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Abstract. A classical result of A. D. Alexandrov states that a connected compact smaiitien-

sional manifold without boundary, embeddedidfitl, and such that its mean curvature is constant,

is a sphere. Here we study the problem of symmetryfoh a hyperplaneX,, ;1 = const in case

M satisfies: for any two pointéX’, X, 1), (X, )?,,H) on M, with X,+1 > ?,,Jrl, the mean
curvature at the first is not greater than that at the second. Symmetry need not always hold, but in
this paper, we establish it under some additional conditiom fer 1. Some variations of the Hopf
Lemma are also presented. Part Il [Y.Y. Li and L. Nirenberg, Chinese Ann. Math. Ser. B 27 (2006),
193-218] deals with corresponding higher dimensional problems. Several open problems for higher
dimensions are described in this paper as well.

1. Introduction

The problem we consider starts with the following classical result of A. D. Aleksan-
drov [1]:

Theorem 1.1([1]). LetM be a compact smooth hypersurface, without boundary, embed-
ded inR"+1 with the property that the mean curvature (average of principle curvatures,
using interior normal) is identically constant. Thé# is a sphere.

If M is immersed instead of embedded, the conclusion of the theorem may fail, even in
dimensiom = 2. Indeed, in 1986, Went2|[6] constructed a counter-example inkase
animmersed torus, with self-intersectionRiA. A. Ros [5] in 1987 extended Theorl.l
from mean curvature to the elementary symmetric functions of the principal curvatures
of M. In 1997 YanYan Lil[2] gave some far reaching generalizations including very gen-
eral symmetric functions of the principal curvatures\Wf But here we just mention one

of the results—still for the mean curvature.
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Theorem 1.2([2]). Let M be a compact smooth hypersurface without boundary embed-
ded inR**1. Let K be aC? function inR"+! satisfying

0K
<o0. (1)
0Xp+1

Suppose that at each pointof M the mean curvaturéd (x) equalsK (x). ThenM is
symmetric about some hyperplane

Xn4+1 = Ao- (2

Li then proposed that we consider the more general question in which the condition
H(x) = K(x) with K satisfying[(1) is replaced by the weaker, more natural, condition:
Whenever(x’, a) and(x’, b), a < b, lie on M (herex’ = (x1, -, x,,)) then

H(x',b) < H(X', a). 3)
Question 1.1. Is it true thatM is then symmetric about some hyperplape; = 1o?

This paper—here we consider only one-dimensional problems—and its sequel are con-
cerned with this question.

First we recall Aleksandrov’s argument. It introduces the, now familiar, method of
moving planes, and the proof relies on the strong maximum principle and the Hopf
Lemma for second order elliptic equations. Here itA$:is the boundary of an open
setU in R"*1, For less than, but close to, mgx, .1, take the parts; of M lying
abovea (i.e. withx, 11 > A) and reflect it in the plane,.1 = . The reflected piece of
surface,s;, lies in U. Decrease. and continue to reflecs, so thats; continues to lie
in U. There will be a first valueg of A such that one of the two things happen:

(@) Sio touchesM at some pointxy, ag) with ag < 1, and the ling{(x, x,41) | X441 €
R"*+1} is transversal ta/ at (x}, ag), or
(i) atsome pointP onx,+1 = Ao the hypersurfaces,, andM are tangent to each other.

Note that both things may happen at the same
In Case (i) we may describ® and Sio near(x;, ap) as graphs of smooth functions
v(x"), u(x) with
v(x") <u(x’) and v(xg) = u(xgp). 4)

Both functions satisfy, neat, the nonlinear elliptic equation expressing the fact that the
mean curvature is the constafit

H[u] := v(ﬁ) =H

But by the strong maximum principle it follows frorﬁ](4) that= v nearx;. Applying
this argument at other points @ shows that

S;»o ={x e M| xp+1 < Ao}.

This is the desired symmetry.
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In Case (ii) we turn the picture around (see Fig. 1). In these coordinates, calhthem
with y1 = P1—x,41, we may represersf; , nearP, as the graph of a function(y’), and
the part ofM lying in y1 > 0 as the graph of somsy’). We have, with some abuse of
notation,

u(y) > v(y), u(P)=v(P), Vu(P)=Vv(P).

As before,u andv satisfy the same elliptic equation in > 0, near the origin. By the
Hopf Lemma,u = v near the origin. Then, using the strong maximum principle we
extend this fact globally, to conclude the desired symmetry.

In [2] Li uses the moving plane method but makes essential use of the fact that the
function K is locally Lipschitz inR”*2,

What happens if, following Aleksandrov, we try to use moving planes for the problem
whereH (x’, b) < H(x’, a) for b > a? We are led again to the two cases (i) and (ii) above.
Case (i) is easily handled (see Fig. 2). Again we have two funciiony > v(x’). But
now H[u] < H[v]. We may still use the strong maximum principle and infer that v.

M
Siﬂ
/\
B 7N
1
- P
Xn+1
Fig. 3 Fig. 4

The trouble arises in Case (ii). We redraw Fig. 1 as shown in Fig. 3. We may represent
Sio andM in y1 > 0 byu(y") andv(y’), with u > v. However, the condition that the
mean curvature OSio at B is < that atA, compares the mean curvaturewfand v
but at different points(y1, y”) and(y1, y”) whereu(y1, y") = v(y1, y”), with y; < 1.

Thus we are led to looking for a more general form of the Hopf Lemma.
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Before stating some results, we point out that the answer to Quéstipn 1.1 is no in
general, even for a closed curve with interior convex intheirection, as in Fig. 4. Here
the ends are symmetric to each other, the bottom bump is symmetric, as is the top bump.
Even if M is not necessarily symmetric, would the inequality on the mean curvature
imply that equality holds in the following sense:

Question 1.2. Is it true that(3) implies that for anyA, B € M with A, {1 < B,41, we
must haveH (A) = H(B)?

In Section 6 we give a counterexample. However, we do not know the answer to

Question 1.3. Is the answer to QuestifhZyes in case we considdr, B € M such that
forall0 <r < 1,rA+ (1 —1)B liesinsideM?

In Part 11, [3], we present our results on Questjon 1.1. We assume that the (embedded)
hypersurface is smooth and satisfies

Condition S. M stays on one side of any hyperplane parallel to.the;-axis that is
tangent taV.

We believe that this should suffice to prove symmetry. However our proof requires a
further condition:
Condition T. Any line parallel to thex, 1-axis that is tangent t&f has contact of finite
order.

Condition T automatically holds in cagé is analytic; while Condition S automati-
cally holds in casé/ is convex.
A weaker version of our main result is

Theorem 1.3([3]). Let M be a smooth compact embedded hypersurfad®'ift satis-
fying
H(x', xp11) < H(X', ¥p11)

for any two pointgx’, x,11), (x', X,+1) € M satisfyingx,11 > X,.1. Then, if Condition
T holds andM is locally convex near any point where the tangent plane is parallel to the
Xp+1-axis, M must be symmetric with respect to some hyperplane = const

In this paper we restrict ourselves to curves. The main result in Part | is

Theorem 1.4. Let M be a closed”? embedded curve in the plane satisfying Condition S.
Assume that wheneveéry, a), (x1, b), witha < b, lie on the curveM, then

curvature ofM at (x1, b) < curvature ofM at (x1, a). (5)
ThenM is symmetric about some ling = Ag.
Remark 1.1. In Theoreni 1.4, we do not assume Condition T.

The theorem is proved in Section 3. In Part Il, in addition to mean curvature, we also
extend Theorerp 1].3 to other symmetric functions of the principal curvatures. A number
of open problems are also presented there. In Section 7 of this Part | we also mention
several which are local in nature.
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2. One-dimensional model problems

We first looked at some very simple one-dimensional model problems which seemed to
us to be of interest. Here is one of them.

Theorem 2.1. Letu > v be positiveC? functions on(0, b), which are also irC1([0, 5]).
Assume that

u(0) = u(0) =0,
and
either # >00n(0,b) or ©»>00n(0,b). (6)
Our main hypothesis is:
whenever u(t) =v(s) forO<t <s <b wehave ii(t) <v”(s) (7
(here- = d/dt,” = d/ds). Conclusion:
u=v onf0,b].

Remark 2.1. This is a kind of extension of the Hopf Lemma, for if in place [of (7) we
assumed

ii(t) < v(t) on(0,b) (8)
the result would simply follow from the Hopf Lemma.

Remark 2.2. If we replace[() by both: > 0 andv > 0 on (0, b), the conclusion of
Theorenj 2]l may fail. See the following example.

Example 2.1. Letu € C*([0, 2]) satisfy

u(t):{tg’ , 0<r<1/3
1+(¢—-1° 2/3<t<2,
>0 in(0,01),
and let 0 L
u(t), <t=1
“(”zw(’)z{l,() 1<1<2
as in Fig. 5.

Fig. 5

Before proving Theorein 2.1, we give a few lemmas. Some of these are not really used
in the proof of Theorerp 2|1, but seem of interest.
First, a variation of the strong maximum principle.
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Lemma 2.1. Letu > v be twoC? functions on(0, b). Assum@ and
maxi, v} >0 on(0,b). (9)

Then either
u>v on(0,b)),

or
u=v on(0,b). (10)

Remark 2.3. If we replace[(P) byi, v > 0 on (0, b), the conclusion of the lemma may
fail. See Example 2.1 above.

Proof of Lemma@ 2]1 Suppose:(c) = v(c) for some O< ¢ < b. Then, by|[(9),
i(c) =v(c) > 0.

By the implicit function theorem, for close toc, there is a2 function(s) such that
u(t(s)) = v(s). (11)

Fors close toc, set
g(s) =s —1(s),
sog > 0. Differentiating [(T1L) we find

ANt =v'(s), iit?+at" =",
In terms ofg the last equation becomes, By (7),
0> ii(t(s)) —v"(s) = ug" — g'(¢' — 2ii. (12)

Now if u(s) = v(s) for somes > 0 theng vanishes there. The strong maximum
principle applied to[(112) implies that= u in a neighborhood aof. By the same argument,
u = v in a larger neighborhood, ar{d {10) then follows. Lenimé& 2.1 is established

Lemma 2.2. Letu andw be positiveC,lo’C1

and satisfying, for somg¢ e L7.(0, 00),

i=fQ@), w=fw) in@Q-c)),

functions on(0, ¢), belonging toC([0, ¢)),

and
w0 =w0 =0, u0) =w0), wu>0 on(,ec).
Then
u=w on(,c).

Remark 2.4. We do not assum#& > 0. On the other hand, if we replage> 0 by > 0
in the hypotheses, the conclusion may fail. See Example 2.1.

Here is another simple uniqueness result; it could be taught in a beginning course on
ordinary differential equations.
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Lemma 2.3. Letu and w be positiveclt’cl functions in(0, ¢), belonging toC1([0, ¢)),
and both satisfying

i = f(u), (13)
and
u(0) =w(0) =0, (0 = w(0).

Assume thaf (o) is locally Lipschitz foro > 0 (not necessarily fop > 0). Then

u

w.

Note that we assume neithier> 0 norw > 0.

Proof of Lemm@ 2]3The proof is by obtaining an “explicit” expression fofr). Multiply
(13) by 2i(r) and integrate from somg > 0 to some > rg. We find

i(t)? — i(10)® = F(u(r)) — F(u(to)).

Here F (o) is such that
dF

— =2f(0) forp>0.
do
Lettingro — O we see thaF (o) has a limit agp — 0, which we may take to b&(0)2.
Thus, lettingrg — 0 we find
(1) = F(u(t)). (14)
Claim. On(0,¢/2),u > 0.

For if not, ifiz(r1) = 0 for some O< 11 < ¢/2, then the local Lipschitz property gf for
o > 0 would imply that the functiom is symmetric about;. But then it would have to
vanish at 22—whereu is positive.

Consequently, fronj (14), we find that(o) > 0 for 0 < ¢ < u(c/4), and

u(t) =/ Fu(t))

or .
u
=1 (15)
VF(u)
If, on o > 0, G(p) is such that
1
G, = :
Vv F(o)
we find from [1%) that
d
—Gu) =1
dt (@)

Integrating fronmyg > O tor > 7o we obtain
Gu(1)) — Gu(w)) =1 —to.

Letting againrg — O we see thaG has a limit ato = 0, which we may take to be zero.
Thus
G(u)) =t.
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Sou(t) is uniquely determined o0, ¢/2), sinceG, > 0 for o > 0. Then, by the local
Lipschitz property off (¢) ong > 0, it follows thatu is unique on(0, ¢). Lemmg 2.B is
proved. O

Proof of Lemmé 2]2 Follow the proof of Lemm@ 23 until (14). Similarly we also have
Ww(t)? = F(w(t)) on(0,c). (16)

Let 0 < b < ¢ be any number satisfying

maxw < supu = lim u(z). a7
[0,5] [0,¢) t—c~
We will prove that
u=w on]l0,b5]. (18)

By (I4), (16) and the fact thait > 0 on (0, ¢), we know that
w(? = F(w() >0, Y0<t<b.

Sincew(0) = 0 andw > 0 on (0, b), we have, in view of the abovey > 0 on (0, b).
Proceeding as in the proof of Lemina]2.3, we arrive at

Gu@®)=Gw)=t, O<t<hb.

But G, > 0 andG(0) = 0, and we obtair| (18) as before.
Arguing in the same way we see that= w on an intervak0, »’), b’ > b, and then
on (0, ¢). O

The following lemma can be viewed as a variation of the maximum principle.

Lemma 2.4. Letu, v € C2((0, b)) N C([0, b]) satisfy

v(0) =u(0), wv<ul) on(,b),
either # >00n(0,b), or v > 0wheneveiu(0) <v < u(b), (19)

and (7). Then
u>v onlo,bn].

Remark 2.5. If we change[(I0) tai > 0 andv > 0, the conclusion of Lemnja 2.4 may
fail. See the example below.

Example 2.2. Letu € C*(][0, 4]) satisfy

1, 0<t=<2
J1v@-23 2<1<7/3 ) .
u(t) = > 8/3<1<3, u>0 1in(7/3,8/3),

24+ (—-3° 3<t<4,
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A

1 2 3 4 5
Fig. 6

and letw € C*([1, 5]), with w’ nonnegative, satisfy(1) = 0,

_Ju@®, 2=<t<3,
w(t)—{z, 3<t<b
Then let
v)=wiE+1), O0<r<4
See Fig. 6.

Proof of Lemm@ 2]4 Shift v far to the right and then slide it to the left until its graph first
touches that of. If the touching occurs at, u(c)) for some 0< ¢ < b, thenu’(c) > 0,
and therefore, by Lemnija 2.4,and the shift ofv must coincide near. Again by that
lemma, the set of points where= v is open. Since it is also closed, we conclude that
the shift ofv is v itself andu = v. Otherwise, we can slide the shift ofall the way to
the origin and we conclude > v on (0, b). O

Proof of Theorerfi 2]1(a) We first assume that > 0 on (0, b). Because of Lemnfa 2.1,
we may suppose that
u@) >v@) fort >0,

and we will derive a contradiction.

Our proof makes use of the fact thasatisfies some differential equation. Namely,
sinceu(r) > 0 forz > 0, we see that fox > 0, ¢ is aC? function ofu. It follows that we
may write

i = f(u), (20)

with f some unknown function which is however continuous ion [0, u(b)]. The main
hypothesis[([7) is then equivalent to the following for

V'(s) = f(v(s)). (21)

Thusv is a subsolution of (30) while > v is a solution.
Consequently, there is a solutionof (20) lying between: andwv, with

w(@) =0, w()=v() forsome fixed in (0, ).
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If ii is locally Lipschitz on(0, b), then f is locally Lipschitz continuous 0, u(b)] and
we can see this by first, for small positivefinding a solutiornw. betweeru andv on
[€, c] with

w(e) =v(e), w(c)=v(c).

Because of the locally Lipschitz property 6f the usual argument by monotone iterations
yieldsw,. Lettinge — 0 one easily obtains a solutian satisfying [20) with

v(r) < w(r) < u(r).

J. Mawhin pointed out to us that the approximatiomyyis not necessary. That there is
a solution between andv, even for merely continuoug, is known (see [4]).

We now have two positive solutions ¢f (20) (@, ¢), » andw, with «(0) = i(0) =
w(0) = w(0) = 0. By Lemmg 2.2y = w on (0, ¢), violatingu(c) > v(c). Impossible.

(b) We now assume that> 0 on (0, ). Let 0 < a < b be any number satisfying

maxu < supv = lim v(z). (22)
[0,a] [0,b) t—b~
We will prove that
u=v onj0a]. (23)

It is easy to see that this would imply= v on [0, b].
Sincev > 0 on(0, b) it follows, in view of (22), that for every € (0, a) there is aC?
functions(¢) such that
u)=v(s@), O0<t<a. (24)

Set
g)y=s@)—t, O0<t<a,

sog > 0. Differentiating [(2#) we find, still using the notatier= d/dt,” = d/ds,
w(t) = v (s()5@), i =052+ V5.
In terms ofg the last equation becomes, by (7),
0= ii(r) —v"(s(1)) = Vg + &(¢ + 20",

If u(t) = v(r) for some O< ¢ < a, theng vanishes there and, as befoge= 0 on (0, a),
which in turn implies[(Z2B).
Thus we may assume that
u>v on(0a)),

and we will derive a contradiction.
Sincev’ > 0 on(0, b), we may, as before, write

v/ = f(v) on(0,b) (25)

where f is some unknown continuous function on fiin,_, ,- v(s)). By our main hy-
pothesis[(]7), in view of (32),

i< f(u) on(,a).
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As before there exists a solutianof (25) lying between: andw, with
w0 =0, w(a)=v().
By Lemmd 2.2u = w on [0, a], violating u(a) > v(a). Theorenj 2] is established.o

3. Proof of Theorem[1.4

We first give the main lemma for the proof of Theorem 1.4.
Lemma 3.1. Let, for some > 0, u, v € C2((0, b)) N C1([0, b]) satisfy
u®) >v(@) >0 forO<rt <b,
either u(t) >0, v(r) >0forO<r<b, or u(t)>0,00)>0for0O<t<bh,

and
u(0) =u(0) =0.
Assume
i(t) _ v (s)

(1—{—&2)3/2 - (1+U/2)3/2'
(26)

whenever u(t) =v(s) forO<r <s <b we have

Then
u=v onfo,b]. (27)

Proof. We will only prove it under the assumptioti(r) > 0,v(t) > 0for0 <t < b".

The changes needed when assuming instéad ‘> 0,v(t) > Ofor0 < ¢ < b" are
similar to those in the proof of Theorgm P.1. We start as in the proof of Thejorgm 2.1:
u satisfies an equation of the form

i

EN D f ) (28)

with some unknown functiorf which is however continuous a@, u(b)].
Our condition [[2p) means that

v

m > f(v). (29)

Multiplying by 1, we find that

_i<;) L rw
a\a+i2) T "

whereF is such thatF, = f(u). Integrating this fronig to ¢, 7o > 0, we find

1 1/2 1 1/2
((1+a(ro>2>1/2> - (W) = Fu(®) = Fu(to)-
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Lettingrg — O we see thaF («) has a limit atx = 0, which we may take to be zero. Thus

1 1/2
(m) =1=-Fw

1 1/2
e .

Next, multiplying [30) by > 0 we obtain

so that

d 1 \V2 4
i\ EZF(U) forO<1 <t.

SinceF (0) = 0, we find, on integrating,

1 \12
1‘(?:?) > Fu(0)).

. 1 12
vz[a—Fwamz_q ' (3
But (3Q) and[(3[L) imply that

whenever u(t) = v(s) fort <s, then #(t) <v'(s). (32)

Thus, since) > 0,

Sinces > 0 for > 0, by the implicit function theorem, there isc functions < s
such that

u(t(s)) = v(s).
Thusifg = s — ¢t > 0, we have by differentiating,

i1 —g"h =v'(.

From [32) it follows that
ng' =u—v <0,

i.e.g’ <0.Sinceg(0) = 0andg > 0, it follows thatg = 0—which implies[(2}). ©

Proof of Theorerp T]4Condition S implies that there are just two lines parallel toithe
axis which are tangent . We apply the moving plane method as described in Section 1
except thatve defineirg to be the first value of, as we decrease it, such that for any

A < Ao, 8§ does not lie inU. We then obtain Cases (i) and (ii) as in Section 1.

If Case (i) happens, then it can be treated as described there, but with some difference:
flat vertical segments may occur, though we still obtain symmetry. See Fig. 7.

Now we look at Case (ii). There is a common tangency poirﬂggfandM such that
if we rotate the figure it looks as in Fig. 8 or Fig. 9, with coordinatasdy, and, due to
Condition S, the curves lie above thaxis.
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Again, we are allowing¥ to have some flat segment. Take as origin the pBirts
shown. Let [Q«] be the largest interval for the flat segment.SQg and let [Q b] be the
largest interval for the flat segment &f as shown. By Condition $;  does not intersect
ther-axis aftera and M does not intersect theaxis afterb. If a = b, then we represent,
fort > a but close taz, Sgo by y = u(¢) andM by y = v(¢r). By Condition S, we know
thati, v > Ofors > a andr close toa. Lemmd 3.1 yields = v nearr = a. The situation
is now reduced to Case (i) and the symmetrybfollows.

If a < b, then Case (i) cannot occur. Thus, by the definition@fboth S} andM
must have a horizontal tangent line @t Let, as shown in Fig. 9,0, R] be the largest
flat segment on the top part 610 and [Q, S] be the largest flat segment on the top part
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of M. Then applying Lemm@a 3.1 as above, we see thahdS must be different. Recall
that Case (i) does not happen. It is then clear that fok albse toio, S; still lies in U,
contradicting the definition ofg. Theorenj 14 is established. o

The remaining sections take up some further one-dimensional model problems.

4. More results

Lemma4.1. Letu € C%((a, b)) N C1([a, b]) satisfy
i(a) =0 (33)
and
>0 on(a,b). (34)
Letv € C%((«r, B)) N CL([e, B]) satisfy
v(a) <u®), v(B)=u(@), and v(B) <v(s) <v(@), Ya<s<pB, (35)

and
V() = 0. (36)
See for example Fid.0.

Fig. 10

Suppose that
whenever u(t) = v(s) forsomex <s < B we have ii(t) <v’(s).

Thenv is a reflection ofs: v(z) = u(c — t) wherec = b+ a = a + B. In particular,
v(a) = u(b).

Lemmd4.1 is equivalent to
Lemma[4.1. Inthe hypotheses of Lemidl if we changg33) and (34) to
u) =0
and
<0 on(a,b),
and chang&35) to
v(a) <u(a), v(B)=ud), vB) <vi) <v(@), VYoa<s<}p,
thenv is a translate of:.

Proof of the equivalence of Lemina}4.1 and Lehmp 4.8t U (t) = u(—t) andV () =
v(t). ]
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Proof of Lemma 4]1 Reflectv aboute, i.e. set
w() =vQRx—1t), 20— <t<a.

Shift w far to the right and then slide it to the left until the graph first touches that of

If the touching occurs atc, u(c)) for somea < ¢ < b, then, by Lemma 2]1, the shift

of w coincides withu nearc, which in turn implies that they coincide everywhere and

v is a reflection ofu as desired. Sincé(8) = v(a) = 0 whileit > 0 on (a, b), there

are only two possibilities: The above situation does not occur but the touching occurs at
(a, Q) or at (b, u(b)). If the touching occurs at, 0), then we must havé(s) = 0 since

i(a) = 0. By Theorenj 2]1 and Lemnja P.1, the two graphs must be identical near the
origin. Impossible. If the touching occurs @, u (b)), then we must havé(b) = 0 since

we know thato () = 0. Letw denote the shift. We know that for sorae- 0,

w) =v(a) =ub), w<ulb) on(-—e,b).

Turning the picture upside down, and applying Thedrer 2.1, we again get a contradiction.
More precisely, let

Uity =wt)—wb—1t), V@) =ub)—ub-1t), 0<t<e.

Applying Theoreni 2]1 td&/ andV leads toU = V near the origin, i.eu = w nearb.
Impossible. Lemmp 4]1 is established. O

Lemmg 4.1 is also equivalent to
Lemmal[4.1. Letu e C2((a, b)) N C([a, b)) satisfy
) =0, wu(a)>u@®) >ub) fora<t<b,
and letv € C2((a, b)) N CY([a, B]) satisfy
v(p)=0, ©v>0,

and
v(@) =u(b), v(B)=ua).
Finally, assume that

whenever u(t) = v(s) we have ii(t) < v"(s).
Thenv is a reflection of: andv(a) = u(b).

Proof of the equivalence of Lemfnal4.1 and Lefnma 4LEt V (1) = —u(—t) andU (1) =
—v(—t). ]

Theorem 4.1. Letu € C2((0, b)) N C1([0, b]) be positive or0, b) and satisfy
u(0) = u(0) = u() =0. 37)
Leta be the first point where achieves its maximum and assume that

>0 on(0,a). (38)
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Assume furthermore (main condition) that
whenever u(z) = u(s) fort <s we have ii(t) < u”(s). (39)
Thenu is symmetric about/2 and
u=u(a) onla,b—al. (40)
Note that we do not assume thgb) = 0.

Remark 4.1. The conditioniz(0) = 0 cannot be dropped. Indeed, we could consider a
positive symmetric function on some inter@l ») satisfying [37) except thait(0) > 0.
Then, neab we could change slightly by increasing its second derivative there, in such
a way that the new function, when extended, would still vanish at some jpeink. The
resulting function o0, ) would satisfy) but would not be symmetric.

Here is an example showing that if conditi¢n(38) is weakened to 0 on (0, a),
thenu need not be symmetric. Hereon (4, 5) is the reflection of: on (0, 1).

Fig. 11

Proof of Theorem 4]1Let b1 be the last value of whereu assumes its maximum. By
Lemmd4.1lps = b —a and

u@®)=ub—r1r) for0<rt<a.
Now we prove that: is constant ond, b1]. If not, we can find §, 8] C [a, b1] such that

u(a) > u(a) > u@) > u(B) = [m}in]u >0 fora<rt<§.
a,by

Sinceu(t) = u(b — t) on (0, a), it follows from the main conditionthatif <a < s
andu(t) = u(s) thenii(r) = u”(s). Thus fors in (o, B) we can find a unique(s) in
(0, a) such that

u(t(s)) = u(s).
Hence
w(t ()t = u'(s)
and
(i (t(s))% — ' (5)?) = 2/ (s)(i(t (5)) — u”(5)) = 0.
Henceii(t(s))? = u'(s)%. This is impossible, sinca’(8) = 0, while i(r(8)) > O.
Theorenj 4.1 is proved. o
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5. General second order operators

In this section we extend various results to nonlinear second order ordinary differential
equations. We consider

K e COR®), K(s,p,q)isCYin(p,q), K,Gs,p.q) >0, ¥(s, p,q) €R3, (41)

and we study the nonlinear second order differential oper&tor, i, ii). It is elliptic
because of (41).
The first result is an extension of Lemmal2.1.

Lemma5.1. LetK satisfy), and letu > v be twoC? functions on(0, b) satisfying
max{ui, v} >0 on(0,b), (42)
and
if u(t) =v(s)for0 <t <s < bthenkK (), u(t), i) < K(s), v'(s), v"(s)). (43)

Then either
u>v on(,b)),

or
u=v on(0,b). (44)

Proof. Suppose:(c) = v(c) for some O< ¢ < b. Then, by[(4R)i(c) = ¥(c) > 0. By
the implicit function theorem, far close toc, there is aC? functionz (s) such that

u(t(s)) = v(s). (45)

Set, fors close toc,
gls) =5 —1(s),

sog > 0. Differentiating [(45) we find
At =v'(s), iit?+at" =",
Thus, for some functions, (s) andcz(s), we have
w(t(s)) —v'(s) = c1($)g'(s), ii(r(s)) —v"(s) = ug” + ca(s)g’.
Using [4]) and the above, we obtain, via the mean value theorem,
0> K(u,u,ii) — K@, v',v") = a(s)ug” + c(s)g’  witha(s) > 0. (46)

Now if u(s) = v(s) for somes > 0 theng vanishes there. The strong maximum
principle applied to[(1]2) implies that = u« in a neighborhood of, and [4#) follows
immediately. Lemmp5]1 is established. o

The second result is an extension of Lemima 2.4.
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Lemma 5.2. Let K satisfy(41)), and letu, v € C2((0, b)) N CO([0, b]) satisfy
v(0) <u(0), v(b) <ud), v<ub)ona,b),

either >0 on (0,b)orv > 0wheneveu(0) < v < u(b),

and(@3). Then
u>v onl0,b].

Proof. The proof is essentially the same as that of Lefima 2.4. The only difference is that
we use LemmB35l1 instead of Lemmal2.1. O

The third result is an extension of Lemmal2.3.

Lemma5.3. Letu and w be positiveC’1 functions in(0, ¢), belonging toC([0, ¢)),
and both satisfying

d o
EK(“) = f(u), (47)
and
u(0) =w0) =0, u0) =w().
Here

KeC®R), K' >0 inR. (48)

Assume in addition thak”’ is even, and assume thgtp) is locally Lipschitz foro > 0
(not necessarily fop > 0). Then
u=w.

Proof. The proof is similar to that of Lemnja 2.3. Multiplying (47) bywe find that

d d
ZGG)=—F 4
dtG(u) 7 () (49)
where »
G(p) =/ 0K'(0)do and FissuchthatF, = f(u). (50)
0
Integrating this fromrg to ¢, 1o > 0, we find
G(u(t)) — G(u(to)) = F(u(t)) — F(u(t0)). (51)
Lettingzg — O we see thaF («) has a limit at = 0, which we may take to be zero. Thus
G@) = F(u). (52)
As in the proof of Lemmf 2|3, we havie> 0 on (0, ¢/2). SinceK’ > 0, we see that
G(p)>0, G'(p)>0 forp>0. (53)

Thus
Fu@®)) >0 forO<t<c/2.
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It follows that .
u
G-YFu()
If, on o > 0, H(p) is such that

1 on(0,c/2).

1
Hy= ———,
¢ G XF(0)
we find that 4
—H@u)=1.
7 ()
Integrating fromyg > O tot > #p we obtain
H(u(r)) — H(u(1)) =1 — fo.

Letting againfg — 0 we see thaH has a limit atp = 0, which we may take to be zero.
Thus
Hu@)) =t.

Sou(z) is uniquely determined o0, ¢/2), sinceH, > 0 for o > 0. Then, by the local
Lipschitz property off (¢) ong > 0, it follows thatu is unique on(0, ¢). Lemmg5.B is
proved. O

The fourth result is an extension of Lemmal2.2. Here we do not assum& tiseven.
Lemma 5.4. Let K satisfy(48), and letu and w be positiveC-! functions on(0, ¢),
belonging toC([0, ¢)), and satisfying, for somg¢ € L>(0, o0),

%K(ﬂ) = fw), %K(w) = fw) on(0 o),

and
u(@0 =w@) =0, u#0) =w0), u>00n(,c).
Then
u=w on(0,c).

Proof. Follow the proof of Lemm@ 5|3 unti ($2). In a similar way we also have
Gw()) = F(w()) on(0,o0). (54)

Let 0 < b < ¢ be any number satisfyinf (L7). We only need to prove (18).
By (52), (54) and the fact thait > 0 on (0, ¢), we know that

Gw()=Fw@®) >0 V0<t<b.

Sincew(0) = 0 andw > 0 on (0, b), we havew > 0 on (0, b). Proceeding as in the
proof of Lemmd 5.3, we arrive at

Hu(t))=Hw@®)=t, 0O0<t<b.
But H,(0) > 0 foro > 0 andH (0) = 0, so we obtair| (18). Lemnja$.4 is proved. O
The fifth result is an extension of Leminal3.1.
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Lemma 5.5. Let K satisfy(4d), and let, for somé > 0, u, v € C2((0, b)) N C([0, b])
satisfy
u(t) >v()>0 forO<r <b,
either u(t) >0, v(r) >0forO<r<b, or u(t)>0,0)>0for0O<t<bh,
and
u(0) = u(0) =0.

Assume

d d
whenever u(t) = v(s) forO<t <s <b we have ZK(IM)) < —K(0()).

(55)
Then
u=v on[0,b]. (56)

Proof. The proof is similar to that of Lemnja 3.1. We will only prove it under the assump-
tion“u(t) > 0,v(¢) > 0for0 < ¢ < b”, since the changes needed when assuming instead
“i(r) > 0,0(r) > 0for 0 < r < b” are similar to those in the proof of Theorém ]2.1.
We start as in the proof of Theordm R:d satisfies[(4]7) for some unknown continuous
function f on [0, u(b)].
Condition [55) means
K'(0()))v = f(v). (57)

Multiply (B7) by i; we find [49) withG given by [50).[(5R) still holds, so dods {53).
Multiplying by v > 0 we obtain

iG(z}) > iF(v) forO <1 < t.
dt dt
Since [53) still holds, and singe> 0, we have
GOW@) >0 forO<r<b.
Thus, also in view of our choice of settifg0) = 0, we find by integrating
G(@) > F(v). (58)

Because of the second inequality [n(58),](52) dnd (58) inply (32), and the rest of the
proof follows exactly as the arguments affer](32) in the proof of Lefnnja 3.1. L§mfna 5.5
is established. ]

The sixth result is closely related to Lemfnal4.1.

Lemma 5.6. LetK satisfy(4d), and letu e C?((a, b)) N C([a, b)) satisfy(33) and (34).
Letv € C2((a, B)) N CX([a, B]) satisfy(39), (36) and

v<0 on(a,p). (59)
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Suppose that
d . d .
whenever u(t) = v(s) forsomex <s < 8 we have EK(MO)) < d—K(v(s))).
S
Thenv is a reflection ofu: v(t) = u(c — t) wherec = b + @ = a + B. In particular,
v(a) = u(b).

Remark 5.1. There are analogues of Lemnjas|[4A.1’, which we call Lemmap 56
[5.6’, and which follow from Lemmp 5|6 as do the former from Lenima 4.1.

Proof of Lemma 5]6 Follow the proof of Lemm@ 4]1 and make the following changes:
Change “by Lemmp 2]1” to “by Lemnja .1"; change “ by Theofen 2.1 and Lemma 2.1”
to “by Lemmg5.5"; change “applying Theorém2.1” to “applying Lenjma 5.5”. 0O
Question 5.1. Do the conclusions of Lemn&s3 5.4 [5.5and5.§still hold if we replace

LK (1) < LK (0(s)) in G by K (), (1), ii(1)) < K (v(s), v'(s), v"(s)) for some

K satisfying(41)), or even for thos& (s, p, ¢) which are independent of?

6. Counter-examples

We will give an example showing that the answer to Quegtioh 1.2 is no.

1 2 3 4

Fig. 12

First, in Fig. 12 we present a functianon (0, 4). Here,u on (3, 4) is the reflection of
its values on(0, 1). u will satisfy the curvature condition:

i) - u’(s)
L+ u()?32 = A +u'(s)?)3/?
u will be taken to be symmetric ofl, 2) about 32, and symmetric o112, 3) about
5/2. We will then require[(60) only for X r < 3/2 and 2< s < 5/2.
For convenience, after subtracting a constant, and shifting, we may describe the two
bumps by two functions andv (we still call the firstz) on (0, 1) given by

u=e%31-03 v=€431-1)°3 (61)

for anyt < s such that«(¢) = u(s). (60)

with ¢ very small.
Claim. Whenevern(r) = v(s) fort < 1/2, then

ii(t) - v (s)
A+ a(1)?)¥2 = 1+ 0/'(9)2)%2
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Proof. u(t) = v(s) means
et(l—1t)=s(1—ys). (62)

We only have to check thatandv in (61) satisfy
i (1) - v (s)

if u(@)=v(s)for0<t,s <1/2 then AT 00D = Ar o622 (63)
Indeed, from[(6R) we see that fersmall,

s = e(t —1%) + 0(2(1 — 1%)?). (64)

Now
i =e%3(1 - 20t — 173, (65)
i =6e9[—(r — 19?2+ 1 —20)%(t — 19)] = 6%t —1?)(1 — 5t + 5¢%).  (66)

Thus

(1+MW < Cebr —12).

At the same time
v 3 2 4 2
WZE[GS—FO(S)]ZSG (t =19,
by (64). It follows that[(6B) holds fos small. O

Finally, we obtain an example of a closed nonconvex ctveatisfyingH (A) < H(B)
if A, BlieonM andA; < B1, but with H(A) not equal toH (B).
Namely take the curve above and round it off on the bottom in a symmetric way.

X1

Fig. 13

7. Open problems in higher dimensions

The problems are related to Theorfer 2.1 and to Lemimés 2[2 gnd 2.3. For convenience, we
will denote the independent variables @iy y), r nonnegativey in R”~1. The functions
we consider are defined in the closure of the half-ball

BT :={(t,y) | 2+ |y|> < R%, t > O}.
The first question is related to Theorgm|2.1.
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Problem 7.1. Suppose: > v > O andu; := du/dt > 0in B+, andu andv are C? in
the closure ofB*. Suppose

u=v=u;=v, =0 on{@0,y)]l|yl <R} (67)
Assume the main condition:
whenever u(t,y) =v(s, y)fort <s, then Au(,y) < Av(t, y).
Question: lsu = v?

Problem 7.2. Letu andv be C* in the closure ofB™ and positive inB™, and satisfy
Au = f(y,u), Av = f(y,v) and(67). Assume thaf is continuous int > 0, smooth in
y there, and smooth ify, ) whereu > 0. Question: sy = v?

In Part Il we prove the answer is yes, but under the additional assumptions dhaitv
vanish of finite order in at the origin and that > v.

Problem 7.3. Is the answer to Problefi.2yes if we add the hypothesis that> 0when
t>0?
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