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Abstract. Given a metric spaceX we consider a general class of functionals which measure the
cost of a path inX joining two given pointsx0 andx1, providing abstract existence results for
optimal paths. The results are then applied to the case whenX is a Wasserstein space of probabilities
on a given set� and the cost of a path depends on the value of classical functionals over measures.
Conditions for linking arbitrary extremal measuresµ0 andµ1 by means of finite cost paths are
given.
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1. Introduction

Finding the best way to carry a given source to a given target is a problem that received a
lot of attention in recent years. The literature on Monge–Kantorovich mass transportation
problems and on Wasserstein distances is very rich, as well as on several related appli-
cations which include the shape optimization of elastic bodies (see for instance [7]), the
design of public transportation networks (see for instance [9], [10], and [12]), the optimal
location of production centres (see [8] for the asymptotics of the problem) and the study
of irrigation trees (see for instance [3] and [14]).

The problem of transporting a source mass distribution to a target mass distribution by
keeping together as much mass as possible during the transport, from which tree-shaped
configurations arise, has been extensively studied, for instance in [3], [14], and [18]. In
our new approach to this problem probability measures valued curves are considered,
while the condition of keeping masses together is achieved by considering only measures
supported in discrete sets.

Given a source or initial probability measureµ0 and a target or final probability mea-
sureµ1 we look for a pathγ in a Wasserstein spaceWp(�) that connectsµ0 to µ1 and
minimizes a suitable cost functionalJ (γ ). In the present paper we consider functionals
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of the form

J (γ ) =

∫ 1

0
J (γ (t))|γ ′

|(t) dt (1.1)

where|γ ′
| is the metric derivative ofγ in the Wasserstein spaceWp(�) andJ is a lower

semicontinuous functional defined on measures. HereJ may be easily seen as the coeffi-
cient of a degenerate “Riemannian metric” on the spaceWp(�).

We restrict our analysis to the case ofJ being a local functional over measures, an
important class of functionals extensively studied by Bouchitté and Buttazzo in [4]–[6].
These functionals are the key tool in our approach, and among them we can find both
functionals which are finite only on concentrated measures (for an application of them
see [11] and [16]) and functionals which are finite only on spread measures. In fact, a par-
ticular point of interest in our approach is the fact that also different kinds of “Riemannian
distances” are allowed (for instance those which prefer spread measures) by a change of
the functionalJ .

In particular, we consider here the two extreme cases, in which the functionalJ is one
of the following:

Gr(µ) =


∑
k∈N

(ak)
r if µ =

∑
k∈N

akδxk

+∞ otherwise
(0 ≤ r < 1),

whose domain is the space of purely atomic measures, or

Fq(µ) =


∫

�

|u|
q dx if µ = u · LN

+∞ otherwise
(q > 1),

whose domain is the spaceLq(�). We denote respectively byGr the functional in (1.1)
with J replaced byGr and byFq the same functional withJ replaced byFq .

The first case is the one in which we get a “Riemannian distance” on probabilities
which makes paths passing through concentrated measures cheaper. The second case, on
the contrary, allows only paths which lie onLq(�).

In both cases we analyze the question of the existence of optimal pathsγopt giving a
finite value to the functional. When the domain� ⊂ RN is compact we find for the first
case:

• if µ0 andµ1 are atomic measures, then an optimal pathγopt providing a finite value to
Gr always exists;

• if r > 1 − 1/N , then the same is true for any pair of measures;
• if r ≤ 1 − 1/N , then there are measuresµ0 andµ1 such that every path connecting

them has an infinite cost.

Similarly, for the second case we have:

• if µ0 andµ1 are inLq(�), then an optimal pathγopt providing a finite value toFq

always exists;
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• if q < 1 + 1/N , then the same is true for any pair of measures;
• if q ≥ 1 + 1/N , then there are measuresµ0 andµ1 such that every path connecting

them has an infinite cost.

In Section 4 we also discuss the case of unbounded domains such as� = RN .
The analysis of existence results as well as the definition of the cost functionals is

made in Section 2 in an abstract metric spaces framework, which can be used for future
generalizations and developments.

In relation to the other papers mentioned at the beginning of this introduction it is
not difficult to see that the model we propose is different and in general provides dif-
ferent solutions. However, among the different features our model supplies we may cite
its mathematical simplicity and the possibility of performing standard numerical com-
putations. From the mathematical point of view, our model reminds the construction of
Riemannian metrics, as we already pointed out, and in connection to this we obtain fairly
easy existence results for optimal paths. As far as numerics is concerned, we stress the
fact that, when discretizing the metric derivative, the cost functional becomes a weighted
sum of Wasserstein distances among couples of atomic probability measures which can
be evaluated by well known algorithms such as the simplex method.

Anyway, we think that a comparison with the results presented by Xia in [18] and by
Maddalena, Morel and Solimini in [14] will be important for future investigations. For
instance, for the model proposed in [14] conditions for linking two prescribed measures
by a finite cost configuration have been studied in [13] (while here and in [18] only con-
ditions for linking arbitrary measures are provided): we do not know if similar conditions
can be achieved in our case.

2. The metric framework

In this section a generic metric spaceX with distanced is considered. Under the assump-
tion that closed bounded subsets ofX are compact, we will prove an existence result
(Theorem 2.1) for variational problems with functionals of the type

J (γ ) =

∫ 1

0
J (γ (t))|γ ′

|(t) dt

whereγ : [0, 1] → X ranges among all Lipschitz curves such thatγ (0) = x0 and
γ (1) = x1. We will refer to the value ofJ atγ as theenergyof γ . By |γ ′

|(t) we denote
themetric derivativeof γ at the pointt ∈ (0, 1), i.e.

|γ ′
|(t) = lim

s→t

d(γ (s), γ (t))

|s − t |
.

As a consequence of the Rademacher Theorem it can be seen (see [2]) that for any Lip-
schitz curve the metric derivative exists at almost every point (with respect to Lebesgue
measure). Another useful result is that the variation ofγ can be written in terms of the
metric derivative in integral form:

Var(γ ) =

∫ 1

0
|γ ′

|(t) dt.
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By this formula it follows easily that|γ ′
| ≤ M if and only if γ is M-Lipschitz, since

whens < t ,

d(γ (t), γ (s)) ≤ Var(γ, [s, t ]) =

∫ t

s

|γ ′
|(τ ) dτ ≤ M|t − s|,

the converse implication being immediate.

Theorem 2.1. Let X be a metric space such that any closed bounded subset ofX is
compact,J : X → [0, +∞] be a lower semicontinuous function andx0, x1 arbitrary
points inX. Then the functional

J (γ ) =

∫ 1

0
J (γ (t))|γ ′

|(t) dt

achieves a minimum value among all Lipschitz curvesγ : [0, 1] → X such thatγ (0) =

x0 andγ (1) = x1, provided the following two assumptions are satisfied:

(H1) there exists a curveγ0 such thatJ (γ0) < +∞;

(H2)
∫

∞

0
inf

Br (x0)
J dr = +∞.

The proof of Theorem 2.1 relies on the following reparametrization lemma whose proof
can be found for example in [2].

Lemma 2.2. Letγ ∈ Lip([0, 1], X) and letL = Var(γ ) be its total variation. Then there
exists a Lipschitz curvẽγ ∈ Lip([0, L], X) such that|γ̃ ′

| = 1 almost everywhere in[0, L]
and γ̃ is a parametrization ofγ .

Proof of Theorem 2.1.Let {γn}n∈N be a minimizing sequence and setLn = Var(γn).
Then the sequence{J (γn)}n∈N is bounded by a finite numberM. By Lemma 2.2 there ex-
ists a sequence of curvesγ̃n : [0, Ln] → X parametrized with unit velocity, reparametriz-
ing the given curves. We have

M ≥ J (γn) =

∫ Ln

0
J (γ̃n(t)) dt ≥

∫ Ln

0
( inf
Bt (x0)

J ) dt.

Then{Ln}n∈N is bounded, since otherwise, by assumption (H2), the right hand side would
be unbounded. We can reparametrize each curveγn with constant speedLn, thus ob-
taining a new sequence{γ̂n}n∈N in Lip([0, 1], X), which is still a minimizing sequence,
thanks to the equalityJ (γn) = J (γ̂n). Since{Ln}n∈N is bounded, this new minimizing
sequence is uniformly bounded and uniformly Lipschitz. By the Ascoli–Arzelà Theo-
rem we can suppose that, up to a subsequence,γ̂n → γ̂ uniformly for someL-Lipschitz
curve γ̂ where we have takenL = lim infn Ln. By recalling the link between Lipschitz
conditions and metric derivative we have

|γ̂ ′
|(t) ≤ L for a.e.t ∈ [0, 1].
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Now by using the lower semicontinuity of the functionalJ , we obtain

J (γ̂ ) =

∫ 1

0
J (γ̂ (t))|γ̂ ′

|(t) dt ≤ L

∫ 1

0
lim inf
n→∞

J (γ̂n(t)) dt

≤ lim inf
n→∞

Ln

∫ 1

0
J (γ̂n(t)) dt = lim inf

n→∞
J (γ̂n),

that is, the lower semicontinuity ofJ on the sequence considered, which completes the
proof. �

Remark 2.3. Notice that the integral assumption (H2) is always true ifJ ≥ c for a
suitable strictly positive constant. Moreover Theorem 2.1 still holds if condition (H2) is
replaced by the weaker assumption that there exists a curveγ0 such that

J (γ0) <

∫
+∞

0
inf

B(x0,r)
J dr.

We give a slightly refined version of Theorem 2.1, which will be useful in the last
section. The goal here is to weaken the compactness assumption on bounded subsets
of X.

Theorem 2.4. Let(X, d, d ′) be a metric space endowed with two different distances such
that:

(K1) d ′
≤ d;

(K2) all d-bounded sets inX are relatively compact with respect tod ′;
(K3) the mappingd : X × X → R+ is a lower semicontinuous function with respect to

the distanced ′
× d ′.

Let J : X → [0, +∞] be lower semicontinuous with respect tod ′. Consider the func-
tional defined on the set ofd-Lipschitz curvesγ : [0, 1] → X by

J (γ ) =

∫ 1

0
J (γ (t))|γ ′

|d(t) dt,

where|γ ′
|d(t) stands for the metric derivative ofγ with respect tod. Then, under the

hypotheses(H1) and (H2) of Theorem2.1 (whereBr(x0) are in the sense ofd), there
exists a minimum forJ .

Proof. We can take a minimizing sequence{γn}n and, as in Theorem 2.1, reparametrize it
to obtain a sequence{γ̂n}n in which every curve has constant speedLn. Hypothesis (H2)
gives us the boundedness ofLn. Hence the sequence{γ̂n}n consists ofd-equicontinuous
functions from [0, 1] to ad-bounded subset ofX. If we endowX with the distanced ′ we
have an equicontinuous (thanks to assumption (K1)) sequence of functions whose images
are contained in a compact set. Consequently, we can use the Ascoli–Arzelà Theorem
to choose a subsequence (not relabeled) such thatγ̂n → γ (d ′-uniformly) for a suitable
curveγ . The lower semicontinuity ofJ with respect tod ′ allows us to use the Fatou
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Lemma and shows thatγ minimizesJ , provided we can show thatγ is d-Lipschitz with
a Lipschitz constant not exceeding lim infn Ln. To do this we use assumption (K3). Given
two pointss, t we have in fact

d(γ (s), γ (t)) ≤ lim inf
n

d(γ̂n(s), γ̂n(t)) ≤ lim inf
n

Ln|s − t |,

which shows the required Lipschitz property. �

3. The case of Wasserstein spaces

In this section we consider a compact metric space� equipped with a distance functionc
and a positive finite non-atomic Borel measurem. We consider thep-Wasserstein metric
spaceWp(�). This is the space of Borel probability measuresµ on� with finite moment
of orderp with respect to a pointx0 (recall that the finiteness of thep-moment with
respect to a point implies its finiteness with respect to any other point):∫

�

c(x, x0)
p dµ < +∞,

equipped with thep-Wasserstein distance

wp(µ1, µ2) = inf

(∫
�×�

c(x, y)p λ(dx, dy)

)1/p

,

where the infimum is taken over all transport plansλ betweenµ1 andµ2, that is, over
all probability measuresλ on � × � whose marginalsπ+

# λ andπ−

# λ coincide withµ1
andµ2, respectively.

Notice that, since the distancec is bounded, the spaceWp(�) consists of all probabil-
ity measures. We consider functionsJ onWp(�) that can be represented in the following
form:

J (µ) =

∫
�

f

(
dµ

dm

)
dm +

∫
�\Aµ

f ∞

(
dµs

d|µs |

)
d|µs

| +

∫
Aµ

g(µ(x)) d#(x),

where

• dµ/dm is the Radon–Nikodym derivative ofµ with respect tom,
• f : R → [0, +∞] is convex, lower semicontinuous and proper (i.e. not identically

+∞),
• µs is the singular part ofµ with respect tom according to the Radon–Nikodym de-

composition theorem;
• f ∞ is therecession function

f ∞(s) := lim
t→+∞

f (s0 + ts)

t

(the limit is independent of the choice ofs0 in the domain off , i.e. the set of points
wheref is finite),
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• Aµ is the set of atoms ofµ, i.e. the points such thatµ(x) := µ({x}) > 0,
• g : R → [0, +∞] is a lower semicontinuous subadditive function such thatg(0) = 0,
• # is the counting measure.

Note that our functional can be written in a simpler form since in our casedµs/ d|µs
| = 1

for |µs
|-a.e.x, asµ is a positive measure:

J (µ) =

∫
�

f

(
dµ

dm

)
dm + f ∞(1)|µs

|(� \ Aµ) +

∫
Aµ

g(µ(x)) d#(x).

By the results that can be found in [4] and [5], these functionals are lower semicontinuous
for the weak-∗ convergence of measures (and represent all local functionals with this
semicontinuity property) whenever

g0(s) := sup
t>0

g(st)

t
= f ∞(s).

Theorem 3.1. Suppose thatf (s) > 0 for s > 0 and g(1) > 0. ThenJ ≥ c > 0. In
particular, the functionalJ defined on the set of Lipschitz curvesγ : [0, 1] → Wp(�)

with given starting and ending points achieves a minimum, provided that there exists a
curve with finite cost.

Proof. Let us fix some notation. Byµa we mean the absolutely continuous part ofµ with
respect to the measurem, and byµs, µ#, µc respectively the singular part, the atomic part
and the singular diffused part ofµ. Then we haveµ = µa

+ µs
= µa

+ µc
+ µ#. Since

f is convex, by the Jensen inequality we have∫
�

f

(
dµ

dm

)
dm ≥ m(�)f

(
1

m(�)

∫
�

dµ

dm
dm

)
= m(�)f

(
µa(�)

m(�)

)
. (3.2)

Sinceµ is a positive measure andf ∞ is 1-homogeneous,∫
�\Aµ

f ∞

(
dµs

d|µs |

)
d|µs

| = |µs
|(� \ Aµ)f ∞(1) = m(�)f ∞

(
µc(�)

m(�)

)
. (3.3)

Sinceg is a subadditive function,∫
Aµ

g(µ(x)) d#(x) =

∑
x∈Aµ

g(µ(x)) ≥ g
( ∑

x∈Aµ

µ(x)
)

= g(µ#(�)). (3.4)

The recession functionf ∞ satisfies

f ∞(x) ≥ f (x + y) − f (y) for all x, y ∈ R,

and so the sum of the first two terms, i.e. those given by (3.2) and (3.3), can be estimated
from below by

m(�)f

(
µa(�) + µc(�)

m(�)

)
.
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Therefore summing up (3.2)–(3.4) we obtain

J (µ) ≥ m(�)f

(
µa(�) + µc(�)

m(�)

)
+ g(µ#(�)).

We seta = µ#(�); it follows that 1− a = µa(�) + µc(�). Since the functiona 7→

m(�)f ((1 − a)/m(�)) + g(a) is lower semicontinuous, it attains a minimum in the
interval [0, 1]. Thanks to our hypothesis this sum is always positive, and so we have

min
0≤a≤1

m(�)f

(
1 − a

m(�)

)
+ g(a) = c > 0,

that is,J (µ) ≥ c > 0. �

We now study some special cases of the functional we defined above. In the rest of this
section� will be acompact convexsubset ofRN and the measurem will be the Lebesgue
measureLN on it.

3.1. First case:f = +∞, g(z) = |z|r (0 ≤ r < 1)

In this case we will denote the functionalJ by Gr and the corresponding functionalJ on
Lipschitz paths will be calledGr . This is the case whenGr is finite only on purely atomic
measures.

We are now going to consider the question whether there exists a curve connecting
two given measures keeping our functional finite. First we prove that if both the initial
and final measures are atomic the answer is positive. Then we prove that forr in a suit-
able subinterval of [0, 1] every measure can be connected to a Dirac mass, hence every
measure can be connected to any other measure by a path of finite energy. Finally, we
show that this is not possible in general for everyr ∈ [0, 1].

Theorem 3.2. Letµ0 andµ1 be convex combinations of Dirac masses, i.e.,

µ0 =

m∑
k=1

akδxk
, µ1 =

n∑
l=1

blδyl

with ak, bl > 0,
∑

k ak =
∑

l bl = 1. Then there exists a Lipschitz curveγ : [0, 1] →

Wp(�) such thatγ (0) = µ0, γ (1) = µ1 and

Gr(γ ) =

∫ 1

0
Gr(γ (t))|γ ′

|(t) dt < +∞.

Proof. It is sufficient to prove the theorem whena1 = 1, i.e. µ0 = δx1, since in the
general case one connects the first measureµ0 to a Dirac mass supported at an arbitrary
point, and then one connects that Dirac mass to the final measureµ1. If one can keep the
functional finite in both steps, then the result is proved in the general case.
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We now prove that the curveγ : [0, 1] → Wp(�) given by

γ (t) =

n∑
l=1

blδx1+t (yl−x1)

is wp-Lipschitz andGr(γ ) < +∞. Let t1 andt2 be time instants such thatt1 < t2. Then
the transport plan between

∑
l blδx1+t1(yl−x1) and

∑
l blδx1+t2(yl−x1) induced by the map

T (x1 + t1(yl − x1)) := x1 + t2(yl − x1) gives

wp(γ (t2), γ (t1)) ≤

(∫
�

|x − T (x)|p dγ (t1)

)1/p

=

( n∑
l=1

bl |t2 − t1|
p
|yl − x1|

p
)1/p

= |t2 − t1|
( n∑

l=1

bl |yl − x1|
p
)1/p

.

Hence the metric derivative with the respect to the Wassersteinp-distance is given by

|γ ′
|(t) ≤

( n∑
l=1

bl |yl − x1|
p
)1/p

= wp(µ0, µ1).

On the other hand, we have

Gr(µ) =


∑
x∈Aµ

|µ(x)|r if µa
= µc

= 0,

+∞ otherwise.

Then

Gr(γ (t)) =


1 if t = 0,
n∑

l=1

br
l if t > 0.

Hence

Gr(γ ) =

∫ 1

0
Gr(γ (t))|γ ′

|(t) dt ≤

n∑
l=1

|bl |
r
( n∑

l=1

bl |yl − x1|
p
)1/p

< +∞. �

Remark 3.3. By repeating the proof of Theorem 3.2 one finds that the statement still
holds for infinite sums of Dirac masses (i.e.m = n = +∞) providedGr(µ0) andGr(µ1)

are finite, that is,
∑

k ar
k < +∞ and

∑
l b

r
l < +∞.

The proof of the next theorem is related to the one of Proposition 3.1 of [18].

Theorem 3.4. Let 1 − 1/N < r ≤ 1. Then, given two arbitraryµ0 andµ1 in Wp(�),
there exists a curve joining them such that the functionalGr is finite.
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Proof. It is sufficient to prove that every measure can be joined to a Dirac mass at an
arbitrary point. We first prove the statement for� = [0, 1]N . Thedyadic subdivision of
order k of Q = [0, 1]N is given by the family of closedN -dimensional cubes{Qk

h}h∈Ik
,

whereIk = {1, 2, 3, . . . , 2k
}
N , obtained by dividing each edge ofQ into 2k pieces of

equal length. We will refer to the elements of{Qk
h}h∈Ik

ask-cubes. To every Borel regular
finite measureµ we associate the following sequence of measures:

µk =

∑
h∈Ik

bk
hδyh

wherebh = µ(Qk
h) andyh is the centre ofQk

h. It is straightforward to see thatµk ⇀∗ µ

ask → +∞.

Fig. 1. Approximation at stepk = 3.

The idea is now simple (see Figure 1): first joinµk to µk+1 with an arc length
parametrizationγk, then put together all these curves to obtain a path from a Dirac mass
to the measureµ. At every step ak-cube is divided into 2N parts which are(k +1)-cubes.
To bring the Dirac mass at the centre of thek-cube to the 2N centres of the(k + 1)-cubes
with the right weights at each centre one splits the centre of thek-cube into 2N parts mov-
ing towards the centres of the adjacent(k + 1)-cubes in such a way that each point moves
with unit speed. At each step (see Figure 1 where the first three steps are represented) we
obtain a curveγk defined on an interval of length(1/2)kd/2 (d is the diagonal ofQ) such
that|γ ′

k|(t) = 1 for all t .
Let us now compute the value of the functional at the curveγ made by joining all

the curvesγk above. Since the functionf (x1, . . . , xn) =
∑n

i=1 xr
i with the constraint∑n

i=1 xi = 1 reaches its maximum at the point(1/n, . . . , 1/n) we have

Gr(γ ) =

∞∑
k=1

(
1

2

1

2k
d

∑
h∈Ik

(bk
h)

r

)
≤

∞∑
k=1

(
1

2

1

2k
d2Nk

(
1

2Nk

)r)
.

Since 1− 1/N < r ≤ 1 the sum considered above is convergent.
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In the case of a general� it is sufficient to consider a large cube containing the support
of the measureµ such that the centre of the cube is in�. �

The bound given byr > 1 − 1/N is sharp. We have in fact the following result.

Theorem 3.5. Supposer ≤ 1 − 1/N . Then there exists a probability measureµ on �

such that every non-constantwp-Lipschitz pathγ such thatγ (0) = µ hasGr(γ ) = +∞.

Proof. Let � be the cube [0, 1]N andµ the Lebesgue measure on it. We will show that

inf{Gr(ν) | wp(µ, ν) ≤ t} ≥ ct−N(1−r).

Therefore, ifγ is awp-Lipschitz path with constant speed which starts fromµ, the inte-
gral definingGr diverges. We can simply considert = 2−k. To estimateGr(ν) whenν

is such thatwp(µ, ν) ≤ t , consider a partition of� into small cubes of sideε. Let k be
the number of those cubesQi such thatν(Qi) ≤ µ(Qi)/2 = εN/2. In all these cubes we
have a zone in which the optimal transport maps betweenµ andν must take values out-
side the cube; this zone, given byQi \ s−1(Qi), has a measure of at leastεN/2. We want
to estimate from below the contribution of this zone to the total transport cost betweenµ

andν. For this we may write∫
Qi\s

−1(Qi )

d(x, ∂Qi)
p dx =

∫ (ε/2)p

0
|(Qi \ s−1(Qi)) ∩ {d(x, ∂Qi)

p > τ }| dτ

≥

∫ (ε/2)p

0

(
εN

2
− |{d(x, ∂Qi)

p
≤ τ }|

)
dτ

≥

∫ Bpεp

0

(
εN

2
− |{d(x, ∂Qi) ≤ Bε}|

)
dτ ≥ c1ε

pεN ,

whereB is sufficiently small andc1 is a positive constant. By recalling that the total
transport cost (i.e. thep-th power of the distancewp) is less thantp, we have

kc1ε
N+p

≤ tp. (3.5)

On the other hand, the value ofGr can be estimated from below by means of the other
cubes and we have

Gr(ν) ≥ (ε−N
− k)c2ε

Nr .

Let us now chooseε = mt with m an integer such thatc1m
p > 1. By using (3.5), we

have
Gr(ν) ≥ t−N (m−N

− m−N−p/c1)c2m
Nr tNr

= c3t
−N(1−r),

where the constantc3 is positive.
For general� we can simply use a cube contained in� and show that the Lebesgue

measure on it, rescaled to a probability measure, cannot be reached keeping the value of
the integral finite. �
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Example 3.6 (Y-shaped paths versus V-shaped paths). Consider the example in Figure 2,
where we suppose thatl andh are fixed. For 0≤ t ≤ l0 we define

x(t) = (t, 0)

and forl0 ≤ t ≤ l0 +

√
l21 + h2,

x1(t) =

(
l0 + l1

t − l0√
l21 + h2

, h
t − l0√
l21 + h2

)
,

x2(t) =

(
l0 + l1

t − l0√
l21 + h2

, −h
t − l0√
l21 + h2

)
.

h

l

l l0 1

Fig. 2. A Y-shaped path forr = 1/2.

Let us consider the curveγ : [0, l0 +

√

l21 + h2] → Wp(�) defined by

γ (t) =

{
δx(t) if 0 ≤ t < l0,

1
2δx1(t) +

1
2δx2(t) if l0 ≤ t ≤ l0 +

√

l21 + h2.

It is easy to see that|γ ′
|(t) = 1 and that

Gr(γ ) = l0 + 21−r
√

(1 − l0)2 + h2.

Then the minimum is achieved for

l0 = l −
h

√
41−r − 1

.

In particular, whenr = 1/2 we have a Y-shaped path (similar to the one of Figure 2)
whenl > h, while the path is V-shaped whenl ≤ h.
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Remark 3.7. The result of Theorem 3.4 can clearly be improved for particular choices
of µ0 andµ1. For instance, we can connect a Dirac mass to thek-dimensional Hausdorff
measure on a smoothk-surface for allr ∈ [1 − 1/k, 1] (see also [14]).

3.2. Second case:f (z) = |z|q (q > 1), g = +∞

We follow the same structure of the previous section. In this case we will denote the
functionalJ by Fq andJ byFq .

We start by proving that whenFq(µ0) and Fq(µ1) are finite, that is,µ0 andµ1 are
measures withLq(�) densities, the optimal path problem admits a solution with finite
energy.

Theorem 3.8. Assume thatµ0 = u0 · LN , µ1 = u1 · LN with u0, u1 ∈ Lq(�). Thenµ0
andµ1 can be joined by a finite energy path.

The proof of this result relies on the notion ofdisplacement convexity. This notion has
been developed by McCann in [15] and is also described in [1] and [17].

Definition 3.9 (Displacement interpolation). Let µ0 and µ1 be two absolutely contin-
uous probability measures on� and let T : � → � be an optimal transport map
(unique ifp > 1) betweenµ0 and µ1 with respect to the cost function|x − y|

p. The
mapγ T : [0, 1] → Wp(�) given by

t 7→ γ T (t) := [(1 − t)Id + tT ]#µ0 (3.6)

is called adisplacement interpolation.

Remark 3.10. It is well known (see [1]) that the curve defined in (3.6) is a geodesic in
Wp(�), parametrized in such a way that

|(γ T )′|(t) = wp(µ0, µ1) for a.e.t.

Definition 3.11 (Displacement convexity). A functionalF defined on all absolutely con-
tinuous measures (with respect to the Lebesgue measure) ofWp(�) is said to bedisplace-
ment convexif all the mapst 7→ F(γ T (t)) are convex on[0, 1] for every choice of abso-
lutely continuous measuresµ0, µ1 and any optimal transport mapT as in Definition3.9.

The proof of the following criterion for displacement convexity can be found in [15] and
[17] for the casep = 2; a most complete one, dealing also with the casep 6= 2, is given
in Proposition 9.3.9 of [1].

Theorem 3.12. Consider the following functional on the spaceWp(�), where� is any
convex subset ofRN :

F(µ) =


∫

�

U

(
dµ

dLN

)
dx if µ is absolutely continuous,

+∞ otherwise,
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whereU : [0, +∞] → [0, +∞] is a lower semicontinuous function withU(0) = 0. If
the mapr 7→ rNU(r−N ) is convex non-increasing on]0, +∞[, then the functionalF is
displacement convex.

Remark 3.13. The assumption ofr 7→ rNU(r−N ) being convex and non-increasing
easily implies thatU itself is convex.

Proof of Theorem 3.8.By Theorem 3.12 the functionalFq is displacement convex, so
that

Fq(γ T (t)) ≤ (1 − t)Fq(µ0) + tFq(µ1).

Then∫ 1

0
Fq(γ T (t))|(γ T )′|(t) dt ≤ wp(µ0, µ1)

∫ 1

0
[(1 − t)Fq(µ0) + tFq(µ1)] dt

=
1

2
(Fq(µ0) + Fq(µ1))wp(µ0, µ1).

SinceFq(µ0) andFq(u1) are finite, the patht 7→ γ T (t) provides a finite value for the
energy functionalFq . �

The next step will be the existence of an admissible path for arbitrary extremal measures,
if q satisfies some additional constraints.

Recall that ifµ0 andµ1 are probability measures given byL1 densities (u0 andu1
respectively) andT is a transport map between them with sufficient regularity, we have

u1(y) = u0(T
−1(y))|det DT −1(y)|.

Lemma 3.14. Letq < 1+1/N . Let alsoµ = u·LN withu ∈ Lq(�) andν =
∑k

j=1 bj δyj

with
∑k

j=1 bj = 1. Then there exists a path betweenµ andν with finite energy.

Proof. Let T be an optimal transport map betweenµ andν. Let Bj := T −1(yj ). We
now show that the pathγ T has a finite energy. SetTt = (1 − t)Id + tT . If x ∈ Bj , then
Tt (x) = (1 − t)x + tyj and det DTt (x) = (1 − t)N . Let ut be the density of the measure
(Tt )#µ, that is,

ut (y) = u(T −1
t (y))|det DT −1

t (y)|.

We then have∫
|ut (y)|q dy =

k∑
j=1

∫ ∣∣∣∣u(
y − tyj

1 − t

)∣∣∣∣q 1

(1 − t)Nq
dy

=

k∑
j=1

∫
|u(z)|q(1 − t)N(1−q) dz = (1 − t)N(1−q)

∫
|u(z)|q dz.
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Moreover, thanks to Remark 3.10, the metric derivative|γ ′
|(t) is constantly equal to the

Wasserstein distancewp(µ, ν). Then

Fq(γ ) = wp(µ, ν)

∫ 1

0

∫
|ut (y)|q dy dt =

wp(µ, ν)

N + 1 − Nq

∫
�

|u|
q dx,

which is finite sinceq < 1 + 1/N . �

Theorem 3.15. Letq < 1+1/N . Then every couple of measures can be joined by a path
with finite energy.

Proof. It is enough to link any measureν to a fixedLq measureµ (for instance, the
normalized Lebesgue measure) with a finite energy path. Let{νk}k∈N be a sequence of
atomic measures approximatingν in the Wasserstein distancewp. By Lemma 3.14, for
everyk there is a pathγk with energy

Fq(γk) = Cwp(µ, νk)

whereC is a constant which only depends onN, q,� (and of courseµ). Extracting a
convergent subsequence of{γk}k∈N provides a pathγ such that, by repeating the lower
semicontinuity argument of Theorem 2.1,

Fq(γ ) ≤ lim inf
k→∞

Fq(γk) = lim
k→∞

Cwp(µ, νk) = Cwp(µ, ν).

Sinceγk connectsµ to νk, it follows that γ connectsµ to ν and the result is estab-
lished. �

As in the previous section, we show that the previous result is sharp, as can be seen from
the following statement which is valid in a more general setting. In fact, we prove an
estimate which holds for everywp-Lipschitz curve not only with values inP(�), but also
in P(RN ).

Theorem 3.16. Supposeq ≥ 1 + 1/N . Then there existsµ ∈ Wp(�) such that every
non-constantwp-Lipschitz pathγ with γ (0) = µ hasFq(γ ) = +∞.

Proof. Chooseµ = δ0 (supposing, up to translation, that 0∈ �). It is sufficient to prove
that

inf{Fq(ν) | ν ∈ P(�), wp(µ, ν) ≤ t} ≥ Ct−N(q−1), (3.7)

with C > 0. In fact, by reparametrization, it is sufficient to prove that the functional is
infinite on constant speed paths. Given such a pathγ , with constant speedL > 0, we
have

Fq(γ ) = L

∫ 1

0
Fq(γ (t)) dt ≥ L

∫ 1

0
C(Lt)−N(q−1) dt = +∞,

where the integral diverges thanks to the assumption onq. To prove (3.7) we can suppose
that� = RN , which is the worst case. This shows that the result depends neither on the
compactness nor on the convexity of�. By considering the map that associates to every
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probability measureρ the measureν = (mt )#ρ, wheremt (x) = tx, one has a one-to-
one correspondence between the probabilities whose Wasserstein distance fromδ0 is less
than 1 and those whose distance is less thant . It is easy to see thatν is Lq if and only if
the same happens forρ and that the density ofν is the functionx 7→ t−Nu(x/t), where
u is the density ofρ. Therefore

Fq(ν) =

∫
uq(x/t)

tNq
dx =

∫
uq(y)t−Nq tN dy = Fq(ρ)t−N(q−1).

Consequently, it is now sufficient to evaluate the infimum in (3.7) whent = 1, and this
number will be the constantC we are looking for. We will show that this infimum is in
fact a minimum, thus proving that it is strictly positive. This problem is quite similar to
those studied in [16]. To get the existence of a minimum we recall that the functionalFq

is sequentially lower semicontinuous with respect to the weak-∗ topology on probability
measures, while the set

{
ν ∈ P(Rn) | wp(δ0, ν) ≤ 1

}
is sequentially compact with respect

to the same topology (in fact every sequence in it turns out to be tight). �

Remark 3.17. As in the previous case, it is possible that two measures could be con-
nected by a finite energy path even whenq > 1 + 1/N . For instance, withN = 2, the
path given by

γ (t) =
1

4t
1[−1,1]×[−t,t ] · L2

is a Lipschitz path inWp([−1, 1] × [−1, 1]) joining γ0 =
1
2H

1 [−1, 1] to γ1 =
1
4L

2 (it
is in fact a Wasserstein geodesic between them). The energy is finite as long as∫ 1

0

4t

(4t)q
dt < +∞.

This condition is fullfilled when 1− q > −1, i.e. whenq < 2, instead of the condition
q < 1 + 1/2 found in Theorem 3.15.

4. The case of unbounded domains

The existence results of the previous section were based on two important facts: the com-
pactness of the Wasserstein spacesWp(�) when� itself is compact and 1≤ p < +∞,
and the estimate likeFq ≥ c > 0, proven in Theorem 3.1, that can be obtained when
|�| < +∞. Neither of these facts holds when� = RN , for instance. This is the reason
why we developed in Section 1 some tools giving the existence of optimal paths under
weaker assumptions, even in the abstract metric setting. To replace the compactness of�

we need to use Theorem 2.4, while to deal with the fact that we do not haveFq(ν) ≥ c > 0
in the case whereν runs over allWp(RN ) we can use the weaker assumption given by
hypothesis (H2).

In this section we only deal with the case ofFq -like functionals studied in the com-
pact case in Section 3.2; the case of atomic measures andGr -like functionals of Section
3.1 still presents some extra difficulties when� is unbounded. We stress the fact that
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most of the techniques we use can be adapted to deal with several different cases, i.e.�

unbounded but not necessarily the whole space, or the spaceW∞(�) (where the distance
is given by transport costs computed as a supremum instead of an integral). Notice that
the use of Theorem 2.4 is necessary because in general, if� is not compact, the corre-
sponding Wasserstein spaces are not even locally compact (and the same happens when
we take� compact but we choose to consider the spaceW∞(�)), so we cannot have the
compactness of closed balls.

First, we show some lemmas in order to use Theorem 2.4.

Lemma 4.1. The weak topology (i.e. the one induced by the duality with the spaceCb(�)

of bounded continuous functions on�) on the spaceWp(�) can be metrized by a distance
d ′ such thatd ′

≤ w1 ≤ wp.

Proof. The usual distance metrizing the weak topology is given by

d(µ, ν) =

∞∑
k=1

2−k

∣∣∣∣∫ φk d(µ − ν)

∣∣∣∣,
where(φk)k is a dense sequence in the unit ball ofCb(�). We can choose these functions
to be Lipschitz continuous and let, for every indexk, ck be the Lipschitz constant ofφk.
Then

d ′(µ, ν) =

∞∑
k=1

2−k

1 + ck

∣∣∣∣∫ φk d(µ − ν)

∣∣∣∣
is a distance which metrizes the same topology. Sinceφk/(1 + ck) is a 1-Lipschitz func-
tion, thanks to the dual formulation of Monge’s problem we have∣∣∣∣∫ φk

1 + ck

d(µ − ν)

∣∣∣∣ ≤ w1(µ, ν),

and so, by summing overk, we getd ′
≤ w1 as required. �

The following two lemmas are well known.

Lemma 4.2. The distancewp is lower semicontinuous onWp(�) × Wp(�) endowed
with the weak× weak convergence.

Proof. Takeµn ⇀ µ andνn ⇀ ν. Letγn be an optimal transport plan for the cost|x−y|
p

betweenµn andνn; the sequence of these plans turns out to be tight thanks to tightness
of the sequence of the marginal measures, and so we may supposeγn ⇀ γ . We can now
see thatγ is a transport plan betweenµ andν and so

wp(µ, ν) ≤

(∫
|x − y|

p dγ

)1/p

≤ lim inf
n→+∞

(∫
|x − y|

p dγn

)1/p

= lim inf
n→∞

wp(µn, νn).

�

Lemma 4.3. All bounded sets inWp(RN ) are relatively compact with respect to the weak
topology.
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Proof. Just notice that, in a bounded set, every sequence of probability measures turns
out to be tight. The limits up to subsequences (that exist in the weak sense) still belong
to the spaceWp(RN ) as a consequence of the lower semicontinuity of the functional
µ 7→ wp(µ, δ0) (which is nothing but thep-th moment of the measure). �

We can now state our result.

Theorem 4.4. Let Fq andFq be defined as in Section3.2 respectively onWp(RN ) and
on the set of Lipschitz path inWp(RN ) joining two measuresµ0 andµ1. Then

• if q < 1+1/N , for everyµ0 andµ1 there exists a path giving finite and minimal value
toFq ;

• if q ≥ 1 + 1/N , there exist measuresµ0 such thatFq = +∞ on every non-constant
path starting fromµ0.

Proof. Let us start from the caseq < 1 + 1/N . Thanks to Lemmas 4.2 and 4.3 we
can use Theorem 2.4 and so we just need to verify the two assumptions (H1) and (H2).
A finite energy path can be achieved in the same way as in Theorem 3.15, by passing
through a fixedLq probability measure. Notice that, in order to have the convergence of a
subsequence and the lower semicontinuity in the approximation by atomic measures, we
will argue as in the proof of Theorem 2.4 instead of Theorem 2.1. In order to estimate the
integral in (H2) we will use the estimate given in Theorem 3.16 to obtain

inf{Fq(ν) | ν ∈ P(�), wp(µ, ν) ≤ t} ≥ Ct−N(q−1),

so that the integral diverges as long asq < 1 + 1/N .
By repeating the arguments of Theorem 3.16, we can then also prove the second part

of our result, becauseµ = δ0 cannot be joined to any other probability measure by a finite
energy path. �

Remark 4.5. In the previous theorem we did not mention the possibility to link, for arbi-
trary q > 1, two measuresµ0, µ1 ∈ Lq(RN ). It is easy to check that the same construc-
tion used in Theorem 3.8 can also be used in this setting. We then get the existence of a
path providing a finite value toFq , but some problems arise when we look for a minimal
one. In fact for arbitraryq, condition (H2) is no longer fulfilled and this prevents us from
applying the general existence results.

To conclude this section, we highlight the difference between the case of the func-
tionalFq we dealt with and the other important case, represented by the functionalGr . In
the latter case it is not necessary to pass through the divergence of the integral in assump-
tion (H2), because we actually haveGr ≥ 1, as already shown. On the other hand, some
difficulties arise in verifying assumption (H1). In fact the construction we made to build
a finite energy path linkingδ0 to a probability measureµ strongly uses the compactness
of the support ofµ. In order to get a similar construction for the case� = RN we would
need an estimate like

inf{wp(µ, ν) | # spt(ν) ≤ k} ≤ C(µ)k−1/N ,
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whereC(µ) is a finite constant depending on the measureµ. It is easy to get a similar
estimate whenµ has compact support, but the constant may depend on the diameter of
the support. The existence of a similar estimate for arbitrary measuresµ is linked to the
asymptotics of the rescaled location problem inRN . A theory of this asymptotic problem
has been explicitly developed (for instance in [8]) only in the case of compact support.
However, it leads to a condition likeµN/(N+p)

∈ L1, which is always fulfilled forµ
compactly supported, while it may fail for general probability measures inWp(RN ). The
existence of an estimate as above would easily imply a theorem similar to Theorem 4.4
for the case ofGr , but we are not sure if such an estimate is necessary.
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MR 2129498

[2] Ambrosio, L., Tilli, P.: Selected Topics on “Analysis on Metric Spaces”. Appunti dei Corsi
Tenuti da Docenti della Scuola, Scuola Normale Superiore, Pisa (2000) Zbl pre02043480
MR 2012736

[3] Bernot, M., Caselles, V., Morel, J. M.: Are there infinite irrigation trees?. J. Math. Fluid Mech.
7 (2005)

[4] Bouchitt́e, G., Buttazzo, G.: New lower semicontinuous results for nonconvex functionals
defined on measures. Nonlinear Anal.15, 679–692 (1990) Zbl 0736.49007 MR 1073958

[5] Bouchitt́e, G., Buttazzo, G.: Integral representation of nonconvex functionals defined on
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