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Abstract. Given a metric spac& we consider a general class of functionals which measure the
cost of a path inX joining two given pointstg and xq, providing abstract existence results for
optimal paths. The results are then applied to the case Whea Wasserstein space of probabilities

on a given sef2 and the cost of a path depends on the value of classical functionals over measures.
Conditions for linking arbitrary extremal measureg and 11 by means of finite cost paths are
given.
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1. Introduction

Finding the best way to carry a given source to a given target is a problem that received a
lot of attention in recent years. The literature on Monge—Kantorovich mass transportation
problems and on Wasserstein distances is very rich, as well as on several related appli-
cations which include the shape optimization of elastic bodies (see for instance [7]), the
design of public transportation networks (see for instanice([9], [10],[and [12]), the optimal
location of production centres (see [8] for the asymptotics of the problem) and the study
of irrigation trees (see for instance [3] and[[14]).

The problem of transporting a source mass distribution to a target mass distribution by
keeping together as much mass as possible during the transport, from which tree-shaped
configurations arise, has been extensively studied, for instancé in [3], [14]._.and [18]. In
our new approach to this problem probability measures valued curves are considered,
while the condition of keeping masses together is achieved by considering only measures
supported in discrete sets.

Given a source or initial probability measuyrg and a target or final probability mea-
surey; we look for a pathy in a Wasserstein spad#), (2) that connectgig to 11 and
minimizes a suitable cost functiondl(y). In the present paper we consider functionals
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of the form .
jm=A1mmme (1.1)

where|y’| is the metric derivative of in the Wasserstein spat®,(2) andJ is a lower
semicontinuous functional defined on measures. Harey be easily seen as the coeffi-
cient of a degenerate “Riemannian metric” on the spag€Q).

We restrict our analysis to the case.bbeing a local functional over measures, an
important class of functionals extensively studied by Bouehatid Buttazzo in [4]-][6].
These functionals are the key tool in our approach, and among them we can find both
functionals which are finite only on concentrated measures (for an application of them
seel[11] and[16]) and functionals which are finite only on spread measures. In fact, a par-
ticular point of interest in our approach is the fact that also different kinds of “Riemannian
distances” are allowed (for instance those which prefer spread measures) by a change of
the functional/.

In particular, we consider here the two extreme cases, in which the functiageahe
of the following:

Y =) ady

G, (1) = { keN keN O=<r<l,
+o00 otherwise

whose domain is the space of purely atomic measures, or

/ ulldx fu=u-LN
+00 otherwise

whose domain is the spadg (22). We denote respectively iy, the functional in[(T]1)
with J replaced byG, and byF, the same functional witti replaced byF, .

The first case is the one in which we get a “Riemannian distance” on probabilities
which makes paths passing through concentrated measures cheaper. The second case, on
the contrary, allows only paths which lie @9 (€2).

In both cases we analyze the question of the existence of optimal patlgving a
finite value to the functional. When the domanc R”Y is compact we find for the first
case:

o if 1o anduy are atomic measures, then an optimal gath providing a finite value to
G, always exists;

e if r > 1—1/N, then the same is true for any pair of measures;

e if r < 1— 1/N, then there are measurgg and i1 such that every path connecting
them has an infinite cost.

Similarly, for the second case we have:

o if pg andpuy are inL9(K2), then an optimal pathyp: providing a finite value tar,
always exists;
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e if ¢ <1+ 1/N, then the same is true for any pair of measures;
e if ¢ > 14+ 1/N, then there are measurgs and 1 such that every path connecting
them has an infinite cost.

In Sectior 4 we also discuss the case of unbounded domains stck-a8" .

The analysis of existence results as well as the definition of the cost functionals is
made in Sectiof]2 in an abstract metric spaces framework, which can be used for future
generalizations and developments.

In relation to the other papers mentioned at the beginning of this introduction it is
not difficult to see that the model we propose is different and in general provides dif-
ferent solutions. However, among the different features our model supplies we may cite
its mathematical simplicity and the possibility of performing standard numerical com-
putations. From the mathematical point of view, our model reminds the construction of
Riemannian metrics, as we already pointed out, and in connection to this we obtain fairly
easy existence results for optimal paths. As far as numerics is concerned, we stress the
fact that, when discretizing the metric derivative, the cost functional becomes a weighted
sum of Wasserstein distances among couples of atomic probability measures which can
be evaluated by well known algorithms such as the simplex method.

Anyway, we think that a comparison with the results presented by Xja in [18] and by
Maddalena, Morel and Solimini im_[14] will be important for future investigations. For
instance, for the model proposed in[14] conditions for linking two prescribed measures
by a finite cost configuration have been studied.in [13] (while here and in [18] only con-
ditions for linking arbitrary measures are provided): we do not know if similar conditions
can be achieved in our case.

2. The metric framework

In this section a generic metric spakewith distanced is considered. Under the assump-
tion that closed bounded subsetsXfare compact, we will prove an existence result
(Theorenj 2.]1) for variational problems with functionals of the type

1
Jy) = /o Jy )ly'|(t) dt

wherey : [0,1] — X ranges among all Lipschitz curves such th&@0) = xgo and
v (1) = x1. We will refer to the value off aty as theenergyof y. By |y’|(r) we denote
themetric derivativeof y at the point € (0, 1), i.e.

/1) = tim L0
s>t s — 1

As a consequence of the Rademacher Theorem it can be seehl (see [2]) that for any Lip-
schitz curve the metric derivative exists at almost every point (with respect to Lebesgue
measure). Another useful result is that the variationy afan be written in terms of the
metric derivative in integral form:

1
Var(y) = fo 1) dt.
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By this formula it follows easily thaty’| < M if and only if y is M-Lipschitz, since
whens < ¢,

t
d(y (), y(s)) < Var(y, [s, 1]) =/ lY'I(x)dT < M|t — sl

the converse implication being immediate.

Theorem 2.1. Let X be a metric space such that any closed bounded subsktisf
compact,J : X — [0, +oo] be a lower semicontinuous function angl x1 arbitrary
points inX. Then the functional

1
T@) = /0 T only' 1) di

achieves a minimum value among all Lipschitz cunveq0, 1] — X such thaty (0) =
xo andy (1) = x1, provided the following two assumptions are satisfied:

(H1) there exists a curveg such that7 (yp) < +o0;

o]
(H2) / inf Jdr = +o0.
0 Br(xo)
The proof of Theorerp 21 relies on the following reparametrization lemma whose proof
can be found for example ihl[2].

Lemma 2.2. Lety € Lip([0, 1], X) and letL = Var(y) be its total variation. Then there
exists a Lipschitz curvg € Lip([0, L], X) such thaiy’| = 1 almost everywhere ifd, L]
andy is a parametrization of.

Proof of Theoren 2]1Let {y,},en be a minimizing sequence and det = Var(y,).
Then the sequende (y.)},en is bounded by a finite numbaf. By Lemmd 2. there ex-
ists a sequence of curvgs : [0, L,] — X parametrized with unit velocity, reparametriz-
ing the given curves. We have

B, (x0)

Ly Ly
MZJ(yn)=/ J(fn(t))dtz'/ (inf J)dr.
0 0

Then{L,},cn is bounded, since otherwise, by assumption (H2), the right hand side would
be unbounded. We can reparametrize each cusveith constant speed,,, thus ob-
taining a new sequendg, },<n in Lip([0, 1], X), which is still a minimizing sequence,
thanks to the equality’ (y,) = J (). Since{L,},cn is bounded, this new minimizing
sequence is uniformly bounded and uniformly Lipschitz. By the Ascoli—ArZéieo-

rem we can suppose that, up to a subsequehce; y uniformly for someL-Lipschitz
curvey where we have takeh = liminf, L,. By recalling the link between Lipschitz
conditions and metric derivative we have

l7/I(t) < L fora.e.r e]0,1].
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Now by using the lower semicontinuity of the functionglwe obtain
1 1
J@) =/ J@ )Y dr < L[ lim iorlfJ()?n(t))dt
0 0 n—

1
<liminf Ln/ J (P (@) dt = liminf T (y,),
n—oo 0 n—00

that is, the lower semicontinuity gf on the sequence considered, which completes the
proof. O

Remark 2.3. Notice that the integral assumption (H2) is always trud it~ ¢ for a
suitable strictly positive constant. Moreover Theofen) 2.1 still holds if condition (H2) is
replaced by the weaker assumption that there exists a ggrsiech that

+o00
Joo < [t sar
0 B(xo,r)
We give a slightly refined version of Theorém]2.1, which will be useful in the last
section. The goal here is to weaken the compactness assumption on bounded subsets
of X.

Theorem 2.4. Let (X, d, d’) be a metric space endowed with two different distances such
that:

(K1) d' = d;

(K2) all d-bounded sets iX are relatively compact with respect #;

(K3) the mapping/ : X x X — RT is a lower semicontinuous function with respect to
the distancel’ x d’.

LetJ : X — [0, +oc] be lower semicontinuous with respectdo Consider the func-
tional defined on the set @fLipschitz curvey : [0, 1] - X by

1
T@) = /0 T Oy a0 dt,

where|y’|;(¢) stands for the metric derivative of with respect tad. Then, under the
hypothesegH1) and (H2) of Theorenf2.] (where B, (xo) are in the sense of), there
exists a minimum foy7.

Proof. We can take a minimizing sequenjgg }, and, as in Theorefn 2.1, reparametrize it

to obtain a sequende, }, in which every curve has constant spded Hypothesis (H2)

gives us the boundednessof. Hence the sequendg, }, consists of/-equicontinuous
functions from [Q 1] to ad-bounded subset of. If we endowX with the distancel’ we

have an equicontinuous (thanks to assumption (K1)) sequence of functions whose images
are contained in a compact set. Consequently, we can use the Ascola-Alzebrem

to choose a subsequence (not relabeled) suchythat y (d’-uniformly) for a suitable

curve y. The lower semicontinuity off with respect tod’ allows us to use the Fatou
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Lemma and shows that minimizes.7, provided we can show thatis d-Lipschitz with
a Lipschitz constant not exceeding limjjri,,. To do this we use assumption (K3). Given
two pointss, ¢t we have in fact

d(y (), y (@) = liminf d (P, (s), 7. (1)) < liminf Ly|s —1],

which shows the required Lipschitz property. O

3. The case of Wasserstein spaces

In this section we consider a compact metric spaaxuipped with a distance functien
and a positive finite non-atomic Borel measureWe consider the-Wasserstein metric
spacelV, (2). This is the space of Borel probability measuresn 2 with finite moment
of order p with respect to a pointg (recall that the finiteness of the-moment with
respect to a point implies its finiteness with respect to any other point):

f c(x,x0)P du < 400,
Q

equipped with thep-Wasserstein distance

1/p
wp(ul,uz)=inf</ c(x,y)”k(dx,dy)) ,
QxQ

where the infimum is taken over all transport planbetweenu; and up, that is, over
all probability measures on Q x Q whose marginalsc;{A andm, A coincide withyy
andup, respectively.

Notice that, since the distaneds bounded, the spad#’, (2) consists of all probabil-
ity measures. We consider function®n WV, (2) that can be represented in the following

form:
d du’
J(u>=/f<—”)dm+/ f°°< i )d|m|+/ £ (1)) o),
" \dm Q\A, djp’| A

i

where

e du/dm is the Radon—Nikodym derivative of with respect ton,

e f R — [0, +00] is convex, lower semicontinuous and proper (i.e. not identically
+00),

e uf is the singular part oft with respect ton according to the Radon—Nikodym de-
composition theorem;

e f°°is therecession function

T § C S )
ACEIIE

(the limit is independent of the choice @f in the domain off, i.e. the set of points
where f is finite),
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e A, is the set of atoms qi, i.e. the points such that(x) := u({x}) > 0,
e g: R — [0, +00] is a lower semicontinuous subadditive function such #i@ = 0,
e #is the counting measure.

Note that our functional can be written in a simpler form since in our das¥ d|u°| = 1
for |uf|-a.e.x, asu is a positive measure:

du s
J (1) 2/ fl—=—dm+ f=Dln I(Q\Au)+/ g(u(x)) d#(x).
" \dm A
By the results that can be found if [4] and [5], these functionals are lower semicontinuous
for the weaks* convergence of measures (and represent all local functionals with this
semicontinuity property) whenever
(st)
g0(s) = SupE== = £(s).

t>0

Theorem 3.1. Suppose thaf'(s) > Ofors > Oandg(l) > 0. ThenJ > ¢ > 0. In
particular, the functional7 defined on the set of Lipschitz curves [0, 1] — W, ()

with given starting and ending points achieves a minimum, provided that there exists a
curve with finite cost.

Proof. Let us fix some notation. By* we mean the absolutely continuous paruofith
respect to the measure and byu*, u”, ¢ respectively the singular part, the atomic part
and the singular diffused part pf. Then we haver = u? + u* = u¢ + u¢ + u*. Since

f is convex, by the Jensen inequality we have

du 1 fdp, )\ )
Af(E)dmzm(Q)f(m/QEdm>_m(Q)f<m(Q)). (3.2)

Sinceu is a positive measure angf© is 1-homogeneous,

ue($2)
m(Q)

d s
/ foo( Ms )d|ﬂs|=|MS|(Q\AM)f°°(1)=m(Q)f°°<
o\4, d|p’]

Sinceg is a subadditive function,

). (3.3)

/A rCN i) = Y gt = g( Y nw) =gwt@).  (34)

xXeAy, xXeAy,

The recession functiofi* satisfies

)= fx+y) — f(y) foralx,yeR,

and so the sum of the first two terms, i.e. those giverj by (3.2)[and (3.3), can be estimated
from below by

Q) + (R
m(Q)f<M( )+ uf( ))

m(Q)
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Therefore summing up (3.2)—(3.4) we obtain

e (€2) + puf(£2)

J(p) = m(Q)f< )

) + g (u*(Q)).

We seta = u#(Q); it follows that 1— a = () + u°(2). Since the functiom —
m(Q) f((1 — a)/m(RQ)) + g(a) is lower semicontinuous, it attains a minimum in the
interval [0, 1]. Thanks to our hypothesis this sum is always positive, and so we have

. 1—a
min m(2) f (—) +gla) =c >0,

O<a<1 m(2)
thatis,/J(u) > ¢ > 0. O

We now study some special cases of the functional we defined above. In the rest of this
sectionQ will be acompact convesubset oRY and the measure will be the Lebesgue
measureC” onit.

3.1. Firstcase;f = +o0, g(z) =z]" 0O<r <1

In this case we will denote the functionaby G, and the corresponding functiondlon
Lipschitz paths will be called,. This is the case wheg, is finite only on purely atomic
measures.

We are now going to consider the question whether there exists a curve connecting
two given measures keeping our functional finite. First we prove that if both the initial
and final measures are atomic the answer is positive. Then we prove thahfarsuit-
able subinterval of [01] every measure can be connected to a Dirac mass, hence every
measure can be connected to any other measure by a path of finite energy. Finally, we
show that this is not possible in general for every [0, 1].

Theorem 3.2. Let up and 1 be convex combinations of Dirac masses, i.e.,

m n
Ho = Zakfsxk, n1= szfsyl
k=1 =1

withax, by > 0, Y, ax = Y, by = 1. Then there exists a Lipschitz curye: [0, 1] —
Wy, (€2) such thaty (0) = uo, y(1) = n1 and

1
Gr(y) :/o Gr(y()ly'|(1) dt < +oo.

Proof. It is sufficient to prove the theorem when = 1, i.e. uo = §,,, Since in the
general case one connects the first meagyr® a Dirac mass supported at an arbitrary
point, and then one connects that Dirac mass to the final meagulieone can keep the
functional finite in both steps, then the result is proved in the general case.
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We now prove that the curve : [0, 1] — W, () given by

n
y(t) = Zbl(sxl+t(y1—x1)
=1

is wp-Lipschitz andg, (y) < +oo. Letry andr, be time instants such that < .. Then
the transport plan between; b;8x; 1+ (y—xi) aNdY_; bidx;+1,(y—xp) iINduced by the map
T (x1+4 t1(y1 — x1)) := x1 + t2(y; — x1) gives

Yyroo & 1p
wp(y (t2), ¥ (11)) < (fg lx — T(x)l”dy(tl)> = (szltz —ully —xll”)
=1

1 1/p
= |tz — lll(zbzlyz —X1|p) :

=1

Hence the metric derivative with the respect to the Wassergtéiistance is given by

- Yp
Y1) < (Zblb’l - MI”) = wp (10, H1)-
=1

On the other hand, we have

D k@l ifpt = =0,
G (1) = xX€A,

400 otherwise
Then
1 ifr =0,
Gy =13 ifs>o0.
=1
Hence

1 n n 1/
gr(y>=/o Gyl 10 de = Y ol (D bilye = xal”) " <400 O
=1 =1

Remark 3.3. By repeating the proof of Theorem B.2 one finds that the statement still
holds for infinite sums of Dirac masses (ne= n = +o00) providedG, (1o) andG, (i11)
are finite, thatisy ", a; < +ocand), b < +o0.

The proof of the next theorem is related to the one of Proposition 3.1 bf [18].

Theorem 3.4. Letl — 1/N < r < 1. Then, given two arbitraryg and pq in W, (),
there exists a curve joining them such that the functighask finite.
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Proof. It is sufficient to prove that every measure can be joined to a Dirac mass at an
arbitrary point. We first prove the statement for= [0, 1]V. Thedyadic subdivision of
orderk of Q = [0, 1]V is given by the family of closed -dimensional cubeSQ’;l}heIk,
wherel; = {1,2,3,..., 2", obtained by dividing each edge ¢f into 2 pieces of
equal length. We will refer to the elements{@’;l}helk ask-cubesTo every Borel regular
finite measure: we associate the following sequence of measures:

nr = Z bﬁSyh
hely

whereb;, = ,u(Q’;L) andyy, is the centre O'QI;L. It is straightforward to see thaty —* u
ask —» +o0.

Fig. 1. Approximation at ste@g = 3.

The idea is now simple (see Figurg 1): first jgia to ur1 with an arc length
parametrizatiory,, then put together all these curves to obtain a path from a Dirac mass
to the measurg. At every step a&-cube is divided into % parts which argk + 1)-cubes.
To bring the Dirac mass at the centre of fheube to the ¥ centres of thek + 1)-cubes
with the right weights at each centre one splits the centre of-thebe into 2’ parts mov-
ing towards the centres of the adjacént- 1)-cubes in such a way that each point moves
with unit speed. At each step (see Figure 1 where the first three steps are represented) we
obtain a curvey, defined on an interval of lengiii/2)*d /2 (d is the diagonal oD) such
that|y/|(r) = 1 for all .

Let us now compute the value of the functional at the cyrwamade by joining all

the curvesy, above. Since the functioff(x1,...,x,) = Y i3 x! with the constraint
Y !_1xi = 1reaches its maximum at the poidyn, ..., 1/n) we have
x (11 . /11 o f 1Y
60 =3 (G Sob ) < L (52 () )
= ely k=1

Since 1- 1/N < r < 1 the sum considered above is convergent.
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In the case of a gener@lit is sufficient to consider a large cube containing the support
of the measure such that the centre of the cube isin d

The bound given by > 1 — 1/N is sharp. We have in fact the following result.

Theorem 3.5. Suppose: < 1 — 1/N. Then there exists a probability measyreon
such that every non-constam},-Lipschitz pathy such thaty (0) = u hasg, (y) = +o0.

Proof. Let Q2 be the cube [01]" andu the Lebesgue measure on it. We will show that

inf{(G,(v) | wy(u,v) <1} = et VT,

Therefore, ify is aw,-Lipschitz path with constant speed which starts frenthe inte-
gral definingG, diverges. We can simply consider= 2%. To estimateG, (v) whenv

is such thatw,(u, v) < t, consider a partition of2 into small cubes of side. Letk be

the number of those cubed such thav (Q;) < u(Q;)/2 = ¢V /2. In all these cubes we
have a zone in which the optimal transport mapetweern: andv must take values out-
side the cube; this zone, given B \ s~1(Q;), has a measure of at least/2. We want

to estimate from below the contribution of this zone to the total transport cost befween
andv. For this we may write

(e/2)?
/ d(x,00;)" dx 2/ 1(Qi \ s~ 1) N{d(x,80)" > )| dt
0i\s~1(Q) 0
/2P /N
2/ (——|{d(x,3Qi)p§‘L'}|)d‘L'
0 2

BPgP SN
z/ (7 — {d(x,00) < Be}|) dr > crePe”,
0

where B is sufficiently small and:; is a positive constant. By recalling that the total
transport cost (i.e. the-th power of the distance,) is less than”, we have

kereNTP <P, (3.5)

On the other hand, the value 6f. can be estimated from below by means of the other
cubes and we have

Gr(v) > (67N —k)coe™".

Let us now choose = mt with m an integer such thatm? > 1. By using [(3.5), we
have

GrW) =t Nm™ —m NP /c)eom™NT N = cgt—NA=)

where the constang is positive.

For generak2 we can simply use a cube containedirand show that the Lebesgue
measure on it, rescaled to a probability measure, cannot be reached keeping the value of
the integral finite. O
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Example 3.6 (Y-shaped paths versus V-shaped patX)nsider the example in Figyrg 2,
where we suppose thatindh are fixed. For O< ¢t < Ip we define

x(t) =(,0)
and forlp < t < lo+ /12 + h?,

— 1o t—1
x1(1) = <lo +h 0 >

\/12 +h2 \/12 + h?

xalt) = (lo +i l° )

Fig. 2. A Y-shaped path for = 1/2.

Let us consider the curve : [0, Ig + VIf + h? — W, () defined by

(1) Sx([) if 0 <t <,
y (1) = !
%5)510) + %‘sz(t) iflog<t<lp+ \/112-_+_—/,12

It is easy to see thay'|(r) = 1 and that

Gr(y) =lo+ 2"/ (1 —10)? + h2.
Then the minimum is achieved for
h
N
In particular, when- = 1/2 we have a Y-shaped path (similar to the one of Figure 2)
when! > h, while the path is V-shaped whén< 4.

lo=1—
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Remark 3.7. The result of Theorefn 3.4 can clearly be improved for particular choices
of wp andu1. For instance, we can connect a Dirac mass tattanensional Hausdorff
measure on a smookhsurface for all- € [1 — 1/k, 1] (see also[14]).

3.2. Second casé€i(z) = |z|7 (g > 1), g = +©

We follow the same structure of the previous section. In this case we will denote the
functional J by F, andJ by F,.

We start by proving that wheR, (1o) and F, (i1) are finite, that ispuo anduy are
measures with.7(2) densities, the optimal path problem admits a solution with finite
energy.

Theorem 3.8. Assume thatg = ug - £V, 1 = u1 - £V withug, u1 € L1(2). Thenuo
and 1 can be joined by a finite energy path.

The proof of this result relies on the notion displacement convexityhis notion has
been developed by McCann [n[15] and is also described in [1]land [17].

Definition 3.9 (Displacement interpolation)Let ;o and i1 be two absolutely contin-
uous probability measures oft and letT : Q@ — € be an optimal transport map
(unique ifp > 1) betweenug and 11 with respect to the cost functige — y|?. The
mapy’ : [0, 1] — W,(RQ) given by

t—yl (@) :=[A-0ld+1T]ano (3.6)

is called adisplacement interpolation

Remark 3.10. It is well known (seel[1]) that the curve defined n (3.6) is a geodesic in

W, (), parametrized in such a way that

Iy TY (1) = wp(uo, 1)  forae..

Definition 3.11 (Displacement convexity)A functional F defined on all absolutely con-
tinuous measures (with respect to the Lebesgue measurg) @t) is said to bedisplace-
ment conveif all the maps — F(y 7 (1)) are convex o1fi0, 1] for every choice of abso-
lutely continuous measures, 11 and any optimal transport map as in Definitior{3.9.

The proof of the following criterion for displacement convexity can be foundih [15] and
[17] for the casep = 2; a most complete one, dealing also with the gasé 2, is given
in Proposition 9.3.9 of J1].

Theorem 3.12. Consider the following functional on the spaké, (2), where is any
convex subset dR”:

du . .
U| —— ) dx if uis absolutely continuoys
F(u) = /g <d£N> s y -

+00 otherwise
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whereU : [0, +o00] — [0, +o¢] is a lower semicontinuous function with(0) = 0. If
the mapr — rNU(r~") is convex non-increasing d0, +oc[, then the functionaF is
displacement convex.

Remark 3.13. The assumption of — rNU (") being convex and non-increasing
easily implies thaU itself is convex.

Proof of Theoren 3|8By Theoren 3.1 the functiondl, is displacement convex, so
that

Fy(yT (1)) < (L= 0)Fy (o) + t Fy ().
Then

1 1
fo Fy(r TNy 1) dt < wy (o, 1) fo [(1— 1) F, (o) + tF,(n1)] dt
1
= E(Fq (o) + Fy(n1)wp (o, n1).

Since F, (o) and F, (1) are finite, the path — yT(¢) provides a finite value for the
energy functionalF,. O

The next step will be the existence of an admissible path for arbitrary extremal measures,
if ¢ satisfies some additional constraints.

Recall that ifug and 1 are probability measures given tiy* densities go andu1
respectively) and’ is a transport map between them with sufficient regularity, we have

u1(y) = uo(T(y))|det DT 1 (y)|.

Lemma 3.14. Letg < 1+1/N. Letalsou = u-LY withu € LY(Q) andv = Y5_; b;5,
with Zle b; = 1. Then there exists a path betwgemand v with finite energy.

Proof. Let T be an optimal transport map betwegrandv. Let B; = T—l(yj). We
now show that the path” has a finite energy. S@& = (1 —1)ld + 7. If x € B;, then
T;(x) = (1—-t)x +ty; and detD; (x) = (1 - HN. Letu, be the density of the measure
(Ty)#w, that is,

u,(y) = u(T, 2(y))|det DT, 1(y)|.

We then have

k q
y—1yj 1
lus (W) dy = E u( )' dy
./ ' = 1—1¢ 1—1Ne

k
=2 / @11 - NP dz = 1 - N f Ju(2)| dz.
j=1
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Moreover, thanks to Remafk 3]10, the metric derivatjvé() is constantly equal to the
Wasserstein distanae, (1, v). Then

! g wp (14, v) g
fq(w:w,,(u,v)/o /|u,<y)| dydr = Nq/| ul dx,

which is finite sincey < 1+ 1/N. O

Theorem 3.15. Letq < 1+ 1/N. Then every couple of measures can be joined by a path
with finite energy.

Proof. It is enough to link any measuneto a fixed LY measureu (for instance, the

normalized Lebesgue measure) with a finite energy path{ikétcn be a sequence of
atomic measures approximatimgn the Wasserstein distanes,. By Lemma 3.14, for

everyk there is a pathy, with energy

Fave) = Cwp (e, vi)

whereC is a constant which only depends 8h ¢, & (and of courses). Extracting a
convergent subsequence {04 }rcn provides a pathy such that, by repeating the lower
semicontinuity argument of TheorgmP.1,

Fq(y) <liminf F,(y) = lim Cwp(u, vi) = Cwp (i, v).
k— 00 k— 00

Sincey, connectsu to vy, it follows thaty connectsy to v and the result is estab-
lished. O

As in the previous section, we show that the previous result is sharp, as can be seen from
the following statement which is valid in a more general setting. In fact, we prove an
estimate which holds for eveny,-Lipschitz curve not only with values iR(2), but also

in P(RM).

Theorem 3.16. Suppose; > 14 1/N. Then there exista € W, () such that every
non-constantv,-Lipschitz pathy with y (0) = u hasF,(y) = 400

Proof. Chooseu = &g (supposing, up to translation, that0Q). It is sufficient to prove
that
inf(F,(v) | v e P(Q), wy(u,v) <1} > Cr N, (3.7)

with C > 0. In fact, by reparametrization, it is sufficient to prove that the functional is
infinite on constant speed paths. Given such a patwith constant speed > 0, we
have

1 1
Fo) =1L / Fy(y(t)di = L / CLry N gt = 400
0 0

where the integral diverges thanks to the assumptiop do prove [(3.F) we can suppose
thatQ = R, which is the worst case. This shows that the result depends neither on the
compactness nor on the convexity@f By considering the map that associates to every
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probability measure the measure = (m;)yp, wherem,(x) = tx, one has a one-to-
one correspondence between the probabilities whose Wasserstein distanégif teas
than 1 and those whose distance is less thétns easy to see thatis L9 if and only if
the same happens fprand that the density of is the functionx — ¢~Nu(x /1), where
u is the density ofp. Therefore

Fa) = / Mq,(;/cq/t) dx = /uq(y)t‘thN dy = Fy(pyr~ V@b,

Consequently, it is now sufficient to evaluate the infimun{ in|(3.7) when1, and this
number will be the constar® we are looking for. We will show that this infimum is in
fact a minimum, thus proving that it is strictly positive. This problem is quite similar to
those studied ir_ [16]. To get the existence of a minimum we recall that the funcfignal
is sequentially lower semicontinuous with respect to the wetdpology on probability
measures, while the s{at € PRY) |wp(do, v) < 1} is sequentially compact with respect
to the same topology (in fact every sequence in it turns out to be tight). O

Remark 3.17. As in the previous case, it is possible that two measures could be con-
nected by a finite energy path even whes- 1+ 1/N. For instance, withV = 2, the
path given by

1
1) = —1{_11yx[—r.1 - L2
140 27 LX)

is a Lipschitz path itV ([—1. 1] x [-1, 1]) joining yo = $H L [~1, 1] toyy = 3L£2 (it
is in fact a Wasserstein geodesic between them). The energy is finite as long as

This condition is fullfilled when - ¢ > —1, i.e. whery < 2, instead of the condition
g <1+ 1/2found in Theorerp 3.15.

4. The case of unbounded domains

The existence results of the previous section were based on two important facts: the com-
pactness of the Wasserstein spaidgg2) when( itself is compact and ¥ p < 400,
and the estimate lik¢, > ¢ > 0, proven in Theorer 3.1, that can be obtained when
|| < +oo. Neither of these facts holds whéh= R", for instance. This is the reason
why we developed in Sectigrj 1 some tools giving the existence of optimal paths under
weaker assumptions, even in the abstract metric setting. To replace the compacfaess of
we need to use Theor¢m P.4, while to deal with the fact that we do notfiyave > ¢ > 0
in the case where runs over ally, (RV) we can use the weaker assumption given by
hypothesis (H2).

In this section we only deal with the case®jf-like functionals studied in the com-
pact case in Sectidn 3.2; the case of atomic measure§,alike functionals of Section
[3.7 still presents some extra difficulties whenis unbounded. We stress the fact that
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most of the techniques we use can be adapted to deal with several different cases, i.e.
unbounded but not necessarily the whole space, or the $fyage@2) (where the distance
is given by transport costs computed as a supremum instead of an integral). Notice that
the use of Theorein 3.4 is necessary because in genefaisihot compact, the corre-
sponding Wasserstein spaces are not even locally compact (and the same happens when
we takeQ2 compact but we choose to consider the spa&e(£2)), so we cannot have the
compactness of closed balls.

First, we show some lemmas in order to use Thedrein 2.4.

Lemma 4.1. The weak topology (i.e. the one induced by the duality with the Ipace)
of bounded continuous functions @) on the spac&V, (©2) can be metrized by a distance
d’ such thatd’ < wy < w),.

Proof. The usual distance metrizing the weak topology is given by

o
d(u,v) = 227/‘
k=1

where(¢y ), is a dense sequence in the unit balli2). We can choose these functions
to be Lipschitz continuous and let, for every index; be the Lipschitz constant @f.
Then

’

/¢kd(u — )

9] 2—k
(. v) = d(u —
(o) ];1+Ck‘,/¢k ()

is a distance which metrizes the same topology. Singél + c;) is a 1-Lipschitz func-
tion, thanks to the dual formulation of Monge’s problem we have

bk
d - < ) )
‘ 1te (w—v)| <wilu,v)
and so, by summing oveér, we getd’ < wj as required. O

The following two lemmas are well known.

Lemma 4.2. The distancew,, is lower semicontinuous oW, (2) x W,(2) endowed
with the weakx weak convergence.

Proof. Takeu, — w andv, — v. Lety, be an optimal transport plan for the cost-y|”
betweenu, andv,; the sequence of these plans turns out to be tight thanks to tightness
of the sequence of the marginal measures, and so we may suppese’. We can now

see that is a transport plan betwegnandv and so

1/p 1/p
wp (i, v) < <f lx — yl”dy> < liminf </ lx — yl”d)/n> = liminf w, (s, vy).
n—+00 n—00

Lemma 4.3. All bounded sets inV, (RY) are relatively compact with respect to the weak
topology.
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Proof. Just notice that, in a bounded set, every sequence of probability measures turns
out to be tight. The limits up to subsequences (that exist in the weak sense) still belong
to the spaceW,,(IR{N) as a consequence of the lower semicontinuity of the functional

w = wy(u, 8o) (which is nothing but thep-th moment of the measure). O

We can now state our result.

Theorem 4.4. Let F, and 7, be defined as in Secti@ respectively oV, (RY) and
on the set of Lipschitz path W, (R") joining two measurego and i1. Then

e ifg <1+41/N,foreveryuo anduj there exists a path giving finite and minimal value
to Fy;

e if g > 1+ 1/N, there exist measurasy such thatF, = +oo on every non-constant
path starting fromug.

Proof. Let us start from the cas¢ < 1+ 1/N. Thanks to Lemmals 4.2 afd #.3 we

can use Theorein 2.4 and so we just need to verify the two assumptions (H1) and (H2).
A finite energy path can be achieved in the same way as in Theorein 3.15, by passing
through a fixed.? probability measure. Notice that, in order to have the convergence of a
subsequence and the lower semicontinuity in the approximation by atomic measures, we
will argue as in the proof of Theoregm 2.4 instead of Thedrer 2.1. In order to estimate the
integral in (H2) we will use the estimate given in Theofem B.16 to obtain

inf(Fy(v) | v € P(R), wy(p,v) <1} = Cr V@D,

so that the integral diverges as longgas: 1 + 1/N.

By repeating the arguments of Theorem 3.16, we can then also prove the second part
of our result, because = 5o cannot be joined to any other probability measure by a finite
energy path. O

Remark 4.5. In the previous theorem we did hot mention the possibility to link, for arbi-
traryg > 1, two measurego, 11 € LY(RV). It is easy to check that the same construc-
tion used in Theorefn 3.8 can also be used in this setting. We then get the existence of a
path providing a finite value t&,, but some problems arise when we look for a minimal
one. In fact for arbitrary, condition (H2) is no longer fulfilled and this prevents us from
applying the general existence results.

To conclude this section, we highlight the difference between the case of the func-
tional 7, we dealt with and the other important case, represented by the fundfianal
the latter case it is not necessary to pass through the divergence of the integral in assump-
tion (H2), because we actually ha@ > 1, as already shown. On the other hand, some
difficulties arise in verifying assumption (H1). In fact the construction we made to build
a finite energy path linkingp to a probability measurg strongly uses the compactness
of the support ofx. In order to get a similar construction for the case= RV we would
need an estimate like

inf{w, (1, v) [ #5p(v) <k} < Cuk YV,
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whereC(u) is a finite constant depending on the measgurdt is easy to get a similar
estimate whem has compact support, but the constant may depend on the diameter of
the support. The existence of a similar estimate for arbitrary meaguisebnked to the
asymptotics of the rescaled location problenRi¥. A theory of this asymptotic problem

has been explicitly developed (for instancelinh [8]) only in the case of compact support.
However, it leads to a condition likeV/(N+tP) e L1 which is always fulfilled foru
compactly supported, while it may fail for general probability measurwlmRN). The
existence of an estimate as above would easily imply a theorem similar to Thieolem 4.4
for the case ofj,, but we are not sure if such an estimate is necessary.
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