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Abstract. We discuss the orbital stability of standing waves of a class of nonlinear Schrödinger
equations in one space dimension. The crucial feature for our treatment is the presence of a non-
constant linear potential that is even and decreasing away from the origin in space. This enables us
to establish the orbital stability of all ground states over the whole range of frequencies for which
such solutions exist.

1. Introduction

Standing waves are simple time harmonic solutions of the nonlinear Schrödinger equation
(NLS) that decay at infinity in space. Ground states are defined as standing waves that
minimize the action with respect to other standing waves of the same frequency. This
paper is concerned with a class of nonlinear Schrödinger equations for which we can give
a complete description of all ground states including their stability.

To be more precise, consider a function8 : R2
→ C that satisfies the nonlinear

Schr̈odinger equation

i∂t8+ ∂2
xx8+ V (x)8+ g(|8|

2)8 = 0 for (t, x) ∈ R2 (NLS)

whereV : R → R is the potential and the functiong : [0,∞) → R defines the nonlin-
earity. We are interested in solutions such that8(t, ·) ∈ H = H 1(R,C) for all t ∈ R. To
formulate the hypotheses on the smoothness of the nonlinearity we set

f (s) = g(s2)s for s ∈ R (1.1)

and assume throughout that

(Hi) V ∈ L∞(R) ∩ C(R),

(Hii) f ∈ C1(R) with f (0) = f ′(0) = 0.

Noting that8 satisfies (NLS) if and only if9(t, x) = eiωt8(t, x) satisfies

i∂t9 + ∂2
xx9 + [V (x)+ ω]9 + g(|9|

2)9 = 0 for (t, x) ∈ R2
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the hypothesis (Hi) enables us to assume without loss of generality that

inf
x∈R

V (x) = 0. (1.2)

Let 3 denote the infimum of the spectrum of the self-adjoint operator−∂2
xx − V :

H 2(R) ⊂ L2(R) → L2(R). Then

3 = inf

{∫
∞

−∞
(|z′|2 − V |z|2) dx∫

∞

−∞
|z|2 dx

: z ∈ H \ {0}

}
≤ 0

and3 = 0 if and only ifV ≡ 0.
Solutions of (NLS) of the form

8(t, x) = e−iλtz(x) wherez 6≡ 0

for someλ ∈ R andz ∈ H are calledstanding wavesand, for suchz, the orbit2(z) ⊂ H

of the associated standing wave is defined by

2(z) = {eitz : t ∈ R} = 2(eiθz) for all θ ∈ R.

For standing waves, (NLS) is equivalent to

z ∈ H \ {0} and λz+ z′′ + V z+ g(|z|2)z = 0 inH−1 (1.3)

and in Section 2 we begin by formulating hypotheses ensuring the existence of ground
states. Note that ifz satisfies (1.3) then so doesz. We show that, ife−iλtz(x) is a ground
state, then there exists a real-valued, strictly positive solutionu of (1.3) such that2(z) =

2(u), and consequently2(z) = 2(z). Therefore, in Section 3, we focus on the problem

λu+ u′′
+ V u+ g(u2)u = 0 whereu ∈ H 1(R) with u > 0 onR (1.4)

and review some joint work with H́elène Jeanjean [9], in which we were able to show
that all solutions of (1.4) form a smooth curveC = {(λ, U(λ)) : λ < 3} in R × H 2(R)
with limλ→−∞ ‖U(λ)‖H2 = ∞ and limλ→3 ‖U(λ)‖H2 = 0. In view of what is proved
in Section 2 this result gives a complete description of all ground states for (NLS).

In Section 4 we consider the stability of these ground states starting from the general
criteria established by Grillakis, Shatah and Strauss [8]. A crucial condition is the mono-
tonicity of ‖U(λ)‖L2 with respect toλ. Under the hypotheses used in Section 3 to obtain
the curveC, this monotonicity need not hold and some of the ground states can be un-
stable. In collaboration with J. B. McLeod and W. C. Troy [12] we have found additional
conditions ong that ensure thatd

dλ
‖U(λ)‖L2 < 0 for all λ < 3 and consequently that all

ground states are stable.
The results from [9] and [12] that we have recalled here are proved in greater gener-

ality. We have chosen the special formV (x)8+ g(|8|
2)8 in (NLS) in order to state the

hypotheses briefly, but our conclusions are available in a broader context. On the other
hand, in higher dimensions, wherex ∈ RN with N ≥ 2, and even forV (x)8+g(|8|

2)8

whenV is not constant, there does not seem to be a proof of the stability of all ground
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states. In [13] and [8], perturbation methods are used to establish stability forλ near3 and
λ near−∞, respectively. ForV constant, there is a complete discussion of the stability
of all ground states, but the definition of orbit, and hence of stability, has to be modified
to accommodate the invariance under translation. These comments also apply to the vari-
ational approach to the stability of standing waves initiated by Cazenave and P.-L. Lions.

2. Existence of ground states

Amongst all standing waves, those called ground states are most likely to be stable. They
are defined as follows. Forλ ∈ R, set

Aλ = {z ∈ H \ {0} : λz+ z′′ + V z+ g(|z|2)z = 0 inH−1
}

and let

S(z) =

∫
∞

−∞

(|z′|2 − λ|z|2 − V |z|2 −G(|z|2)) dx where G(s) =

∫ s

0
g(τ) dτ

denote the action of the standing wave8z(t, x) = e−iλtz(x) associated withz ∈ Aλ.

Then bothz ∈ Aλ and the associated standing wave8z are referred to asground statesof
(NLS) if λ < 3 andS(z) ≤ S(w) for all w ∈ Aλ. Let

Gλ = {z ∈ Aλ : S(z) ≤ S(w) for all w ∈ Aλ}

denote the set of all ground states with frequency|λ|. It turns out that the minimality of
the action of a ground state also pertains to a much larger set that is sometimes referred
to as theNehari manifold. Forλ < 3, let

J (z) =

∫
∞

−∞

(|z′|2 − λ|z|2 − V |z|2 − g(|z|2)|z|2) dx

Nλ = {z ∈ H \ {0} : J (z) = 0} and thenMλ= {z ∈ Nλ : S(z) ≤ S(w) for all w ∈Nλ}.

Clearly,Aλ is a subset of the Nehari manifoldNλ. The conditions (Hi) and (Hii) ensure
thatS andJ are inC1(H,R) with

S′(z)w = 2 Re
∫

∞

−∞

(z′w′ − {λ+ V + g(|z|2)}zw) dx

J ′(z)w = 2 Re
∫

∞

−∞

(z′w′ − {λ+ V + g(|z|2)+ g′(|z|2)}zw) dx

= S′(z)w − 2 Re
∫

∞

−∞

g′(|z|2)zw dx for all z,w ∈ H.

ThusS′(z)z = 2J (z) andJ ′(z)z = 2J (z)− 2
∫

∞

−∞
g′(|z|2)|z|2 dx. Note also that

S′(z) = 0 if and only if z ∈ Aλ ∪ {0}.
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Lemma 2.1. Suppose that(Hi) and (Hii) are satisfied and considerλ < 3.

(i) ThenAλ ⊂ H 2(R,C) ∩ C2(R,C) and

z′′ + {λ+ V + g(|z|2)}z = 0 onR for z ∈ Aλ.

(ii) If z ∈ Aλ, thenz has only simple zeros.
(iii) If, in addition,

(Hiii ) f ′(s) >
f (s)

s
[equivalentlyg′(s) > 0] for all s > 0,

thenMλ ⊂ Gλ andu = |z| ∈ Mλ with u > 0 wheneverz ∈ Mλ. Furthermore there
existsθ ∈ [0,2π) such thatz(x) = eiθu(x) for all x ∈ R.

(iv) If (Hi) to (Hiii) hold andMλ 6= ∅, thenMλ = Gλ.

Proof. (i) H ⊂ L∞
∩ C and soz′′ = −{λ+ V + g(|z|2)}z ∈ L2

∩ C.

(ii) If z ∈ Aλ ∪ {0} andz(y) = z′(y) = 0 for somey, thenz ≡ 0 by the uniqueness
of the solution to the initial value problem for the equation (1.3).

(iii) For any z ∈ Nλ, we have

J ′(z)z = 2J (z)− 2
∫

∞

−∞

g′(|z|2)|z|2 dx = −2
∫

∞

−∞

g′(|z|2)|z|2 dx < 0.

Thus, if z ∈ Mλ, there is a Lagrange multiplierξ such thatS′(z) = ξJ ′(z) and hence
S′(z)z = ξJ ′(z)z. But S′(z)z = 2J (z) = 0 andJ ′(z)z < 0 so we must haveξ = 0,
showing thatS′(z) = 0. ThusMλ ⊂ Gλ.

If z ∈ H, thenu ∈ H with S(u) = S(z) andJ (u) = J (z). Therefore, ifz ∈ Mλ

we see thatu ∈ Mλ ⊂ Gλ. But thenu ∈ C2(R) and has only simple zeros by parts (i)
and (ii). Sinceu = |z| ≥ 0, it follows that in factu > 0 onR. We have

λz+ z′′ + V z+ g(|z|2)z = 0,

λu+ u′′
+ V u+ g(u2)u = 0,

sincez andu ∈ Gλ ⊂ Aλ. Hencez′′u− zu′′
= 0 onR and so there is a constantC such

thatz′u − zu′
= C on R. But z, u ∈ H 2 by part (i) and thereforez, z′, u andu′ all tend

to zero asx → ∞ soC = 0. This means thatv = z/u is also constant onR and since
|v| = 1, there existsθ ∈ [0,2π) such thatv = eiθ .

(iv) Suppose that̂z ∈ Mλ. Then ẑ ∈ Gλ and soS(z) = S(̂z) for anyz ∈ Gλ. Since
Gλ ⊂ Nλ this means thatz ∈ Mλ and soGλ ⊂ Mλ. ut

We now give conditions ensuring thatMλ 6= ∅.

Remark. Under the hypotheses of Lemma 2.1, it can happen thatAλ and henceGλ is
empty for allλ. For example, if in additionV ∈ C1(R) with V ′ > 0 andz ∈ Aλ, then

d

dx
{λ|z|2+|z′|2+V |z|2+G(|z|2)} = 2 Re[{λz+z′′+V z+g(|z|2)z}z′]+V ′

|z|2 = V ′
|z|2
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and soλ|z|2 + |z′|2 + V |z|2 + G(|z|2) is nondecreasing onR. But z andz′ tend to zero
at infinity becausez ∈ H 2 and soλ|z|2 + |z′|2 + V |z|2 +G(|z|2) ≡ 0. ThusV ′

|z|2 ≡ 0
andz ≡ 0, a contradiction. ThusAλ = ∅ if V ′ > 0 onR.

Proposition 2.2. Suppose that the assumptions(Hi) to (Hiii) are satisfied and that

(Hiv) V is even and nonincreasing on[0,∞) with lim
x→∞

V (x) = 0.

(Hv) lim
s→∞

g(s) = ∞.

ThenMλ 6= ∅ for everyλ < 3.

Proof. (a)A norm onH and its properties.Fix λ < 3 and considerd(z) =
∫

∞

−∞
(|z′|2 −

λ|z|2 − V |z|2) dx. For anyε ∈ (0,1), we have

d(z) = ε

∫
∞

−∞

|z′|2 dx + (1 − ε)

∫
∞

−∞

(|z′|2 − V |z|2) dx −

∫
∞

−∞

(λ+ εV )|z|2 dx

≥ ε

∫
∞

−∞

|z′|2 dx + (1 − ε)3

∫
∞

−∞

|z|2 dx −

∫
∞

−∞

(λ+ εV )|z|2 dx

= ε

∫
∞

−∞

|z′|2 dx +

∫
∞

−∞

{(1 − ε)(3− λ)− ε(V + λ)}|z|2 dx

≥ µ(ε)

∫
∞

−∞

(|z′|2 + |z|2) dx,

whereµ(ε) = min{ε, (1 − ε)(3− λ)− ε(V (0)+ λ)} > 0 for ε small enough. Hence

‖z‖ =

{∫
∞

−∞

(|z′|2 − λ|z|2 − V |z|2) dx

}1/2

defines a norm onH which is equivalent to the usual norm

‖z‖1 =

{∫
∞

−∞

(|z′|2 + |z|2) dx

}1/2

.

For z ∈ H we haveu = |z| ∈ H and we usez∗ to denote the Schwarz symmetrization
(see [11]) of|z|. Thenz∗ = u∗

∈ H with∫
∞

−∞

|z|2 dx =

∫
∞

−∞

u2 dx =

∫
∞

−∞

(u∗)2 dx =

∫
∞

−∞

(z∗)2 dx,∫
∞

−∞

|z′|2 dx ≥

∫
∞

−∞

(u′)2 dx ≥

∫
∞

−∞

([u∗]′)2 dx =

∫
∞

−∞

([z∗]′)2 dx,∫
∞

−∞

V |z|2 dx =

∫
∞

−∞

V u2 dx ≤

∫
∞

−∞

V ∗(u∗)2 dx =

∫
∞

−∞

V (z∗)2 dx.

It follows from these inequalities that

‖z∗‖ ≤ ‖z‖ for all z ∈ H.
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(b) MinimizingS onNλ. For z ∈ H,

S(z) = ‖z‖2
−

∫
∞

−∞

G(|z|2) dx and J (z) = ‖z‖2
−

∫
∞

−∞

g(|z|2)|z|2 dx.

For z ∈ Nλ,

S(z) =

∫
∞

−∞

g(|z|2)|z|2 −G(|z|2) dx =

∫
∞

−∞

h(|z|2) dx where h(s) = g(s)s−G(s).

Noting thath(0) = 0 andh′(s) = g′(s)s > 0 for s > 0, we see thatS(z) > 0 for all
z ∈ Nλ, so settingmλ = inf{S(z) : z ∈ Nλ} we havemλ ≥ 0. Forz ∈ H \ {0} andt > 0,
let

k(t) =
J (tz)

t2
= ‖z‖2

−

∫
∞

−∞

g(t2|z|2)|z|2 dx.

Using (Hiii) and (Hv), we find thatk is strictly decreasing on(0,∞) with

lim
t→0

k(t) = ‖z‖2 > 0 and lim
t→∞

k(t) = −∞.

Hence there exists a uniquet (z) ∈ (0,∞) such thatk(t (z)) = 0 andt (z)z ∈ Nλ. Further-
more,

d

dt
S(tz) = 2t

{
‖z‖2

−

∫
∞

−∞

g(t2|z|2)|z|2 dx

}
= 2tk(t)

wherek(t) > 0 for t ∈ (0, t (z)) andk(t) < 0 for t > t (z). Thus we have

S(tz) < S(t (z)z) for t ∈ (0, t (z)) and S(tz) < S(t (z)z) for t > t (z).

For z ∈ Nλ,

S(t (z∗)z∗) =

∫
∞

−∞

h(t (z∗)2|z∗|2) dx

and

0 = J (z) = ‖z‖2
−

∫
∞

−∞

g(|z|2)|z|2 dx ≥ ‖z∗‖2
−

∫
∞

−∞

g(|z∗|2)|z∗|2 dx

so thatt (z∗) ≤ 1 and

S(t (z∗)z∗) =

∫
∞

−∞

h(t (z∗)2|z∗|2) dx ≤

∫
∞

−∞

h(|z∗|2) dx =

∫
∞

−∞

h(|z|2) dx = S(z).

Hence if{zn} ⊂ Nλ is a sequence such thatS(zn) → mλ, by settingwn = t (z∗n)z
∗
n, we

obtain a sequence{wn} ⊂ Nλ such thatwn = w∗
n andS(wn) → mλ.

(c) Boundedness of a minimizing sequence.Let us show that{wn} is bounded. Suppose
that‖wn‖ → ∞. Let c =

√
mλ + 1 and then set

vn =
c

‖wn‖
wn.
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Sincewn ∈ Nλ, we haveS(vn) ≤ S(wn), and sincevn = v∗
n, for all y > 0,∫

∞

−∞

v2
n dx ≥

∫ y

−y

v2
n dx ≥ 2yv2

n(y).

But there exists a constantK > 0 such that∫
∞

−∞

z2 dx ≤ ‖z‖2
1 ≤ K‖z‖2 for all z ∈ H

and hence

v2
n(y) ≤

Kc2

2y
for all y > 0 and alln ∈ N.

Since{vn} is bounded inH , by passing to a subsequence, we may assume that there exists
v ∈ H such thatvn ⇀ v weakly inH. If v 6≡ 0, there existδ > 0 and an interval [a, b]
with a < b such thatv ≥ δ on [a, b]. Then there existsn0 ∈ N such thatvn ≥ δ/2
on [a, b] for all n ≥ n0 because{vn} converges uniformly tov on [a, b]. But then, for
n ≥ n0, ∫ b

a

G(w2
n(x))

‖wn‖2
dx =

∫ b

a

G(
‖wn‖

2

c2 vn(x)
2)

‖wn‖2
dx ≥

∫ b

a

G(
‖wn‖

2δ2

4c2 )

‖wn‖2
dx

and

lim
n→∞

∫ b

a

G(w2
n(x))

‖wn‖2
dx = ∞ since lim

s→∞

G(s)

s
= ∞ by (Hv).

On the other hand,∫ b

a

G(w2
n(x))

‖wn‖2
dx ≤

∫
∞

−∞

G(w2
n(x))

‖wn‖2
dx =

‖wn‖
2
− S(wn)

‖wn‖2
→ 1,

sinceS(wn) → mλ and‖wn‖ → ∞. Thus we must havev ≡ 0. Then, for ally > 0, we
find thatvn → 0 uniformly on [−y, y] and

lim sup
n→∞

∫
∞

−∞

G(v2
n) dx = lim sup

n→∞

∫
|x|≥y

G(v2
n) dx ≤ lim sup

n→∞

∫
|x|≥y

g(v2
n)v

2
n dx

≤ lim sup
n→∞

g

(
Kc2

2y

) ∫
|x|≥y

v2
n dx ≤ g

(
Kc2

2y

) ∫
∞

−∞

v2
n dx

≤ g

(
Kc2

2y

)
Kc2.

Lettingy → ∞, we find that∫
∞

−∞

G(v2
n) dx → 0 and so S(vn) → c2

= mλ + 1.

But we have seen thatS(vn) ≤ S(wn) andS(wn) → mλ and we again have a contradic-
tion. This proves that{wn} is bounded inH.
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(d) Existence of a minimizer.By passing to a subsequence we may now assume that there
existsw ∈ H such thatwn ⇀ w weakly inH. Let B > 0 be such that‖wn‖ ≤ B for
all n. Then, as in part (c),

w2
n(y) ≤

KB2

2y
and w2(y) ≤

KB2

2y
for all y > 0 and alln ∈ N.

Hence∣∣∣∣ ∫ ∞

−∞

G(w2
n) dx −

∫
∞

−∞

G(w2) dx

∣∣∣∣
≤

∫ y

−y

|G(w2
n)−G(w2)| dx +

∫
|x|≥y

(g(w2
n)w

2
n + g(w2)w2) dx

≤

∫ y

−y

|G(w2
n)−G(w2)| dx + g

(
KB2

2y

) ∫
∞

−∞

[w2
n + w2] dx

≤

∫ y

−y

|G(w2
n)−G(w2)| dx + g

(
KB2

2y

)
2KB2

and so

lim sup
n→∞

∣∣∣∣∫ ∞

−∞

G(w2
n) dx −

∫
∞

−∞

G(w2) dx

∣∣∣∣ ≤ g

(
KB2

2y

)
2KB2

sincewn → w uniformly on [−y, y]. Lettingy → ∞, we see that∫
∞

−∞

G(w2
n) dx →

∫
∞

−∞

G(w2) dx asn → ∞,

from which it follows that

S(w) ≤ lim inf
n→∞

S(wn) = mλ.

A similar argument shows that∫
∞

−∞

g(w2
n)w

2
n dx →

∫
∞

−∞

g(w2)w2 dx and J (w) ≤ lim inf
n→∞

J (wn) = 0.

Furthermore,w 6= 0 since otherwise

‖wn‖
2

=

∫
∞

−∞

g(w2
n)w

2
n dx →

∫
∞

−∞

g(w2)w2 dx = 0,

whereas∫
∞

−∞

w2
n dx ≤ K‖wn‖

2
= K

∫
∞

−∞

g(w2
n)w

2
n dx ≤ Kg(maxw2

n)

∫
∞

−∞

w2
n dx

and so

1 ≤ Kg(maxw2
n) ≤ Kg(‖wn‖

2
1) ≤ Kg

(
‖wn‖

2

µ(ε)

)
,
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in contradiction with‖wn‖ → 0. From our observation thatJ (w) ≤ 0 it follows that
t (w) ≤ 1 and then

mλ ≤ S(t (w)w) =

∫
∞

−∞

h(t (w)2w2) dx ≤

∫
∞

−∞

h(w2) dx

=

∫
∞

−∞

(g(w2)w2
−G(w2)) dx = lim

n→∞

∫
∞

−∞

(g(w2
n)w

2
n −G(w2

n)) dx

= lim
n→∞

S(wn) = mλ.

Thust (w)w ∈ Mλ and the proof is complete. ut

Remark. In fact, the proof yields some extra information. Ift (w) < 1, we have∫
∞

−∞
h(t (w)2w2) dx <

∫
∞

−∞
h(w2) dx and thenmλ < mλ, a contradiction. Hence

t (w) = 1. This means that

‖w‖
2

=

∫
∞

−∞

g(w2)w2 dx = lim
n→∞

∫
∞

−∞

g(w2
n)w

2
n dx = lim

n→∞
‖wn‖

2 ,

showing that the minimizing sequence{wn} converges strongly inH to the minimizerz
which belongs toNλ.

Corollary 2.3. Under the assumptions(Hi) to (Hv), for eachλ < 3, Mλ = Gλ 6= ∅,
and for any ground statez ∈ Gλ there is a ground stateu ∈ 2(z) such thatu > 0.

The hypotheses (Hi) to (Hv) do not imply that there is a unique orbit of ground states with
frequency|λ| . In fact, forV ≡ 0 andz ∈ Gλ the translatezy = z(· + y) clearly belongs
to Gλ for anyy ∈ R. But, if zy ∈ 2(z), there existst ∈ R such thatzy = e−iλtz and
so |z| is periodic with period|y| . Sincez ∈ H 1, it follows thatzy ∈ 2(z) if and only if
y = 0.

Since the homogeneous caseV ≡ 0 is well understood [4], we eliminate this situation
and then, as we see in the next section, we do indeed have uniqueness of the orbits of
ground states for a given frequency.

3. Uniqueness and properties of ground states

In this section we recall some results obtained in collaboration with Hélène Jeanjean [9]
concerning the problem (1.4). In particular we showed that, for eachλ < 3, there is a
unique solutionuλ. The case whereV is constant has to be excluded for this to hold. For
convenience we restate the hypotheses that have been used so far as follows.

(V) V is even andV ∈ C1(R) ∩ L∞(R) with V ′
≤ 0 on(0,∞) butV ′

6≡ 0.
(F) f ∈ C1(R) with f (0) = f ′(0) = 0, f ′(s) > f (s)/s for all s > 0 and

lims→∞ f (s)/s = ∞.
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Compared to the conditions (Hi) to (Hv), the assumptions (V) and (F) simply require some
extra regularity ofV and exclude the case whereV is constant. The functionf (s)/s is
strictly increasing on [0,∞) so (F) implies thatf (s) > 0 for all s > 0.

It follows from (V) and (1.2) that−V (0) < 3 < 0 and3 is a simple eigenvalue of
L = −∂2

xx − V with an eigenfunction that is Schwarz symmetric.

Theorem 3.1(Theorem 1 of [9]). Let (V) and(F) be satisfied and let(λ, u) be a solution
of (1.4). Thenλ < 3 andu is even withu′ < 0 on (0,∞).

Remark. Both monotonicity and evenness ofV are required to get evenness ofu.
Akhmediev [2] was the first to show that evenness ofV does not imply thatu is even
(or odd). There are now many other examples of this ([1], [3], [6], [7]).

Since all solutions of (1.4) are even it is enough to deal with the problem on [0,∞).

Let
W = {u ∈ H 2((0,∞)) : u′(0) = 0}

andF : R ×W → L2((0,∞)) where

F(λ, u) = u′′
+ V u+ f (u)+ λu.

Theorem 3.2(Theorems 2, 3 and 5 of [9]). Let (V) and(F) be satisfied.

(i) (Existence) There existsw ∈ C1((−∞,3),W) such that

F(λ,w(λ)) = 0 for all λ < 3,

w(λ)(x) > 0 and
d

dx
w(λ)(x) < 0 for all x > 0,

lim
λ→3

‖w(λ)‖H2 = 0, lim
λ→−∞

‖w(λ)‖H2 = ∞,

d

dλ
‖w(λ)‖L∞ =

d

dλ
w(λ)(0) < 0 for all λ < 3.

(ii) (Uniqueness)If (λ, u) is a solution of(1.4) thenλ < 3 andu = w(λ) on [0,∞).

Forλ < 3 we define a functionU : R → H 2(R) by setting

U(λ)(x) =

{
w(λ)(x) for x ≥ 0,
w(λ)(−x) for x < 0.

Corollary 3.3. Let (V) and(F) be satisfied.

(i) For λ < 3, Gλ = 2(U(λ)). In particular, if z is a ground state then|z| is even and
strictly decreasing on[0,∞) andz ∈ 2(U(λ)) for someλ < 3.

(ii) U ∈ C1(R, H 2(R)) with

lim
λ→3

‖U(λ)‖H2(R) = 0, lim
λ→−∞

‖U(λ)‖H2(R) = ∞,

d

dλ
‖U(λ)‖L∞ =

d

dλ
U(λ)(0) < 0 for all λ < 3.
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A slight modification of arguments in [9] yields the following additional information
which is crucial for the stability analysis in the next section.

Lemma 3.4. Under the hypotheses(V) and (F), consider the self-adjoint operatorSλ :
H 2(R) ⊂ L2(R) → L2(R) defined bySλ = −∂2

xx − V − f ′(U(λ)) − λ. Letσ(Sλ) and
σe(Sλ) denote its spectrum and essential spectrum. For allλ < 3,

(i) all eigenvalues ofSλ are simple,
(ii) 0 /∈ σ(Sλ) and inf σe(Sλ) = |λ| > 0,

(iii) Sλ has exactly one negative eigenvalueaλ.

Proof. (i) Let u andv be eigenfunctions ofSλ associated with an eigenvalueµ. Then
[uv′

−u′v]′ = uv′′
−u′′v = 0 and so there is a constantC such thatuv′

−u′v = C onR.
But lim|x|→∞[uv′

− u′v] = 0 sinceu, v ∈ H 2(R). ThusC = 0 andu andv are linearly
dependent.

(ii) We have3 < 0 and

inf σe(Sλ) = lim
|x|→∞

{−V − f ′(U(λ))− λ} = −λ > 0.

It is sufficient to show that kerSλ = {0}. Suppose thatv ∈ kerSλ. Let u = U(λ) and
w =

d
dx
U(λ). Then

u′′
+

{
λ+ V +

f (u)

u

}
u = 0,

v′′
+ {λ+ V + f ′(u)}v = 0,

w′′
+ {λ+ V + f ′(u)}w = −V ′u,

whereu is even and positive onR andw is negative in(0,∞). Sincef ′(s) > f ′(s)/s for
all s > 0, v must have at least one zero. We also have∫

∞

y

{λ+ V + f ′(u)}v2 dx = −

∫
∞

y

v′′v dx = v′(x)v(x)+

∫
∞

y

(v′)2 dx

where limx→∞{λ+V+f ′(u)} = λ < 0 and so there existsZ > 0 such thatv′(y)v(y) < 0
for all y ≥ Z. Thusv has a largest zero which we denote byx0. Using the evenness ofu
andV, we may suppose thatx0 ≥ 0 and thatv(x) > 0 for x > x0. Thenv′(x0) ≥ 0 and
it suffices to show thatv′(x0) = 0. For this we note that for ally > x0,

w(x0)v
′(x0) = −w′(y)v(y)+ w(y)v′(y)+

∫ y

x0

(w′′v − wv′′) dx

= −w′(y)v(y)+ w(y)v′(y)−

∫ y

x0

V ′uw dx ≤ 0

where limy→∞{−w′(y)v(y)+ w(y)v′(y)} = 0. Hence

w(x0)v
′(x0) = −

∫
∞

x0

V ′uw dx ≤ 0.
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If x0 = 0, thenw(x0) = u′(0) = 0 and so∫
∞

0
V ′uw dx = 0

whereV ′uw ≥ 0 anduw < 0 on (0,∞), implying thatV ′
≡ 0 on (0,∞), which is

excluded by (V). Hencex0 > 0 andv′(x0) = 0 since thenw(x0) < 0. Thusv ≡ 0.
(iii) We have

inf σ(Sλ) = inf

{∫
∞

−∞
((u′)2 − {V + f ′(U(λ))+ λ}u2) dx∫

∞

−∞
u2 dx

: u ∈ H 1
\ {0}

}

≤

∫
∞

−∞
((U(λ)′)2 − {V + f ′(U(λ))+ λ}U(λ)2) dx∫

∞

−∞
U(λ)2 dx

<

∫
∞

−∞
((U(λ)′)2 − {V +

f (U(λ))
U(λ)

+ λ}U(λ)2) dx∫
∞

−∞
U(λ)2 dx

= 0< inf σe(Sλ).

HenceSλ has at least one negative eigenvalue. Letn(λ) denote the number of negative
eigenvalues ofSλ. Then 1≤ n(λ) < ∞ since infσe(Sλ) > 0. But

‖f ′(U(λ))− f ′(U(µ))‖L∞(R) → 0 asµ → λ < 3

and son : (−∞,3) → N is continuous atλ, and consequently equal to a constantn on
(−∞,3). However−∂2

xx − V −3 has no negative eigenvalues and

‖f ′(U(λ))‖L∞(R) → 0 asλ → 3−,

son = 1.

4. Orbital stability of ground states

A standing wave8z of (NLS) is said to beorbitally stableif, for all ε > 0, there exists
δ > 0 such that, for all80 ∈ H with ‖80 − z‖H < δ,

(a) there is a global solution8 ∈ C(R, H) ∩ C1(R, H−1) of (NLS) with8(0, ·) = 80,

(b) for all t ≥ 0 there existsθ(t) ∈ [0,2π) such that

‖8(t, ·)− eiθ(t)z(·)‖H < ε, that is, dist(8(t, ·),2(z)) < ε.

Therefore, before discussing the stability of standing waves we need some basic proper-
ties of the initial-value problem for (NLS). This has been thoroughly investigated and the
following result gives all the information we require.
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Theorem 4.1(see [4, Section 3.5]). Suppose that(Hi) and(Hii) hold and that there exist
C > 0 andα ∈ [0,4) such that

|g(s2)| ≤ C(1 + sα) for all s ≥ 0. (4.1)

Then, for any initial condition80 ∈ H, there exists a unique function8 ∈ C(R, H) ∩

C1(R, H−1) such that8 satisfies(NLS) and8(0, ·) = 80. Furthermore, the following
quantities are independent oft ∈ R:∫

∞

−∞

(|∂x8(t, ·)|
2
− V |8(t, ·)|2 −G(|8(t, ·)|2)) dx and

∫
∞

−∞

|8(t, ·)|2 dx.

We base our discussion of stability on the work of Grillakis, Shatah and Strauss [8].
They deal with real infinite-dimensional Hamiltonian systems in the form

d

dt
Y (t) = JE′(Y (t)) (4.2)

whereX is a real Hilbert space,Y : R → X, J : X∗
→ X is skew-symmetric and

E : X → R is the Hamiltonian. To express (NLS) using this formalism we set

X = H 1(R)×H 1(R), R : H 1(R) → H−1(R) is the Riesz isomorphism,

J =

(
0 R−1

−R−1 0

)
: X∗

→ X,

Y (t) = (Rez(t, ·), Im z(t, ·)), Q(Y ) =
1

2

∫
∞

−∞

|Y |
2 dx,

E(Y ) =
1

2

∫
∞

−∞

(|∂xY |
2
− V |Y |

2
−G(|Y |

2)) dx for Y ∈ X,

where our hypothesis (Hi) and (Hii) of Section 1 ensure thatE ∈ C2(X,R).
Assumption 1of [8] concerns the initial value problem for (NLS) and Theorem 4.1

shows that it is satisfied where the conserved quantities areQ andE.
If we set

T (t) =

(
(cost)I (sint)I
−(sint)I (cost)I

)
,

then standing waves of (NLS) are solutions of (4.2) of the formT (λt)Y for someλ ∈ R
andY ∈ X and are referred to as bound states in [8]. For such solutions, (4.2) reduces to
the equation

λY = E′(Y ), (4.3)

which is equivalent to (1.3) forY = (Rez, Im z) ∈ X \ {0}.

Assumption 2of [8] concerns the existence of a smooth branchλ 7→ Yλ of nontrivial
solutions of (4.3) and this is ensured by our Corollary 3.3 if we set

Yλ = (U(λ),0) for λ < 3.
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The stability criteria for the standing wavesT (λt)Yλ are formulated in [8] in terms of the
real functiond : (−∞,3) → R defined by

d(λ) = E(Yλ)− λQ(Yλ)

and the bounded linear operatorHλ : X → X∗ defined by

Hλ = E′′(Yλ)− λQ′′(Yλ).

Assumption 3of [8] concerns the spectrumσ(Hλ) of Hλ where

σ(Hλ) =

{
µ ∈ R : Hλ − µ

(
R 0
0 R

)
: X → X∗ is not an isomorphism

}
.

It is required that, for allλ in some open intervalJ in (−∞,3),

(I) σ(Hλ) ∩ (−∞,0) = {aλ} where dim ker
[
Hλ − aλ

(
R 0
0 R

)]
= 1,

(II) kerHλ = span{JYλ} = span{(0, U(λ))},
(III) there existsελ > 0 such thatσ(Hλ) \ {aλ,0} ⊂ [ελ,∞).

Under these assumptions, Theorem 2 of [8] proves that, forλ ∈ J, the standing wave
T (λt)Yλ is orbitally stable if and only ifd is convex on some neighbourhood ofλ.

Now

d ′(λ) = E′(Yλ)
dYλ

dλ
−Q(Yλ)− λQ′(Yλ)

dYλ

dλ
= −Q(Yλ)

sinceE′(Yλ)− λQ
′(Yλ) = 0 by (4.3), and so the stability ofT (λt)Yλ is established if we

show that (I) to (III) hold and that

d

dλ

∫
∞

−∞

U(λ)2 dx < 0 (4.4)

sinceQ(Yλ) =
∫

∞

−∞
U(λ)2 dx.

In particular contexts such as (NLS), the relevance of (4.4) as a criterion for stability
has been known at least since the work of Vakhitov–Kolokolov in 1973 ([15], [10]) and
its rigorous justification for some cases of (NLS) was given by M. I. Weinstein [16], [13].

We begin our discussion by showing that the conditions (I) to (III) are satisfied by
(NLS) under the hypotheses of Section 3. Allowing for some abuse of the notation, we
find that, for(ϕ, ψ) ∈ X,

Hλ(ϕ, ψ) = −

(
ϕ′′

+ {λ+ V + f ′(U(λ)2)}ϕ

ψ ′′
+ {λ+ V + g(U(λ)2)}ψ

)T
∈ X∗

= H−1(R)×H−1(R).

Lemma 4.2. Suppose that(V) and (F) are satisfied. ThenHλ has the properties(I) to
(III) for all λ < 3. Consequently, if(4.1) also holds, then the standing wave8U(λ) is
orbitally stable if and only if the functiond is convex on some open neighbourhood ofλ.



Uniqueness and stability of ground states for Schrödinger equations 413

Proof. For anyλ < 3, (∂2
xx + (λ+µ)R, ∂2

xx + (λ+µ)R) : X → X∗ is an isomorphism
for µ < |λ| and

lim
|x|→∞

{V + f ′(U(λ)2)} = lim
|x|→∞

{V + g(U(λ)2)} = 0

so thatHλ − µR : X → X∗ is a Fredholm operator of index zero forµ < |λ| . Hence
σ(Hλ) ∩ (−∞, |λ|) consists only of isolated eigenvalues of finite multiplicity.

Suppose now thata < 0 is an eigenvalue ofHλ. Then there exists(ϕ, ψ) ∈ X \ {0}

such that

−ϕ′′
− {λ+ V + f ′(U(λ)2)}ϕ = aϕ,

−ψ ′′
− {λ+ V + g(U(λ)2)}ψ = aψ.

ButU(λ) is a positive eigenfunction of−∂2
xx −{λ+V +g(U(λ)2)} with eigenvalue zero

and so all other eigenvalues of this operator are positive. Henceψ = 0 and we must have

ϕ ∈ H 1(R) \ {0} with − ϕ′′
− {λ+ V + f ′(U(λ)2)}ϕ = aϕ.

It follows thatϕ ∈ H 2(R) and soa is an eigenvalue of the self-adjoint operator−∂2
xx −

{λ+V + f ′(U(λ)2)} : H 2(R) ⊂ L2(R) → L2(R). Property (I) ofHλ now follows from
Lemma 3.4.

We have already observed that(0, U(λ)) ∈ kerHλ. But if (ϕ, ψ) ∈ kerHλ then
−ϕ′′

− {λ + V + f ′(U(λ)2)}ϕ = 0 and Lemma 3.4(ii) implies thatϕ = 0. ThusHλ
also has property (II) since, as forSλ, all eigenvalues of−∂2

xx − {λ+ V + g(U(λ)2)} are
simple.

Sinceσ(Hλ) has no accumulation points in(−∞, 1
2|λ|], property (III) has also been

established. ut

The stability of all ground states is not ensured by the conditions (V) and (F).

Example. Let V be any potential satisfying (V) and consider the functionf (s) = sk

for s ≥ 0. Then the condition (F) is satisfied for allk > 1, but, as was shown in [12],
‖U(λ)‖L2(R) → 0 asλ → −∞ if k > 5. Since‖U(λ)‖L2(R) → 0 asλ → 3− for all
k > 1, it follows thatd cannot be convex on(−∞,3) and so not all ground statesU(λ)
are stable.

Recalling thatf (s)/s > 0 for s > 0 when a functionf satisfies (F), we now make
the following additional assumptions.

(H) On the interval(0,∞), f ′(s)− f (s)/s is nondecreasing,sf ′(s)/f (s) nonincreasing
and 0≤ sf ′(s)/f (s) ≤ 5.

Examples. (i) f (s) = sk satisfies the conditions (F) and (H) if 1< k ≤ 5.
(ii) More generally,f (s) = sk+1/(s + 1)l satisfies the conditions (F) and (V) if 0≤ l <

4k2/(4k + 1) and 0< k ≤ 4.
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Theorem 4.3(see Theorem 2.1 of [12]). Under the hypotheses(V), (F) and(H) we have
d
dλ

‖U(λ)‖L2 < 0 for all λ < 3. If, in addition, the condition(4.1) is satisfied, then all
the ground statesU(λ) for λ < 3 are orbitally stable.

Example. V satisfies (V) andf (s) = sk, then all ground states of (NLS) are stable if
1 < k < 5. For k = 5, the strict monotonicity of‖U(λ)‖L2 still holds but the condition
(4.1) for global existence of the initial value problem fails.

References
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