

defines a norm o7 which is equivalent to the usual norm

') 1/2
||z||1={/ (|z’|2+|z|2)dx} .

—00

Forz € H we haveu = |z| € H and we use™* to denote the Schwarz symmetrization
(seel11]) ofiz|. Thenz* = u* € H with

o0 o o o0
f |z|% dx =/ u?dx =/ ("2 dx =/ (z2%dx,
—00 —00 —00 —00

/ Y e Pdx = / W2y = / (w2 dx = / S (12 dx,

oo o _
o0 0 o0 o0

/ V|z|2dx=/ Vuldx 5/ V* )2 dx =/ V(z*)2dx.
—o0 —0Q —0oQ —0o0

It follows from these inequalities that

lz*|l < llz]l forallz e H.
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(b) MinimizingS on N,. Forz € H,

S<z>=||z||2—/ G(lz/%»dx and J(z)=||z||2—f g(zP)z% dx.

—00 —

Forz € Ny,

o0 o

S(z) = / 2219121 = G(|z1?) dx = / h(lz1?) dx where h(s) = g(s)s — G(s).
—0o0 —0o0

Noting thatk(0) = 0 andh/(s) = g’(s)s > 0 fors > 0, we see thas(z) > 0 for all

z € N,, so settingn; = inf{S(z) : z € N,} we havem; > 0. Forz € H \ {0} andr > 0,

let

J o0
k(t) = Ef)=||z||2—/ g(t?|z?) |z dx.

Using (Hiii) and (Hv), we find that is strictly decreasing o0, co) with

limk@) = |z|?>0 and limk() = —oc.
t—0 t—00

Hence there exists a uniqué) < (0, co) such thak(z(z)) = 0 andt(z)z € Ny. Further-
more,

%S(@ _ zz{nzn2 —/ g<t2|z|2)|z|2dx} = 2tk(t)
wherek(t) > 0fort € (0,(z)) andk(z) < O fort > t(z). Thus we have
S(z) < S(t(z)z) forre(0,t(z)) and S(tz) < S(t(z)z) fort > t(z).

Forz € Ny,
o0

S(t(z*)z*)=/ h(t(z*)?|2* ) dx

—0o0

and

0=1J() = lzII? —/

—00

o0
g(z19)z|? dx > ||z*||2—/ g(Z* )" 1 dx

—00

so thatr(z*) < 1 and

o0 o0 [o,0]
S ()7 = / Bt (2212 dx < / h(l* ) dx = f h(lz2) dx = S@).
—00 —00 —00

Hence if{z,} C N, is a sequence such th8z,) — m;,, by settingw, = 1(z})z;, we
obtain a sequendev,} C N, such thaw, = w; andS(w,) — m;.

(c) Boundedness of a minimizing sequentet us show thatw,} is bounded. Suppose
that||w,| — oo. Letc = /m; + 1 and then set

c

V= ——w
llw,

ne
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Sincew, € N,, we haveS(v,) < S(w,), and sincey, = v;;, forall y > 0,

9] y
/ v2dx > / vZdx = 2yv2(y).

—00 —y

But there exists a constaft > 0 such that

(e.¢]
/ 2dx < |zl < K|z|®> forallze H

—00

and hence 5

K
v2(y) < % forally > O and alln € N.

Since{v,} is bounded i, by passing to a subsequence, we may assume that there exists
v € H such thaty, — v weakly inH. If v # 0, there exis6 > 0 and an intervald, b]

with ¢ < b such thatv > & on [a, b]. Then there existag € N such thatv, > §/2

on [a, b] for all n > ng becausduv, } converges uniformly t@ on [a, b]. But then, for

n = no,

2 252
/” Gw2(x) /b Gy, (1)?) N /b G (Ll
a ”wn”2 a ||wn||2 “Ja ||wn”2
and

b 2
Ii_)moo/ de =00 since Ilim @ =00 by (Hv).

w12 §=00 §
On the other hand,

/b Gwi) /°° G(wi(x)) wa |l = S (wn)

[l |12 —oo Nwall? llw, |12

9

sinceS(w,) — my and||w,| — oo. Thus we must have = 0. Then, for ally > 0, we
find thatv,, — O uniformly on [-y, y] and

o0
limsup [ G®?)dx =limsup G(v?) dx < limsup g2 dx

n—oo J—oo n—>0o0 Jix|>y n—=>00 Jix|zy

, Kc? Kc?\ [
<lim Supg<—6>/ v,fdx < g(—c>/ v,fdx
n—00 2y [x|>y 2y —00
< KCZ K 2
=g 5, K

Lettingy — oo, we find that
o
/ G(v,?)dx—)O andso S(v,) — ¢ =m; + 1.

—00

But we have seen that(v,) < S(w,) andS(w,) — m, and we again have a contradic-
tion. This proves thafw, } is bounded inH.
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(d) Existence of a minimizeBy passing to a subsequence we may now assume that there
existsw € H such thatw, — w weakly in H. Let B > 0 be such thajw,| < B for
all n. Then, as in part (c),

K B2 K B2
w2(y) < > and w?(y) < > forall y > 0 and alln € N.

Hence

‘/ G(w,%)dx—/

< / "G — G| dx + / (gDl + g(wdw?) dx
-y [x|>y

Gw?) dx

2 o)
5/y |G(w,2,)—G(w2)|dx+g<%>/ [w? 4+ w?] dx
-y —0o0

y K B2
5/ |G(w,2,)—G(w2)|dx+g<2—>2KB2
_ y

y
00 00 KBZ
/ G(w?) dx —/ Gw? dx| < g<—>21<132
—00 —00 2y

sincew,, — w uniformly on [-y, y]. Lettingy — oo, we see that

and so
limsup

n—oo

o0 o
/ G(ws) dx — / G(wz) dx asn — oo,
—00

—00

from which it follows that
S(w) < liminf S(w,) = m;.
n—oo

A similar argument shows that
o0 oo
/ g(ws)w,% dx — / g(u)z)u)2 dx and J(w) <liminf J(w,) =0.
—0o0 —00 n—o00
Furthermorew # 0 since otherwise

o0 o0
Jwnll? = / gDl dx — / c@?wldx =0,
o0 —00

whereas

o o o0
f w2dx < Kl|lw,|? = K/ gw?w?dx < Kg(man,%)/ w? dx
o0 —00

—00 —

and so

llwy |12
1< Kg(maxw?) < Kg(J|wa[3) < Kg( ),
n(e)
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in contradiction with|jw,| — 0. From our observation that(w) < O it follows that
t(w) < 1and then

my < S(t(w)w) = /Oo h(t(w)?w?) dx < foo h(w?) dx

-/ " (g@du? - Gy dr = im / " (gwdw? - Gwd) dx

= lim S(w,) = m;.
n—od

Thust(w)w € M, and the proof is complete. O

Remark. In fact, the proof yields some extra information. fifw) < 1, we have
[ ht)?w?dx < [ h(w?)dx and thenm; < m;, a contradiction. Hence
t(w) = 1. This means that

o o0
|wl|® = w?w?dx = lim wdHwdx = lim |w,|?,
8 glwy)wy,
s n—oo J_ o n—00

showing that the minimizing sequenge, } converges strongly itf to the minimizerz
which belongs tav;..

Corollary 2.3. Under the assumption®i) to (Hv), for eachA < A, M, = G, # 0,
and for any ground state € G, there is a ground state € ®(z) such thatx > 0.

The hypotheses (Hi) to (Hv) do not imply that there is a unique orbit of ground states with
frequencylA| . In fact, forV = 0 andz € G, the translate, = z(- + y) clearly belongs
to G, for anyy € R. But, if z, € ©(z), there exists € R such that;, = ¢~'*'z and
so|z| is periodic with periody|. Sincez € H1, it follows thatz, € ©(z) if and only if
y=0.
Since the homogeneous cdée= 0 is well understood [4], we eliminate this situation
and then, as we see in the next section, we do indeed have uniqueness of the orbits of
ground states for a given frequency.

3. Unigueness and properties of ground states

In this section we recall some results obtained in collaboration wient Jeanjean|[9]
concerning the problenji (1.4). In particular we showed that, for @aeh A, there is a
unique solutione; . The case wher# is constant has to be excluded for this to hold. For
convenience we restate the hypotheses that have been used so far as follows.

(V) Visevenand/ € CL(R) N L®(R) with V/ < 00on(0, oo) but v/ = 0.
(F) f € CYR) with f(0) = f'(0) = 0, f'(s) > f(s)/s foralls > 0 and
liMs_ o f(s5)/s = 00.
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Compared to the conditions (Hi) to (Hv), the assumptions (V) and (F) simply require some
extra regularity ofV and exclude the case wheVeis constant. The functiorf (s)/s is
strictly increasing on [0oo) so (F) implies thatf (s) > O for all s > O.

It follows from (V) and [1.2) that-V(0) < A < 0 andA is a simple eigenvalue of
L = —32, — V with an eigenfunction that is Schwarz symmetric.

Theorem 3.1(Theorem 1 ofi[9]) Let(V) and(F) be satisfied and lgf, ) be a solution
of (1.4). Theni < A andu is even with:’ < 00on (0, 00).

Remark. Both monotonicity and evenness &f are required to get evenness of
Akhmediev [2] was the first to show that evenness/ofioes not imply that: is even
(or odd). There are now many other examples of this ([1], [3], [€], [7]).

Since all solutions of (I]4) are even it is enough to deal with the problem,ar )0

Let 5 ,
W ={u € H*((0, 00)) : u'(0) = O}

andF : R x W — L2((0, 00)) where
Fh,u)=u"+Vu+ fu)+ u.

Theorem 3.2(Theorems 2, 3 and 5 dfl[Q])Let (V) and (F) be satisfied.
(i) (Existence) There existsy € C1((—oo, A), W) such that
F(h,w(Ah) =0 forall A <A,
wA)(x) >0 and %w(k)(x) <0 forallx >0,

lim A =0, lim A = 00,
m, lw) |l g2 m lw) |l 2

d d
d—kllw(k)llw = d—kw(x)(O) <0 forallx <A.

(ii) (Uniqueness)If (1, u) is a solution of(I.4)theni < A andu = w() on[0, co).
For i < A we define a functio/ : R — H?(R) by setting

wd)(x) forx >0,

U x) = {w(x)(—x) forx < 0.

Corollary 3.3. Let(V) and(F) be satisfied.

(i) Fora < A, Gy = ©U (). In particular, if z is a ground state thefx| is even and
strictly decreasing offi0, oo) andz € ®(U (1)) for somer < A.
(i) U e CYR, H2(R)) with
)JE“A ||U()\)||H2(]R) =0, Ali)rl‘oo ||U()\)||H2(R) = 00,

d d
i UM = d_AU(A)(O) <0 forallx <A.
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A slight modification of arguments in [[9] yields the following additional information
which is crucial for the stability analysis in the next section.

Lemma 3.4. Under the hypothesd¥) and (F), consider the self-adjoint operatd, :
H?R) C L?(R) — L?(R) defined by, = —82_ — V — f/(U(A)) — r. Leto(S;) and
o.(S;) denote its spectrum and essential spectrum. Fok all A,

(i) all eigenvalues of), are simple,
(i) 0 ¢ o(Sy) andinfo,(Sy) = |A| > 0,
(iii) S, has exactly one negative eigenvalye

Proof. (i) Let u andv be eigenfunctions of, associated with an eigenvalye Then
[uv' —u'v] = uv” —u”v = 0 and so there is a constafitsuch thativ’ —u’'v = C onR.
But limy|— oo[uv’ — u’'v] = 0 sinceu, v € H?(R). ThusC = 0 andu andv are linearly
dependent.

(il) We haveA < 0 and

info,(Sy) = ‘ Ilim (=V = f(UQ) —A} = -1 > 0.

It is sufficient to show that ke§;, = {0}. Suppose that € kerS,. Letu = U()) and
w = <LU(). Then

u”+{k+V+f(u)}u:O,

u
VAV 4+ ) =0,
wHA+V+ Flw=—-Vu,

whereu is even and positive oR andw is negative in0, co). Sincef’(s) > f'(s)/s for
all s > 0, v must have at least one zero. We also have

/OO{A +V+ fwidx = — /00 vVivdx = v (x)v(x) + /oo(v’)zdx
y y y

where lim, _, oo {A+V+f/(u)} = A < 0and so there exis® > 0 such that’(y)v(y) <0
forall y > Z. Thusv has a largest zero which we denotexgy Using the evenness af
andV, we may suppose that > 0 and that(x) > 0 forx > xg. Thenv’(xg) > 0 and
it suffices to show that’(xg) = 0. For this we note that for alf > xo,

y
w(xp)v' (x0) = —w' (Mv(y) + w(y)v'(y) +/ (w"v —wv"”) dx
X0

Y
=—w' M) +w)v'(y) — / Viuwdx <0

X0

where [im,_, oof—w’(y)v(y) + w(y)v'(y)} = 0. Hence

o
w(x0) v’ (x0) = —/ Vuwdx < 0.

X0
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If xo =0, thenw(xg) = ©/(0) = 0 and so
o
/ Viuwdx =0
0

whereV'uw > 0 anduw < 0 on (0, 00), implying thatV’ = 0 on (0, oo), which is
excluded by (V). Henceg > 0 andv’(xg) = 0 since thenw(xg) < 0. Thusv = 0.
(iii) We have

L2 @)=V + FI(UM)) + Au?) dx
ffo 2dx

ool/t

iMoL&):im{ :ue[ﬂ\{m}

J2, (UGN —{V + f/(UM) + AU ()?) dx
<
- 2, UM)2dx
Jo (U2 = v + LEE 453U (1)?) dx
2 U2 dx

— 0 < infa,(Sy).

Hences,, has at least one negative eigenvalue. L@t) denote the number of negative
eigenvalues of,. Then 1< n(X) < oo since info,.(S;) > 0. But

I W) = f{UW)llLew — 0 asp— a1 <A

and san : (—o0, A) — N is continuous ak, and consequently equal to a constamn
(—o0o, A). However—d2_ — V — A has no negative eigenvalues and

If'(U)Lo® — 0 ash— A—,

son = 1.

4. Orbital stability of ground states
A standing waveb* of (NLS) is said to beorbitally stableif, for all ¢ > 0, there exists
8 > 0 such that, for altbg € H with ||[®g — z|ly < 6,

(a) there is a global solutio® € C(R, H) N CY(R, H~1) of (NLS) with ®(0, -) = ®o,
(b) forallz > 0O there exist®(¢) € [0, 2r) such that

1@, ) — Dzl <&, thatis, distd(,-),0() <e.
Therefore, before discussing the stability of standing waves we need some basic proper-

ties of the initial-value problem for (NLS). This has been thoroughly investigated and the
following result gives all the information we require.
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Theorem 4.1(seel[4, Section 3.5])Suppose thatHi) and(Hii) hold and that there exist
C > Oanda € [0, 4) such that

lg(sD)] < C(A+s% foralls> 0. (4.1)

Then, for any initial conditionbg € H, there exists a unique functioh € C(R, H) N
CL(R, H~1) such thatd satisfiegNLS) and ®(0, -) = ®g. Furthermore, the following
guantities are independent ok R:

fooaaxcb(z,-nz—V|<I>(t,-)|2—G<|d><r,~>|2)>dx and /OO | (1, )% dx.

We base our discussion of stability on the work of Grillakis, Shatah and Stiduss [8].
They deal with real infinite-dimensional Hamiltonian systems in the form

d

ZY(r) =JE'(Y(1)) 4.2)
where X is a real Hilbert spacel’ : R — X, J : X* — X is skew-symmetric and
E : X — R is the Hamiltonian. To express (NLS) using this formalism we set

X =H'®R) x H'®), R:HYR) - H(R) is the Riesz isomorphism,
0 R .

e¢]

1
Y(@t) = (Rez(t, ), Imz(zs,), Q)= 5/ Y [?dx,

—00

N 2 2 2

E(Y) = 5 (10, Y12 = V|Y|?=G(Y|?)dx forY e X,
—00

where our hypothesis (Hi) and (Hii) of Section 1 ensure fhat C2(X, R).

Assumption Df [8] concerns the initial value problem for (NLS) and Theofen] 4.1
shows that it is satisfied where the conserved quantitieQardE .

If we set
_ (cosH)I  (sint)I
T = (—(sint)l (cost)I) ’

then standing waves of (NLS) are solutions[of|4.2) of the f@rthr)Y for somex € R
andY € X and are referred to as bound states In [8]. For such solutfons, (4.2) reduces to
the equation

AY = E'(Y), (4.3)

which is equivalent td (I]3) for = (Rez, Imz) € X \ {0}.
Assumption 2f [8] concerns the existence of a smooth brahchk- Y, of nontrivial
solutions of [(4.B) and this is ensured by our Corol[ary 3.3 if we set

Y, =UMR),0 forx <A.
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The stability criteria for the standing wav&siz)Y, are formulated in[8] in terms of the
real functiond : (—oo, A) — R defined by

d(x) = E(Y)) —20(Yy)
and the bounded linear operatdy, : X — X* defined by
Hy, = E"(Y;) = 20"(Y2).
Assumption ®f [8] concerns the spectrum(H,) of H; where

o(H,) = {M eER:H, —pu (I; 2) : X — X*isnotan isomorphis+.

It is required that, for alk in some open interval in (—oo, A),

() o(Hy) N (=00, 0) = {a;} where dimkefH, —a; (B 9)] = 1,
() ker H, = sparfJY,} = sparf(0, U(1))},
(Il there existse; > 0 such that (H) \ {a;, 0} C [s;,, 00).

Under these assumptions, Theorem 2[of [8] proves that). far J, the standing wave
T (A1)Y; is orbitally stable if and only i/ is convex on some neighbourhoodjof
Now

, ’ dYk ’ dYA
d})=E (Yk)d_x -0 — 10 (YA)dT =-0M)

sinceE’(Y) — »Q'(Y») = 0 by (4.3) and so the stability of (At)Y;, is established if we
show that (1) to (1) hold and that

0
2
— 4.4
UM)dx <0 (4.4)

sinceQ(Yy) = %0, U(1)?dx.

In particular contexts such as (NLS), the relevanc¢ of (4.4) as a criterion for stability
has been known at least since the work of Vakhitov—Kolokolov in 1973 ([15], [10]) and
its rigorous justification for some cases of (NLS) was given by M. I. Weinstein [16], [13].

We begin our discussion by showing that the conditions (1) to (lll) are satisfied by
(NLS) under the hypotheses of Section 3. Allowing for some abuse of the notation, we
find that, for(e, V) € X,

"+ A+ V+ UMD

T
* -1 -1
1/f//+{)»+V+g(U(A)2)}1ﬂ> e X*=H "(R) x H *(R).

H (¢, ¥) = — <

Lemma 4.2. Suppose thafV) and (F) are satisfied. Ther, has the propertiegl) to
(I1) for all A < A. Consequently, it4.1) also holds, then the standing wadg’™® is
orbitally stable if and only if the functiod is convex on some open neighbourhood .of
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Proof. Foranyix < A, (afx + (A4 w)R, afx 4+ A+ wR): X - X*isanisomorphism
foru < |A] and

Jim v+ fl UG} = Jim v+ gUM?) =0

so thatH, — uR : X — X* is a Fredholm operator of index zero far< |A|. Hence
o (H,) N (—oo, |A]) consists only of isolated eigenvalues of finite multiplicity.

Suppose now that < 0 is an eigenvalue off,. Then there existép, ) € X \ {0}
such that

—¢" =+ V + UMDY = ag,
Y — A+ V 4+ gUMIHW = ay.

But U (1) is a positive eigenfunction o#afx — A+ V +g(U )} with eigenvalue zero
and so all other eigenvalues of this operator are positive. Hgneed and we must have

o HH®)\ {0} with —¢"—(A+V+ FUMN)}p =ap.

It follows thatgy € H2(R) and sou is an eigenvalue of the self-adjoint operato?fx —
A+ V 4+ (UM} : HXR) C L%(R) — L?(R). Property (1) ofH; now follows from
Lemmda3.4.

We have already observed th@, U(1)) € kerH,. But if (¢, y) € kerH, then
—¢" — A+ V + f(UG)D)e = 0 and Lemma 3]4(ii) implies that = 0. Thus H;,
also has property (Il) since, as f8, all eigenvalues o#afx — A+ V 4+ gUM?)) are
simple.

Sinceo (H,) has no accumulation points {g-oo, %|A|], property (lll) has also been
established. O

The stability of all ground states is not ensured by the conditions (V) and (F).

Example. Let V be any potential satisfying (V) and consider the functigitis) = s*
for s > 0. Then the condition (F) is satisfied for &l> 1, but, as was shown in_[12],
UM 2@y — 0 asi — —ooif k > 5. Since|U(V) || 2g) — 0 asr — A— forall
k > 1, it follows thatd cannot be convex o+-oo, A) and so not all ground statés().)
are stable.

Recalling thatf (s)/s > 0 fors > 0 when a functionf satisfies (F), we now make
the following additional assumptions.

(H) On theinterval0, co), f'(s) — f(s)/s is nondecreasing,f’(s)/f (s) nonincreasing
and 0< sf'(s)/f (s) < 5.

Examples. (i) f(s) = s* satisfies the conditions (F) and (H) ifd k < 5.
(i) More generally,f (s) = s**t1/(s + 1)! satisfies the conditions (F) and (V) if@1 <
4k?/(4k + 1) and O< k < 4.
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Theorem 4.3(see Theorem 2.1 df [12])Under the hypothes€¥), (F) and(H) we have
LU 2 < Oforall o < A. If, in addition, the conditior(4.1) s satisfied, then all
the ground state®/ (i) for . < A are orbitally stable.

Example. V satisfies (V) andf(s) = s*, then all ground states of (NLS) are stable if
1 < k < 5. Fork = 5, the strict monotonicity oflU (1)|| .2 still holds but the condition
(4.7) for global existence of the initial value problem fails.
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